
Reasoning about Resource-Bounded Knowledge

Theory and Application to Security Protocol Analysis

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Riccardo Pucella

August 2004

Abstract

EXISTING approaches for analyzing security protocols, while quite successful,
are limited in a number of ways. One limitation is that they often do not

supply a specification language. Another limitation is that the model of the adver-
sary is quite restricted, unable to capture protocol-specific knowledge or to sup-
port guessing. Informal specifications of security in the literature are typically
phrased in terms of knowledge. It thus seems natural to use an epistemic logic as
a specification language, where specifications can be written directly in terms of
knowledge. However, the standard interpretation of knowledge in such logics suf-
fers from the logical omniscience problem: agents know all logical consequences
of their knowledge. This gives a notion of knowledge too strong for the purpose
of reasoning about security, since the adversary knows information that no real-
istic adversary should know. Using a notion known as algorithmic knowledge it
is possible to define a logic for reasoning about security protocol under different
adversary models, where adversaries use algorithms to compute their knowledge.

The contributions of this dissertation are two-fold. Firstly, we develop the theory
of algorithmic knowledge in more depth. More precisely, we investigate the proper-
ties of the logic when the knowledge algorithms implement deductions in a logical
theory for the agents and when the knowledge algorithms are randomized. Dealing
with specifications in the presence of randomized knowledge algorithms requires a
notion of evidence, a concept heavily studied in the philosophical literature, but not
so much in computer science. Secondly, we develop a logic for reasoning about
security protocols based on the well-understood notions of knowledge, time, and
probability, as well as algorithmic knowledge to capture the capabilities of the ad-
versary. We show this logic is flexible enough to capture many of the adversaries
considered in the literature. We finally provide evidence that this logic is suffi-
ciently expressive to reason about security protocols: it can capture subtleties in
the handling of nonces that are not captured by non-epistemic approaches to secu-

i

ii Abstract

rity protocol analysis, and it can capture many operators believed to be important
for security protocol analysis.

À mes parents

Acknowledgments

I first would like to thank my advisor Joe Halpern. An outstanding scholar with
a keen eye for interesting questions and elegant solutions, he taught me much

about research and writing. He was perfectly supportive of the process by which I
attempted to define myself as a researcher; he was happy to listen to my research
ideas, and to read, comment, and critique drafts of research papers. Most impor-
tantly, he always encouraged me to collaborate with other researchers.

Cornell was home to a number of wonderful people that have made these past
five years fly by. First and foremost, Vicky Weissman, she of the many roles,
was my friend, my officemate, my coauthor, my colleague, and my girlfriend; she
gave me strength, kept me sane, and rekindled a sense of wonder I thought had
died long ago. A number of fellow students played double bill as great friends
and great colleagues. Matthew Fluet, Hubie Chen, and Steve Chong were more
than ready to listen to my ramblings and try to extract some sense out of them. I
benefited from interactions with faculty members, most notably Dexter Kozen and
Greg Morrisett, and students in the Programming Language Discussion Group and
beyond, especially Kevin O’Neill, Sabina Petride, Nate Nystrom, Michael Clark-
son, Dan Marques, James Cheney, as well as Cornell alumni Dave Walker, Steve
Zdancewic, and Stephanie Weirich. Delia Graff and Michael Fara, from the Cor-
nell Sage School of Philosophy, have tried to instill (hammer?) in me some critical
thinking, for which I am grateful. I would like to thank John Reppy for suggesting
I apply to Cornell in the first place.

I would like to thank Andy Gordon, from Microsoft Research in Cambridge,
for supporting me through two summer internships and allowing me to spend two
summers in England. I would similarly like to thank Ron van der Meyden and the
University of New South Wales for their kind invitation to spend the month of May
2002 in Sydney, working on what would become Chapter 9.

I am grateful for the support provided by the NSF, the ONR, and the AFOSR
during the course of my research. I was supported at various times by NSF under

v

vi Acknowledgments

grant CTC-0208535, by ONR under grants N00014-00-1-03-41, N00014-01-10-
511, and N00014-02-1-0455, by the DoD Multidisciplinary University Research
Initiative (MURI) program administered by the ONR under grant N00014-01-1-
0795, and by AFOSR under grant F49620-02-1-0101.

Last but not least, I would like to thank my family. Katia and my daughter
Alexandra saw me through my first years of graduate school. Alex, love of my life,
may you always keep your innocence; I miss you. I am grateful to my parents and
my brother for their unfaltering support and for always encouraging me to choose
my own path. I am who I am and where I am today because of them.

It is fitting that, without planning to, I ended up in Ithaca. This was the home of
Carl Sagan. In no small part, he stands at the genesis of it all; watchingCosmos
on the tube at too young an age is bound to warp a child’s mind, and it did. He
passed away a few years before I arrived. I am sorry I missed him; I would have
said thank you.

Riccardo Pucella
Ithaca, August 11, 2004.

Contents

List of Figures pagexi

1 Introduction 1
1.1 Knowledge and Evidence . 1
1.2 Security Protocol Analysis . 7
1.3 Remarks . 11
Notes . 12

Part I: A Theory of Resource-Bounded Knowledge 13

2 Algorithmic Knowledge 15
2.1 A Model of Knowledge . 15
2.2 Reasoning about Knowledge . 17
2.3 The Problem of Logical Omniscience 20
2.4 Algorithmic Knowledge . 22
2.5 Multiple Agents . 28
2.6 Decision Procedures . 30
Notes . 31

3 Deductive Algorithmic Knowledge 33
3.1 Deductive Systems . 34
3.2 Deductive Algorithmic Knowledge 36
3.3 Axiomatizations . 40
3.4 Decision Procedures . 42
3.5 Multiple Agents . 43
Notes . 46

4 Probabilistic Algorithmic Knowledge 47
4.1 Randomized Knowledge Algorithms 48
4.2 Measures of Confirmation and Evidence 51

vii

viii Contents

4.3 Reliable Randomized Knowledge Algorithms 55
Notes . 60

5 Reasoning about Evidence 61
5.1 Evidence and Probability Updates 63
5.2 Reasoning about Evidence . 66
5.3 Axiomatizing Evidence . 69
5.4 Decision Procedures . 71
5.5 Evidence in Dynamic Systems . 74
Notes . 79

Part II: Application to Security Protocol Analysis 81

6 Security Protocols 83
6.1 Protocols and Cryptography . 84
6.2 Adversaries . 88
6.3 Security Properties . 94
6.4 Symbolic Approaches to Security Protocol Analysis 95
Notes . 108

7 Modeling Security Protocols 113
7.1 Security Systems . 113
7.2 A Language for Security Protocols 118
7.3 Strand Spaces and Multiagent Systems 121
Notes . 133

8 A Logic for Reasoning about Security Protocols 135
8.1 The Logic . 137
8.2 Passive Adversaries . 140
8.3 Probabilistic Adversaries . 147
8.4 Active Adversaries . 148
8.5 The Logical Approach . 150
Notes . 151

9 Epistemic Foundations of Security Protocols 153
9.1 Nonces, Uniqueness, and Unpredictability 155
9.2 Temporal and Probabilistic Extensions 157
9.3 An Interpretation of BAN . 159
9.4 An Analysis of the SNS Protocol 167
Notes . 169

10 Conclusion 171
10.1 Algorithmic Knowledge and Evidence 171

ix

10.2 Security Protocol Analysis . 173
Notes . 175

Appendix A On the Problem of Human Knowledge 177

Appendix B Proofs 195

Bibliography 243

List of Figures

6.1 First attack on amended SENDSERVER protocol 92
6.2 Second attack on amended SENDSERVER protocol 92
7.1 Semantics of IMPSEC . 120
8.1 Dolev-Yao knowledge algorithm auxiliary functions 142
8.2 Lowe knowledge algorithm auxiliary functions 146
9.1 BAN inference rules . 160

xi

1
Introduction

THIS dissertation demonstrates that a logic for reasoning about resource-bounded
knowledge provides a good foundation for reasoning about security protocols.

Formal theories of knowledge have proved useful in a number of fields, including
artifical intelligence, economics, distributed computing, and security. However,
most theories of knowledge do not take resources available to agents into account;
this makes it difficult to reason about the complexity of establishing knowledge.
In the first part of this dissertation, we study a logical theory of resource-bounded
knowledge that captures a computational view of knowledge. In the second part
of this dissertation, we apply the theory studied in the first part to the problem of
reasoning about security protocols.

1.1 Knowledge and Evidence

The notion of knowledge has been a central preoccupation for western philosophy
since Aristotle. While philosophers have mostly been concerned with questions
such as “what is knowledge?”, “what is it possible to know?”, “are there facts
that can be known and that are not derived from experience?”, knowledge turns
out to be a useful concept to formalize various situations that can be analyzed most
naturally in terms of who knows what information. To illustrate this issue, consider
the following well-known puzzle.

A certain village contains a number of married couples, of whichk husbands are
cheating on their wives. It is a well-known fact within the community that every
woman knows about all the cheating taking place, except for the infidelities of her
own husband. The village is a matriarchal society which demands that husbands
remain faithful to their wives. If a wife discovers irrefutable evidence that her
husband has been cheating on her, she has to kill him that night and dump his
body in the town square for all to see. One day, at a town meeting, the chief
announces, “There is some cheating in this village, and I want it to stop.” Then,

1

2 1 Introduction

k − 1 nights pass uneventfully. After thekth night, however, the bodies of thek
cheating husbands are found in the town square. How did this happen?

The argument for explaining the puzzle goes roughly as follows. The idea is to
show that for the firstk − 1 nights, none of the cheated wives kills her husband,
but after thekth night, all the cheated wives kill their husband. Ifk = 1, the result
is immediate; after the first night, the single cheated wife notices that no other
husband has cheated, so she knows that her own husband has cheated. Ifk = 2,
the result is similar. Say thata andb are the cheated wives. After the first night,a

notices thatb’s husband has cheated, butb did not kill him. The only reason that
b did not kill her husband must be that she was not sure that he was cheating, that
is, she must have witnessed another husband cheating. Sincea only noticedb’s
husband cheating, it must be that her own husband was cheating. Wifeb follows
the same reasoning to establish that her own husband was cheating. Thus, both
wife a andb know that their husbands cheated, and they promptly kill them the
second night. A similar argument works for all values ofk.

A key point for this argument to go through is the initial statement by the vil-
lage chief that there is at least one husband cheating. It is interesting to ask why.
Intuitively, the initial statement establishes common knowledge among the wives
that there is at least one cheating husband, that is, all the wives know that there is
at least one cheating husband, all the wives know that all the wives know that there
is at least one cheating husband, and so on. This knowledge is needed in the above
argument, for instance, for wifea to reason thatb did not kill her husband because
she saw another cheating.

The argument above is informal, but can be formalized in a straightforward way.
A good formal model of knowledge helps explain the subtleties involved in the
above puzzle, and the role of the utterance of the village chief. It also has applica-
tions to fields other than puzzle-solving.

Artificial Intelligence. One of the goals of artificial intelligence research is to
design rational independent agents. To achieve this, it seems that agents should be
based on notions such as belief, knowledge, intention, and so on. Thus, a formal
model of knowledge is useful alongside other formal models. Knowledge in fact
has been studied from at least two distinct perspectives in artificial intelligence.
First, in any intelligent being, knowledge is a process that seems central to the
understanding of cognition, that is, an understanding of the way the higher-level
functions of the brain work. This is held by many researchers as a prerequisite to
the building of intelligence in machines. For instance, in order to help machines
understand natural language, it is useful to have an idea how humans understand
language, from the perception of sounds to the formation of concepts. Knowledge

1.1 Knowledge and Evidence 3

is an intrinsic part of this equation, so that a study of knowledge is part of a com-
plete study of cognitive models for artificial intelligence. The second perspective
from which knowledge has been studied is that of finding useful representations for
the knowledge an agent has about his environment, about his internal state, and so
on. Often, the representation of knowledge is very specific (a database of facts, a
set of logical formulas), and research in knowledge representation involves finding
efficient ways of querying for knowledge in such representations and updating the
representations when new information is available to the agent.

Economics and Decision Theory. In decision theory, one often studies eco-
nomic agents engaging in competitive behaviour to maximize gain. The basis of
many decisions can be understood as a function of the knowledge of the agents.
This is often formalized via game theory, a theory that goes back to the semi-
nal work of John von Neumann and Oskar Morgenstern in the 1940s. Games, in
this sense, are typically taken to be games of strategy, such as chess and check-
ers. Games such as backgammon, that involve both strategy and chance, are also
considered. One of the important distinctions to make when analyzing games is
whether the game is one of perfect information, where the participants have access
to all the information relevant to the game, as in chess, or a game of imperfect
information, where some of the information is hidden from the participants. In the
latter case, the information each participant has access to, his information set, is
exactly his knowledge. Game theory could be characterized theory as the theory of
how to make the best decision, based on one’s knowledge.

Distributed Computing. In distributed computing, one studies programs that
consist of different processes running essentially independently on different ma-
chines and communicating by various means. In this context, knowledge turns
out to be a useful form of specification. For example, suppose that two processes
engage in a protocol to synchronize their content, such as two databases. After
completion of the protocol, a desirable guarantee is that each process proceeds
only if it is sure that the content was successfully synchronized, even in the pres-
ence of network failures. One way to enforce this guarantee is simply to force each
process to confirm to the other that the exchange was successful, and to proceed
only once that acknowledgment is received. Pending issues such as what happens
if an acknowledgment is lost, there are many other ways in which such a confir-
mation could be implemented. What is an appropriate specification of the desired
behaviour that does not force a particular number of details into the specification?
A specification that is too precise would say, for example, that at the end of the ex-
ecution of the protocol, the acknowledgments have been received. However, such

4 1 Introduction

a specification really works only for a particular way of establishing confirmation.
A more widely applicable specification is to say that at the end of the protocol,
each processknowsthat the other process has successfully synchronized. Now,
whether this knowledge is achieved by explicit acknowledgments or some other
mechanism is immaterial to the specification. Of course, this requires a formal
definition of knowledge for processes.

As the examples above show, there are many areas where a formal theory of
knowledge is useful. The examples also highlight two distinct uses of such a the-
ory. On the one hand, knowledge can be used by someone designing or analyzing
a system to verify that the system behaves in a way consistent with a specification
that is best expressed using knowledge. In this case, knowledge should be viewed
as something ascribed to agents by an external observer. In the synchronization
protocol example above, the designer of a distributed protocol wants to check that
the protocol behaves as follows: “once the process knows that the synchronization
succeeded, it proceeds”. There is no question of the processes themselves deter-
mining whether or not they know whether the synchronization succeeded. The pro-
cesses follow a particular implementation, that for instance allows them to proceed
once they receive an acknowledgment from the other process. The specification,
however, is given in terms of the more general notion of knowledge. This form
of knowledge is known asimplicit knowledge, because it can be understood as the
knowledge implicit in the situation of the agent. This form of knowledge has been
extensively studied in the literature and leads to a rather elegant theory, which we
review in Chapter 2.

A different use of knowledge is as something concrete that agents can manipu-
late. For example, independent agents in artifical intelligence often need to base
their decisions on their knowledge of the environment, such as whether there is an
obstacle on their path, in the case of robotic agents. This knowledge can come di-
rectly from sensors, or from indirect reasoning such as the fact that another robotic
agent had to change direction to avoid the obstacle. This requires the agent to
determine whether or not he knows a fact. This form of knowledge is known as
explicit knowledge, because it can be understood as the knowledge that the agent
explicitly needs to compute in order to make decisions. Clearly, whether or not the
agent explicitly knows a fact should depend on his resources. There can be time
constraints restricting the amount of deduction that can be performed, or there may
be limited computational abilities, such as only a small memory available on robot
processors. Reasoning about knowledge in such a setting calls for a theory of
resource-bounded knowledge, that can be used to model situations where agents
that are resource-bounded need to explicitly compute their knowledge.

A general way of modeling explicit knowledge, known asalgorithmic knowl-
edge, provides every agent in the system with a “knowledge algorithm” that they

1.1 Knowledge and Evidence 5

can use to answer questions about their knowledge. This framework can capture
most of the approaches to modeling explicit knowledge from the literature. It is
then possible to develop a logic to reason about the implicit and explicit knowledge
of agents, where the explicit knowledge is modeled using algorithmic knowledge.
This logic can be used as a specification language to write specifications that talk
about what agents know both implicitly and explicitly, and to reason about what
agents know about each other’s ability to compute what they know. We review this
approach in Chapter 2.

One possible interpretation of algorithmic knowledge is to view it as a way for
an agent to “test” whether or not he knows a fact. Many properties of algorith-
mic knowledge depend on whether or not this test for knowledge is “sound”, that
is, if whenever the knowledge algorithm answers “Yes” when asked whether the
agent knows a particular fact, then the agent indeed (implicitly) knows that fact.
If a knowledge algorithm is sound, then algorithmic knowledge of a fact implies
knowledge of that fact. Not all knowledge algorithms are sound in this way; many
of them are “almost sound”, especially those that involve some randomization.
Despite the fact that these algorithms are sometimes wrong, it certainly seems that
if the probability that the algorithm gives the wrong answer is low, it provides
very useful information when it says “Yes” to a query. This intuition appears in
the randomized algorithms literature, where a “Yes” answer from a highly reliable
randomized algorithm that is, one with a low probability of being wrong, is deemed
“good enough”. It is certainly not the case that a “Yes” answer to a queryF from a
highly reliable randomized knowledge algorithm should make the probability that
F is true be high. Rather, the information should be viewed asevidencethat the fact
F is true; the probability thatF is true also depends in part on the prior probability
of the fact.

The notion of evidence, like that of knowledge, has been widely discussed in
the philosophical literature. Much of this discussion occurs in the philosophy of
science, specificallyconfirmation theory, where the concern has been historically
to assess the support that evidence obtained through experimentation lends to var-
ious scientific theories. Confirmation theory aims at determining and measuring
the support a piece of evidence provides a hypothesis. Many different measures of
confirmation have been proposed in the literature. Typically, a proposal has been
judged on the degree to which it satisfies various properties that are considered ap-
propriate for confirmation. For example, it may be required that a piece of evidence
e confirms a hypothesish if and only if e makesh more probable.

Such a notion of evidence is more generally relevant to understanding situations
involving a combination of nondeterministic choices and probabilistic choices. The
following example illustrates the issues involved. Suppose Alice chooses one of
two coins, nondeterministically. One is fair, meaning it has probability1

2 of land-

6 1 Introduction

ing heads and probability12 of landing tails when tossed, and the other is double-
headed. Bob, who does not see which coin Alice chose, sees her toss the coin a
hundred times, landing on heads on every toss. What is the probability, according
to Bob, that the next coin toss lands heads as well? Since the example does not give
a probability distribution on Alice’s choice of coin, this question has no precise an-
swer, beyond the unsatisfying “the probability of the next coin toss landing heads
is either 1

2 or 1”. Yet, there is an intuition that it is more likely than not that the
coin is double-headed. This can be made clearer if Bob sees an additional thousand
coin tosses, all landing heads. Again, it is not possible to assign a probability to
the event of the next coin toss landing heads, but now it is even more likely for the
coin being double-headed. Something has changed, but what? Intuitively, there is
accumulated evidence for the coin to be double-headed, and hence for the fact that
the next coin toss will land heads.

The first part of this dissertation is concerned with the study of the form of
resource-bounded knowledge modeled using algorithmic knowledge, and its rela-
tionship to evidence. The particular contributions of this first part are as follows.

– In Chapter 3, we study a particular form of knowledge algorithm that captures
many situations of interest, where the explicit knowledge of an agent is assumed
to come from a logical theory in which the agent performs his reasoning. The
knowledge algorithm corresponding to such a logical theory is the algorithm that
attempts to infer whether a fact is derivable from the deduction rules provided
by the agent’s logical theory. In contrast with the general form of algorithmic
knowledge, where the algorithm is arbitrary, the highly structured presentation
of the logical theory permits an axiomatization of the properties of the resulting
form of algorithmic knowledge. Formally, we show that the logic interpreted
over such knowledge algorithms admits sound and complete axiomatizations
that can be derived directly from the rules of the logical theory. We also consider
the complexity of the decision problem.

– In Chapter 4, we study what happens when the knowledge algorithm used by an
agent is randomized. Handling this case requires an extension of the theory. In
this context, it becomes necessary to characterize the information obtained by
an agent when a randomized knowledge algorithm gives a positive answer to a
query, since there is often some probability that the algorithm is wrong when it
answers positively. It certainly seems that if the probability that the algorithm
gives the wrong answer is low, it provides very useful information when it an-
swers “Yes” to a query. A positive answer from a randomized algorithm that
has a low probability of being wrong is often deemed “good enough”. In what
sense is this true? We show how to quantify this statement using an appropriate
measure of evidence from the literature.

1.2 Security Protocol Analysis 7

– In Chapter 5, we focus on the notion of evidence that was used in the Chap-
ter 4 to quantify the evidence provided by randomized knowledge algorithms.
We develop a logic for reasoning about evidence in a more general setting that
essentially views evidence as a function from prior beliefs (before making an
observation) to posterior beliefs (after making the observation). We provide a
sound and complete axiomatization for the logic, and consider the complexity
of the decision problem.

1.2 Security Protocol Analysis

A particularly interesting field of application for formal theories of knowledge is
that of reasoning about security. An important aspect of security is confidentiality,
either in the form of data that needs to be kept from falling into the wrong hands,
or more generally, in the form of controlling who can know particular facts, such
as passwords, keys, or identity. It therefore seems reasonable that formal theories
of knowledge should shed light on security issues.

In the second part of this dissertation, we focus on a particular aspect of security,
namely security protocols. Security protocols mediate the exchange of information
between different agents, in order, for example, to exchange a confidential piece of
information or to establish the respective identity of the agents. Security protocols
often rely on cryptography to exchange messages, including mechanisms for en-
crypting messages and mechanisms to digitally sign messages with an unforgeable
token whose validity is easy to check. As an illustration, consider the following
security protocol to authenticate two agents, Alice and Bob:

1. A→ B : {|nA, A|}kB

2. B → A : {|nA, nB|}kA

3. A→ B : {|nB|}kB
.

Here,kA represents the public key of Alice andkB the public key of Bob, while
nA andnB are unpredictable values chosen by Alice and Bob, respectively. The
notationA→ B : m indicates that agentA sends a messagem to agentB, and the
notation{|v|}k indicates the (public key) encryption of valuev using keyk.

Assume that all agents have access to the public keyskA andkB which can be
used to encrypt data, but only Alice has the decryption key corresponding tokA,
and only Bob has the decryption key corresponding tokB. Thus, everyone can
encrypt a message withkA and send it to Alice, but only Alice can decrypt this
message, since only she has the corresponding decryption key. The protocol above
says that to authenticate two agents, Alice and Bob, Alice first begins by sending a
message{|nA, A|}kB

to Bob containing her name and a valuenA that Alice chooses
so as to be unpredictable. Since only Bob has the decryption key corresponding to

8 1 Introduction

kB, only Bob can decrypt the message. Bob receives this message, decrypts it, and
replies to Alice with a message{|nA, nB|}kA

containing the valuenA that Alice
sent, along with Bob’s own unpredictablenB, all encrypted so that only Alice can
decrypt it. When Alice receives that message, if she assumes that Bob is honest
and does not revealnA to any other agent, then she sees that the message must be
from Bob, since only he could have decrypted her original message, extractednA,
and used it in the reply message. Hence, she knows she is indeed talking to Bob,
and thatnB is Bob’s value. She then replies to Bob by sending him back his value
nB encrypted again in such a way that only Bob can read it. A similar argument
shows that Bob knows he is talking to Alice, since only Alice could have extracted
his nB from his earlier reply, and used it in the message he received. Intuitively,
at the end of the exchange, Alice knows that she has been talking to Bob, and vice
versa. Therefore, if Alice and Bob are communicating using a fixed channel, then
Alice knows that the channel on which she is talking can be used to communicate
with Bob, and vice versa. (Assuming, of course, that the agent at each end of the
channel is also fixed.)

When faced with a security protocol such as the one above, there are really two
tasks involved in formally reasoning about it. First, the properties of the protocol
must be specified. Second, the properties must be shown to be satisfied by the
protocol. While arguably the latter has received the most attention in the recent
literature, the task of specifying security properties is far from having received a
satisfactory solution.

To see the need for a good specification language for security properties, con-
sider the kind of properties that arise in the example above. The goal is to establish
that Alice has successfully authenticated herself to Bob, and vice versa. But what
does that mean exactly? We argued that at the end of the execution of the proto-
col, Alice knew Bob’s valuenB, and Bob knew Alice’s valuenA, and moreover
both Alice and Bob knew that the other knew their value. We took this to mean
that Alice and Bob successfully authenticated themselves to each other. Is that a
reasonable definition? Clearly, it only makes sense if the protocol being analyzed
actually involves exchanging secret values. Is there a general notion of authenti-
cation that can be captured in a specification language? What about protocols that
aim at preserving anonymity, or privacy? At the very least, a specification language
for security protocols should be expressive enough to capture all of these notions
in a natural way.

Determining the security properties that a security protocol should satisfy is an
important part of the analysis. Another important part is determining the context in
which the protocol is meant to be analysed. Protocols are not analyzed in a vacuum,
but rather with respect to an execution context. To see the subtleties involved in
taking the context of execution into account, consider the argument above. The

1.2 Security Protocol Analysis 9

reasoning appears sound, and should prove that Alice is talking to Bob, and vice
versa, since only the appropriate agent can decode the exchanged messages at key
points of the interaction. But in what context does this reasoning hold? It turns
out that Trudy, an “insider” in the system, can fool Bob into thinking he’s talking
to Alice while he’s in fact talking to Trudy. Consider the following interaction,
where Alice initiates an interaction with Trudy, and Trudy uses that interaction as
an “oracle” to drive her interaction with Bob:

A→ T : {|nA, A|}kT

T (A)→ B : {|nA, A|}kB

B → T (A) : {|nA, nB|}kA

T → A : {|nA, nB|}kA

A→ T : {|nB|}kT

T (A)→ B : {|nB|}kB
.

The first column reports the messages exchanged between Alice and Trudy, while
the second column reports the messages exchanged between Trudy masquerading
as Alice (writtenT (A)), and Bob. Here, Trudy has managed to convince Bob that
he’s talking to Alice, when he is not. It requires Trudy to be a known principal
of the system, albeit a dishonest one. This attack is simple, and more importantly,
does not show up in the informal analysis of the protocol given above. This does
not necessarily mean that the initial protocol is flawed. It depends on the context
in which the protocol is to be used. In a closed system where every agent known
to the other agents is honest, the argument we gave originally holds. However, if
dishonest agents are allowed in the system, then the above attack is a possibility.

The goal of security protocol analysis is to develop tools and methods to reason
about protocols, highlighting problems such as the above. As the example above
illustrates, there are many aspects to this: Who are the principals involved? Who
is compromised? What are the capabilities of adversaries? How many instances
of the protocol are running concurrently on the system? To illustrate the difficul-
ties, consider the protocol above, corrected in such a way that the attack we just
illustrated is no longer possible. The idea is to add the name of Bob to the second
message:

1. A→ B : {|nA, A|}kB

2. B → A : {|nA, nB, B|}kA

3. A→ B : {|nB|}kB
.

Intuitively, in the attack scenario above, if Alice sees that she gets her second
message back and it contains Bob’s name instead of Trudy’s, with whom she is
talking, then she will figure out something is wrong.

Being clear about the context of execution of a protocol is one important aspect

10 1 Introduction

of reasoning about security protocols. Another important aspect is to determine the
capabilities of the adversary. In the example above, what can Trudy do? Clearly,
if she can “crack” arbitrary encrypted messages, then she can easily fool Alice or
Bob. Indeed, the informal analysis relied on the fact that only Bob could decrypt
a message encrypted withkB. What is commonly done in the literature is to give
the adversary some very restricted capabilities, such as being able to intercept and
reroute messages, compose new messages by concatenation, but only allowing an
adversary to decrypt a message if the decryption key is known. While such an ab-
stract adversary is useful (it is sufficient to find the insider attack described above),
it is also fairly limited, as there may be contexts where it makes sense to assume
the adversary has more refined capabilities; for example, there may be properties
of the encryption that the adversary can use without cracking the encryption.

There are many approaches to reasoning about security protocol analysis, which
we review in Chapter 6. These approaches can be classified into broad categories,
depending on how exactly they approach the protocol analysis problem. Some
approaches are based on standard techniques for analyzing software systems, by
focussing on the modeling of the system and the resulting properties. Other ap-
proaches are based on the theory of programming languages, and focus on compo-
sitional ways of representing the protocols so that the analysis can be done directly
on the protocol text. Finally, other approaches are more in the spirit of logic-based
verification, in that they offer a precise specification language that is given a formal
semantics in terms of the protocols. Each class of approaches makes decisions as
to the points raised above: how to model the protocol, how to specify properties,
and how to verify that these properties hold. Most importantly, however, few ap-
proaches provide a way to model different capabilities of adversaries. The few that
are flexible enough to provide such a facility do not provide a suitable specification
language. Is it possible to develop a framework for modeling and reasoning about
security protocols, where adversaries can be are defined in a flexible way, and that
supports an expressive and natural specification language for security properties?

In the second part of this dissertation, we apply the framework developed in the
first part of the dissertation to the problem of reasoning about security protocols,
taking into account the aspects highlighted above. The goal is to derive a logic-
based specification language suitable for capturing security properties, with a clear
semantics ground in well-understood and intuitive models, that moreover provides
enough flexibility to capture various capabilities of adversaries. The particular
contributions of this second part are as follows.

– In Chapter 7, we describe a formal framework to model security protocols, a mi-
nor specialization of existing models from the distributed computing literature.
Our models are simply dynamic versions of the structures studied in the first

1.3 Remarks 11

part of the dissertation, and they allow for the clean expression of knowledge-
theoretic concepts, which underlies the specification of security notions. We
introduce a programming language for writing protocols, and show how it is
used to generate models. We finally compare our models to a popular class of
models in the literature, strand spaces, and show that they are at least as expres-
sive as strand space models. Thus, our models can be used to model security
protocols at least at the level of expressiveness of other approaches.

– In Chapter 8, we introduce a formal logic for reasoning about security properties
of the models described in the previous chapter. In keeping with the observation
above that most security notions are really epistemic notions, our logic is a logic
of knowledge. The capabilities of adversaries can be nicely captured using a
knowledge algorithm and thus the knowledge of an adversary can be expressed
by the algorithmic knowledge studied in the first part of this dissertation. We
show that this can be used to express in a natural way many of the adversaries
studied in the literature.

– In Chapter 9, we examine in more detail some of the more interesting notions
that arise in security protocol analysis, using the logic of Chapter 8. One notion
central to security protocol analysis is that of nonces (the unpredictable values
nA andnB in the protocol above). The unpredictability of nonces can best be
understood and modeled using an epistemic language. Additionally, it is possi-
ble to encode many of the higher-level security operators that have been advo-
cated in the literature using a language with well-understood and well-studied
operators for knowledge, time, and probability. This provides evidence that the
logic introduced in Chapter 8 supplies a reasonable foundation on which to base
security protocol analysis.

1.3 Remarks

We assume the reader has a basic knowledge of logic. We assume exposure to com-
plexity theory, including the fact that the satisfiability problem for propositional
logic is NP-complete. For Chapter 4 and beyond, we assume a basic knowledge of
probability theory, as well as exposure to randomized algorithms. For the second
part of this dissertation, we assume a passing familiarity with basic cryptographic
concepts, such as shared-key and public-key cryptography.

Keeping in mind these assumptions, every attempt has been made to make this
dissertation as self-contained as possible. To avoid distracting the reader, bibli-
ographic information and precise relationships with related work have been rele-
gated to the end of every chapter. The proofs of the technical results appear in
Appendix B.

12 1 Introduction

Most of the core work in this dissertation is the result of collaborations. Specifi-
cally, Chapters 4–5 and 7–8 are joint work with Joseph Halpern. Chapter 9 is joint
work with Joseph Halpern and Ron van der Meyden.

Notes

The branch of philosophy that studies the origin, structure, methods and validity of
knowledge is epistemology. For moderns accounts and overviews of contemporary
theories, see Hamlyn [1970] and Pollock and Cruz [1999].

The cheating husbands puzzle (variously known as the muddy children puzzle,
the three blind wise men puzzle) was described, among others, by Gamow and
Stern [1958]. An analysis in terms of a formal theory of knowledge as described
in the next chapter is presented by Halpern and Vardi [1991].

One of the first papers to advocate associating mental qualities to machines is
McCarthy [1979]. The issues involved in knowledge representations can be found
in [Davis, Shrobe, and Szolovits 1993; Sowa 2000].

A discussion of the role of theories of knowledge in economics can be found in
[Brandenburger 1989; Aumann 1999]. They have their source in Aumann’s [1976]
seminal work on the role of common knowledge in reaching agreement. Game
theory originated with Von Neumann and Morgenstern [1947]. See [Fudenberg
and Tirole 1991] for a modern introduction.

The use of formal theories of knowledge to specify and reason about distributed
computation was advocated in a number of early papers [Halpern 1990; Dwork
and Moses 1990; Moses and Tuttle 1988; Halpern and Zuck 1992]. See Fagin et
al. [1995] for more references. Algorithmic knowledge was introduced by Halpern,
Moses, and Vardi [1994]. Kyburg [1983] gives a good overview of the literature
on evidence.

The protocol in Section 1.2 is due to Needham and Schroeder [1978]. The in-
sider attack and the fix were discovered by Lowe [1995].

A good modern introduction to logic is Enderton [1972]. A good introduction
to complexity theory is Papadimitriou [1994]. The NP-completeness of proposi-
tional logic was first proved by Cook [1971]. Good introductions to probability
theory include Feller [1957] and Billingsley [1995]. Randomized algorithms are
described by Motwani and Raghavan [1995]. Stinson [1995] and Schneier [1996]
give excellent overviews of cryptography.

Part I
A Theory of Resource-Bounded Knowledge

2
Algorithmic Knowledge

I N the first part of this dissertation, we study a formalism to reason about resource-
bounded knowledge. In this chapter, we review the intuitions underlying the

classical approach to knowledge, and describe various ways in which it can be ex-
tended to take into account resource bounds. We highlight the particular approach
we use in the remainder of this dissertation. This chapter is mostly review of exist-
ing literature.

Note that there is a strong philosophical component to any study of logics of
knowledge (also known asepistemic logics). While this is an intriguing topic—
to develop a theory of knowledge that captures in a logic the features of what
might be termed “human knowledge”—this will not be our aim in this work. The
intent is to focus on epistemic logic as a specification language for systems. This
leads to a particular set of desiderata, distinct from what one might expect from
a logic of human knowledge. (We do consider some philosophical implications
of the approach described in this chapter to the problem of human knowledge in
Appendix A.)

2.1 A Model of Knowledge

What does it mean toknowa fact? The modern approach, due to Jaakko Hintikka,
goes something like this. Assume a setW of worlds. Intuitively, each world rep-
resents a possible state of affairs in the situation being studied. For example, if the
situation consists of tossing a die, we might consider six worlds, one for each way
the die can land. (We are implicitly assuming, therefore, that the die cannot land
on its edge, or indeed not land at all.) A more complicated situation might actually
involve a great many more worlds. If we are interested in a situation where we
worry about the weather around the world, then we may have a world where it is
cloudy in Edinburgh and raining in Ithaca, a world where it is cloudy in Edinburgh

15

16 2 Algorithmic Knowledge

and sunny in Ithaca, and so on. The number of worlds to consider multiply quickly.
Clearly, some facts will be true at some worlds, others will be false.

Given the current (or actual) world, there are a number of worlds that may be
considered as possible alternatives to the actual world. Intuitively, these are the
worlds that cannot be distinguished from the actual world. Given a worldw, we
typically refer to the worlds that are indistinguishable fromw as the worlds consid-
ered possible atw. In the weather example, if we are currently in Edinburgh and
we witness the sky is cloudy, then we will only consider a world possible if indeed
it says that it is cloudy in Edinburgh. Using this notion, we know a fact at a world
w if that fact is true at all the worlds considered possible atw.

This can be formalized as follows. Anepistemic frameE = (W,K) consists of a
setW of possible worlds (or states), and a binary relationK such that(w,w′) ∈ K

if the agent considersw′ possible at worldw. (That is, if the agent considers that
w′ is a possible alternative to the actual worldw.) It is useful to writeK as though
it were a function, asK(w) = {w′ ∈ W | (w,w′) ∈ K}. A fact in E can be
understood as a set of worlds, intuitively, the set of worlds where that fact is true.
Hence, the fact “It is raining in Ithaca” can be identified with the set of worlds
where it is raining in Ithaca. Following the intuition above, the agent knows a fact
F at a worldw, if K(w) ⊆ F : at every world the agent considers possible atw,
the fact is true.

This definition is quite general. For one, we have not put any restrictions on
the worlds an agent considers possible. In general, restrictions on knowledge will
amount to properties of the relationK. Some of those are rather standard, with
equally standard interpretations. For instance, one restriction could be that the
actual world is always considered possible, i.e.,(w,w) ∈ K; in other words,K is
reflexive. Similarly,K may be transitive, so that(w1, w2) ∈ K and(w2, w3) ∈ K

imply that(w1, w3) ∈ K, and so on.1

There is at least one feature of knowledge in epistemic frames that doesnot
depend on the properties of theK relation. Consider a factF along with a factG
that is a “consequence” ofF . Formally, this simply means thatF ⊆ G: whenever
F holds,G holds as well. It follows directly from the definition of knowledge that
an agent knowing factF also knows factG. In this sense, agents are very powerful
reasoners, knowing all the consequences of the facts they know. We return to this
observation in Section 2.3.

1 One of these properties, reflexivity, is in fact the property that differentiates knowledge from belief, at least
according to philosophers: knowledge has the property that if you know a fact, that fact is true. In contrast, it
is possible to believe a fact that happens to be false.

2.2 Reasoning about Knowledge 17

2.2 Reasoning about Knowledge

We now define a formal logic for reasoning about the properties of epistemic
frames. The starting point is propositional logic. Propositional logic can be un-
derstood as a formal system for reasoning about a particular world. Assume a set
Φ0 = {p1, p2, . . . } of primitive propositions; each primitive proposition represents
a primitive “fact”, such as “the door is closed”, or “messagem has been sent”. The
syntax ofLK(Φ0) is obtained by starting with a setΦ0 of primitive propositions,
and closing off by forming conjunctions of formulas (ϕ1∧ϕ2), negations of formu-
las (¬ϕ), and knowledge formulas (Kϕ). The formulaKϕ intuitively reads “the
agent knowsϕ”. The remaining logical operators, such as disjunction, implication,
equivalence, are defined as abbreviations for more complex formulas. The disjunc-
tion ϕ1 ∨ ϕ2 is taken to be an abbreviation for¬(¬ϕ1 ∧ ¬ϕ2), the implication
ϕ1 ⇒ ϕ2 an abbreviation for¬ϕ1 ∨ ϕ2, and the equivalenceϕ1 ⇔ ϕ2 an abbre-
viation for (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1). The formulatrue is taken to be an arbitrary
but fixed tautology of the logic, andfalse is an abbreviation for¬true. When the
set of primitive propositions is not relevant, we often simply writeLK instead of
LK(Φ0). (This convention will hold for most logics throughout this dissertation.)

The ideas of the previous section can be used to assign a semantics to this logic.
More precisely, we can understand the knowledge of a fact (here understood as a
formula) at a worldw as the fact being true at all worlds considered possible atw.
This can be turned into a semantics for formula ofLK by starting with an epistemic
frame and adding an interpretation that assigning a truth value to every primitive
proposition at every world of the frame. More formally, anepistemic structure
(also known as Kripke structure) is a tupleM = (W,K, π) where(W,K) is an
epistemic frame andπ is an interpretation forΦ0 in W , that is, for every world
w ∈W and primitive propositionp ∈ Φ0, π(w)(p) ∈ {true, false}.

Define a formulaϕ of LK(Φ0) to be true (or satisfied) in a worldw of the struc-
tureM , written(M,w) |= ϕ, according to the following inductive rules:

(M,w) |= p if π(w)(p) = true
(M,w) |= ¬ϕ if (M,w) 6|= ϕ

(M,w) |= ϕ ∧ ψ if (M,w) |= ϕ and(M,w) |= ψ

(M,w) |= Kϕ if (M,w′) |= ϕ for all w′ ∈ K(w).

A formula ϕ is valid in M , writtenM |= ϕ, if (M,w) |= ϕ for all w ∈ W . A
formula isvalid, written |= ϕ, if M |= ϕ for all modelsM . If ϕ is valid,ϕ is often
called a tautology. Conversely,ϕ is satisfiableif there is a structureM and a state
w of M such that(M,w) |= ϕ.

Given the above semantics forLK, it is straightforward to verify that some of
the properties alluded to in the previous section hold in this system. First, an agent

18 2 Algorithmic Knowledge

knows all “consequences” of his knowledge. This can be made precise via the
following formula. If an agent knows a formulaϕ and knows thatϕ ⇒ ψ, then
at each state the agent considers possible, bothϕ andϕ ⇒ ψ hold, and henceψ
holds. In other words, the agent knowsψ. It follows that

Kϕ ∧K(ϕ⇒ ψ)⇒ Kψ

is valid in epistemic structures. This property is often called theDistribution Ax-
iom.

This property seems to imply that agents are powerful reasoners. The follow-
ing observation provides further evidence. If a formulaϕ is valid in an epistemic
structureM , thenϕ holds at all the states ofM , including of course all the states
an agent consider possible. Therefore, at every state ofM , the agent must knowϕ.
Hence, the followingRule of Knowledge Generalizationholds: for all epistemic
structuresM ,

if M |= ϕ thenM |= Kϕ.

As a consequence, ifϕ is valid, thenKϕ must be valid as well. Note that this does
not say thatϕ ⇒ Kϕ is valid. This would require that for allM and allw ∈ W ,
(M,w) |= ϕ implies(M,w) |= Kϕ, which is clearly false in general. In a sense,
the Rule of Knowledge Generalization says that an agent knows all the facts that
are necessarily true.

It turns out that additional properties hold in epistemic structures whereK has
particular properties. The following formula is valid in any structure whereK is
transitive:

Kϕ⇒ KKϕ.

This is typically called thePositive Introspection Axiom: an agent knows that he
knows what he knows. On the other hand, in a structure whereK is Euclidean (that
is, if (w1, w2) ∈ K and(w1, w3) ∈ K, then(w2, w3) ∈ K), the following formula
is valid:

¬Kϕ⇒ K¬Kϕ.

This is theNegative Introspection Axiom. In an epistemic structure whereK is
serial, that is, an agent always considers at least one world possible, then

¬Kfalse

must be valid. It is probably easier to see the converse: ifKfalse holds at a world
of M , it must be that there is no world the agent considers possible, since there is
no world such that(M,w) |= false.

2.2 Reasoning about Knowledge 19

Finally, in a structure whereK is reflexive, that is, where the agent always con-
siders the actual world possible, the formula

Kϕ⇒ ϕ

is valid. This is called theKnowledge Axiom.
In the remainder of this dissertation, we focus, for the interpretation of knowl-

edge, on structures where the relationK is an equivalence relation. Roughly speak-
ing, this is because we assume a particular structure to the worlds, where the agent
gets to “observe” part of the world, and considers two worlds possible if they yield
the same observations. Henceforth, we assume that the relationK in an epistemic
structureM = (W,K, π) is an equivalence relation. LetMK be the class of all
such epistemic structures.

We can establish that the above properties of knowledge, in a sense, are all the
relevant properties of knowledge in those kind of structures. Any other property
can be derived from these. This can be made formal using an axiomatization. An
axiomatizationAX for a logic is a set of formulas (the axioms) and inference rules
of the logic.2 Given a set of formulasF , ϕ is provablefrom the setF with respect
to the axiomatizationAX, writtenF `AX ϕ, if there is a derivation ofϕ from the
axioms and inference rules ofAX and the formulas inF . This is often written
F ` ϕ when the axiomatizationAX is understood. Formally, aderivationof ϕ is a
sequence of formulasϕ1, . . . , ϕn such thatϕn is ϕ, and for eachi, ϕi is either an
axiom ofAX, a formula ofF , or obtained fromϕ1, . . . , ϕi−1 via an inference rule
of AX. WhenF is empty,ϕ is said to beprovable, written` ϕ.

An axiomatizationAX is soundif every provable formula is valid, that is, if
` ϕ implies |= ϕ for all ϕ. This is a basic requirement of an axiomatization,
indicating that it can only prove true facts. An axiomatizationAX is completeif
every valid formula is provable, that is, if|= ϕ implies` ϕ for all ϕ. Of course,
for every logic, there is a trivial sound and complete axiomatization, obtained by
takingall the valid formulas of the logic as axioms. This is uninteresting in general,
since it does not explain why formulas are valid. In order to be of interest, an
axiomatization should be either finite, or at least finitely described. It is possible
to relax the restrictions somewhat, and allow so-called axiom schemes as axioms,
that is, templates for axioms. Given an axiom scheme, replacing the metavariables
in the axiom scheme by actual formulas yields an axiom. For ease of exposition,
we will keep on referring to axiom schemes simply as axioms.

Since the logicLK includes propositional reasoning, any axiomatization pur-

2 An inference rulesays that when particular formulas are valid, others are valid as well. By abuse of termi-
nology, we will often refer to both axioms and inference rules as simply axioms. The form of an axiom will
always make clear whether it is abona fideaxiom or an inference rule.

20 2 Algorithmic Knowledge

ported to be sound and complete must somehow deal with propositional reasoning.
The following axiom and inference rule take care of this:

Prop. All instances of propositional tautologies.

MP. Fromϕ andϕ⇒ ψ inferψ.

Axiom Prop stands for all instances of tautologies of propositional logic, where the
instances are obtained by instantiating arbitraryLK(Φ0) formulas. For instance,
sincef ∨¬f is a propositional tautology, Prop includesKϕ∨¬Kϕ as an instance.
Axiom MP is simplyModus Ponens. Axiom Prop can be replaced by the following
axioms:

P1. ϕ⇒ (ψ ⇒ ϕ).
P2. (ϕ1 ⇒ (ϕ2 ⇒ ϕ3))⇒ ((ϕ1 ⇒ ϕ2)⇒ (ϕ1 ⇒ ϕ3)).

The following axioms capture the properties of knowledge:

K1. Kϕ ∧K(ϕ⇒ ψ)⇒ Kψ.

K2. Fromϕ inferKϕ.

K3. Kϕ⇒ ϕ.

K4. Kϕ⇒ KKϕ.

K5. ¬Kϕ⇒ K¬Kϕ.

Let AXK be the axiomatization{Prop,MP,K1–K5}. (AXK has been called S5
in the literature, from a terminology on modal logics originally going back to the
philosopher Clarence Irving Lewis.)

Theorem 2.1.AXK is a sound and complete axiomatization forLK with respect to
the class of epistemic structuresMK .

A more general result holds when one considers epistemic structure with differ-
ent properties on the relationK. For instance, there is an axiomatization that is
sound and complete forLK with respect to epistemic structures whereK is reflex-
ive. Not all such properties can be captured by an axiomatization, however. The
classical example of this is irreflexivity, which cannot be captured by a formula of
modal logic.

2.3 The Problem of Logical Omniscience

A point we have already raised in the previous two sections when describing the
particular interpretation of knowledge at hand is that agents are powerful reasoners.

2.3 The Problem of Logical Omniscience 21

If one looks at the axiomatization of the previous section, the culprit appears as the
axiom

Kϕ ∧K(ϕ⇒ ψ)⇒ Kψ.

One reading of this axiom (in conjunction with the Knowledge Generalization ax-
iom) is that an agent knows all the logical consequences of his knowledge. Having
agreed to the intuitive notion of knowledge in Section 2.1, the formalization of that
intuition forces this property. It is of course possible to debate whether the notion
of knowledge in Section 2.1 is reasonable. It turns out that in some cases, it is
reasonable; in other cases, it is not. The above notion of knowledge has been used
successfully in the distributed systems literature to study properties of distributed
protocols—for example, that a protocol correctly implement a specification of the
sort: “a process repeatedly sends a message until it knows that the intended re-
ceiver has received it”. Here, the knowledge is knowledge ascribed to the process
by the designer of the system; the process simply executes its program, and the
correctness of the implementation corresponds to the process behaving as though
it “knew” the particular fact. This is a form ofimplicit knowledge: knowledge that
is implicit in the situation and the environment in which the process is executing.
More importantly, it is not knowledge that the process explicitly bases its actions
on. In the above example, the process will repeatedly send a message until it enters
a situation where it stops. It is up to the designer to ensure that this situation corre-
sponds to the state where the intended receiver has received the message. There is
no question of the process stopping to decide whether or not it knows that partic-
ular fact. (On the other hand, a reasonable way to implement an process might be
for it to do exactly that.)

Implicit knowledge is a useful analysis and design tool. On the other hand, it is
easy to imagine situations where it is reasonable for an agent to decide whether he
knows a particular fact. It is clear that the above notion of implicit knowledge will
not work in such a setting—it is simply unreasonable for agents to be able to derive
all consequences of their knowledge, or indeed, for them to know all tautologies.

This problem with implicit knowledge is not new. It is called the problem of
logical omniscience. Using implicit knowledge to reason about the knowledge of
agents leads them to be logically omniscient. While in some situations this is a
perfectly reasonable assumption, it ceases to be one when the agents are meant
to act on their knowledge. What is needed for those cases is a notion of explicit
knowledge: a way for the agent to state what he explicitly knows, knowledge on
which he can base his actions. Ideally, explicit knowledge should not suffer from
the logical omniscience problem.

There have been quite a few attempts at getting around the logicial omniscience
problem in the literature. We will only survey the most relevant here. One way to

22 2 Algorithmic Knowledge

circumvent logical omniscience is to posit a number ofimpossible worlds, worlds
where the usual “laws” of logic do not hold. For instance, an impossible worldw

might be such that a primitive propositionp is both true and false, so thatp∧¬p is
in fact true at worldw. There are some difficulties with this approach, not the least
of which how to decide, when constructing the model, which impossible worlds
to add. Impossible worlds have to break the laws of logic in some way, otherwise
tautologies are still known. But which laws do you break?

The impossible-worlds approach is a semantic approach: it modifies the models
of epistemic logic by adding new worlds. At the other extreme, there are syntactic
approaches based onawareness. Circumventing logical omniscience via awareness
is based on the intuition that to explicitly know something is to first implicitly know
something, and then to be made aware of it. How can this awareness be modeled?
The simplest way is to assume that there is a set of formulas at each world, the
awareness set, those formulas of which the agent is aware. SayAϕ is true ifϕ is
a formula in the awareness set of the agent; then, takeϕ to be explicitly known
at a world ifKϕ ∧ Aϕ is true at that world. The advantage of this approach
over the impossible-worlds approach is that it is often easier to qualify what an
agents knows explicitly in terms of language (formulas) than it is in terms of sets
of worlds.

The awareness-based approach captures a nice intuition and underlies many re-
lated systems. There is one question that is not resolved by the general framework,
however, and it is the question of how to establish which formulas an agent is aware
of at every world? Is the agent aware of the same formulas at all the worlds he con-
siders possible? That would seem reasonable. If an agent is aware of a compound
formula, is he aware of its subformulas? That would also seem reasonable. How-
ever, even if these questions are answered, how do you state that an agent only has
limited resources for reasoning?

It turns out that there is an approach related to the awareness approach that has a
particular answer to those questions, and that moreover captures nicely the intuition
that agents explicitly know facts by computing that they know them, within the
resources available to them. This is the approach studied in the remainder of this
dissertation.

2.4 Algorithmic Knowledge

The aim is to come up with a notion of explicit knowledge that can be used by an
agent to determine whether he knows a particular fact. Appealing to intuition for
a moment, how do we determine whether we know a particular fact? Typically,
it will either be a fact that we know “offhand”, say via a direct observation of the

2.4 Algorithmic Knowledge 23

world around me, or it is a fact that we can somehow derive from other facts at
hand. Thus, intuitively, to explicitly know a fact is to have a procedure that says
whether or not that fact is true.

This can be formalized using a notion calledalgorithmic knowledge. From a
semantic point of view, it requires adding to an epistemic structure (representing
the possible worlds and the implicit knowledge of the agents) aknowledge algo-
rithm that can answer, given a formulaϕ and a world, whether or not the agent
explicitly knows the formulaϕ at that world. For the time being, we shall make no
assumption on the algorithm, except that it be effectively computable, that it always
terminate, and that it returns an answer of “Yes”, “No”, or “?”. Intuitively, “Yes”
indicates that, according to the knowledge algorithm, the agent explicitly knows
the formula, “No” indicates that the agent does not explicitly know the formula,
and “?” indicates that the algorithm does not have enough resources to determine
if the agent knows the formula. (It is this last possibility that allows knowledge
algorithms to model resource-boundedness.) LetLKX(Φ0) be the following lan-
guage for reasoning about algorithmic knowledge. As before, it is obtained by
starting from a set of propositions inΦ0, and closing under negation, conjunction,
knowledge formulasKϕ, as well as algorithmic knowledge formulasXϕ, read
“the agent can compute thatϕ is true”. As usual, define∨, ⇒, ⇔, andtrue as
abbreviations. Similarly,true is taken to be an arbitrary but fixed tautology of the
logic, and setfalse as¬true.

In order to formalize the above, however, the structure of the worlds deserves
more attention. Up until now, the worlds were taken to be abstract elements of
a set. Algorithmic knowledge, on the other hand, is very concrete—there is an
explicit algorithm in the model that takes as input formulas and worlds. This makes
it necessary to agree on what a world is. Going back to the intuition, the procedure
for determining if we explicitly know something should not be based on the world
as a whole, but rather should be based on what we can observe of the world.

To give a semantics to algorithmic knowledge, start as before with a set of worlds
W , and an interpretationπ for the primitive propositions at the worlds. Rather
than directly postulate a relationK, define a setL of local states, and a function
V : W → L giving, for each world, the view of the agent at that world, that is, his
local state. Analgorithmic knowledge structureis a tupleM = (W,V, π, A) where
W is a set of worlds,V is the view of the world for the agent,π is an interpretation
function for a setΦ0 of primitive propositions to truth values, andA is a knowledge
algorithm. (The setL of local states is left implicit, as it can be recovered from the
functionV.) The knowledge algorithm takes as input a formulaϕ and a local state
` ∈ L for the agent, and returns one of{“Yes”, “No” , “?”}. There is no relationK
inM , but it is easy to derive one. Say two worlds are indistinguishable to the agent
if they have the same view. Writew1 ∼ w2 if and only if V(w1) = V(w2). It is not

24 2 Algorithmic Knowledge

hard to see that∼ is an equivalence relation on the worlds, so that(W,∼, π) is an
epistemic structure. LetMalg be the class of all algorithmic knowledge structures.

Following this intuition ofM as an epistemic structure, define a formulaϕ to be
true at a world ofM , written(M,w) |= ϕ, by the following inductive definition:

(M,w) |= p if π(w)(p) = true
(M,w) |= ¬ϕ if (M,w) 6|= ϕ

(M,w) |= ϕ ∧ ψ if (M,w) |= ϕ and(M,w) |= ψ

(M,w) |= Kϕ if (M,w′) |= ϕ for all w′ ∈W such thatw′ ∼ w
(M,w) |= Xϕ if A(ϕ,V(w)) = “Yes”

It is easy to verify that the indistinguishability relation∼ is an equivalence relation.
Therefore, according to the discussion of Section 2.2, this notion of knowledge
satisfies axioms K1–5.

There is a subtlety about the logic above. By taking∨ and⇒ as abbreviation,
any formula containing∨ or ⇒ is really a formula containing∧ and¬. Thus,
the agent cannot explicitly distinguish betweenϕ ∨ ψ and¬(¬ϕ ∧ ¬ψ); they are
the same formula for him. In other words,|= X(ϕ ∨ ψ) ⇔ X(¬(¬ϕ ∧ ¬ψ)).
This seems to go against the main motivation for explicit knowledge, to ensure
that knowledge is not closed under tautologies. One way around this problem is
to use a syntax that directly uses∨,⇒, and perhaps other connectives, rather than
introducing them through abbreviations. We will not follow this approach in this
dissertation.

It is immediate from the above definitions that there is no necessary connection
between implicit and explicit knowledge. Indeed, there is nothing constraining
the knowledge algorithm. One way to see this is to look at axiomatizations. The
only properties of algorithmic knowledge follow from the fact that answers of the
knowledge algorithm depend only on the local state of the agent. This translates
into the following axiom:

X1. Xϕ⇒ KXϕ.

It is easy to see that in the presence of K1–5, axiom X1 implies that¬Xϕ ⇒
K¬Xϕ is provable:

1. ¬Xϕ⇒ ¬KXϕ (K3,Prop)

2. ¬KXϕ⇒ K¬KXϕ (K5)

3. ¬KXϕ⇒ ¬Xϕ (X1,Prop)

4. K(¬KXϕ⇒ ¬Xϕ) (3,K2)

5. ¬KXϕ⇒ K¬Xϕ (2, 4,Prop,K1)

6. ¬Xϕ⇒ K¬Xϕ (1, 5,Prop,MP).

2.4 Algorithmic Knowledge 25

Let AXKX be the axiomatizationAXK augmented with X1.

Theorem 2.2.AXKX is a sound and complete axiomatization forLKX with respect
to algorithmic knowledge structures.

In general, the most useful knowledge algorithms are those that are “correct”, in
some sense of the word. There are a few notions of correctness that are relevant.
First, it may be the case that the knowledge algorithm is right when it answers
“Yes” or “No”, dismissing “?” answers. Say a knowledge algorithmA is sound
for an agent in an algorithmic knowledge structureM if for all ϕ in LKX and
all w ∈ W , A(ϕ,V(w)) = “Yes” implies (M,w) |= Kϕ, andA(ϕ,V(w)) =
“No” implies (M,w) |= ¬Kϕ. Say a knowledge algorithm iscompletefor an
algorithmic knowledge structureM if it always answers either “Yes” or “No”—it
never answers “?”. Most knowledge algorithms considered in the literature that are
sound are not complete. Intuitively, the soundness guarantees that the algorithm,
when it returns a result, is correct, but the algorithm is not forced to return a result
(which is what captures resource bounds).

The above properties can be naturally relativized to a particular set of formulas
one cares about, or to a particular set of worlds. For example, a knowledge algo-
rithm is sound with respect toΣ ⊆ LKX andW ′ ⊆ W in M , if for all ϕ in Σ and
all w ∈W ′, A(ϕ,V(w)) = “Yes” implies(M,w) |= Kϕ, andA(ϕ,V(w)) = “No”
implies(M,w) |= ¬Kϕ.

Unfortunately, soundness and completeness properties of knowledge algorithms
cannot be formalized within the logicLKX. Intuitively, LKX cannot distinguish
between a knowledge algorithm answering “No” and a knowledge algorithm an-
swering “?”; both answers result in lack of algorithmic knowledge. Soundness and
completeness require this distinction. This distinction can be captured by intro-
ducing a new operator in the logic. LetLKXD(Φ0) be the language defined just
asLKX(Φ0), with an additional modal operatorDϕ that is true if the algorithm is
definiteaboutϕ, that is, if the algorithm answers either “Yes” or “No” (not “?”) to
a queryϕ. Semantically, this can be captured by the following rule:

(M,w) |= Dϕ if A(ϕ,V(w)) ∈ {“Yes”, “No” }.

An alternate approach to using aDϕ operator to capture the distinction between
“No” and “?” is to introduce an operatorXϕ, true if and only if the algorithm
answers “No”. The formulaDϕ can then be taken as an abbreviation forXϕ∨Xϕ.

The following axioms are the only axioms needed to account forDϕ in the
axiomatization:

X2. Xϕ⇒ Dϕ.
X3. Dϕ⇒ KDϕ.

26 2 Algorithmic Knowledge

As in the case of axiom X1, in the presence of K1–5, X3 implies that¬Dϕ ⇒
K¬Dϕ is provable. LetAXKXD be the axiomatizationAXKX augmented with
axioms X2 and X3.

Theorem 2.3. AXKXD is a sound and complete axiomatization forLKXD over
algorithmic knowledge structures.

To capture soundness and completeness of knowledge algorithms in this ex-
tended logic, consider the following axioms:

X4. Xϕ⇒ Kϕ.

X5. Dϕ ∧ ¬Xϕ⇒ ¬Kϕ.

Axiom X4 simply says that a knowledge algorithm answering “Yes” is correct,
while axiom X5 says that a knowledge algorithm answering “No” (this is what
Dϕ ∧ ¬Xϕ expresses) is also correct.

Theorem 2.4. AXKXD + {X4,X5} is a sound and complete axiomatization for
LKXD over algorithmic knowledge structures with sound algorithms.

Another axiom is needed to account for complete knowledge algorithms. A
complete knowledge algorithm is characterized by the fact that it always answers
either “Yes” or “No”. This is exactly what theD operator is meant to capture:

X6. Dϕ.

This axiom simply says that for any formulaϕ, the algorithm says “Yes” or “No”
when queried forϕ. This exactly captures completeness of the algorithm.

Theorem 2.5.AXKXD +{X4,X5,X6} is a sound and complete axiomatization for
LKXD over algorithmic knowledge structures with sound and complete algorithms.

It is immediate that for a sound and complete algorithm, the formulaXϕ⇔ Kϕ

holds, meaning that sound and complete algorithms capture implicit knowledge.
This indicates that sound and complete algorithms are hard to come by, and inef-
ficient when they do exist. We will mostly be concerned with sound algorithms,
those that are correct when they return a result. In Chapter 4, we consider knowl-
edge algorithms that are not quite sound, because they have a small probability of
error. Algorithmic knowledge in the presence of sound algorithms can be seen as
an instance of awareness, as defined in Section 2.3.

It is clear that the notion of algorithmic knowledge is quite general. What is not
so clear is that this notion is actually interesting; the risk is that it istoo general.

2.4 Algorithmic Knowledge 27

There is one sense in which this generality is useful: it allows us to capture particu-
lar forms of explicit knowledge by puttingrestrictionson either the form of knowl-
edge algorithms or their properties. Thus, we can get insight into a particular form
of explicit knowledge by examining the corresponding knowledge algorithms. In
the next chapter, for instance, we will see knowledge algorithms that arise out of
deductive systems.

Restricting the form of knowledge algorithms often immediately translates into
axioms that are sound with respect to algorithmic knowledge structures that use
such algorithms. This is hardly surprising, but this fact is used to characterize
classes of knowledge algorithms in Chapter 3. By way of example, consider the
behaviour of a knowledge algorithm with respect to negation. There is of course
nothing in the definition of a knowledge algorithm that says that the answers of the
knowledge algorithm to queriesϕ and¬ϕ need to be related. However, there is a
natural way to define the behaviour of a knowledge algorithm on negated formulas.
A strategy to evaluateAi(¬ϕ, `) is to evaluateAi(ϕ, `), and return the negation of
the result. There is a choice to be made in the case when theAi returns “?” to the
query forϕ. One possibility is to return “?” to the query for¬ϕ when the query
for ϕ returns “?”; another possibility is to return “Yes” if the query forϕ returns
“?”. (Arguably, the former is more intuitive than the latter.) Say that a knowledge
algorithmA weakly respects negationif for all local states̀ ,

A(¬ϕ, `) =

“Yes” if A(ϕ, `) = “No”

“No” if A(ϕ, `) = “Yes”

“?” if A(ϕ, `) = “?”.

Similarly, say that a knowledge algorithmA strongly respects negationif for all
local states̀ ,

A(¬ϕ, `) =

{
“Yes” if A(ϕ, `) 6= “Yes”

“No” if A(ϕ, `) = “Yes”.

Theorem 2.6. LetM = (W,V, π, A) be an algorithmic knowledge structure. If
A weakly respects negation, thenM |= Xϕ ⇒ ¬X¬ϕ. If A strongly respects
negation, thenM |= Xϕ⇔ ¬X¬ϕ.

Similarly, say that a knowledge algorithmA respects conjunction if for all local
states̀ ∈ L and all formulasϕ ∈ LKX, A(ϕ∧ψ, `) = “Yes” if and only if A(ϕ, `) =
“Yes” andA(ψ, `) = “Yes”. This leads to the valid formulaX(ϕ∧ψ)⇔ Xϕ∧Xψ.

28 2 Algorithmic Knowledge

2.5 Multiple Agents

The framework described in the previous sections extends in a straightforward way
to multiple agents. The aim is to reason about the knowledge of different agents
with respect to each other—for instance, we may want to express the fact that
“Bob knows that Alice knows that he sent a message containing 42”. This can be
achieved by adding knowledge operators to the logic that are indexed by agents,
and by providing each agent with a binary relation describing his possible worlds.
The notion of algorithmic knowledge can also be extended to multiple agents by
providing each agent with a knowledge algorithm.

Let the agents be named1, . . . , n. The epistemic logic forn agentsLK
n(Φ0)

is defined just likeLK(Φ0). The difference is that rather than having a single
operatorKϕ, there is a family of modal operatorsKiϕ, read “agenti knowsϕ”.
As usual, takeϕ ∨ ψ, ϕ⇒ ψ andϕ⇔ ψ as abbreviations. To interpret this logic,
considerepistemic structures forn agentsM = (W,K1, . . . ,Kn, π), whereW is
a set of worlds,K1, . . . ,Kn are binary relations onW , one per agent, andπ is an
interpretation for the primitive propositions at every world. The semantics ofLK

n

is given by the obvious generalization of the semantics ofLK.
To reason about algorithmic knowledge with multiple agents, define the logic

LKX
n (Φ0) by adding a family of modal operatorsXiϕ to LK

n(Φ0). As expected,
the formulaXiϕ is read “agenti can compute thatϕ is true”. Similarly, the logic
LKXD
n (Φ0) is obtained by adding the family of modal operatorsDiϕ. The formula

Diϕ is read “agenti is definite aboutϕ”.
Formally, define aalgorithmic knowledge structure forn agents(simply called

an algorithmic knowledge structure when there is no ambiguity) to be a tupleM =
(W,V1, . . . ,Vn, π, A1, . . . , An), whereW is a set of worlds,V1, . . . ,Vn are the
views of each agents,π is an interpretation for the primitive propositions inΦ0, and
A1, . . . , An are the knowledge algorithms of each agent. As in the single agent case,
each view function induces an equivalence relation on the set of worlds; formally,
w1 ∼i w2 if and only if Vi(w1) = Vi(w2). Hence,w1 ∼i w2 if w1 andw2 are
indistinguishable for agenti.

The satisfaction relation(M,w) |= ϕ is defined in the obvious way, by analogy
with the single agent case:

(M,w) |= p if π(w)(p) = true
(M,w) |= ¬ϕ if (M,w) 6|= ϕ

(M,w) |= ϕ ∧ ψ if (M,w) |= ϕ and(M,w) |= ψ

(M,w) |= Kiϕ if (M,w′) |= ϕ for all w′ ∈W such thatw′ ∼i w
(M,w) |= Xiϕ if Ai(ϕ,Vi(w)) = “Yes”.

ForLKXD
n , the following rule is used to interpretDϕ:

2.5 Multiple Agents 29

(M,w) |= Diϕ if Ai(ϕ,Vi(w)) ∈ {“Yes”, “No” }.

As far as axiomatizations are concerned, it is not hard to see that since the vari-
ousKi andXi operators do not interfere with each other, the axioms compose in
a straightforward way. The results of Section 2.2 can be lifted immediately, by
replacing references toKϕ in axioms K1–5 byKiϕ. For instance, K1 becomes
Kiϕ ∧ Ki(ϕ ⇒ ψ) ⇒ Kiψ, for every agenti. In a similar way, the axiom X1
simply becomesXiϕ⇒ KiXiϕ. We will continue to refer to these axioms as K1–
5 and X1–6, the context making it clear whether we are talking about the single
agent setting or the multiple agents setting. LetAXKX

n andAXKXD
n be the axioma-

tizations corresponding toAXKX andAXKXD for multiple agents. The equivalent
of Theorems 2.2, 2.3, 2.4 and 2.5 hold in the multiple agent setting.

Theorem 2.7.

(a) AXKX
n is a sound and complete axiomatization forLKX

n with respect to al-
gorithmic knowledge structures forn agents.

(b) AXKXD
n is a sound and complete axiomatization forLKXD

n with respect to
algorithmic knowledge structures forn agents.

(c) AXKXD
n +{X4,X5} is a sound and complete axiomatization forLKXD

n over
algorithmic knowledge structures forn agents with sound algorithms.

(d) AXKXD
n + {X4,X5,X6} is a sound and complete axiomatization forLKXD

n

over algorithmic knowledge structures forn agents with sound and com-
plete algorithms.

It is interesting to examine some properties of knowledge in the presence of mul-
tiple agents. For instance,K1K2ϕ implies immediately thatK1ϕ, that is, knowing
that someone else knows something implies knowing that something oneself.

The interaction between the knowledge algorithms of the various agents is es-
pecially interesting. Since we assumed that there is a single algorithm per agent
in the models, in a precise sense, the algorithms used by the agents are common
knowledge. What does this common knowledge indicate? At every point, if an
agent knows the input, he knows the outcome of the algorithm. More precisely,
if agent i uses an algorithm that replies “Yes” to queriesψ whenϕ is true, then
Kj(ϕ ⇒ Xiψ) holds for all agentsj. All this says is that there is no uncertainty
on the part of the agents as to the explicit knowledge of other agents once the data
they have is known.

A more general framework would allow agents to have different knowledge al-
gorithms at different worlds. This would permit the modeling of agents that learn
by essentially updating their knowledge algorithms. We focus on the simpler set-
ting, studying static structures with static algorithms. In the second part of this

30 2 Algorithmic Knowledge

dissertation, we extend the framework to dynamic systems, but still consider static
knowledge algorithms.

2.6 Decision Procedures

What is the complexity of the various decision procedures for the logics described
in the previous sections? In a precise sense, the complexity depends on the com-
plexity of the corresponding decision procedures for the logic of knowledgeLK

n.
Consider first the model-checking problem. Since the structure is given as an

input to the problem, we restrict our attention in this section tofinite structures.
Given a formulaϕ, let |ϕ| be the the number of symbols needed to write downϕ.
The following result is well known:

Theorem 2.8. There is a procedure that runs in time polynomial in|ϕ| · |W | for
deciding, given an epistemic structure forn agentsM = (W,K1, . . . ,Kn, π) and
ϕ ∈ LK

n , whether(M,w) |= ϕ.

This results extends almost immediately toLKX
n . Given a knowledge algorithm

A, letfA be a function representing the running time ofA. More precisely, letfA(n)
be the time it takes forA(ϕ, `) to execute for any given observation` and an input
formulaϕ of sizen. (Intuitively, observations are taken to be atomic and sizeless;
the focus is on the complexity of determining the truth ofϕ.)

Theorem 2.9.There is a procedure that runs in time polynomial in|ϕ|·|W |·f(|ϕ|)
(wheref(n) = max{fAi(n) | i ∈ {1, . . . , n}}) for deciding, given an algorithmic
knowledge structure forn agentsM = (W,V1, . . . ,Vn, π, A1, . . . , An) andϕ ∈
LKX
n , whether(M,w) |= ϕ.

A similar result holds forLKXD
n .

For satisfiability, a similar phenomenon arises. The complexity of the decision
problem forLK

n satisfiability is again a well known result.

Theorem 2.10.The problem of deciding whether a formulaϕ ofLK
n is satisfiable in

an epistemic structure forn agents is NP-complete ifn = 1 and PSPACE-complete
if n > 1.

Clearly, sinceLKX
n extendsLK

n, satisfiability is at least as hard to decide forLKX
n

as it is forLK
n. The interesting thing is that without any restriction on the knowledge

algorithms, satisfiability is no harder to decide, since it is trivial to come up with an
algorithm that says “Yes” or “No” for the appropriate subformulas present in the
formula at hand.

Notes 31

Theorem 2.11.The problem of deciding whether a formulaϕ of LKX
n is satisfiable

in an algorithmic knowledge structure forn agents is NP-complete ifn = 1 and
PSPACE-complete ifn > 1.

Notes

The model of knowledge based on possible worlds presented here is originally due
to Hintikka [1962]. A modern survey of the use of knowledge and epistemic logic
in computer science, with specific application to distributed system is the work of
Fagin et al. [1995]. See also Meyer and Hoek [1995].

Classical overviews of modal logic include [Hughes and Cresswell 1972; Gold-
blatt 1992]. An approachable but still thorough introduction is [Popkorn 1994].
A technical overview focusing on the proof theoretic aspects of modal logics is
[Blackburn, Rijke, and Venema 2001]. The terminology S5 is introduced and dis-
cussed by Lewis and Langford [1959].

It is of course possible to extend propositional modal logic to first-order, to
yield quantified modal logic (or first-order modal logic) [Garson 1984; Fitting and
Mendelsohn 1998]. Modal logic has also been extended to the higher-order setting,
where it is often known as intensional logic [Gallin 1975].

There are many approaches to providing a semantics for modal logic. The one
we describe, due to Kripke [1963], is the most common. Other approaches include
algebraic semantics [Lemmon 1966a; Lemmon 1966b] and topological semantics
[McKinsey and Tarski 1944].

Axioms P1–2 are given by Popkorn [1994], who proves that, along with Modus
Ponens, they form a sound and complete axiomatization for propositional logic.
The axiomatizationAXK is well-known. A proof of Theorem 2.1 can be found in
[Hughes and Cresswell 1972]. There has been a vast amount of work on studying
the kind of properties that are expressible via modal logic, under the heading of
correspondence theory [Benthem 1984].

The problem of logical omniscience already appears in Hintikka [1962]. The
topic has generated much discussion in the philosophical literature. See Stalnaker
[1991] for one view. The approaches described in Section 2.3 are attempts to
circumvent the problem by modifying the semantics for knowledge. Impossible
worlds are introduced by Cresswell [1973], Rantala [1982], and Hintikka [1975].
Awareness was introduced and studied by Fagin and Halpern [1988], and further
investigated by Huang and Kwast [1991]. Moreno [1998] gives a good overview
of the various approaches for dealing with the logical omniscience problem. The
distinction between the two forms of knowledge we calledimplicit knowledgeand
explicit knowledgehas long been recognized. In the classical approach in artificial

32 2 Algorithmic Knowledge

intelligence known as theinterpreted symbolic structuresapproach, knowledge is
based on information stored in data structures of the agent [Rosenschein 1985];
this can be seen as an instance of explicit knowledge. In contrast, thesituated au-
tomataapproach, which interprets knowledge based on information carried by the
state of the machine [Rosenschein 1985], can be seen as an instance of implicit
knowledge. Levesque [1984] makes a similar distinction in the context of belief.

The notion of algorithmic knowledge was defined by Halpern, Moses and Vardi
[1994], although the approach in this chapter is more restricted, since we assumed
a single algorithm per agent. An approach similar in spirit was introduced ear-
lier by Parikh [1987], which he callslinguistic knowledge, and which essentially
amounts to using sound algorithms. It makes sense to weaken the soundness condi-
tion on knowledge algorithms. Algorithmic knowledge generalizes many other ap-
proaches, such as step logics [Elgot-Drapkin and Perlis 1990], Levesque’s [1984]
system, Konolige’s [1986] deductive model of belief, and the logic of Duc [2001].
Duc also calls his notion algorithmic knowledge, but takes algorithmic knowledge
as being computed over the evolution of a system, rather than being used to exam-
ine the local state of the agents.

Berman, Garay, and Perry [1989] implicitly use a particular form of algorithmic
knowledge in their analysis of Byzantine agreement. Roughly speaking they allow
agents to perform limited tests based on the information they have; agents know
only what follows from these limited tests.

Ramanujam [1999] investigates a particular form of knowledge algorithm, where
essentially the knowledge algorithm is a model-checking procedure for a logic of
implicit knowledge. More specifically, Ramanujam considers, at every world, the
part of the model that a particular agent sees (for instance, an agent in a distributed
system may only be aware of its immediate neighbors with whom he can com-
municate) and takes as knowledge algorithm the model-checking procedure for
epistemic logic, applied to the submodel generated by the visible worlds.

Theorem 2.8 is straightforward; a proof can be found in Halpern and Moses
[Halpern and Moses 1992]. The problem of model checking knowledge is less
trivial in the context of dynamic systems; see [Meyden 1998; Meyden and Shilov
1999]. The casen = 1 of Theorem 2.11 is due to Ladner [1977], while the proof
of the general casen > 1 can be found in [Halpern and Moses 1992].

3
Deductive Algorithmic Knowledge

THE generality of the algorithmic knowledge approach, which makes it ideal as
a modeling framework, also means that there are no nontrivial properties of

algorithmic knowledge proper, unless we consider particular classes of knowledge
algorithms. This becomes important when we want to use the framework as a spec-
ification language amenable to automatic verification. In that setting, we would like
a class of knowledge algorithms that can capture the properties of interest, while
still having enough structure to yield a tractable, or at least analyzable, system.
This structure typically reveals itself in a class of properties of the corresponding
algorithmic knowledge operator, which can be used to study the structures purely
deductively.

In this chapter, we study a form of algorithmic knowledge,deductive algorithmic
knowledge, where the explicit knowledge of agents comes from a logical theory in
which the agents perform their reasoning about the facts they know. Many useful
forms of explicit knowledge can be formalized in such a logical theory for agents.
For instance, Horn theories, which have been used to approximate more general
knowledge bases, fit into this framework particularly nicely. Explicit knowledge
via a logical theory can be viewed as a form of algorithmic knowledge, where
the knowledge algorithm used by an agent is an algorithm that attempts to infer
whether a fact is derivable from the deduction rules provided by the agent’s log-
ical theory. The highly structured presentation of an agent’s logical theory lets
us readily derive properties of explicit knowledge in this context. Intuitively, the
deduction rules of the logical theory directly translate into logical properties of
explicit knowledge.

To motivate the use of logical theories to capture explicit knowledge, consider
the following example, which will be analyzed in more detail in the second part
of this dissertation. As we saw in Section 1.2, security protocols are analyzed in
the presence of an adversary that has a certain number of capabilities to decode
the messages he intercepts. There are of course restrictions on the capabilities of

33

34 3 Deductive Algorithmic Knowledge

a reasonable adversary. For instance, the adversary may not explicitly know that
he has a given message if that message is encrypted using a key that the adversary
does not know, despite the fact that he has intercepted the message. There is a now-
standard description of capabilities of adversaries that captures these restrictions,
due to Danny Dolev and Andrew Yao. Roughly speaking, a Dolev-Yao adversary
can decompose messages, or decipher them if he knows the right keys, but can-
not otherwise “crack” encrypted messages. The adversary can also construct new
messages by concatenating known messages, or encrypting them with a known en-
cryption key. It is natural to formalize a Dolev-Yao adversary using a deductive
system that describes what messages the adversary “has” based on the messages
he has intercepted, and what messages the adversary can construct.

To reason about such examples, we introduce a modal logic that captures both
the implicit knowledge of agents, which is useful for specifications, and the ex-
plicit knowledge of agents formalized as a logical theory. We focus in this chapter
on the technical properties of the resulting logic, such as axiomatization and com-
plexity of the decision problem. This approach shows that it is possible to combine
a standard possible-worlds account of implicit knowledge with a logical theory
representing the explicit knowledge of agents, and to reason about both simulta-
neously. Another advantage is that it is straightforward to extend the framework
with probabilities, by taking, for instance, a probability measure over the possible
worlds.

3.1 Deductive Systems

We start by defining the framework in which to express the logical theories of the
agents, that is, their deductive or inferential powers. Following common practice,
we take logical theories as acting over the terms of some term algebra. More
precisely, assume a fixed finite signatureΣ = (f1, . . . , fn), where eachfi is an
operation symbol, with arityri. Operation symbols of arity0 are called constants.
Assume a countable setVars of variables. Define theterm algebraTΣ as the least
set such thatVars ⊆ TΣ, and for allf ∈ Σ of arity n, and for allt1, . . . , tn ∈ TΣ,
thenf(t1, . . . , tn) ∈ TΣ. Intuitively, TΣ contains all the terms that can be built
from the variables, constants, and operations inΣ. A term is aground termif
it contains no variables. LetT gΣ be the set of ground terms inTΣ. A ground
substitutionρ is a mapping from variables inVars to ground terms. The application
of a ground substitutionρ to a termt, writtenρ(t), essentially consists of replacing
every variable int with the ground term corresponding tot in ρ. Clearly, the
application of a ground substitution to a term yields a ground term.

A deductive systemD is a subset of℘fin(TΣ)× TΣ. (We write℘(X) for the set

3.1 Deductive Systems 35

of subsets ofX, and℘fin(X) for the set of finite subsets ofX.) A deduction rule
({t1, . . . , tn}, t) of D is typically writtent1, . . . , tn . t, and means thatt can be
immediately deduced fromt1, . . . , tn. A deduction oft from a setΓ of terms is a
sequence of ground termst1, . . . , tn, such thattn = t, and everyti is either:

(1) A termρ(t′), for some ground substitutionρ and some termt′ ∈ Γ;
(2) A term ρ(t′), for some ground substitutionρ and some termt′ for which

there is a deduction rulet′i1 , . . . , t
′
ik
. t′ in D such thatρ(t′ij) = tij for all

j, andi1, . . . , ij < i.

We write Γ `D t if there is a deduction fromΓ to t via deduction rules inD.
Observe that by definition we havet `D t for all termst.

We will only be concerned with deductive systems that aredecidable, that is, for
which the problem of deciding whether a deduction oft from Γ exists is decidable,
for a termt and set of termsΓ. Moreover, it should be clear from the definitions
that deductive systems are monotonic. Formally, ifΓ `D t, thenΓ′ `D t when
Γ ⊆ Γ′. Finally, observe that there are no restrictions on the formation of terms.
It is possible to assign to each term a sort, and restrict operators to take terms of a
given sort only. The resultingsorted term algebracan be used as the starting point
of the theory in this chapter, with little changes.

Example 3.1.The following deductive system DY over the signature

Σ = (recv, has, encr, conc, inv)

captures the Dolev-Yao adversary described at the beginning of this chapter. Here,
recv(m) represents the fact that the adversary has received the termm, has(m) rep-
resents the fact that the adversary understands the termm, encr(m, k) represents
the encryption of termm with key k, conc(m1,m2) represents the concatenation
of termsm1 andm2, andinv(k) represents the inverse of the keyk (that is, the key
needed to decrypt messages encrypted withk):

recv(m) . has(m)
has(inv(k)), has(encr(m, k)) . has(m)

has(conc(m1,m2)) . has(m1)
has(conc(m1,m2)) . has(m2).

Assume further thatΣ contains constants such asm, k1, k2. We can therefore de-
rive:

recv(encr(m, k1)), recv(encr(inv(k1), k2)), recv(inv(k2)) `DY has(m).

In other words, it is possible for a Dolev-Yao adversary to derive the message

36 3 Deductive Algorithmic Knowledge

m if he has receivedm encrypted under a keyk1, which inverse he has received
encrypted under a keyk2, which inverse he has received.

To account for constructing new messages, consider the signatureΣ′ which ex-
tendsΣ with a unary constructorconstr, whereconstr(m) represents the fact that
the adversary can construct the termm. We can account for this new constructor
by adding the following deduction rules to DY:

has(m) . constr(m)
constr(k), constr(m) . constr(encr(m, k))

constr(m1), constr(m2) . constr(conc(m1,m2)).

For instance, we have:

recv(encr(m, k1)), recv(inv(k1)), recv(k2) `DY constr(encr(m, k2)).

ut

3.2 Deductive Algorithmic Knowledge

We now introduce a propositional modal logic for reasoning about the implicit
and explicit knowledge of an agent, where the explicit knowledge is formalized as
a logical theory. In this section, we focus on a single agent. The framework is
extended to multiple agents in Section 3.5.

The syntax of the logic is simply that ofLKX(T gΣ), as given in chapter 2. The
primitive propositions areT gΣ, the ground terms over signatureΣ. In this setting,
Xϕ is read as “the agent explicitly knowsϕ, according to his logical theory”.

Rather than taking a general deductive system over an arbitrary signature, con-
sider a special form of deductive system. AKD signatureΣ is a signature con-
taining a class of constructors{ob, true, false, not, and, know, xknow} ⊆ Σ corre-
sponding to the operators in the logic; the constructorstrue andfalse have arity0,
ob, not, know andxknow have arity 1, andand has arity2. The terms of the form
ob(t) in T gΣ are called the observations, and we letObs = {ob(t) | t ∈ T gΣ} ⊆ T gΣ
denote the set of observations. Letob range over the observations inObs. Note
thatObs is a countably infinite set. AKD deductive systemD is a decidable deduc-
tive system defined over a KD signatureΣ, such that no observation arises as the
conclusion of a deduction rule inD. Formally, for allob ∈ Obs and for all rules
t1, . . . , tn .t ofD, there does not exist a ground substitutionρ such thatρ(t) = ob.
The intuition is that observations are facts that the agent has directly observed, as
opposed to facts that have been derived by reasoning.

The semantics of the logic follows the standard possible-worlds presentation
given in Chapter 2. Adeductive algorithmic knowledge structureis a tupleM =

3.2 Deductive Algorithmic Knowledge 37

(W,π,D), whereW is a set of worldsπ is an interpretation for the primitive propo-
sitions at each world, andD is a KD deductive system overΣ, with observation
setObs. Every worldw in W is of the form(e, obs), wheree is a state of the
environment (taken from a setE), that captures the general state of the system,
andobs is a set of observations, taken fromObs, representing the observations
that the agent has made at that world. Hence,W ⊆ E × ℘fin(Obs).1 We abstract
away from the question of how the agent makes those observations, and any tem-
poral relationship between the worlds. A world simply represents a snapshot of the
system under consideration. The interpretationπ associates with every world the
set of primitive propositions that are true at that world, so that for every primitive
propositionp ∈ T gΣ and worldw ∈ W , we haveπ(w)(p) ∈ {true, false}. The
only assumption we make is that the interpretation respects the observations made
at a world, that is,π(e, obs)(ob) = true if and only if ob ∈ obs.

There is a distinction between a fact (represented by a termt), and an observation
of that fact (represented by a termob(t)). For instance, the fact that Alice holds
an apple might be represented by the termholds(alice, apple), which can be true or
not at a world, while the fact that the agent has observed that Alice is holding an
apple is represented by the termob(holds(alice, apple)), which is true if and only
if that observation is in the state of the agent. Of course, the observation can be in
the state of the agent whether or notholds(alice, apple) is true, if the agent makes
unreliable observations.

Let Mded(Σ) be the class of all deductive algorithmic knowledge structures with
KD signatureΣ. For a fixed KD deductive systemD overΣ, let Mded

D (Σ) be the
class of all deductive algorithmic knowledge structures with deductive systemD.

Define a relation∼ on the worlds that captures the worlds that the agent cannot
distinguish based on the observations. Takew ∼ w′ if w = (e, obs) andw′ =
(e′, obs) for somee, e′, and set of observationsobs. Clearly,∼ is an equivalence
relation.

To define the semantics of theX operator, we need to invoke the deductive
system. To do this, first define the translation of a formulaϕ in LKX(T gΣ) into
a termϕT in the term algebra, in the completely obvious way:pT is p (recall
that primitive propositions are just terms inT gΣ), trueT is true, falseT is false,
(¬ϕ)T is not(ϕT), (ϕ ∧ ψ)T is and(ϕT , ψT), (Kϕ)T is know(ϕT), and(Xϕ)T is
xknow(ϕT).

Define what it means for a formulaϕ to be true at a worldw of M , written
(M,w) |= ϕ, inductively as follows:

(M,w) |= true
1 For simplicity, assume that the observations form a set. This implies that repetition of observations and their

order is unimportant. It is easy to model the case where the observations form a sequence, at the cost of
complicating the presentation.

38 3 Deductive Algorithmic Knowledge

(M,w) 6|= false
(M,w) |= p if π(w)(p) = true
(M,w) |= ¬ϕ if (M,w) 6|= ϕ

(M,w) |= ϕ ∧ ψ if (M,w) |= ϕ and(M,w) |= ψ

(M,w) |= Kϕ if (M,w′) |= ϕ for all w′ ∼ w
(M,w) |= Xϕ if w = (e, obs) andobs `D ϕT .

This semantics is the same as that of Section 2.4, except that theXϕ operator is
interpreted via the deductive systemD rather than an explicit knowledge algorithm.
The semantics agree if we notice that to every deductive algorithmic knowledge
structureM = (W,π,D) we can associate an algorithmic knowledge structure
M ′ = (W,V, π, A) with V((e, obs)) = obs, andA(ϕ, obs) = “Yes” if and only if
obs `D ϕT , which is implementable sinceD is assumed to be decidable.

Example 3.2.Consider the deductive system DY from Example 3.1, over an aug-
mented signature containing the constructors required to make it a KD deductive
system. This deductive system can be viewed as a KD deductive system by adding
a ruleob(t) . t to DY. Intuitively, an observation represents a message intercepted
by the adversary. The subterm relationv onT gDY typically considered in the secu-
rity literature is defined as the smallest relation subject to:

t v t
if t v t1 thent v conc(t1, t2)
if t v t2 thent v conc(t1, t2)
if t v t1 thent v encr(t1, t2).

Consider a structureM = (W,π,DY), where we record at every world all mes-
sages intercepted by the adversary at that world. We restrict the observations at
a world to be of the formob(recv(t)), for ground termst in which has does not
occur. Letπ be an interpretation that respects the observations made at a world,
and such thatπ(e, obs)(has(t)) = true if and only if there existst′ ∈ T gDY such
that ob(recv(t′)) ∈ obs andt v t′. In other words,has(t) holds at a world ift
is a subterm of a message intercepted by the adversary. Letw1 be a world with
observations

{ob(recv(encr(m, k1))), ob(recv(encr(inv(k1), k2)))},

andw2 a world with observations

{ob(recv(encr(m, k1))), ob(recv(encr(inv(k1), k2))), ob(recv(inv(k2)))}.

By definition ofπ, (M,w1) |= K(has(m)) and(M,w2) |= K(has(m)), so that at
both worlds, the adversary implicitly knows he has the messagem. However, from

3.2 Deductive Algorithmic Knowledge 39

the results of Example 3.1, we see that(M,w2) |= X(has(m)), while (M,w1) |=
¬X(has(m)). In other words, the adversary explicitly knows he hasm at worldw2

(where he has intercepted the appropriate terms), but not at worldw1. ut

Example 3.3.The following deduction rules can be added to any deductive system
to obtain a deductive system that captures a subset of the inferences that can be
performed in propositional logic:

t . not(not(t)) t, t′ . and(t, t′)

not(not(t)) . t and(t, t′) . t

t . not(and(not(t), not(t′))) and(t, t′) . t′

t′ . not(and(not(t), not(t′))) t, not(t) . false

not(and(t, not(t′))), t . t′ false . t

not(and(t, not(t′))), t′ . t.

One advantage of these rules, despite the fact that they are incomplete, is that they
can be used to perform very efficient (linear-time) propositional inference.ut

Example 3.4. We can easily let the agent explicitly reason about his deductive
algorithmic knowledge by adding a rule

t . xknow(t) (3.1)

to his deductive systemD. Thus, ifM is a deductive algorithmic knowledge struc-
ture overD, and(M,w) |= Xϕ, then we havew = (e, obs), with obs `D ϕT ,
and by the above rule, the deductive systemD can also deriveobs `D xknow(ϕT),
so thatobs `D (Xϕ)T . Thus,(M,w) |= X(Xϕ), as required. It is possible to
restrict the deductive algorithmic knowledge of an agent with respect to his own
deductive algorithmic knowledge by suitably modifying rule (3.1), restricting it to
a subclass of terms. ut

The monotonicity of the deductive systems means that for a structureM with
worldsw = (e, obs), w′ = (e′, obs ′), andobs ⊆ obs ′, we have(M,w) |= Xϕ

implies(M,w′) |= Xϕ. Thus, explicit knowledge of facts is never lost when new
observations are made.

It is natural to consider classes of signatures (and deductive systems) that cap-
ture logical theories dealing with only part of the formulas expressible inLKX(T gΣ).
For instance, it may make sense to distinguish the notion of a primitive signature,
that does not provide constructors for the propositional and modal connectives. In-
tuitively, a deductive system based on a primitive signature only permits reasoning
about the explicit knowledge of primitive propositions;Xϕ is false for anyϕ not a
primitive proposition.

40 3 Deductive Algorithmic Knowledge

3.3 Axiomatizations

Clearly, for a particular deductive system, the properties ofX depend on that de-
ductive system. Intuitively, we should be able to read off the properties ofX from
the deduction rules themselves. This is hardly surprising. Properties of the knowl-
edge algorithms in the framework of algorithmic knowledge immediately translate
to properties of theX operator. For instance, if a knowledge algorithm is sound,
that is, if whenever it answers “Yes” in a worldw for a formulaϕ thenϕ is true at
that world, thenXϕ⇒ ϕ is valid in a structure using such a knowledge algorithm.
What is interesting in the context of deductive algorithmic knowledge is that we
can completely characterize the properties ofX, because of the structure of the
deductive systems. The remainder of this section aims at making this statement
more precise.

As a first step, consider an axiomatization for reasoning about deductive systems
in general, independently of the actual deduction rules of the system. For this, we
need axioms capturing propositional reasoning in the logic:

Prop. All instances of propositional tautologies

MP. Fromϕ andϕ⇒ ψ inferψ.

Axiom Prop can be replaced by an axiomatization of propositional tautologies,
as in Section 2.2. The following axioms capture the properties of the knowledge
operator, as in Section 2.2:

K1. (Kϕ ∧K(ϕ⇒ ψ))⇒ Kψ

K2. Fromϕ inferKϕ

K3. Kϕ⇒ ϕ

K4. Kϕ⇒ KKϕ

K5. ¬Kϕ⇒ K¬Kϕ.

Since algorithmic knowledge is interpreted with respect to the observations at
the current state, and that two states are indistinguishable to an agent if the same
observations are made at both states, agents know whether or not they explicitly
know a fact. This is captured by the following axiom:

X1. Xϕ⇒ KXϕ

In the presence of K1–5, we saw in Section 2.4 that¬Xϕ ⇒ K¬Xϕ is provable
from X1. In addition, all observations are explicitly known. This fact is expressed
by the following axiom:

X2. ob ⇔ Xob.

3.3 Axiomatizations 41

Formally, this is a consequence of the definition of deduction in Section 3.1: recall
that for all termst of a deductive systemD, we havet `D t. An easy consequence
of X1–2 is that indistinguishable worlds have exactly the same observations. It is
easy to see that the formulasob ⇒ Kob and¬ob ⇒ K¬ob are provable.

Let AXded consists of the axioms Prop, MP, K1–5, and X1–2. Without fur-
ther assumptions on the deductive systems under consideration,AXded completely
characterizes reasoning about deductive algorithmic knowledge.

Theorem 3.5.The axiomatizationAXded is sound and complete forLKX(T gΣ) with
respect toMded(Σ).

If we want to reason about deductive algorithmic knowledge structures equipped
with a specific deductive system, we can say more. We can essentially capture
the reasoning with respect to the specific deductive system within our logic. The
basic idea is to translate deduction rules of the deductive system into formulas of
LKX(T gΣ). A deduction rule of the formt1, . . . , tn.t inD is translated to a formula
(XtR1 ∧ . . .∧XtRn)⇒ XtR. Define the formulatR corresponding to the termt by
induction on the structure oft: trueR is true, falseR is false, (not(t))R is ¬(tR),
(and(t1, t2))R is tR1 ∧ tR2 , (Kϕ)R is know(ϕR), (Xϕ)R is xknow(ϕR), andtR is
t for all other termst. In fact, such a translation yields an axiom scheme, where
we view the variables int1, . . . , tn, t as scheme metavariables, to be replaced by
appropriate elements of the term algebra.2 It is easy to see that(tT)R = t for all
termst. Furthermore, we do not translate KD constructors that appear under non-
KD constructors within a term. (Intuitively, these constructors will never arise out
of the translation of formulas given in Section 3.2.) LetAxD be the set of axioms
derived in this way for the KD deductive systemD.

Note that these axioms cannot be complete forMded
D (Σ), since there are for-

mulas of the formXψ that cannot be true in any structure inMded
D (Σ), namely,

Xψ whereψT is not derivable from any set of observations using the deductive
systemD. Thus,¬Xψ is valid for thoseψ, but the axioms above clearly cannot
prove¬Xψ. In other words, the axioms inAxD capture deducibility iǹ D, rather
than non-deducibility. We can however establish completeness with respect to a
more general class of structures, intuitively, those structures using a deductive sys-
tem containingat least the deduction rules inD. Let Mded

D⊆(Σ) = {M | M ∈
Mded
D′ (Σ), D ⊆ D′}.

Theorem 3.6. The axiomatizationAXded + {AxD} is sound and complete for
LKX(T gΣ) with respect toMded

D⊆(Σ).

2 One needs to be careful when defining this kind of axiom scheme formally. Intuitively, an axiom scheme of
the form above, with metavariables appearing in terms, corresponds to the set of axioms where each primitive
proposition in the axiom is a ground substitution instance of the appropriate term in the axiom scheme.

42 3 Deductive Algorithmic Knowledge

3.4 Decision Procedures

In this section, we study the decision problem forLKX(T gΣ) satisfiability, that is,
the problem of determining, for a given formula, whether it is satisfiable. Since our
logic extends the logicLK(T gΣ), and since the complexity of the decision problem
for the latter is NP-complete (Theorem 2.10), the difficulty of deciding satisfiability
for LKX(T gΣ) is at least as hard.

We measure complexity in terms of the size of the formulas, as well as the size
of the models. Define the size|t| of a termt to be the number of symbols required
to write t, where each operation symbol is counted as a single symbol. IfΓ is a
set of terms, then|Γ| is just the sum of the sizes of the terms inΓ. Similarly, the
size|ϕ| of a formula is defined to be the number of symbols required to writeϕ,
where again each operation symbol is counted as a single symbol. The size|M | of
a modelM ∈ Mded

D (Σ) (that is, for a specific deductive systemD) is taken to be
the sum of the sizes of the states, where the size of a state(e, {ob1, . . . , obk}) is
1 + |ob1|+ · · ·+ |obk|.

It is known that the decision problem forLK satisfiability is NP-complete (Theo-
rem 2.10). Adding deductive algorithmic knowledge does not add to the complex-
ity if we do not require a fixed deductive system. Intuitively, for satisfiability, we
can simply take as a deductive system one with specific deduction rules sufficient
to satisfy the subformulasXϕ appearing in the formula.

Theorem 3.7.The problem of deciding whether a formulaϕ of LKX(T gΣ) is satis-
fiable in a structure inMded(Σ) is NP-complete.

What happens if we fix a particular deductive system, and want to establish
whether a formulaϕ is satisfiable in a structure over that particular deductive sys-
tem? The difficulty of this problem depends intrinsically on the difficulty of decid-
ing whether a deductionΓ `D t exists inD. Since this problem may be arbitrarily
difficult for certain deductive systemsD, reasoning in our logic can be arbitrarily
difficult over those deductive systems. On the other hand, if the deductive system
is decidable in polynomial time (i.e., if the problem of deciding whether a deduc-
tion Γ `D t exists inD can be solved in time polynomial in|Γ| and|t|), then the
decision problem for our logic remains relatively easy.

Theorem 3.8. For any given propositional deductive systemD that is decidable
in polynomial time, the problem of deciding whether a formulaϕ of LKX(T gΣ) is
satisfiable in a structure inMded

D (Σ) is NP-complete.

There is a class of deductive systems that can be efficiently decided, and thus
by Theorem 3.8 lead to a reasonable complexity forLKX(T gΣ). Say a deductive

3.5 Multiple Agents 43

systemD is local if wheneverΓ `D t there exists a local deduction oft from Γ.
A deduction is local if every proper subterm of a term in the deduction is either a
proper subterm oft, a proper subterm of a member ofΓ, or appears as a subterm
of a deduction rule inD. One can show that, for any deductive systemD, whether
a local deduction oft from Γ exists in time polynomial in|Γ| and|t|. If D is local,
so that the existence of a deduction ensures the existence of a local deduction, then
the deduction relatioǹD is polynomial-time decidable. The deductive system in
Example 3.1 is local, while adding the deduction rules in Example 3.3 to any local
deductive system yields a local deductive system.

Corollary 3.9. For any local KD deductive systemD, the problem of deciding
whether a formulaϕ of LKX(T gΣ) is satisfiable in a structure inMded

D (Σ) is NP-
complete.

3.5 Multiple Agents

The framework we have described extends to multiple agents in a straightforward
way. We simply need to equip every agent with a deductive system. A priori, there
is no difficulty in modeling this using what has been already done. Unfortunately,
this does not let an agent explicitly reason about another agent’s knowledge. In
order to do this, it is necessary to modify and extend the framework. The syntax
of the logic is justLKX

n (T gΣ), as expected, where we takeΣ to be a KD signature
for n agents. AKD signature forn agentsis a signature containing the operation
symbolstrue, false, not, and, as well as the operation symbolsobi, knowi, xknowi,
for i ∈ {1, . . . , n}, wheretrue, false have arity0, obi, not, knowi, xknowi have
arity 1, andand has arity2. The terms of the formobi(t) in T gΣ are called the
observations for agenti, and we letObs i = {obi(t) | t ∈ T gΣ} ⊆ T gΣ denote the
set of observations for agenti. We typically letob range over observations. AKD
deductive system forn agentsD is a decidable deductive system defined over a
KD signatureΣ for n agents, with the restriction that no observation arises as the
conclusion of a deduction rule inD. Formally, for alli, for all ob ∈ Obs i and for
all rulest1, . . . , tn . t of D, there does not exist a ground substitutionρ such that
ρ(t) = ob.

The models are a straightforward generalization of those used in the single-
agent case. Adeductive algorithmic knowledge structure forn agentsis a tuple
M = (W,π,D1, . . . , Dn), whereW is a set of worlds,π is an interpretation for
the primitive propositions, andDi is a KD deductive system forn agents overΣ.
Every worldw in W is of the form(e, obs1, . . . , obsn), wheree is a state of the
environment that captures the general state of the system, andobs i is a finite set

44 3 Deductive Algorithmic Knowledge

of observations fromObs i, representing the observations that agenti has made
at that world. The interpretationπ associates with every world the set of primi-
tive propositions true at that world, so that for all primitive propositionp ∈ T gΣ
and all worldsw ∈ W , we haveπ(w)(p) ∈ {true, false}. The only assumption
on the interpretation is that it respects the observations made at a world, that is,
π(e, obs1, . . . , obsn)(obi(t)) = true if and only if obi(t) ∈ obs i.

Let Mded
n (Σ) be the set of all deductive algorithmic knowledge structures with

KD signature forn agentsΣ. For fixed KD deductive systemsD1, . . . , Dn overΣ,
let Mded

D1,...,Dn
(Σ) be the set of all deductive algorithmic knowledge structures for

n agents with deductive systemsD1, . . . , Dn (that is, where agenti uses deductive
systemDi).

The remaining definitions generalize in a similar way. Define, for each agent,
a relation on the worlds that captures the worlds that the agent cannot distinguish,
based on his observations. More precisely, takew ∼i w′ if w = (e, obs1, . . . , obsn)
andw′ = (e′, obs ′1, . . . , obs

′
n), for somee, e′, obs1, . . . , obsn, obs ′1, . . . , obs

′
n, with

obs i = obs ′i. Again, each∼i is an equivalence relation.
The translation of a formulaϕ into a termϕT of the deductive system now takes

into account the name of the agents. As expected, we takepT is p, trueT is true,
falseT is false, (¬ϕ)T isnot(ϕT), (ϕ∧ψ)T isand(ϕT , ψT), (Kiϕ)T isknowi(ϕT),
and(Xiϕ)T is xknowi(ϕT).

The semantics is just like that of Section 3.2, except with the following rules for
Kiϕ andXiϕ:

(M,w) |= Kiϕ if (M,w′) |= ϕ for all w′ ∼i w
(M,w) |= Xiϕ if w = (e, obs1, . . . , obsn) andobs i `Di ϕ

T .

Example 3.10. The phenomenon ofsimulative inferencearises when, roughly
speaking, an agent can reconstruct the reasoning of another agent. It is possible
to capture this by making suitable assumptions on an agent’s deductive system. A
deductive systemDi for agenti permits simulative inference of agentj with Dj

if Di contains a ruleobj(t) . xknowj(obj(t)), and for every rulet1, . . . , tk . t
of Dj , there is a corresponding rulexknowj(t1), . . . , xknowj(tk) . xknowj(t) in
Di. It is then easy to check that if we have(M,w) |= Xjϕ for some worldw =
(e, obs1, . . . , obsn) with {ob1, . . . , obk} ⊆ obsj , and(M,w) |= Xi(ob1) ∧ . . . ∧
Xi(obk), then(M,w) |= XiXjϕ. Note that this derivation assumes that the agent
i can explicitly determine that agentj has observedob1, . . . obk. ut

As far as axiomatizations are concerned, we can essentially lift the results of
Section 3.3. It suffices to consider an axiomatization where K1–5 now refer toKi

rather than justK. For instance, K1 becomesKiϕ ∧Ki(ϕ⇒ ψ)⇒ Kiψ, for ev-
ery agenti. In a similar way, the axiom X1 simply becomesXiϕ ⇒ KiXiϕ. For

3.5 Multiple Agents 45

X2, we need to further restrict the observations to be those of the agent under con-
sideration:ob ⇔ Xiob (if ob ∈ Obs i). Let AXded

n be the resulting axiomatization.
The following result is obtained in a straightforward way:

Theorem 3.11. The axiomatizationAXded
n is sound and complete forLKX

n (T gΣ)
with respect toMded

n (Σ).

As in the single agent case, we can capture the reasoning with respect to specific
deductive systems (one per agent) within our logic. Again, we translate deduction
rules of the deductive systems into formulas ofLKX

n (T gΣ). Consider the deductive
systemDi for agenti. A deduction rule of the formt1, . . . , tn .t inDi is translated
to a formula(Xit

R
1 ∧ . . . ∧Xit

R
n) ⇒ Xit

R. Define the formulatR corresponding
to the termt by induction on the structure oft: trueR is true, falseR is false,
(not(t))R is ¬(tR), (and(t1, t2))R is tR1 ∧ tR2 , (Kjϕ)R is knowj(ϕR), (Xjϕ)R is
xknowj(ϕR), andtR is t for all other termst. (As in Section 3.3, such a translation
yields an axiom scheme, where we view the variables int1, . . . , tn, t as scheme
metavariables, to be replaced by appropriate elements of the term algebra.) Let
AxDi

n be the set of axioms derived in this way for the KD deductive systemDi

of agenti. As in the single agent case, we cannot capture exactly the reasoning in
structures where agenti is using deductive systemDi, since we cannot capture non-
deducibility within the logic. Therefore, completeness is established with respect
to a wider class of structures. LetMded

D1,...,Dn⊆(Σ) = {M |M ∈Mded

D′
1,...,D

′
n
, D1 ⊆

D′
1, . . . , Dn ⊆ D′

n}.

Theorem 3.12. The axiomatizationAXded
n + {AxD1

n , . . . ,AxDn
n } is sound and

complete forLKX
n (Σ) with respect toMded

D1,...,Dn⊆(Σ).

The complexity of the decision problem in the case of multiple agents reflects
the complexity of the decision problem of the modal logic of knowledge for mul-
tiple agents. LKX

n (T gΣ) extends the logicLK
n, and it is known that the decision

problem for the latter is PSPACE-complete (Theorem 2.10). As in the single agent
case, adding deductive algorithmic knowledge does not affect the complexity of
the decision problem if we do not require a fixed deductive system.

Theorem 3.13.If n ≥ 2, the problem of deciding whether a formulaϕ of LKX
n (T gΣ)

is satisfiable in a structure inMded
n (Σ) is PSPACE-complete.

There is no clear candidate for an equivalent of Theorem 3.8 in the multiple
agents context. Assuming every agent uses a tractable deductive system yields an
easy EXPTIME upper bound on the decision problem forLKX

n (T gΣ), while the best
lower bound we obtain is the same as the one in Theorem 3.13, that is, the problem
is PSPACE-hard.

46 3 Deductive Algorithmic Knowledge

Notes

The work in this chapter appeared in a preliminary form in [Pucella 2004].
There has been a fair amount of work on developing models for agents reason-

ing via logical theories; see, for instance, the approaches of Konolige [1986] and
Giunchiglia et al. [1993]), which reason completely within the logical theories
while assuming a global logical theory for the world. In contrast, the logic in this
chapter is based on a standard possible-worlds semantics.

The use of Horn theories to approximate knowledge bases is described by Sel-
man and Kautz [1996]. The Dolev-Yao adversary is due to Dolev and Yao [1983],
and it is now standard in the field of security protocol analysis. Imposing a prob-
ability distribution on the set of possible worlds is explored by Fagin and Halpern
[1994].

The notion of term algebra is usually studied in universal algebra [Burris and
Sankappanavar 1981], although it is also often used in term rewriting systems
[Baader and Nipkow 1998]. Sorted term algebras are described by Higgins [1963].

The incomplete inference rules for propositional reasoning used in Example 3.3
are taken from McAllester [1993]. The notion of a local deductive system is ex-
plored in detail by McAllester [1993]. It generalizes a particularly well-known
fact that ensures that a deductive system can be efficiently searched for deductions,
namely that one need only consider subformulas of a formula one is attempting to
derive.

Simulative inference, as described in Example 3.10, was studied by Kaplan and
Schubert [2000]. They work in a slightly different setting than the one in this
chapter. They assume that the inference engine is explicitly told formulas. Thus,
they essentially work in a setting similar to that of belief revision [Alchourrón,
Gärdenfors, and Makinson 1985]. They also implicitly make the assumption that
agents are aware of the observation of other agents, since they study simulative
inference in a context where all the agents make the same observations.

4
Probabilistic Algorithmic Knowledge

A LL the examples of algorithm knowledge appearing in the literature usesound
knowledge algorithms: although the algorithm may not give an answer under

all circumstances, when it says “Yes” on inputϕ, the agent really does knowϕ in
the standard possible-worlds sense. Although soundness is not required in the basic
definition, it does seem to be useful in many applications.

Our interest in this chapter is knowledge algorithms that may use some ran-
domization. There are numerous examples of natural randomized knowledge algo-
rithms. With randomization, whether or not the knowledge algorithm says “Yes”
may depend on the outcome of coin tosses. This poses a slight difficulty in even
giving semantics to algorithmic knowledge, since the standard semantics makes
sense only for deterministic algorithms. One solution to this problem is to make
the algorithms deterministic by supplying them an extra argument (intuitively, the
outcome of a sequence of coin tosses) to “derandomize” them. We show that this
approach provides a natural extension of the deterministic case.

Having defined the framework, we try to characterize the information obtained
by getting a “Yes” answer to a query forϕ. If the knowledge algorithm is sound,
then a “Yes” answer guarantees thatϕ is true. However, the randomized algorithms
of most interest to us give wrong answers with positive probability, so are not
sound. Nevertheless, it certainly seems that if the probability that the algorithm
gives the wrong answer is low, it provides very useful information when it says
“Yes” to a queryϕ. This intuition appears in the randomized algorithms literature,
where a “Yes” answer from a highly reliable randomized algorithm, that is, one
with a low probability of being wrong, is deemed “good enough”. In what sense
is this true? One contribution of this chapter is to provide a formal answer to that
question. It may seem that a “Yes” answer to a queryϕ from a highly reliable
randomized knowledge algorithm should make the probability thatϕ is true be
high but, as we show, this is not necessarily true. Rather, the information should

47

48 4 Probabilistic Algorithmic Knowledge

be viewed asevidencethatϕ is true; the probability thatϕ is true also depends in
part on the prior probability ofϕ.

Evidence has been widely studied in the literature on inductive logic. Evidence
for a particular hypothesis can be accumulated from different sources, and it is pos-
sible to combine the evidence provided by knowledge algorithms with other kind
of evidence already accumulated for a formula, obtained for example by running
other kinds of tests, and look at the combined evidence. We do not consider ev-
idence in such a general setting in this chapter; rather, we focus on the evidence
contributed specifically by a randomized knowledge algorithm. Chapter 5 provides
a treatment of evidence in a more general setting.

4.1 Randomized Knowledge Algorithms

Randomizedknowledge algorithms arise frequently in the literature (although they
have typically not been viewed as knowledge algorithms). In order to deal with
randomized algorithms in the algorithmic knowledge framework, we need to ad-
dress a technical question. Randomized algorithms are possibly nondeterministic;
they may not yield the same result on every invocation with the same arguments.
SinceXiϕ holds at a worldw if the knowledge algorithm answers “Yes” at that
world, this means that, with the semantics of Section 2.4,Xiϕ would not be well
defined. Whether it holds at a given world depends on the outcome of random
choices made by the algorithm. However, the semantics should unambiguously
declare a formula either true or false.

Before we describe the chosen solution to the problem, consider another poten-
tial solution, which is to define the satisfaction relation probabilistically. That is,
rather than associating a truth value with each formula at each world, we associate
a probabilityPr(w,ϕ) with each formulaϕ at each worldw. The standard seman-
tics can be viewed as a special case of this semantics, where the probabilities are
always either 0 or 1. Under this approach, it seems reasonable to takePr(w, p) to
be either 0 or 1, depending on whether primitive propositionp is true at statew, and
to takePr(w,Xiϕ) to be the probability thati’s knowledge algorithm returns “Yes”
given inputsϕ andVi(w). However, it is not then clear how to definePr(w,ϕ∧ψ).
Taking it to bePr(w,ϕ)Pr(w,ψ) implicitly treatsϕ andψ as independent, which
is clearly inappropriate ifψ is ¬ϕ. Even ignoring this problem, it is not clear how
to definePr(w,Xiϕ ∧Xiψ), since again there might be correlations between the
output of the knowledge algorithm on input(ϕ,Vi(w)) and input (ψ,Vi(w)).

Rather than use probabilistic semantics here, we deal with the problem by adding
information to the semantic model to resolve the uncertainty about the truth value
of formulas of the formXiϕ. Observe that if the knowledge algorithmA is ran-

4.1 Randomized Knowledge Algorithms 49

domized, then the answer thatA gives on input(ϕ, `) will depend on the outcome
of coin tosses (or whatever other randomizing device is used byA). We thus turn
the randomized algorithm into a deterministic algorithm by supplying it with an
appropriate argument. For example, we supply an algorithm that makes random
choices by tossing coins a sequence of outcomes of coin tosses. We can now in-
terpret a knowledge algorithm answering “Yes” with probabilityα at a world by
considering the probability of those sequences of coin tosses at the state that make
the algorithm answer “Yes”.

Formally, start with (possibly randomized) knowledge algorithmsA1, . . . , An.
For simplicity, assume that the randomness in the knowledge algorithms comes
from tossing coins. Aderandomizeris a tuplev = (v1, . . . , vn) such that for every
agenti, vi is a sequence of outcomes of coin tosses (heads and tails). There is a
separate sequence of coin tosses for each agent rather than just a single sequence
of coin tosses, since we do not want to assume that all agents use the same coin.
Let V be the set of all such derandomizers. To every randomized algorithmA,
associate a derandomized algorithmAd which takes as input not just the queryϕ
and local statè, but also the sequencevi of i’s coin tosses, taken from a deran-
domizer(v1, . . . , vn). A probabilistic algorithmic knowledge structureis a tuple
N = (W,V1, . . . ,Vn, π, Ad1, . . . , A

d
n, ν), whereν is a probability distribution onV

andAdi is the derandomized version ofAi. (Note that in a probabilistic algorithmic
knowledge structure the knowledge algorithms are in fact deterministic.)

The only assumption on the distributionν is that it does not assign zero prob-
ability to the nonempty sets of sequences of coin tosses that determine the result
of the knowledge algorithm. More precisely, assume that for all agentsi, formulas
ϕ, and local states̀ of agenti, {v | Adi (ϕ, `, vi) = “Yes”} 6= ∅ if and only if
ν({v | Adi (ϕ, `, vi) = “Yes”}) > 0, and similarly for “No” and “?” answers. Note
that this property is met, for instance, ifν assigns nonzero probability to every
sequence of coin tosses. There are no other restrictions onν. In particular, it is
not required that the coin be fair or that the tosses be independent. We can capture
correlation between the agents’ coins by using an appropriate distributionν.

The truth of a formula is now determined relative to a pair(w, v) consisting of
a worldw and a derandomizerv. We abuse notation and continue to call these
pairs worlds. The semantics of formulas in a probabilistic algorithmic knowledge
structure is a straightforward extension of their semantics in algorithmic knowledge
structures. The semantics of primitive propositions is given byπ; conjunctions and
negations are interpreted as usual; for knowledge and algorithmic knowledge, we
have

(N,w, v) |= Kiϕ if (N,w′, v′) |= ϕ for all v′ ∈ V and allw′ ∈ W such that
w ∼i w′

50 4 Probabilistic Algorithmic Knowledge

(N,w, v) |= Xiϕ if Adi (ϕ,Vi(w), vi) = “Yes”, wherev = (v1, . . . , vn).

Here,Adi getsvi as part of its input.Adi (ϕ, `, vi) is interpreted as the output ofAdi
given thatvi describes the outcomes of the coin tosses. Having the sequence of coin
tosses as part of the input allows us to talk about the probability thati’s algorithm
answers “Yes” to the queryϕ at a local statè. It is simply ν({v | Adi (ϕ, `, vi) =
“Yes”}). To capture this in the language, extend the language ofLKX

n to allow
formulas of the formPr(ϕ) ≥ α, read “the probability ofϕ is at leastα”. The
semantics of such formulas is straightforward:

(N,w, v) |= Pr(ϕ) ≥ α if ν({v′ | (N,w, v′) |= ϕ}) ≥ α.

Note that the truth ofPr(ϕ) ≥ α at a world(w, v) is independent ofv. Thus,
we can abuse notation and write(N,w) |= Pr(ϕ) ≥ α. In particular,(N,w) |=
Pr(Xiϕ) < α (or, equivalently,(N,w) |= Pr(¬Xiϕ) ≥ 1−α) if the probability of
the knowledge algorithm returning “Yes” on a queryϕ is less thanα, given agent
i’s local state at worldw.

If all the knowledge algorithms used are deterministic, then this semantics agrees
with the semantics given in Section 2.4. To make this precise, note that ifA is
deterministic, thenAd(ϕ, `, vi) = Ad(ϕ, `, v′i) for all v, v′ ∈ V . In this case, we
abuse notation and writeA(ϕ, `).

Theorem 4.1. LetN = (W,V1, . . . ,Vn, π, Ad1, . . . , A
d
n, ν) be a probabilistic al-

gorithmic knowledge structure, whereA1, . . . , An are deterministic. LetM =
(W,V1, . . . ,Vn, π, A1, . . . , An). If there are no occurrences ofPr in ϕ, then for
all w ∈W and allv ∈ V , (N,w, v) |= ϕ if and only if(M,w) |= ϕ.

Thus, derandomizers are not needed to interpret theXi operators if the knowl-
edge algorithms are all deterministic. Moreover, in general, derandomizers are
necessary only to interpret thePr andXi operators.

Theorem 4.2. LetN = (W,V1, . . . ,Vn, π, Ad1, . . . , A
d
n, ν) be a probabilistic al-

gorithmic knowledge structure, and letM = (W,V1, . . . ,Vn, π, A′1, . . . , A
′
n) be

an algorithmic knowledge structure whereA′1, . . . , A
′
n are arbitrary deterministic

knowledge algorithms. If there are no occurrences ofXi andPr in ϕ, then for all
w ∈W and allv ∈ V , (N,w, v) |= ϕ if and only if(M,w) |= ϕ.

Theorems 4.1 and 4.2 justify the decision to “factor out” the randomization of
the knowledge algorithms into semantic objects that are distinct from the worlds;
the semantics of formulas that do not depend on the randomized choices do not in
fact depend on those additional semantic objects.

4.2 Measures of Confirmation and Evidence 51

4.2 Measures of Confirmation and Evidence

We are often interested in randomized knowledge algorithms that may sometimes
make mistakes. For example, suppose that Alice has in her local state a number
n > 2. Let prime be a proposition true at worldw if and only if the numbern
in Alice’s local state is prime. Clearly, Alice either (implicitly) knowsprime or
knows¬prime. However, this is implicit knowledge. Suppose that Alice uses the
following randomized primality-testing algorithm to test ifn is prime. That algo-
rithm uses a (polynomial-time computable) predicateP (n, a) with the following
properties, for a natural numbern and1 ≤ a ≤ n− 1:

(1) P (n, a) ∈ {0, 1},
(2) if n is composite,P (n, a) = 1 for at leastn2 choices ofa,

(3) if n is prime,P (n, a) = 0 for all a.

Thus, Alice uses the following randomized knowledge algorithmAAlice: when
queried aboutprime, the algorithm picks a numbera at random between0 and the
numbern in Alice’s local state; ifP (n, a) = 1, it says “No” and ifP (n, a) = 0,
it says “Yes”. (It is irrelevant for the purpose of this example what the algorithm
does on other queries.)

It is not hard to check thatAAlice has the following properties: If the number
n in Alice’s local state is prime, thenAAlice answers “Yes” to a queryprime with
probability1 (and hence “No” to the same query with probability0). If n is com-
posite,AAlice answers “Yes” to a queryprime with probability≤ 1

2 and “No” with
probability≥ 1

2 . Thus, ifn is composite, there is a chance thatAAlice will make a
mistake, although we can make the probability of error arbitrarily small by apply-
ing the algorithm repeatedly.

Randomized knowledge algorithms like this are quite common in the literature.
They are not sound, but are “almost sound”. The question is what we can learn
from such an “almost sound” algorithm. Note that we know the probability that
AAlice says “Yes” given thatn is prime; what we are interested in is the probability
thatn is prime given thatAAlice says “Yes”. (Of course,n is either prime or not.
However, if Alice has to make decisions based on whethern is prime, it seems
reasonable for her to ascribe a subjective probability ton’s being prime. It is this
subjective probability that we are referring to here.)

Bayes’ rule tells us that

Pr(n is prime| AAlice says “Yes”) =
Pr(AAlice says “Yes”| n is prime)Pr(n is prime)

Pr(AAlice says “Yes”)
. (4.1)

52 4 Probabilistic Algorithmic Knowledge

The only information in this equation we have isPr(AAlice says “Yes”| n is prime).
If we hadPr(n is prime), we could derivePr(AAlice says “Yes”). However, we do
not have that information, since there is no probability distribution on the number
in Alice’s local state. Although we do not have the information needed to compute
Pr(n is prime| AAlice says “Yes”), there is still a strong intuition that ifXiϕ holds,
this tells us something about whether the number is prime or not. How can this be
formalized?

Intuitively, the fact thatXiϕ holds provides “evidence” thatϕ holds. But what is
evidence? Evidence has been studied in depth in the philosophical literature, under
the name ofconfirmation theory. Confirmation theory aims at determining and
measuring the support a piece of evidence provides a hypothesis. As we mentioned
in the introduction, many different measures of confirmation have been proposed
in the literature. Typically, a proposal has been judged on the degree to which it
satisfies various properties that are considered appropriate for confirmation. For
example, it may be required that a piece of evidencee confirms a hypothesish
if and only if e makesh more probable. We will not enter the debate as to
which class of measures of confirmation is more appropriate. For our purposes,
most confirmation functions are useless: they assume that there is a prior on the
space of hypotheses and observations. By marginalization, this gives a prior on
hypotheses, which is exactly the information we do not have and do not want to
assume. One exception is measures of evidence that use the log-likelihood ratio,
provided that there are only two hypotheses. In this case, rather than a prior on the
space of hypotheses and observations, it suffices that, for each hypothesish, there
is a probabilityµh on observations, where, intuitively,µh(ob) is the probability of
observingob whenh holds. Given an observationob, the degree of confirmation
that it provides for a hypothesish is

l(ob, h) = log
(
µh(ob)
µh(ob)

)
,

whereh represents the hypothesis other thanh (recall that this approach applies
only if there are two hypotheses). Thus, the degree of confirmation is the ratio
between these two probabilities. The use of the logarithm is not critical here. Using
it ensures that the likelihood is positive if and only if the observation confirms the
hypothesis.1

One problem with the log-likelihood ratio measurel as we have defined it is that
it can be used only to reason about evidence discriminating between two competing
hypotheses, namely between an hypothesish holding and the hypothesish not
holding. We would like a measure of confirmation along the lines of the log-

1 In the literature, confirmation is usually taken with respect to some background knowledge. For ease of
exposition, we ignore background knowledge here, although it can easily be incorporated into the framework.

4.2 Measures of Confirmation and Evidence 53

likelihood ratio measure, but that can handle multiple competing hypotheses. One
such generalization was developed in the context of the Dempster-Shafer theory of
evidence based on belief functions

Start with a finite setH of mutually exclusive and exhaustive hypotheses; thus,
exactly one hypothesis holds at any given time. LetO be the set of possible obser-
vations (or pieces of evidence). For simplicity, assume thatO is finite. Just as in the
case of log-likelihood, assume that, for each hypothesesh ∈ H, there is a probabil-
ity measureµh onO such thatµh(ob) is the probability ofob if hypothesish holds.
Define an evidence space (overH andO) to be a tupleE = (H,O, {µh | h ∈ H}).

Given an evidence spaceE, define the weight that the observationob lends to
hypothesish, writtenwE(ob, h), as

wE(ob, h) =
µh(ob)∑

h′∈H µh′(ob)
. (4.2)

The weight of evidencewE is not defined by Equation (4.2) for an observation
ob such that

∑
h∈H µh(ob) = 0. Intuitively, this means that the observationob is

impossible. In the literature on confirmation theory it is typically assumed that this
case never arises. More precisely, it is assumed that all observations are possible,
so that for every observationob, there is an hypothesish such thatµh(ob) > 0.
In the present case, making this assumption is unnatural. We want to view the
answers given by knowledge algorithms as observations, and it seems perfectly
reasonable to have a knowledge algorithm that never returns “?”, for instance. As
we shall see below, the fact that the weight of evidence is undefined in the case
that

∑
h∈H µh(ob) = 0 is not a problem, thanks to the assumption thatν does

not assign zero probability to the nonempty sets of sequences of coin tosses that
determine the result of the knowledge algorithm.

For a set of hypothesesH, definewE(ob,H) as simply the sum ofwE(ob, h)
for h ∈ H. This definition makeswE(ob, ·) a probability measure on hypothe-
ses, for each fixed observationob for which

∑
h∈H µh(ob) > 0. Intuitively, if

wE(ob, h) = 1, thenob fully confirmsh (i.e.,h is certainly true ifob is observed),
while if wE(ob, h) = 0, thenob disconfirmsh (i.e., h is certainly false ifob is
observed). Intuitively, the weightwE(ob, h) is the probability thath is the right
hypothesis in the light of observationob.2 The advantages ofwE over other known
measures of confirmation are that (a) it is applicable when there is no prior proba-
bility distribution on the hypotheses, (b) it is applicable when there are more than
two competing hypotheses, and (c) it has a fairly intuitive probabilistic interpreta-
tion.

2 We could have taken the log of the ratio to makewE more in line with the log-likelihood ratiol defined earlier,
but there are technical advantages in having the weight of evidence be a number between 0 and 1.

54 4 Probabilistic Algorithmic Knowledge

Note that ifH = {h1, h2}, thenwE in some sense generalizes the log-likelihood
ratio measure.3 More precisely, for a fixed observationob, wE(ob, ·) induces the
same relative order on hypotheses asl(ob, ·), and for a fixed hypothesish,wE(·, h)
induces the same relative order on observations asl(·, h).

Theorem 4.3. For all ob, we havewE(ob, hi) ≥ wE(ob, h2−i) if and only if
l(ob, hi) ≥ l(ob, h2−i), for i = 1, 2, and for allh, ob, andob ′, we havewE(ob, h) ≥
wE(ob ′, h) if and only ifl(ob, h) ≥ l(ob ′, h).

AlthoughwE(ob, ·) behaves like a probability measure on hypotheses for every
observationob (for which

∑
h∈H µh(ob) > 0), it is perhaps best not to think of it as

a probability. Rather, it is an encoding of evidence. (We will see an interpretation
of evidence in the next chapter.)

Example 4.4. For the primality example, the setH of hypotheses is{prime,¬prime}.
The observationsO are simply the possible outputs of the knowledge algorithm
AAlice on the formulaprime, namely,{“Yes”, “No” }. From the discussion follow-
ing the description of the example, it follows that

µprime(“Yes”) = 1 µprime(“No”) = 0

µ¬prime(“Yes”) ≤ 1
2

µ¬prime(“No”) ≥ 1
2
.

(There is a drastic simplifying assumption here, namely, that the probability that
the knowledge algorithm answers “Yes” to whether or not the number in Alice’s
local state is prime is the same for all values of the number. In reality, this is
not the case. All we are really given is bounds on the probabilitiesµprime and
µ¬prime; the actual probabilities vary with the actual prime number to which the
knowledge algorithm is applied. For the remainder of this chapter, we assume
that the probability associated with the answer of the knowledge algorithm for the
primality example is the same for all numbers. Most knowledge algorithms will
have that property.)

Let E = ({prime,¬prime}, {“Yes”, “No” }, {µprime, µ¬prime}) be the evidence

3 Another representation that has similar characteristics is the following original representation of evidence via
belief functions, defined as

wS
E(ob, H) =

maxh∈H µh(ob)

maxh∈H µh(ob)
.

This measure is known in statistical hypothesis testing as thegeneralized likelihood-ratio statistic. It is another
generalization of the log-likelihood ratio measurel. At this point, one may well ask what could help decide
which weight function to use. In the case ofwE andwS

E , their main difference is in how they behave when
one considers the combination of evidence. It can be argued thatwE behaves better in this case.

4.3 Reliable Randomized Knowledge Algorithms 55

space capturing this situation. We can compute that

wE(“Yes”, prime) ≥ 2
3

and

wE(“Yes”,¬prime) ≤ 1
3
.

Intuitively, a “Yes” answer to the queryprime provides more evidence for the hy-
pothesisprime than the hypothesis¬prime. Similarly, w(“No” , prime) = 0 and
w(“No” ,¬prime) = 1. Thus, an output of “No” to the queryprime indicates that
the hypothesis¬prime must hold. ut

We can extend the definition of weight of evidence tosetsof observations. If
obs ⊆ O is a set of observations, define

wE(obs, h) =
µh(obs)∑

h′∈Hmuh′(obs)
.

Roughly speaking,wE(obs, h) can be viewed as the weight of evidence provided
by an observation that is compatible with all of the observations inobs and no other
observations. For example, in an evidence space(H,O, µh0 , µh0

), the weight of

evidence thatO provides for bothh0 andh0 is 1/2, meaning that simply making an
observation without any indication of the actual observation made does not provide
support for one hypothesis more than to the other, as expected.

4.3 Reliable Randomized Knowledge Algorithms

What does a “Yes” answer to a queryϕ given by an “almost sound” knowledge
algorithm tell us aboutϕ? To make this precise, we need to first characterize how
reliable the knowledge algorithm is. A randomized knowledge algorithmAi is
(α, β)-reliable for ϕ in N (for agenti) if α, β ∈ [0, 1] and for all worldsw and
derandomizersv,

– (N,w, v) |= ϕ impliesν({v′ | Adi (ϕ,Vi(w), v′i) = “Yes”}) ≥ α,
– (N,w, v) |= ¬ϕ impliesν({v′ | Adi (ϕ,Vi(w), v′i) = “Yes”}) ≤ β.

These conditions are equivalent to(N,w, v) |= ϕ implying (N,w, v) |= Pr(Xiϕ) ≥
α and(N,w, v) |= ¬ϕ implying (N,w, v) |= Pr(Xiϕ) ≤ β. In other words, if
ϕ is true at worldw, then an(α, β)-reliable algorithm says “Yes” toϕ atw with
probability at leastα (and hence is right when it answers “Yes” to queryϕ with
probability at leastα); on the other hand, ifϕ is false, it says “Yes” with probability
at mostβ (and hence is wrong when it answer “Yes” to queryϕ with probability at
mostβ). The primality testing knowledge algorithm is(1, 1

2)-reliable forprime.

56 4 Probabilistic Algorithmic Knowledge

The intuition here is that(α, β)-reliability is a way to bound the probability that
the knowledge algorithm is wrong. The knowledge algorithm can be wrong in two
ways: it can answer “No” or “?” to a queryϕ whenϕ is true, and it can answer
“Yes” to a queryϕ whenϕ is not true. If a knowledge algorithm is(α, β)-reliable,
then the probability that it answers “No” or “?” when the answer should be “Yes”
is at most1−α: the probability that it answers “Yes” when it should not is at most
β.

We now associate an evidence space over the hypotheses{ϕ,¬ϕ} with a knowl-
edge algorithmAi and a local statè for agenti. Let

EAi,ϕ,` = ({ϕ,¬ϕ}, {“Yes”, “No” , “?”}, µϕ,`, µ¬ϕ,`).

Roughly speaking,µϕ,`(“Yes”) (resp.,µϕ,`(“No”); µϕ,`(“?”)) is the probability
that Ai says “Yes” (resp., “No”; “?”) to a queryϕ at worlds where agenti has
local statè andϕ is true, whileµ¬ϕ,`(“Yes”) (resp.,µ¬ϕ,`(“No”); µ¬ϕ,`(“?”))
is the probability thatAi answers “Yes” (respectively, “No”; “?”) to the queryϕ
at worlds where agenti has local statè and¬ϕ is true. More precisely, for
the given agenti, defineWϕ,` = {(w, v) | Vi(w) = `, (N,w, v) |= ϕ} and
W¬ϕ,` = {(w, v) | Vi(w) = `, (N,w, v) |= ¬ϕ}, and take

µϕ,`(“Yes”) =

{
ν({v′ | Adi (ϕ, `, v′i) = “Yes”}) if Wϕ,` 6= ∅
1 otherwise

µϕ,`(“No”) =

{
ν({v′ | Adi (ϕ, `, v′i) = “No” }) if Wϕ,` 6= ∅
0 otherwise

µϕ,`(“?”) = 1− µϕ,`(“Yes”)− µϕ,`(“No”).

Similarly, take

µ¬ϕ,`(“Yes”) =

{
ν({v′ | Adi (ϕ, `, v′i) = “Yes”}) if W¬ϕ,` 6= ∅
0 otherwise

µ¬ϕ,`(“No”) =

{
ν({v′ | Adi (ϕ, `, v′i) = “No” }) if W¬ϕ,` 6= ∅
1 otherwise

µ¬ϕ,`(“?”) = 1− µ¬ϕ,`(“Yes”)− µ¬ϕ,`(“No”).

If Ai is (α, β)-reliable forϕ in N , thenµϕ,`(“Yes”) ≥ α, µϕ,`({“No” , “?”}) ≤
1−α, µ¬ϕ,`(“Yes”) ≤ β, andµ¬ϕ,`({“No” , “?”}) ≥ 1− β, for all local statè for
agenti.

To be able to talk about evidence within the logic, we introduce an operator to
capture the evidence provided by the knowledge algorithm of agenti, Evi(ϕ), read
“the weight of evidence thati would get forϕ if he were to query the knowledge

4.3 Reliable Randomized Knowledge Algorithms 57

algorithm aboutϕ”. There is a subtlety here, due to the asymmetry in the definition
of reliability. Reliability talks only about the probability that the algorithm returns
“Yes”, and thus does not distinguish between the algorithm returning “No” or “?”.
In order to establish a link between reliability and evidence, it is convenient to
identify the answers “No” and “?”, using the notationpobq to represent which of
the sets{“Yes”} and{“No” , “?”} the observationob belongs to. Formally, define

p“Yes”q = {“Yes”}
p“No” q = {“No” , “?”}
p“?”q = {“No” , “?”}.

We can now give the semantics of theEvi operator:

(N,w, v) |= Evi(ϕ) ≥ α if wEAi,ϕ,Vi(w)
(pAdi (ϕ,Vi(w), vi)q, ϕ) ≥ α.

We can similarly define(N,w, v) |= Evi(ϕ) ≤ α. Thus, theEvi operator captures
the evidence forϕ given by the answer ofi’s knowledge algorithm to a queryϕ.
Evi(ϕ) is always defined, despite the weight of evidence not being defined in the
case whereµϕ,`(ob) + µ¬ϕ,`(ob) = 0.

Theorem 4.5.For all probabilistic algorithmic knowledge structuresN , worldsw
ofN , and derandomizersv ∈ V , wEAi,ϕ,Vi(w)

(pAdi (ϕ,Vi(w), vi)q, ϕ) is defined.

Intuitively, since the knolwedge algorithmAdi (ϕ,Vi(w), vi) returns a resultob at
worldw, our restriction onν guarantees that the probability of observingob must
be nonzero.

This definition of evidence has a number of interesting properties. For instance,
full evidence in support of a formulaϕ essentially corresponds to knowledge ofϕ,
as the following result show.

Theorem 4.6.For all probabilistic algorithmic knowledge structuresN , we have

N |= Evi(ϕ) = 1⇒ Kiϕ.

The following theorem captures the relationship between reliable knowledge al-
gorithms and evidence.

Theorem 4.7.If Ai is (α, β)-reliable forϕ in N then

(a) N |= Xiϕ⇒ Evi(ϕ) ≥ α
α+β if (α, β) 6= (0, 0);

(b) N |= Xiϕ⇒ Evi(ϕ) = 1 if (α, β) = (0, 0);
(c) N |= ¬Xiϕ⇒ Evi(ϕ) ≤ 1−α

2−(α+β) if (α, β) 6= (1, 1);
(d) N |= ¬Xiϕ⇒ Evi(ϕ) = 0 if (α, β) = (1, 1).

58 4 Probabilistic Algorithmic Knowledge

In other words, if a randomized knowledge algorithm says “Yes”, then that pro-
vides evidence forϕ being true. The weight of evidence depends on the reliability.
Similarly, if the randomized knowledge algorithm says “No”, there is less evidence
in favor ofϕ being true.

Theorem 4.7 becomes interesting in the context of well-known classes of ran-
domized algorithms. AnRP (random polynomial-time) algorithm is a polynomial-
time randomized algorithm that is(1

2 , 0)-reliable. It thus follows from Theorem 4.7
that if Ai is anRP algorithm, thenXiϕ⇒ Evi(ϕ) = 1 and¬Xiϕ⇒ Evi(ϕ) ≤ 1

3

are both valid inN . By Theorem 4.6,Evi(ϕ) ⇒ Kiϕ is valid, and thus we
haveXiϕ ⇒ Kiϕ, as expected. Similarly, aBPP (bounded-error probabilis-
tic polynomial-time) algorithm is a polynomial-time randomized algorithm that
is (3

4 ,
1
4)-reliable. Thus, by Theorem 4.7, ifAi is a BPP algorithm, thenXiϕ ⇒

Evi(ϕ) ≥ 3
4 and¬Xiϕ⇒ Evi(ϕ) ≤ 1

4 are both valid inN .

Notice that Proposition 4.7 talks about the evidence that the knowledge algo-
rithm provides forϕ. Intuitively, we might expect some kind of relationship be-
tween the evidence forϕ and the evidence for¬ϕ. A plausible relationship would
be that high evidence forϕ implies low evidence for¬ϕ, and low evidence forϕ
implies high evidence for¬ϕ. Unfortunately, given the definitions in this section,
this is not the case. Evidence forϕ is completely unrelated to evidence for¬ϕ.
Roughly speaking, this is because evidence forϕ is measured by looking at the
results of the knowledge algorithm when queried forϕ, and evidence for¬ϕ is
measured by looking at the results of the knowledge algorithm when queried for
¬ϕ. However, there is nothing in the definition of a knowledge algorithm that says
that the answers of the knowledge algorithm to queriesϕ and¬ϕ need to be related
in any way.

A relationship between evidence forϕ and evidence for¬ϕ can be established
by considering knowledge algorithms that are “well-behaved” with respect to nega-
tion. We already saw special classes of knowledge algorithms in terms of how they
behave with respect to negation in Section 2.4. We can adapt these notions to the
randomized knowledge algorithm case, in the obvious way. Say that a random-
ized knowledge algorithmA weakly respects negationif for all local states̀ and
derandomizersv:

Ad(¬ϕ, `, vi) =

“Yes” if Ad(ϕ, `, vi) = “No”

“No” if Ad(ϕ, `, vi) = “Yes”

“?” if Ad(ϕ, `, vi) = “?”.

4.3 Reliable Randomized Knowledge Algorithms 59

Similarly, say that a randomized knowledge algorithmA strongly respects negation
if for all local states̀ and derandomizersv:

Ad(¬ϕ, `, vi) =

{
“Yes” if Ad(ϕ, `, vi) 6= “Yes”

“No” if Ad(ϕ, `, vi) = “Yes”.

The following result shows that for knowledge algorithms that respect negation,
reliability for ϕ is related to reliability for¬ϕ:

Theorem 4.8. If Ai weakly respects negation andAi is (α, β)-reliable forϕ in N ,
thenAi is (0, 1− α)-reliable for¬ϕ in N . If Ai strongly respects negation, thenAi
is (α, β)-reliable forϕ in N if and only ifAi is (1 − β, 1 − α)-reliable for¬ϕ in
N .

It is not hard to construct examples showing that the reliability assessments in
Proposition 4.8 in the case whereAi weakly respects negation are tight; for in-
stance, we can exhibit a knowledge algorithm weakly respecting negation that is
(α, β)-reliable forϕ in N and that is not(ε1, 1 − β − ε2)-reliable for¬ϕ in N ,
for any ε1, ε2 > 0. Adapting the proof of Theorem 2.6, it is easy to check that if
Ai weakly respects negation, thenXiϕ ⇒ ¬Xi¬ϕ is a valid formula. Similarly, if
Ai strongly respects negation, thenXiϕ ⇔ ¬Xi¬ϕ is a valid formula. Combined
with Theorem 4.7, this yields the following results.

Theorem 4.9. If Ai is (α, β)-reliable forϕ in N andAi weakly respects negation,
then

(a) N |= Xiϕ⇒
(
Evi(ϕ) ≥ α

α+β ∧ Evi(¬ϕ) ≤ 1
1+α

)
if (α, β) 6= (0, 0);

(b) N |= Xiϕ⇒ Evi(ϕ) = 1 if (α, β) = (0, 0);
(c) N |= Xi¬ϕ⇒ Evi(ϕ) ≤ 1−α

2−(α+β) if α 6= 1;

(d) N |= Xi¬ϕ⇒ (Evi(¬ϕ) = 1 ∧ Evi(ϕ) = 0) if α = 1.

Theorem 4.10.If Ai is (α, β)-reliable forϕ inN andAi strongly respects negation,
then

(a) N |= Xiϕ⇒
(
Evi(ϕ) ≥ α

α+β ∧ Evi(¬ϕ) ≤ β
α+β

)
if (α, β) 6= (0, 0);

(b) N |= Xiϕ⇒ (Evi(ϕ) = 1 ∧ Evi(¬ϕ) = 0) if (α, β) = (0, 0);
(c) N |= Xi¬ϕ ⇒

(
Evi(¬ϕ) ≥ 1−β

2−(α+β) ∧ Evi(ϕ) ≤ 1−α
2−(α+β)

)
if (α, β) 6=

(1, 1);
(d) N |= Xi¬ϕ⇒

(
Evi(¬ϕ) ≥ 1

2 ∧ Evi(ϕ) ≤ 1
2

)
if (α, β) = (1, 1).

One goal of this chapter was to understand what the evidence provided by a
knowledge algorithm tells us. To take an example from security, consider an en-
forcement mechanism used to detect and react to intrusions in a system. Such an

60 4 Probabilistic Algorithmic Knowledge

enforcement mechanism uses algorithms that analyze the behaviour of users and
attempt to recognize intruders. While the algorithms may sometimes be wrong,
they are typically reliable, with some associated probabilities. Clearly the mech-
anism wants to make sensible decisions based on this information, How should it
do this? What actions should the system take based on a report that a user is an
intruder? Resolving this asks for an interpretation of evidence, which we attempt
to provide in the next chapter.

Notes

The work in this chapter first appeared in [Halpern and Pucella 2003c].
Suitable introductions to probability theory include [Feller 1957; Billingsley

1995]. A good overview of the theory of randomized algorithms is [Motwani and
Raghavan 1995], where the classesRP andBPP are described in details. Rabin’s
probabilistic procedure is developed in [Rabin 1980]

Much of the work on evidence in philosophy arises in philosophy of science,
specificallyconfirmation theory, where the concern has been historically to assess
the support that evidence obtained through experimentation lends to various scien-
tific theories [Carnap 1962; Popper 1959]. Kyburg [1983] gives a good survey of
the various approaches. The definition of weight of evidence we use in this chapter,
wE, was introduced by Shafer [1982], in the context of the Dempster-Shafer theory
of evidence based on belief functions [Shafer 1976]; it was further studied by Wal-
ley [1987]. Our description is taken mostly from [Halpern and Fagin 1992]. The
alternativewSE is Shafer’s original measure [Shafer 1976]. A comparison between
wE andwSE can be found in [Walley 1987; Halpern and Fagin 1992].

Other classes of confirmation measures, that do assume a prior probability, in-
clude the difference measures of Jeffrey [1992]. Another class, the log ratio mea-
sures, has been advocated, among others, by Milne [1996]. The log-likelihood
ratio measures have been advocated, among others, by Good [1950, 1960]. It can
be shown that those functions areordinally distinct, that is, they will support dif-
ferent hypotheses given the same hypotheses and evidence [Fitelson 1999].

5
Reasoning about Evidence

CONSIDER the following situation. A coin is tossed, which is either fair or
double-headed. The coin lands heads. How likely is it that the coin is double-

headed? What if the coin is tossed 20 times and it lands heads each time? Intu-
itively, it is much more likely that the coin is double-headed in the latter case than
in the former. But how should the likelihood be measured? A straightforward ap-
plication of probability theory is not possible here. We cannot compute the proba-
bility of the coin being double-headed; assigning a probability to that event requires
that we have a prior probability on the coin being double-headed. For example, if
the coin was chosen at random from a barrel with one billion fair coins and one
double-headed coin, it is still overwhelmingly likely that the coin is fair, and that
the sequence of 20 heads is just unlucky. However, in the problem statement, there
is no prior probability mentioned. We could of course posit a prior probability and
see how the posterior probability behaves when we change the prior, but the point
is that our intuition does not seem to rely on such a posited prior.

The main feature of this situation is that it involves a combination of probabilis-
tic outcomes (e.g., the coin tosses) and nonprobabilistic outcomes (e.g., the choice
of the coin). There has been a great deal of work on reasoning about systems that
combine both probabilistic and nondeterministic choices. However, the observa-
tions above suggest that if we attempt to formally analyze this situation in one of
those frameworks, which essentially permit only the modeling of probabilities, we
will not be able to directly capture this intuition about increasing likelihood. To
see how this plays out, consider a formal analysis of the situation in the framework
due to Joseph Halpern and Mark Tuttle. Suppose that Alice nonprobabilistically
chooses one of two coins: a fair coin with probability1/2 of landing heads, or a
double-headed coin with probability1 of landing heads. Alice tosses this coin re-
peatedly. Letϕk be a formula stating: “thekth coin toss lands heads”. What is the
probability ofϕk according to Bob, who does not know which coin Alice chose?

61

62 5 Reasoning about Evidence

According to the Halpern-Tuttle framework, this can be modeled by considering
the set of runs describing the states of the system at each point in time, and parti-
tioning this set into two subsets, one for each coin used. In the set of runs where the
fair coin is used, the probability ofϕk is 1/2; in the set of runs where the double-
headed coin is used, the probability ofϕk is 1. In this setting, the only conclusion
that can be drawn is(PrB(ϕk) = 1/2) ∨ (PrB(ϕk) = 1). (This is of course the
probability from Bob’s point of view; Alice presumably knows which coin she is
using.) Intuitively, this seems reasonable: if the fair coin is chosen, the probability
that thekth coin toss lands heads, according to Bob, is1/2; if the double-headed
coin is chosen, the probability is1. Since Bob does not know which of the coins is
being used, that is all that can be said.

But now suppose that, before the 101st coin toss, Bob learns the result of the
first 100 tosses. Suppose, moreover, that all of these landed heads. What is the
probability that the 101st coin toss lands heads? By the same analysis, it is still
either1/2 or 1, depending on which coin is used.

This is hardly useful. To make matters worse, no matter how many coin tosses
Bob witnesses, the probability that the next toss lands heads remains unchanged.
But this answer misses out on some important information. And this information
is exactly the kind of information provided by reliable knowledge algorithms in
the last chapter. The fact that all of the first 100 coin tosses are heads is very
strongevidencethat the coin is in fact double-headed. Indeed, a straightforward
computation using Bayes’ Rule shows that if the prior probability of the coin being
double-headed isα, then after observing that all of the 100 tosses land heads, the
probability of the coin being double-headed becomes

α

α+ 2−100(1− α)
=

2100α

2100α+ (1− α)
.

However, note that it is not possible to determine the posterior probability that
the coin is double-headed (or that the 101st coin toss is heads) without the prior
probabilityα. After all, if Alice chooses the double-headed coin with probability
only 10−100, then it is still overwhelmingly likely that the coin used is in fact fair,
and that Bob was just very unlucky to see such a nonrepresentative sequence of
coin tosses.

We am not aware of any logical framework for reasoning about nondetermin-
ism and probability that takes the issue of evidence into account. On the other
hand, as we saw in the last chapter, evidence has been discussed extensively in the
philosophical literature.

In this chapter, we introduce a logic for reasoning about evidence that extends
existing logics for reasoning about likelihood expressed as either probability or be-
lief. The logic has first-order quantification over the reals (so includes the theory

5.1 Evidence and Probability Updates 63

of real closed fields), for reasons that will shortly become clear. By adding obser-
vations to the states, it is possible to refine the language to talk about both the prior
probability of hypotheses and the posterior probability of hypotheses, taking into
consideration the observation at the states. We provide an additional operator to
talk about the evidence provided by particular observations. This lets us write for-
mulas that talk about the relationship between the prior probabilities, the posterior
probabilities, and the evidence provided by the observations.

We then provide a sound and complete axiomatization for the logic. To ob-
tain such an axiomatization, first-order quantification appears necessary. Roughly
speaking, this is because ensuring that the evidence operator has the appropriate
properties requires us to assert the existence of suitable probability measures. It
does not seem possible to do this without existential quantification. Finally, we
consider the complexity of the satisfiability problem. The complexity problem for
the full language requires exponential space, since it incorporates the theory of real
closed fields, for which an exponential space lower bound is known. However, we
show that the satisfiability problem for a propositional fragment of the language,
which is still strong enough to allow us to express many properties of interest, is
NP-complete.

5.1 Evidence and Probability Updates

In order to develop a logic for reasoning about evidence, we need to first formalize
an appropriate notion of evidence. We described a particular form of evidence in
Section 4.2, and this is the notion that we take as underlying our logic. But what is
evidence? Evidence can be thought of as afunctionmapping a prior probability on
the hypotheses to a posterior probability, based on the piece of evidence witnessed.
There is a precise sense in whichwE can be viewed as a function that maps a
prior probabilityµ0 on the hypothesesH to a posterior probabilityµob based on
observingob, by applying Dempster’s Rule of Combination. That is,

µob = µ0 ⊕ wE(ob, ·), (5.1)

where⊕ combines two probability distributions onH to get a new probability
distribution onH defined as follows:

(µ1 ⊕ µ2)(H) =
∑

h∈H µ1(h)µ2(h)∑
h∈H µ1(h)µ2(h)

.

Bayes’ Rule is the standard way of updating a prior probability based on an
observation, but it is only applicable when we have a joint probability distribution
on both the hypotheses and the observations, something which we did not assume
we had. Dempster’s Rule of Combination essentially “simulates” the effects of

64 5 Reasoning about Evidence

Bayes’s rule. The relationship between Dempster’s Rule and Bayes’ Rule is made
precise by the following well-known theorem.

Theorem 5.1.LetE = (H,O, {µh | h ∈ H}) be an evidence space. Suppose that
P is a probability onH × O such thatP (H × {ob}|{h} × O) = µh(ob) for all
h ∈ H and all ob ∈ O. Letµ0 be the probability onH induced by marginalizing
P ; that is,µ0(h) = P ({h} × O). For ob ∈ O, let µob = µ0 ⊕ wE(ob, ·). Then
µob(h) = Pr({h} × O|H × {ob}).

In other words, when we do have a joint probability on the hypotheses and ob-
servations, then Dempster’s Rule of Combination gives us the same result as a
straightforward application of Bayes’ Rule.

Example 5.2.To get a feel for how this measure of evidence can be used, consider
a variation of the two-coins example in the introduction. Assume that the coin
chosen by Alice is either double-headed or fair, and consider sequences of hundred
tosses of that coin. LetO = {m | 0 ≤ m ≤ 100} (the number of heads observed),
and letH = {F,D}, whereF is “the coin is fair”, andD is “the coin is double-
headed”. The probability spaces associated with the hypotheses are generated by
the following probabilities for simple observationsm:

µF (m) =
1

2100

(
100
m

)
µD(m) =

{
1 if m = 100
0 otherwise.

(We extend by additivity to the whole spaceO.) TakeE = (H,O, {µF , µD}). For
any observationm 6= 100, the weight in favor ofF is given by

wE(m,F) =
1

2100

(
100
m

)
0 + 1

2100

(
100
m

) = 1,

which means that the support ofm is unconditionally provided toF ; indeed, any
such sequence of tosses cannot appear with the double-headed coin. Thus, ifm >

0, we get that

wE(m,D) =
0

0 + 1
2100

(
100
m

) = 0.

What happens when the hundred coin tosses are all heads? It is straightforward to
check that

wE(100, F) =
1

2100

1 + 1
2100

=
1

1 + 2100
wE(100, D) =

1
1 + 1

2100

=
2100

1 + 2100
;

this time there is overwhelmingly more evidence in favor ofD thanF .
Note that we have not assumed any prior probability on the hypotheses. Thus,

5.1 Evidence and Probability Updates 65

we cannot talk about the probability that the coin is fair or double-headed. What we
have is a quantitative assessment of the evidence in favor of one of the hypotheses.
However, if we assume a prior probabilityα on the coin being fair andm heads are
observed after 100 tosses, then the probability that the coin is fair is 1 ifm 6= 100;
if m = 100 then, applying the rule of combination, the posterior probability of the
coin being fair isα/(α+ (1− α)2100). ut

Can we characterize weight functions using a small number of properties? More
precisely, given setsH andO, and a functionf from O × H to [0, 1], are there
properties off that ensure that there are probability measures{µh | h ∈ H}
such thatf = wE? As we saw earlier, for a fixed observationob, f acts like a
probability measure onH. However, this is not sufficient to guarantee thatf is
a weight function. Consider the following example, withO = {ob1, ob2} and
H = {h1, h2, h3}:

f(ob1, h1) = 1/4 f(ob2, h1) = 1/4
f(ob1, h2) = 1/4 f(ob2, h2) = 1/2
f(ob1, h3) = 1/2 f(ob2, h3) = 1/4.

It is straightforward to check thatf(ob1, ·) andf(ob2, ·) are probability measures
on H, but that there is no evidence spaceE = (H,O, {µh1 , µh2 , µh3}) such that
f = wE. Indeed, assume that we do have suchµh1 , µh2 , µh3 . By the definition
of weight of evidence, and the fact thatf is that weight of evidence, we get the
following system of equations:

µh1
(ob1)

µh1
(ob1)+µh2

(ob1)+µh3
(ob1) = 1/4

µh2
(ob1)

µh1
(ob1)+µh2

(ob1)+µh3
(ob1) = 1/4

µh3
(ob1)

µh1
(ob1)+µh2

(ob1)+µh3
(ob1) = 1/2

µh1
(ob2)

µh1
(ob2)+µh2

(ob2)+µh3
(ob2) = 1/4

µh2
(ob2)

µh1
(ob2)+µh2

(ob2)+µh3
(ob2) = 1/2

µh3
(ob2)

µh1
(ob2)+µh2

(ob2)+µh3
(ob2) = 1/4.

It is now immediate that there existα1 andα2 such thatµhi
(obj) = αjf(obj , hi),

for i = 1, 2, 3. Indeed,αj = µh1(obj) + µh2(obj) + µh3(obj), for j = 1, 2.
Moreover, sinceµhi

is a probability measure, we must have that

µhi
(ob1) + µh1(ob2) = α1f(ob1, hi) + α2f(ob2, hi) = 1,

for i = 1, 2, 3. Thus,

α1/4 + α2/4 = α1/4 + α2/2 = α1/2 + α4/4 = 1.

These constraints are easily seen to be unsatisfiable.
This argument generalizes to arbitrary functionsf ; thus, a necessary condition

for f to be a weight function is that there existsαi for each observationobi such
thatµh(obi) = αif(obi, h) for each hypothesish is a probability measure, that is,

66 5 Reasoning about Evidence

α1f(ob1, h) + · · ·+αkf(obk, h) = 1. In fact, when combined with the constraint
thatf(ob, ·) is a probability measure for a fixedob, this condition turns out to be
sufficient, as the following theorem establishes.

Theorem 5.3. Let H = {h1, . . . , hm} andO = {ob1, . . . , obn}, and letf be a
real-valued function with domainO ×H such thatf(ob, h) ∈ [0, 1]. Then there
exists an evidence spaceE = (H,O, µh1 , . . . , µhm) such thatf = wE if and only
if f satisfies the following properties:

WF1. For everyob ∈ O, f(ob, ·) is a probability measure onH.
WF2. There existsx1, . . . , xn > 0 such that, for allh ∈ H,

∑n
i=1 f(obi, h)xi =

1.

This characterization is fundamental to the completeness of the axiomatization
of the logic we introduce in the next section.

5.2 Reasoning about Evidence

We introduce a logicLfo-ev for reasoning about evidence. The logic has both
propositional features and first-order features. It takes the probability of proposi-
tions, and views evidence as a proposition. On the other hand, it allows first-order
quantification over numerical quantities, such as probabilities and evidence. The
logic essentially considers two time periods, which can be thought of as the time
before an observation is made and the time after an observation is made. For sim-
plicity, assume that exactly one observation is made. Thus, we can talk of the
probability of a formulaϕ before an observation is made, denotedPr0(ϕ), the
probability ofϕ after the observation, denotedPr(ϕ), and the evidence provided
by the observationob for a hypothesish, denotedw(ob, h). Of course, we want to
be able to use the logic to relate all these quantities.

Formally, start with two sets of primitive propositions,Φh = {h1, . . . , hnh
} rep-

resenting the hypotheses, andΦo = {ob1, . . . , obno} representing the observations.
Let Lh(Φh) be the propositional sublanguage ofhypothesis formulasobtained by
taking primitive propositions inΦh and closing off under negation and conjunction;
we useρ to range over formulas of that sublanguage.

A basic termhas the formPr0(ρ), Pr(ρ), or w(ob, ρ), whereρ is an hypothesis
formula, andob is an observation. Apolynomial termhas the formt1 + · · · + tn,
where each termti is a product of integers, basic terms, and variables (which range
over the reals). Apolynomial inequality formulahas the formp ≥ c, wherep
is a polynomial term andc is an integer. LetLfo-ev (Φh,Φo) be the language ob-
tained by starting out with the primitive propositions inΦh andΦo and polynomial
inequality formulas, and closing off under conjunction, negation, and first-order

5.2 Reasoning about Evidence 67

quantification. Lettrue be an abbreviation for an arbitrary propositional tautology
involving only hypotheses, such ash1∨¬h1; let false be an abbreviation for¬true.
With this definition,true andfalse can be considered as part of the sublanguage
Lh(Φh).

It should be clear that while only integers coefficients are allowed to appear in
polynomial terms, it is possible in fact to express polynomial terms with rational
coefficients by crossmultiplying. For instance,1

3Pr(ρ) + 1
2Pr(ρ′) ≥ 1 can be

represented by the polynomial inequality formula2Pr(ρ) + 3Pr(ρ′) ≥ 6. While
there is no difficulty in giving a semantics to polynomial terms that use arbitrary
real coefficients, the restriction to integers is necessary in order to make use of
results from the theory of real closed fields in both the axiomatization of Section 5.3
and the complexity results of Section 5.4.

We use obvious abbreviations where needed, such asϕ∨ψ for¬(¬ϕ∧¬ψ),ϕ⇒
ψ for ¬ϕ∨ψ, ∃xϕ for ¬∀x(¬ϕ), Pr(ϕ)−Pr(ψ) ≥ c for Pr(ϕ)+(−1)Pr(ψ) ≥ c,
Pr(ϕ) ≥ Pr(ψ) for Pr(ϕ)−Pr(ψ) ≥ 0, Pr(ϕ) ≤ c for−Pr(ϕ) ≥ −c, Pr(ϕ) < c

for ¬(Pr(ϕ) ≥ c), andPr(ϕ) = c for (Pr(ϕ) ≥ c) ∧ (Pr(ϕ) ≤ c) (and analogous
abbreviations for inequalities involvingPr0 andw).

Example 5.4. Consider again the situation given in Example 5.2. LetΦo, the
observations, consist of primitive propositions of the formheads[m], wherem is
an integer with0 ≤ m ≤ 100, indicating thatm heads out of 100 tosses have
appeared. LetΦh consist of the two primitive propositionsfair anddoubleheaded.
The computations in Example 5.2 can be written as follows:

w(heads[100], fair) = 1/(1 + 2100)∧
w(heads[100], doubleheaded) = 2100/(1 + 2100).

We can also capture the fact that the weight of evidence of an observation maps a
prior probability into a posterior probability by Dempster’s Rule of Combination.
For example, the following formula captures the update of the prior probabilityα

of the hypothesisfair upon observation of a hundred coin tosses landing heads:

Pr0(fair) = α ∧ w(heads[100], fair) = 1/(1 + 2100)⇒
Pr(fair) = α/(α+ (1− α)2100).

We develop a deductive system to derive such conclusions in the next section.ut

Now we consider the semantics. As usual, a model is a set of possible worlds.
A world describes which hypothesis is true and which observation was made (re-
call that we have assumed that exactly one hypothesis is true, and exactly one
observation is made), together with a probability distribution describing the prior
probability, which is used to interpretPr0. Thus, a world has the form(h, ob, µ),

68 5 Reasoning about Evidence

whereh is a hypothesis,ob is an observation, andµ is a probability distribution on
Φh. In addition, to interpretw, we need an evidence space overΦh andΦo, which
gives a probability measureµh on Φo for each hypothesish ∈ Φh. Thus, take an
evidential structureM to be a tuple(S × P,E), whereS ⊆ Φh × Φo, P is a set of
probability distributions1 onΦh, andE is an evidence space overΦh andΦo. Note
that the states of the structure are required to be only a subset ofΦh × Φo. This
allows us to rule out particular combinations of hypothesis and observation.

To interpret propositional formulas inLh(Φh), associate with each hypothesis
formulaρ a set[[ρ]] of hypotheses, by induction on the structure ofρ:

[[h]] = {h}
[[¬ρ]] = Φh − [[ρ]]

[[ρ1 ∧ ρ2]] = [[ρ1]] ∩ [[ρ2]].

To interpret first-order formulas that may contain variables, we need a valuation
v that assigns a real number to every variable. Given a valuationv, an eviden-
tial structureM = (S × P,E), and a worldw = (h, ob, µ), we can assign to a
polynomial termp a real number[p]M,w,v in a straightforward way:

[x]M,w,v = v(x)

[a]M,w,v = a

[Pr0(ρ)]M,w,v = µ([[ρ]])

[Pr(ρ)]M,w,v = (µ⊕ wE(ob, ·))([[ρ]])
[w(ob ′, ρ)]M,w,v = wE(ob ′, [[ρ]])

[t1t2]M,w,v = [t1]M,w,v × [t2]M,w,v

[p1 + p2]M,w,v = [p1]M,w,v + [p2]M,w,v.

Note that, to interpretPr(ρ), the posterior probability ofρ after having observedob
(the observation at worldw), we use Equation (5.1), which says that the posterior
is obtained by combining the prior probabilityµ with wE(ob, ·).

We define what it means for a formulaϕ to be true (or satisfied) at a worldw of
an evidential structureM = (S ×P,E) under valuationv, written(M,w, v) |= ϕ,
as follows:

(M,w, v) |= h if w = (h, ob, µ) for someob, µ
(M,w, v) |= ob if w = (h, ob, µ) for someh, µ
(M,w, v) |= ¬ϕ if (M,w, v) 6|= ϕ

1 We allow sets of probability distributions for generality, despite the fact that our logic does not have the
expressive power to reason about them. It is straightforward to extend the logic with a knowledge operator
Kϕ as in Section 2.2, true at a world ifϕ is true at all worlds with the same observation, that would capture
formally the uncertainty about the prior probability.

5.3 Axiomatizing Evidence 69

(M,w, v) |= ϕ ∧ ψ if (M,w, v) |= ϕ and(M,w, v) |= ψ

(M,w, v) |= p ≥ c if [p]M,w,v ≥ c
(M,w, v) |= ∀xϕ if (M,w, v′) |= ϕ for all v′ that agree withv on all variables
butx.

If (M,w, v) |= ϕ is true for allv, we simply write(M,w) |= ϕ. It is easy
to check that ifϕ is a closed formula (that is, one with no free variables), then
(M,w, v) |= ϕ if and only if (M,w, v′) |= ϕ, for all v, v′. Therefore, given a
closed formulaϕ, if (M,w, v) |= ϕ, then in fact(M,w) |= ϕ. We will typically
be concerned only with closed formulas. If(M,w) |= ϕ for all worldsw, then
we writeM |= ϕ and say thatϕ is valid inM . Finally, if M |= ϕ for all eviden-
tial structuresM , we write |= ϕ and say thatϕ is valid. In the next section, we
characterize axiomatically all the valid formulas of the logic.

5.3 Axiomatizing Evidence

In this section we present a sound and complete axiomatizationAXfo-ev (Φh,Φo)
for our logic.

The axioms can be divided into four parts. The first set of axioms accounts for
first-order reasoning:

Taut. All instances of valid formulas of first-order logic with equality.
MP. Fromϕ andϕ⇒ ψ inferψ.

Instances of Taut include, for example, all formulas of the formϕ ∨ ¬ϕ, whereϕ
is an arbitrary formula of the logic. It also includes formulas such as(∀xϕ) ⇔ ϕ

if x is not free inϕ. In particular,(∀x(h))⇔ h for hypotheses inΦh, and similarly
for observations inΦo. Axiom Taut can be replaced by a sound and complete
axiomatization for first-order logic with equality.

The second set of axioms accounts for reasoning about polynomial inequalities,
by relying on the theory of real closed fields:

RCF. All instances of formulas valid in real closed fields (and, thus, true about
the reals), with nonlogical symbols+, ·,<, 0, 1,−1, 2,−2, 3,−3,

Formulas that are valid in real closed fields include, for example, the fact that
addition on the reals is associative,∀x∀y∀z((x + y) + z = x + (y + z)), that1
is the identity for multiplication,∀x(x · 1 = x), and formulas relating the constant
symbols, such ask = 1+ · · ·+1 (k times) and−1+1 = 0. As for Taut, we could
replace RCF by a sound and complete axiomatization for real closed fields.

The third set of axioms essentially captures the fact that there is a single hypoth-
esis and a single observation that holds per state.

70 5 Reasoning about Evidence

H1. h1 ∨ · · · ∨ hnh
.

H2. hi ⇒ ¬hj if i 6= j.
O1. ob1 ∨ · · · ∨ obno .
O2. obi ⇒ ¬obj if i 6= j.

These axioms illustrate a subtlety of our logic. Like most propositional logics, ours
is parametrized by primitive propositions, in this case,Φh andΦo. However, while
axiomatizations for propositional logics typically do not depend on the exact set of
primitive propositions, ours does. Clearly, axiom H1 is sound only if the hypothesis
primitives are exactlyh1, . . . , hnh

. Similarly, axiom O1 is sound only if the obser-
vation primitives are exactlyob1, . . . , obno . It is therefore important to identify the
primitive propositions when talking about the axiomatizationAXfo-ev (Φh,Φo).

The last set of axioms concerns reasoning about probabilities and evidence proper.

Pr1. Pr0(true) = 1.
Pr2. Pr0(ρ) ≥ 0.
Pr3. Pr0(ρ1 ∧ ρ2) + Pr0(ρ1 ∧ ¬ρ2) = Pr0(ρ1).
Pr4. Pr0(ρ1) = Pr0(ρ2) if ρ1 ⇔ ρ2 is a propositional tautology.

Axiom Pr1 simply say that the eventtrue has probability1. Axiom Pr2 says that
probability is nonnegative. Axiom Pr3 captures finite additivity. It is not possible
to express countable additivity in our logic. On the other hand, we do not need
an axiom for countable additivity. Roughly speaking, as we establish in the next
section, if a formula is satisfiable at all, it is satisfiable in a finite structure. Similar
axioms capture posterior probability formulas:

Po1. Pr(true) = 1.
Po2. Pr(ρ) ≥ 0.
Po3. Pr(ρ1 ∧ ρ2) + Pr(ρ1 ∧ ¬ρ2) = Pr(ρ1).
Po4. Pr(ρ1) = Pr(ρ2) if ρ1 ⇔ ρ2 is a propositional tautology.

Finally, we need axioms to account for the behaviour of the evidence operatorw.
What are these properties? For one thing, the weight function acts like a probability
on hypotheses, for each fixed observation. This gives the following four axioms,
which are the obvious analogues of Pr1–4:

E1. w(ob, true) = 1.
E2. w(ob, ρ) ≥ 0.
E3. w(ob, ρ1 ∧ ρ2) + w(ob, ρ1 ∧ ¬ρ2) = w(ob, ρ1).
E4. w(ob, ρ1) = w(ob, ρ2) if ρ1 ⇔ ρ2 is a propositional tautology.

Second, evidence connects the prior and posterior beliefs via Dempster’s Rule
of Combination, as in (5.1). This is captured by the following axiom. (Note that,

5.4 Decision Procedures 71

since there is no division in the language, crossmultiplication is used to clear the
denominator.)

E5. ob ⇒ (Pr0(h)w(ob, h) =
Pr(h)Pr0(h1)w(ob, h1) + · · ·+ Pr(h)Pr0(hnh

)w(ob, hnh
)).

This is not quite enough. As we saw in Section 5.1, property WF2 in Theo-
rem 5.3 is required for a function to be an evidence function. The following axiom
captures WF2 in our logic:

E6. ∃x1 . . .∃xno(x1 > 0 ∧ · · · ∧ xno > 0∧
w(ob1, h1)x1 + · · ·+ w(obno , h1)xno = 1∧
· · · ∧ w(ob1, hnh

)x1 + · · ·+ w(obno , hnh
)xno = 1).

Note that axiom E6 is the only axiom that requires quantification. Moreover, ax-
ioms E5 and E6 both depend onΦh andΦo.

Theorem 5.5. AXfo-ev (Φh,Φo) is a sound and complete axiomatization for the
logic Lfo-ev (Φh,Φo) with respect to evidential structures.

As usual, soundness is straightforward, and to prove completeness, it suffices
to show that if a formulaϕ is consistent withAXfo-ev (Φh,Φo), it is satisfiable
in an evidential structure. However, the usual approach for proving completeness
in modal logic, which involves considering maximal consistent sets and canonical
structures does not work. The problem is that there are maximal consistent sets
of formulas that are not satisfiable. For example, there is a maximal consistent set
of formulas that includesPr(ρ) > 0 andPr(ρ) ≤ 1/n for n = 1, 2, This is
clearly unsatisfiable.

To express axiom E6, we needed to have quantification in the logic. An interest-
ing question is whether it is possible to give a sound and complete axiomatization
to the propositional fragment of our logic (without quantification or variables). To
do this, we need to give quantifier-free axioms to replace axiom E6. This amounts
to asking whether there is a simpler property than WF2 in Theorem 5.3 that char-
acterizes weight of evidence functions. This remains an open question.

5.4 Decision Procedures

In this section, we consider the decision problem forLfo-ev (Φh,Φo), that is, the
problem of deciding whether a given formulaϕ is satisfiable. In order to state
the problem precisely, however, we need to deal carefully with the fact that the
logic is parameterized by the setsΦh andΦo of primitive propositions representing
hypotheses and observations. In most logics, the choice of underlying primitive

72 5 Reasoning about Evidence

propositions is essentially irrelevant. For example, if a propositional formulaϕ

that contains only primitive propositions in some setΦ is true with respect to all
truth assignments toΦ, then it remains true with respect to all truth assignments to
any setΦ′ ⊇ Φ. This monotonicity property does not hold here. For example, as
we have already observed, axiom H1 clearly depends on the set of hypotheses and
observations; it is no longer valid if the set is changed. The same is true for O1,
E5, and E6.

This means that we have to be careful, when stating decision problems, about
the role ofΦh andΦo in the algorithm. A straightforward way to deal with this is
to assume that the satisfiability algorithm gets as inputΦh, Φo, and a formulaϕ ∈
Lfo-ev (Φh,Φo). BecauseLfo-ev (Φh,Φo) contains the full theory of real closed
field, it is unsurprisingly difficult to decide. For our decision procedure, we can
use an existing exponential space algorithm to decide the satisfiability of real closed
field formulas. Define the length|ϕ| of ϕ to be the number of symbols required to
write ϕ, where we count the length of each coefficient as1. Similarly, define‖ϕ‖
to be the length of the longest coefficient appearing inf , when written in binary.

Theorem 5.6.There is a procedure that runs in space exponential in|ϕ| · ‖ϕ‖ for
deciding, givenΦh andΦo, whether a formulaϕ of Lfo-ev (Φh,Φo) is satisfiable in
an evidential structure.

This is essentially the best we can do, as the decision problem for the real closed
fields is complete for exponential space, andLfo-ev (Φh,Φo) contains the full lan-
guage of real closed fields.

While Theorem 5.6 assumed that the algorithm takes as input the set of primitive
propositionsΦh andΦo, this does not really affect the complexity of the algorithm.
More precisely, if we are given a formulaϕ in Lfo-ev over some set of hypotheses
and observations, we can still decide whetherϕ is satisfiable, that is, whether there
are setsΦh andΦo of primitive propositions containing all the primitive proposi-
tions inϕ and an evidential structureM that satisfiesϕ.

Theorem 5.7.There is a procedure that runs in space exponential in|ϕ| · ‖ϕ‖ for
deciding whether there exists sets of primitive propositionsΦh and Φo such that
ϕ ∈ Lfo-ev (Φh,Φo) andϕ is satisfiable in an evidential structure.

The main culprit for the exponential-space complexity is the theory of real closed
fields, which we had to add to the logic to be able to even write down axiom
E6 of the axiomatizationAXfo-ev (Φh,Φo).2 However, if we are not interested in

2 Recall that axiom E6 requires quantification. Observe however that it requires a single quantifier alternation;
thus, we can restrict to the sublanguage consisting of formulas with at most one quantifier alternation. The
satisfiability problem may be easier for this fragment.

5.4 Decision Procedures 73

axiomatizations, but simply in verifying properties of probabilities and weights of
evidence, we can consider the following propositional (quantifier-free) fragment
of our logic. As before, start with setsΦh andΦo of hypothesis and observation
primitives, and form the sublanguageLh of hypothesis formulas. Basic terms have
the formPr0(ρ), Pr(ρ), andw(ob, ρ), whereρ is an hypothesis formula andob
is an observation. A quantifier-free linear term has the forma1t1 + · · · + antn,
where eachai is an integer, and eachti is a basic term. A quantifier-free linear
inequality formula has the formp ≥ c, wherep is a quantifier-free linear term, and
c is an integer. For instance, a quantifier-free linear inequality formula takes the
form Pr0(ρ) + 3w(ob, ρ) + 5Pr(ρ′) ≥ 7.

Let Lev (Φh,Φo) be the language obtained by starting out with the primitive
propositions inΦh andΦo and quantifier-free linear inequality formulas, and clos-
ing off under conjunction and negation. Since quantifier-free linear inequality
formulas are polynomial inequality formulas,Lev (Φh,Φo) is a sublanguage of
Lfo-ev (Φh,Φo). The logicLev (Φh,Φo) is sufficiently expressive to express many
properties of interest; for instance, it can certainly express the relationship between
prior probability and posterior probability through the weight of evidence of a par-
ticular observation, as shown in Example 5.4. Reasoning about the propositional
fragment of our logicLev (Φh,Φo) is easier than the full language:

Theorem 5.8.The problem of deciding, givenΦh andΦo, whether a formulaϕ of
Lev (Φh,Φo) is satisfiable in an evidential structure is NP-complete.

As in the general case, the complexity is unaffected by whether or not the deci-
sion problem takes as input the setsΦh andΦo of primitive propositions.

Theorem 5.9.The problem of deciding, for a formulaϕ, whether there exists sets
of primitive propositionsΦh andΦo such thatϕ ∈ Lev (Φh,Φo) andϕ is satisfiable
in an evidential structure is NP-complete.

SinceLev (Φh,Φo) allows only quantifier-free linear inequalities, it cannot ex-
press the general connection between priors, posteriors, and evidence captured
by axiom E5. It is possible to extendLev to allow multiplication of probability
terms. LetLev ,×(Φh,Φo) be defined asLev (Φh,Φo), except that instead of using
quantifier-free linear terms, we allow quantifier-free polynomial terms, of the form
a1t1 + · · · + antn, where eachai is an integer, and eachti is a productof basic
terms. Clearly, E5 can be expressed inLev ,×(Φh,Φo). Furthermore, this sublan-
guage ofLfo-ev (Φh,Φo) can be decided in polynomial space, using an existing
procedure for deciding the validity of quantifier-free formulas in the theory of real
closed fields.

74 5 Reasoning about Evidence

5.5 Evidence in Dynamic Systems

The evidential structures we have considered until now are essentially static, in
that they model only the situation where a single observation is made. Even in
Example 5.2, where we consider sequences of coin tosses, these are viewed as a
single observations. Doing this lets us focus on the relationship between the prior
and posterior probabilities on hypotheses and the weight of evidence of a single
observation. In the last chapter, we studied evidence in the context of random-
ized algorithms; evidence was used to characterize the information provided by,
for example, a randomized algorithm for primality when it says that a number is
prime. The framework in that chapter is dynamic; sequences of observations are
made over time. In this section, we discuss combining evidence from sequences of
observation, and extend our logic to reason about such combination of evidence.

5.5.1 Combining Evidence

In Section 4.2, we considered the weight of evidence of a single observation. This
generalizes in a straightforward way to the case where there are sequences of ob-
servations. LetE = (H,O, {µh | h ∈ H}) be an evidence space. LetO∗ be the
set of sequences〈ob1, . . . , obn〉 over O. Assume that the observations are inde-
pendent, that is, for each basic hypothesish, assume thatµ∗h(〈ob1, . . . , obn〉), the
probability of observing a particular sequence of observations given hypothesish,
is µh(ob1) · · ·µh(obn), the product of the probability of making each observation
in the sequence. LetE∗ = (H,O∗, {µ∗h | H}). With this assumption, it is well
known that Dempster’s Rule of Combination can be used to combine evidence;
that is,

wE∗(〈ob1, . . . , obk〉, ·) = wE(ob1, ·)⊕ · · · ⊕ wE(obk, ·).

It is an easy exercise to check that the weight provided by the sequence of obser-
vations〈ob1, . . . , obn〉 can be expressed in terms of the weight of the individual
observations:

wE∗(〈ob1, . . . , obn〉, h) =
wE∗(ob1, h) · · ·wE∗(obn, h)∑

h′∈H wE∗(ob1, h′) · · ·wE∗(obn, h′)
. (5.2)

If we let µ0 be a prior probability on the hypotheses, andµ〈ob1,...,obk〉 be the prob-
ability on the hypotheses after observingob1, . . . , obk, we can verify that

µ〈ob1,...,obk〉 = µ0 ⊕ wE∗(〈ob1, . . . , obk〉, ·).

Example 5.10.Consider a variant of Example 5.2, where we take the coin tosses
as individual observations, rather than the number of heads that turn up in one

5.5 Evidence in Dynamic Systems 75

hundred coin tosses. As before, assume that the coin chosen by Alice is either
double-headed or fair. LetO = {H,T}, the result of an individual coin toss, where
H is “the coin landed heads” andT is “the coin landed tails”. LetH = {F,D},
whereF is “the coin is fair”, andD is “the coin is double-headed”. LetE∗ =
(H,O∗, {µh | h ∈ H}). The probability spaces associated with the hypotheses are
generated by the following probabilities for simple observations:

µF (H) =
1
2

µD(H) = 1.

For example, we haveµF (〈H,H, T,H〉) = 1/16, µD(〈H,H,H〉) = 1, and
µH(〈H,H, T,H〉) = 0.

We can now easily verify results similar to those that were obtained in Exam-
ple 5.2. For instance, the weight of observingT in favor ofF is given by

wE∗(T, F) =
1
2

0 + 1
2

= 1,

which again indicates that observingT provides unconditional support toF ; a
double-headed coin cannot land tails.

How about sequences of observations? The weight provided by the sequence
〈ob1, . . . , obn〉 for hypothesish is given by Equation (5.2). IfH = 〈H, . . . ,H〉, a
sequence of a hundred coin tosses, we can check that

wE∗(H,F) =
1

2100

1 + 1
2100

=
1

1 + 2100
wE∗(H,D) =

1
1 + 1

2100

=
2100

1 + 2100
.

Unsurprisingly, this is the same result as in Example 5.2. ut

There are subtleties involved in trying to find an appropriate logic for reasoning
about situations like that in Example 5.10. The most important one is the relation-
ship between observations and time. By way of illustration, consider the following
example. Bob is expecting an email from Alice stating where a rendezvous is to
take place. Calm under pressure, Bob is reading while he waits. Assume that Bob
is not concerned with the time. For the purposes of this example, one of three
things can occur at any given point in time:

(1) Bob does not check if he has received email;

(2) Bob checks if he has received email, and notices he has not received an
email from Alice;

(3) Bob checks if he has received email, and notices he has received an email
from Alice.

76 5 Reasoning about Evidence

How is Bob’s view of the world affected by these events? In (1), it should be clear
that, all things being equal, Bob’s view of the world does not change: no observa-
tion is made. Contrast this with (2) and (3). In (2), Bob does make an observation,
namely that he has not yet received Alice’s email. The fact that he checks indicates
that he wants to observe a result. In (3), he also makes an observation, namely that
he received an email from Alice. In both of these cases, the check yields an obser-
vation, that he can use to update his view of the world. In case (2), he essentially
observed that “nothing” happened, but we emphasize again that this is an obser-
vation, to be distinguished from the case where Bob does not even check whether
email has arrived. This “nothing” observation should be taken into account in the
evidence space under consideration.

This discussion motivates the models that we introduce in the next section. We
characterize an agent’s state by the observations that she has made, including pos-
sibly the “nothing” observation. Although we do not explicitly model time, it is
easy to incorporate time in the framework, since the agent can observe times or
clock ticks.

5.5.2 Reasoning about the Evidence of Sequences of Observations

We extend the framework of Section 5.2 to the dynamic setting. Rather than just
considering worlds, we now consider sequences of worlds (which we callruns),
representing the evolution of the system over time. The models are now sets of
runs, with a set of prior probabilities on the hypotheses that hold in the runs. It is
straightforward to modify our logic to express properties of evidence in this more
dynamic setting.

In some ways, considering a dynamic setting simplifies things. Rather than talk-
ing about the prior and posterior probability using different operators, we need only
a single probability operator that represents the probability of an hypothesis at the
current time. To express the analogue of axiom E5 in this logic, we need to be able
to talk about the probability at the next time step. This can be done by adding the
“next-time” operator© to the logic, where©ϕ holds at the current time ifϕ holds
at the next time step.3 The logic is further extended to talk about the weight of
evidence of a sequence of observations.

Define the logicLfo-ev
dyn as follows. As in Section 5.2, start with a set of primitive

propositionsΦh andΦo, respectively representing the hypotheses and the observa-
tions. Again, letLh(Φh) be the propositional sublanguage of hypotheses formulas

3 Following the discussion at the end of Section 5.5.1, time steps are associated with new observations. Thus,
©ϕ means thatϕ is true at the next time step, that is, after the next observation. This simplifies the presen-
tation of the logic.

5.5 Evidence in Dynamic Systems 77

obtained by taking primitive propositions inΦh and closing off under negation and
conjunction; we useρ to range over formulas of that sublanguage.

A basic term now has the formPr(ρ), or w(ob, ρ), whereρ is an hypothesis
formula andob = 〈ob1, . . . , obn〉 is a nonempty sequence of observations. (If
ob = 〈ob1〉, we writew(ob1, ρ) rather thanw(〈ob1〉, ρ).) As before, a polyno-
mial term has the formt1 + · · · + tn, where each termti is a product of integers,
basic terms, and variables (which intuitively range over the reals). A polynomial
inequality formula has the formp ≥ c, wherep is a polynomial term andc is an
integer. LetLfo-ev

dyn (Φh,Φo) be the language obtained by starting out with the prim-
itive propositions inΦh andΦo and polynomial inequality formulas, and closing
off under conjunction, negation, first-order quantification, and application of the©
operator. The same abbreviations as in Section 5.2 are used.

The semantics of this logic now involves models that have dynamic behaviour.
More precisely, a model is a set of infinite runs, where each run describes a possible
dynamic evolution of the system. As before, each run records the observations
being made, as well as the hypothesis that is true and a probability distribution
describing the prior probability of the hypothesis at the initial state of the system.
An evidence space overΦh andΦo is necessary to interpretw, as in Section 5.2.
Define anevidential systemI to be a tuple(R × P,E∗) whereR is a set of runs,
P is a set of probability measures onΦh, andE∗ is an evidence space overΦh and
Φ∗

o. A run r is a map from the natural numbers (representing time) to histories of
the system up to that time. The history records, at time0, the hypothesis that is
true in that run, and at subsequent times, the observation made at each time step.
Hence, a history has the form〈h, ob1, . . . , obn〉. Assume thatr(0) = 〈h〉 for some
h, while r(m) = 〈h, ob1, . . . , obm〉 for m > 0. Define a point of the system to be
a triple(r,m, µ) consisting of a runr, timem, and probability distributionµ.

Associate with each propositional formulaρ in Lh(Φh) a set[[ρ]] of hypotheses,
just as was done in Section 5.2.

In order to ascribe a semantics to first-order formulas that may contain vari-
ables, we need a valuationv that assigns a real number to every variable. Given a
valuationv, an evidential systemI = (R × P,E∗), and a point(r,m, µ), where
r(m) = 〈h, ob1, . . . , obm〉, we can assign to a polynomial termp a real number
[p]I,r,m,µ,v using essentially the same approach as in Section 5.2:

[x]I,r,m,µ,v = v(x)

[a]I,r,m,µ,v = a

[Pr(ρ)]I,r,m,µ,v = (µ⊕ wE∗(〈ob1, . . . , obm〉, ·)))([[ρ]])
wherer(m) = 〈h, ob1, . . . , obm〉

[w(ob, ρ)]I,r,m,µ,v = wE∗(ob, [[ρ]])

78 5 Reasoning about Evidence

[t1t2]I,r,m,µ,v = [t1]I,r,m,µ,v × [t2]I,r,m,µ,v

[p1 + p2]I,r,m,µ,v = [p1]I,r,m,µ,v + [p2]I,r,m,µ,v.

Define what it means for a formulaϕ to be true (or satisfied) at a point(r,m, µ)
of an evidential systemI = (R×P,E∗) under valuationv, written(I, r,m, µ, v) |=
ϕ, again using essentially the same approach as in Section 5.2:

(I, r,m, µ, v) |= h if r(m) = 〈h, . . .〉
(I, r,m, µ, v) |= ob if r(m) = 〈h, . . . , ob〉
(I, r,m, µ, v) |= ¬ϕ if (I, r,m, µ, v) 6|= ϕ

(I, r,m, µ, v) |= ϕ ∧ ψ if (I, r,m, µ, v) |= ϕ and(I, r,m, µ, v) |= ψ

(I, r,m, µ, v) |= p ≥ c if [p]I,r,m,µ,v ≥ c
(I, r,m, µ, v) |= ©ϕ if (I, r,m+ 1, µ, v) |= ϕ

(I, r,m, µ, v) |= ∀xϕ if (I, r,m, µ, v′) |= ϕ for all valuationsv′ that agree with
v on all variables butx.

If (I, r,m, µ, v) |= ϕ is true for all v, we simply write(I, r,m, µ) |= ϕ. If
(I, r,m, µ) |= ϕ for all points (r,m, µ), then we writeI |= ϕ and say thatϕ
is valid in I. Finally, if I |= ϕ for all evidential systemsI, we write|= ϕ and say
thatϕ is valid.

5.5.3 Axiomatization

It is rather straightforward to axiomatize this new logic. This axiomatization shows
that we can capture the combination of evidence directly in the logic, a pleasant
property. Most of the axioms from Section 5.2 carry over immediately. Let the ax-
iomatizationAXfo-ev

dyn (Φh,Φo) consists of the following axioms: first-order reason-
ing (Taut, MP), reasoning about polynomial inequalities (RCF), reasoning about
hypotheses and observations (H1,H2,O1,O2), reasoning about probabilities (Po1–
4 only, since we do not havePr0 in the language), and reasoning about weights of
evidence (E1–4, E6), as well as new axioms we now present.

Basically, the only axiom that needs replacing is E5, which links prior and pos-
terior probabilities, since this now needs to be expressed using the© operator.
Moreover, we need an axiom to relate the weight of evidence of a sequence of
observation to the weight of evidence of the individual observations, as given by
Equation (5.2).

E7. ob ⇒ ∀x(©(Pr(h) = x)⇒
Pr(h)w(ob, h) = xPr(h1)w(ob, h1)+

· · ·+
xPr(hnh

)w(ob, hnh
)).

Notes 79

E8. w(ob1, h) · · ·w(obn, h) =
w(〈ob1, . . . , obn〉, h)w(ob1, h1) · · ·w(obn, h1)+
· · ·+
w(〈ob1, . . . , obn〉, h)w(ob1, hnh

) · · ·w(obn, hnh
).

To get a complete axiomatization, we also need axioms that capture the proper-
ties of the temporal operator©. These axioms also capture the fact that the truth
of hypotheses as well as the value of polynomial terms not containing occurrences
of Pr is time-independent.

T1. ©ϕ ∧©(ϕ⇒ ψ)⇒ ©ψ.
T2. ©¬ϕ⇔ ¬©ϕ.
T3. Fromϕ infer©ϕ.
T4. ©ρ⇔ ρ.
T5. ©(p ≥ c)⇔ p ≥ c if p does not contain an occurrence ofPr.
T6. ©(∀xϕ)⇔ ∀x(©ϕ).

Theorem 5.11. AXfo-ev
dyn (Φh,Φo) is a sound and complete axiomatization for

L
fo-ev
dyn (Φh,Φo) with respect to evidential systems.

Notes

The work in this chapter first appeared in [Halpern and Pucella 2003a].
The situation at the beginning of the chapter is essentially taken from [Halpern

and Tuttle 1993; Fagin and Halpern 1994]. As we mentioned, there has been a
great deal of work on reasoning about systems that combine both probabilistic and
nondeterministic choices [Vardi 1985; Fischer and Zuck 1988; Halpern, Moses,
and Tuttle 1988; Halpern and Tuttle 1993; de Alfaro 1998; He, Seidel, and McIver
1997]. The framework described at the beginning of the chapter is due to Halpern
and Tuttle [1993].

The view of evidence as a function mapping a prior probability on hypotheses to
a posterior probability is developed by Halpern and Fagin [1992]. Dempster’s Rule
of Combination arises in Shafer’s [1976] theory of belief functions. Theorem 5.1
is proved in [Halpern and Fagin 1992]

The logic Lfo-ev was inspired by a logic introduced by Fagin, Halpern, and
Megiddo [1990] for reasoning about likelihood expressed as either probability of
belief. Sound and complete axiomatizations for first-order logic with equality are
given, for instance, in Shoenfield [1967] or Enderton [1972]. The sound and com-
plete axiomatization for RCF is due to Tarski [1951] and can also be found in
[Fagin, Halpern, and Megiddo 1990; Shoenfield 1967]. The axioms for proba-
bility (Pr1–4, Po1–4) are taken from [Fagin, Halpern, and Megiddo 1990]. The

80 5 Reasoning about Evidence

techniques for proving Theorem 5.5 and 5.11 follow those developed by Fagin,
Halpern, and Megiddo [1990].

The exponential space algorithm used in Section 5.4 to decide the satisfiabil-
ity of real closed field formulas is due to Ben-Or, Kozen, and Reif [1986]. They
also give corresponding lower bound for deciding the satisfiability of real closed
field formulas. In the literature, a number of different lower bounds are given for
problems that are related, which makes reading a bit confusing. For instance, a
doubly-exponential algorithm (and corresponding lower bound) is known for the
problem of quantifier elimination in real closed fields [Renegar 1992; Basu 1999;
Weispfenning 1988], which implies a satisfaction algorithm that solves the satisi-
fiability problem. However, there are satisfaction algorithms that are not based
on quantifier elimination that do not fall within the restrictions of the bound. The
polynomial space algorithm to decide the validity of quantifier-free formulas in the
theory of real closed fields is due to Canny [1988].

The fact that Dempster’s Rule of Combination can be used to combine evidence
under the assumption that the observations are independent can be found, for ex-
ample, in [Halpern and Fagin 1992, Theorem 4.3].

Part II
Application to Security Protocol Analysis

6
Security Protocols

I N the second part of this dissertation, we consider the problem of analyzing
security protocols, using the framework developed in the first part. Roughly

speaking, a security protocol is simply a communication protocol between multi-
ple agents that guarantees some security properties of the communication. These
properties can include:

– message confidentiality: only the authorized recipient should be able to extract
the contents of the message, possibly including statistical information;

– message integrity: the recipient should be able to determine if the message has
been altered during transmission;

– sender authentication: the recipient should be able to identify the sender, and
verify that the purported sender actually did send the message;

– sender non-repudiation: the sender should not be able to deny sending the mes-
sage;

– sender anonymity: the recipient should not be able to identify the sender.

More properties are possible, and many are used in conjunction with others.
A security protocol achieving authentication, for instance, is a protocol for two
or more agents to communicate in such a way that they can be given guarantees
as to whom they are communicating with, often by relying on the confidentiality
of a piece of data, such as a shared cryptographic key. In this dissertation, we
mostly concentrate on authentication protocols, and consider confidentiality and
authentication properties.

This chapter is a review of the basic concepts of security protocol analysis, in-
cluding symbolic cryptography, adversary models, and security properties. We
also review existing approaches to analyzing security protocols, and point out their
limitations.

83

84 6 Security Protocols

6.1 Protocols and Cryptography

A protocol describes the behaviour of multiple agents that seek to achieve a com-
mon goal, for example, exchanging a value. Security protocols additionally impose
some security guarantees, for instance, that the value exchanged by the agents can-
not be “read” by any other agent in the system. Protocols can involve an arbitrary
number of agents, and also a number of trusted servers. For simplicity, we focus on
two-agent protocols, possibly with a single trusted server; everything generalizes
to multiple parties in the obvious way.

To enforce the security guarantees, security protocols generally rely on some
form of cryptography. Intuitively, cryptography permits the encoding of informa-
tion in such a way that only a select and controllable few can decode it. Much
of the current research in security concerns the development of new cryptographic
techniques, and new encryption schemes. In this dissertation, we are interested in
establishing properties of protocolsindependentlyof the details of the encryption
scheme. The typical way to do this in the literature is to analyze protocols in the
presence of perfect cryptography. This leads to a form of protocol analysis often
calledsymbolic protocol analysis. (In constrast tocomputational protocol analy-
sis, where the computational properties of the cryptography are taken into account;
see Chapter 10 for more detail.)

To model perfect cryptography, define thesymbolic encryption schemegenerated
by the setP of plaintexts (the original values to be encrypted, such as English
strings) and the setK of keys to be the setM of messages given by the grammar

m ::= p | k | {m}k | (m1,m2)

wherem,m1,m2 are generic elements ofM, p is a generic element ofP, andk
is a generic element ofK. The notation{m}k represents the encryption of mes-
sagem with the keyk, while (m1,m2) represents the pairing (or concatenation)
of m1 andm2. We omit parentheses for pairing when there is no confusion, so
that{(m1,m2)}k can be written as{m1,m2}k. We also write(m1, . . . ,mn) for
(m1, (. . . , (mn−1,mn) . . .)).

It is useful to assume that the setP of plaintexts contains a representation of the
names of the agents in the system (so that names of agents can be sent encrypted as
part of messages), as well as a distinguished setN of values to be used as nonces.
Assume that the setsN, K, andP − N are pairwise disjoint, and that values in
each set can be distinguished. Assume further that encrypted messages can be
distinguished from unencrypted ones.

Assume the setK of keys is closed under inverses, that is, ifk ∈ K, then
k−1 ∈ K. If k−1 = k, the key is asymmetric key, otherwise, it is anasymmetric
key. We sometimes write{|m|}k when wanting to emphasize the fact that message

6.1 Protocols and Cryptography 85

m is encrypted using an asymmetric keyk. An asymmetric key is used to model
public-key cryptography, while a symmetric key is used to model shared-key cryp-
tography. The decryption of a message{m}k requires the keyk−1, the inverse of
key k. We make the standard assumption that there is enough redundancy in the
encrypted message that it is possible to recognize when decrypting whether the
decryption was successful. If a decryption is unsuccessful, the special plaintext
null is returned. Projectionsπ1 andπ2 are used to decompose a pairing(m1,m2).
Again, applyingπ1 andπ2 to messages that are not pairs results in the valuenull .

Having cryptography, unfortunately, is often not sufficient for two or more agents
to communicate securely. For example, to communicate using symmetric keys,
these keys need to be distributed and agreed upon before an interaction. Moreover,
it is not always clear how to exchange messages so that secrecy is preserved across
interactions between the agents. To get this right, one needs to develop communi-
cation protocols.

Historically, and rather unfortunately, protocols are presented by giving a se-
quence of messages exchanged between the agents in a good execution of the
protocol. As a simple example, consider the following two-agent protocol SEND-
SHARED, which is the simplest possible protocol for sending a messagem “se-
curely” from one agent to another:

1. A→ B : A, {m}kAB
.

This protocol represents the sending of messagem fromA toB, where the mes-
sage is encrypted using a symmetric keykAB shared betweenA andB. AgentA
needs to send her name along with the message, unless the receiver knows who will
be sending the message. (Whether or not the receiver knowsa priori who will be
sending the message is part of the assumptions made when designing or analyzing
the protocol.) Intuitively, upon receiving the message and decrypting it,B knows
that the messagem came fromA, since onlyA could have encrypted it, assuming
only A andB share the keykAB . Moreover,m is kept secret throughout the ex-
change. Intuitively, the fact that the message is encrypted usingkAB is evidence to
B that the message is fromA; the fact thatm itself is encrypted is only useful ifm
is meant to be kept secret.

The notation above, which at first seems quite reasonable, leaves a number of
very important issues completely unspecified. This is a consequence of the nota-
tion essentially representing a trace of the protocol, rather than the protocol itself.
For instance, the notation does not specify what actions the agents perform on the
values they received. To illustrate this, consider the following exchange between

86 6 Security Protocols

Alice, Bob, and Charlie:

1. A→ B : {m}kAB

2. B → C : {{m}kAB
}kBC

wherekAB is a key shared between Alice and Bob andkBC is a key shared be-
tween Bob and Charlie. When receive message1, does Bob attempt to decrypt
{m}kAB

to make sure that the value is really a value that was sent by Alice? The
notation simply does not carry this information. This could be important if the pro-
tocol is not meant to proceed unless Bob is convinced that message 1 was encrypted
using a key shared with Alice. A more precise notation is to actually consider a
program that each principal runs to execute the protocol. Two-agent protocols are
typically made up of two programs, one describing the behaviour of theinitiator of
the interaction, and one describing the behaviour of theresponderof the interac-
tion. For instance, the program for the initiator part of the SENDSHARED protocol
is straightforward:

SENDSHAREDI(i, j,m, k) = send j (i, {m}k(j)).

This program is parametrized by variablesi (the name of the agent running this
program),j (the name of the agent to whom to send a message),m (the message
to send), andk (a map from agents to keys shared betweeni and those agents).
The mapk could be replaced by a list of keys. (We remain informal as far as
interpreting programs in this chapter, relying on the reader’s intuition. we give a
formal syntax and semantics to this little programming language in Chapter 7.)

The program for the responder is equally simple:

SENDSHAREDR(i, k) = recv m;
message ← decrypt(π2(m), k(π1(m))).

This program is parametrized byk, a map from agents to keys shared between
the responder and those agents. Roughly, it awaits to receive a messagem, and
attempts to decrypt it using the key corresponding to the agent named as the first
component of the received message.

The protocol above is suitable if two agents share a key, but what if they do not?
This becomes an issue when there are a lot of agents in the system: if there aren

agents in the system, then we needn2 shared keys to allow every agent to com-
municate with every other agent. A standard approach to lessen the key burden is
to use a central trusted server. Roughly, every agent need only share a key with
the server, which mediates the communication by decrypting data on demand. As
an example of such a protocol, consider the following two-agent protocol SEND-
SERVER. Here,S is a trusted server, and agentsA andB both share a key withS,

6.1 Protocols and Cryptography 87

denotedkAS andkBS , respectively:

1. A→ B : A, {m}kAS

2. B → S : B, {A, {m}kAS
}kBS

3. S → B : {m}kBS
.

Intuitively, this protocol is meant to send an authenticated messagem from A

to B. AgentA start the interaction withB by sending the messagem encrypted
with the key she shares with the trusted server. Upon receiving this message,B

forwards it (encrypted with the key he shares with the trusted server) toS, stating
that it comes fromA. The serverS receives this message, decrypts it twice (using
kBS andkAS) to extractm, and encrypts this value again withkBS before sending
it back toB. The idea is that whenB receives this last message, he knows thatS

was able to decrypt the message that was originally sent by the agent who claimed
to beA, and thus valuem was indeed fromA.

Here are the programs corresponding the above protocol. Since this is a two-
agent protocol with a trusted server, not only is there a program for the initiator
and a program for the responder, but there is also a program for the trusted server.
The initiator program is essentially the same as that for SENDSHARED:

SENDSERVERI(i, j,m, k) = send j (i, {m}k).

SENDSERVERI is parametrized like SENDSHAREDI , except thatk here holds the
key that the initiator shares with the trusted server. The responder program com-
municates twice with the server:

SENDSERVERR(i, k) = recv m;
send s (i, {m}k);
recv m;
message ← decrypt(m, k).

This program is parametrized byi, holding the name of the agent running this pro-
gram, andk, holding the key that agenti shares with the trusted server. Finally, the
server program is a loop that repeatedly decrypts data formatted in the appropriate
way, and sends back the results:

SENDSERVERS(k) = while true do
recv m;
receiver ← π1(m);
message1 ← decrypt(π2(m), k(receiver));
sender ← π1(message1);
message2 ← decrypt(π2(message2), k(sender));
send receiver {message2}k(receiver).

88 6 Security Protocols

The server program is parametrized byk, mapping agents to the key shared be-
tween the server and the agents.

We will exclusively consider protocols that aim at exchanging messages securely
between two agents over an untrusted network. Most of the issues concerning
the formalization of properties arise in that simple setting. Some protocols are
designed to work in a more restricted environment, with more assumptions on the
communication network. For instance, we may have a secure connection between
machines, and the question is to ascertain the identity of the party at the other end
of the connection. We return to this in Section 6.3, where we consider the problem
of specifying security properties. Other assumptions on the network considered in
the literature include whether the communication is broadcast, or channel-based,
and whether the system is closed or open, with new agents joining in and out.

6.2 Adversaries

One of the most interesting aspects of security protocol analysis is that the analysis
is performed in an adversarial context, that is, under the assumption that there is
one or more adversaries that attempt to subvert the protocol. Deciding whether or
not a protocol is secure depends partly on the kind of adversary we assume.

From the point of view of the analysis methods described later in the chapter,
there are two important aspects about adversaries:

(1) the capabilities of the adversary, that is, the information an adversary can
extract from the messages he intercepts, as well as the messages he can
construct;

(2) the status of the adversary, that is, the kind of presence the adversary has
in the system, if he is known to the other agents or not, if other agents can
start protocol interactions with him.

For the capabilities, the standard assumptions made in the literature are due to
Danny Dolev and Andrew Yao, and go hand in hand with the symbolic encryp-
tion scheme described in Section 6.1. Roughly speaking, a Dolev-Yao adversary
can compose messages, replay them, or decipher them if he knows the right keys,
but cannot otherwise “crack” encrypted messages. These capabilities can be for-
malized using the following inference rules. The idea is to define a relation`DY ,
whereH `DY m is interpreted as saying that the adversary can infer messagem

from a setH of message (intuitively, messages he has intercepted). This relation is
defined using the inference rules

m ∈ H
H `DY m

H `DY {|m|}k H `DY k−1

H `DY m

6.2 Adversaries 89

H `DY (m1,m2)
H `DY m1

H `DY (m1,m2)
H `DY m2

.

(This is essentially the system described in Example 3.1.) Thus, for instance, if an
adversary intercepts the messages{m}k1 , {k−1

1 }k2 , andk−1

2 , he can derivem using
these inference rules, since

{{m}k1 , {k
−1

1 }k2 , k
−1

2 } `DY m.

There are, of course, limitations to the Dolev-Yao adversary model. Among
other things, the model does not consider the information the adversary may infer
from properties of messages and knowledge about the protocol that is being used.
To give an extreme example, due to John Mitchell, consider what we will refer
to as theDuck-Duck-Gooseprotocol: an agent has ann-bit key and, according
to her protocol, sends the bits that make up her key one by one. Of course, after
intercepting these messages, an adversary will know the key. However, there is no
way for a Dolev-Yao adversary to recognize that, at this point, he actually has the
key. Much more can be said about adversary capabilities. We return to this topic
in Chapter 8.

The second important aspect about adversaries is their role in the context of
the protocol. At first blush, an important characteristic is whether the adversary
is a passiveadversary, also known as aneavesdroppingadversary, that only gets
to listen in on the messages exchanged between agents. Passive adversaries can
breach confidentiality, but do not send messages (and so cannot pretend to be some
other agent).

In contrast, anactiveadversary can attempt to reroute traffic, initiate interactions
with other agents, and so on. We can distinguish two forms of active adversaries.
An active adversary can beinsider. Otherwise, it is anoutsider. An insider is
recognized as an agent by the other agents, who will accept communications from
him, share keys with him, attempt to initiate sessions with him, and so on. Insider
adversaries are sometimes calledcorrupt, dishonest, or subvertedagents.

Establishing security in the presence of active adversaries is complicated by the
fact that it is sometimes difficult to determine if a particular scenario is an attack
or not. For the remainder of this section, we illustrate some of the issues that arise,
and motivate the use of nonces in security protocols. To start off, consider the
SENDSHARED protocol of the last section. Despite its simplicity, it is subject to
the followingreplay attack, where an active adversary, having intercepted the first
message sent fromA toB, will simply replay this message at his leisure:

A→ B : A, {m}kAB

X(A)→ B : A, {m}mAB .

The notationX(A) indicates that the adversaryX is masquerading asA. One

90 6 Security Protocols

question that is worth asking is if this is really an attack. Clearly, this depends on
the message, and on the context in which this protocol is used. For example, if the
timeliness of the messagem is important, or if the message should only be received
once, or if the message is meant to indicate that agentA was in fact on the system
at the time whenm was received, then a replay attack is problematic. Note that the
confidentiality ofm is not compromised in these scenarios.

If replays are indeed a problem, we can amend the protocol to make them im-
possible. The idea is to use a challenge to allowB to recognize whether a message
is a replay or not. Before sending her message toB,A first asksB for a challenge,
a unique messagenB (typically called anonce). She then encrypts not only her
messagem, but also the noncenB before sending it. Upon receiving the message,
B can check that the nonce correspond to the one that he sent before, and that it
has not been used before. If the nonce is recognized as having been used before,
then this particular interaction may be a replay attack, and the message can simply
be dropped. Here is the amended protocol SENDSHAREDNONCE:

1. A→ B : A

2. B → A : nB
3. A→ B : A, {m,nB}kAB

.

The program for the initiator protocol is straightforward:

SENDSHAREDNONCEI(i, j,m, k) = send j i;
recv n;
send j (i, {m,n}k(j)).

For the responder protocol, we need a nonce to send to the agent. For simplicity,
assume that the nonce is a parameter of the program:

SENDSHAREDNONCER(i, k, n) = recv i;
send j n;
recv m;
content ← decrypt(π2(m), k(π1(m)));
nb ← π2(content);
if n = nb then

message ← π1(content)
else

message ← null .

Note the explicit check to see if the nonce received with the message is the one
that was sent out. Having the nonce as a parameter to the protocol is of course not
ideal, although we can simply imagine the principal running a number of copies of
this program, one per nonce. Another way of doing this would be to introduce a

6.2 Adversaries 91

new functionnewnonce() that creates a new nonce. Dealing with nonces created
in this way, although central to many of the symbolic approaches we discuss later
in this section, is problematic. We return to this topic in Chapter 9.

One nice property of the SENDSHAREDNONCE protocol is thatB, upon re-
ception of the last message, knows that it is meant for him, sinceA used a key
she shares with him to send the message. That property does not hold in gen-
eral, even with symmetric cryptography. Consider the following “problems” with
SENDSERVER. First off, SENDSERVER is vulnerable to the same replay attack as
SENDSHARED, so we can amend the protocol as we did SENDSHARED, by adding
an initial nonce handshake, and add the nonce to the messageA sends toB. This
yields the following protocol:

1. A→ B : A

2. B → A : nB
3. A→ B : A, {m,nB}kAS

4. B → S : B, {A, {m,nB}kAS
}kBS

5. S → B : {m,nB}kBS
.

But even with this correction, there are two potential problems if the adversary is
an insider; first,B cannot be certain that the message he receives actually came
from A, and second,B cannot be sure that the message he receives was sent to
him. As in the case of replay attacks, whether these are security problems or not
depends on the context of use of the protocol. We now simply indicate what goes
wrong, and how to correct it.

Assume thatX, the active adversary, is an insider in the system, so that he shares
a keykXS with the trusted server. To illustrate the first problem,X can send a
messagem to B and makeB believe that the messagem was sent byA, another
agent known toB, but possibly offline at the moment of the attack. This scenario
involvesX starting two interactions withB, one as himself, and one masquerading
asA. A trace of the attack is presented in Figure 6.1, where the first column reports
the messages exchanged betweenX andB, while the second column reports the
messages exchanged betweenX masquerading asA, andB. In that interaction,
m′ is the result of decrypting{m,n′B}kXS

with key kAS . (Thus, this attack relies
on the decryption operation to return a meaningful value, even when decrypting
a message with the wrong key. This is a property common to many encryption
schemes.) While two protocol interactions are initiated byX, only one of them
succeeds, butB believes that he has been sentm byA, since the message bundles
the noncenB, which was sent toA, as far asB is concerned.

Similarly, the second problem higlights that there is no assurance toB that the
message he receives presumably fromA was actually meant for him, even if it was
actually sent byA. A trace of this attack is presented in Figure 6.2. Whether or not

92 6 Security Protocols

X → B : X
B → X : nB

X(A)→ B : A
B → X(A) : n′B

X → B : X, {m,nB}kXS

B → S : B, {X, {m,nB}kXS }kBS

S → X(B) : {m,nB}kBS

X(A)→ B : A, {m,n′B}kXS

B → S : B, {A, {m,n′B}kXS }kBS

S → X(B) : {m′}kBS

X(S)→ B : {m,nB}kBS
.

Figure 6.1. First attack on amended SENDSERVER protocol

A→ X : A
X(A)→ B : A
B → X(A) : nB

X → A : nB

A→ X : A, {m,nB}kAS

X(A)→ B : A, {m,nB}kAS

B → S : B, {A, {m,nB}kAS
}kBS

S → B : {m,nB}kBS
.

Figure 6.2. Second attack on amended SENDSERVER protocol

this is actually an attack is debatable. The key point appears in the first message
sent, whereA initiate an interaction withX, notX masquerading asB. If the fact
that the message is meant forX (and notB) is important to the context in which
this protocol is used, then the above can meaningfully be called an attack. It is not
a question of the origin of the message, since the message originally came fromA

in this trace.
One way to handle these (potential) problems is to add to every message the

identity of the sender and that of the intended receiver; this information should be
checked by the appropriate agents. Here is the amended protocol SENDSERVER-
NONCE:

1. A→ B : A

2. B → A : nB
3. A→ B : A, {A,B,m, nB}kAS

4. B → S : B, {A, {A,B,m, nB}kAS
}kBS

5. S → B : {A,B,m, nB}kBS
.

6.2 Adversaries 93

Note that the identity of the sender (A) as well as the intended receiver (B) are
bundled withm andnB in message (3). The programs for the protocol correspond
to those for SENDSERVER, updated in the obvious way:

SENDSERVERNONCEI(i, j,m, k) = send j i;
recv n;
send j (i, {i, j,m, n}k).

The program for the responder now needs to check that he is indeed the intended
target of the final message:

SENDSERVERNONCER(i, k) = recv j;
send j n;
recv m;
send s (i, {j,m}k);
recv m;
mi ← π1(π2(decrypt(m, k)));
mm ← π1(π2(π2(decrypt(m, k))));
mn ← π2(π2(π2(decrypt(m, k))));
if mn = n ∧mi = i ∧mj = j then

message ← mm
else

message ← null .

Upon receiving the last message, the responder checks that the nonces agree, that
he is the intended receiver (mi = i) and that the sender is the claimed sender.
(This is where the trace notation is not specific enough. Clearly, it is not sufficient
to have the information present in the messages; we also need to verify that the
information is correct.)

The program for the server is unchanged:

SENDSERVERNONCES(k) = while true do
recv m;
receiver ← π1(m);
m1 ← decrypt(π2(m), k(receiver));
sender ← π1(m1);
m2 ← decrypt(π2(m1), k(sender));
send receiver {m2}k(receiver).

It is straightforward to check that the attack traces above are not valid protocol
traces for the above programs. Of course, that these attacks cannot be carried out
as above does not mean that no such attach can be carried out at all, perhaps in a
more convoluted way; hence the need for formal verification of protocols.

94 6 Security Protocols

6.3 Security Properties

We saw a number of scenarios in the last section that could be seen as being attacks
or not, depending on the context of use of the protocol. The context of use can be
captured by specifyingpropertiesthat we would like the protocols to satisfy. There
are a number of security properties that have been identified in the literature, and
that we now review.

The most basic security property studied in the literature is that ofconfidential-
ity, or secrecy. It is also in some sense the easiest to define, at least at the level
of symbolic approaches to analyze protocols. Intuitively,m is a secret betweenA
andB if only A andB knowm. (This generalizes in the obvious way to more than
two agents.) We can recast many properties of protocols as preserving or exchang-
ing a secret between parties. Depending on the framework, and the assumptions
made about the system, the interpretation of the term “know” in the definition of
confidentiality vary. The typical definition found in the literature on symbolic ap-
proaches to security protocol analysis takes the statement “the adversary knowsm”
as meaning that the adversary can, based on the messages he has intercepted and
his capabilities, derive the messagem. Thus, confidentiality ofm is taken to mean
“the adversary cannot derivem”.

Confidentiality is relatively easy to define. Most other properties do not have
such a clear definition. A typical property found in the literature is that ofau-
thentication. We often talk about authentication protocols, that is, protocols whose
purpose it is to convince one agent of the identity of another agent. The literature
is fairly divided as to what authentication actually means, and the general consen-
sus on this point is that authentication as it is commonly used refers to at least two
different notions. We consider the two main ones in this section:message authenti-
cation, where an agent is attempting to establish the source of a particular message,
andagent authentication, where an agent is attempting to determine the identity of
another agent on the network.

The intuition for message authentication is simple. An agent receives a message
m, and wants to ascertain that it originated from agentB. This property can of-
ten be reduced to the confidentiality of a piece of data. For instance,m may be
cryptographically bound to some secret known only toA andB. (The key itself is
often the secret, in a symmetric-key setting.) In this case,m must have come from
A andB, assuming the protocol did not leak the secret. Thus, authentication and
confidentiality are not completely independent properties.

Agent authentication is a more difficult property to characterize. Roughly, it
concerns the identity of a peer in a connection, or during a particular interaction.
Formalizing this property depends intrinsically on what we take to be the definition
of a connection, or an interaction. Often, this property makes the most sense when

6.4 Symbolic Approaches to Security Protocol Analysis 95

there is an implicit notion of connection in the system being studied, for instance,
if communication is via secure private channels. Another setting in which this
property arises is when a protocol is first run to establish a secret key used to
define what may best be called a “virtual connection” between two agents, after
which this property can be used to actually identify the agent on either end of the
virtual connection.

A common way to establish both kind of authentications is to considerauthen-
ticating events. Say that an eventE in a system authenticates another eventE′

if the occurrence ofE guarantees that eventE′ occurred. These events are often
events of the protocol. Consider for example a way to establish that the message
m received byB in protocol SENDSHAREDNONCE actually came fromA. The
reception of{m,nB}kAB

should authenticate the sending of{m,nB}kAB
by A.

Intuitively, if B receives{m,nB}kAB
fromA, thenB should know thatA was the

sender, since the sending event must have happened.
Artificial events can also be introduced for the purpose of analysis. For in-

stance, it is common to introduce eventsbegin and end (perhaps parametrized)
performed by agents to define points of interest in the protocol. We can modify
SENDSHAREDNONCE, for instance, as follows:

1. A : begin(m,A,B)
2. A→ B : A

3. B → A : nB
4. A→ B : A, {m,nB}kAB

5. B : end(m,A,B).

The property can be recast as: eventend(m,A,B) authenticatesbegin(m,A,B),
that is, ifB performs an end event with valuesm,A,B, thenA must have per-
formed a begin event with valuesm,A,B. This separates the specification of the
protocol from the actual messages being exchanged in the protocol. The events
begin andend are typically called assertions, and verifying that these assertions
match involve checking the correspondence of these assertions; hence the name
correspondence assertions.

6.4 Symbolic Approaches to Security Protocol Analysis

The study of security protocols is not a recent trend, and many methods have been
developed. In this section, we give a quick overview of classes of commonly used
approaches. (The classification is somewhat arbitrary, but still useful.) We describe
symbolic approaches exclusively; these are characterized by reasoning about the
“combinatorial” properties of protocols, that is, properties that depend on which

96 6 Security Protocols

messages can be derived and constructed from existing messages. In contrast, com-
putational approaches put a greater emphasis on the computational aspects of the
encryption, such as the probability of extracting bits of information from encrypted
messages. We return to this view briefly in Chapter 10.

6.4.1 Model-Based Approaches

The class of model-based approaches to security protocol analysis is broad, and
includes all the approaches that rely on modeling a protocol using techniques often
used in the verification community. The idea is simply that we can think of a proto-
col executing in an environment as a software system like any other, characterized
by a set of states, and where evolution of the system corresponds to transitions
between states, triggered by actions performed by the agents, or the system itself.

To construct a model of a protocol, we first need to specify the set of states that
arise during a protocol interaction. A state captures all the information relevant to
the analysis of the system, for instance, the keys in possession of all the agents,
the messages in transit between agents, the messages intercepted by the adversary,
and so on. Transitions between states correspond to actions taken by the agents,
such as an agent sending a message, or the network delivering a message to an
agent. Adversary actions can also give rise to transitions between states, such as
the adversary constructing a new message before sending it. Generally, a model
is generated implicitly from a set of initial states and a transition relation between
states; the model of the protocol corresponds to all the states reachable from the
initial states following transitions.

Specifications in model-based approaches generally take the form of asserting
that certain “bad states” cannot be reached from the initial states. A bad state
can be, for example, a state where the adversary knows a message that was meant
to remain secret, or a state where authentication has failed, perhaps because the
adversary managed to end an interaction with an agent convincing him or her that
some other agent has initiated the interaction. Note that these approaches force
the verifier to specify the bad things that should not happen, rather than the good
things that must. The task of verifying that a protocol satifisties the specification is
therefore the task of checking that bad states cannot be reached,

As a representative of this class of approaches, we consider MSR, a framework
based on a form of term rewriting calledmultiset rewriting. In MSR, the state
of the system is represented as a multiset of facts, where each fact is an atomic
formula of the formP (t1, . . . , tk) for variable-free termst1, . . . , tk taken from a
term algebra over a given signature. (See Section 3.1 for an overview of term
algebras.) The signature provides at least encryption and pairing constructors, of
the kind used in Example 3.1. The notationP (~t) is often used forP (t1, . . . , tk). A

6.4 Symbolic Approaches to Security Protocol Analysis 97

multiset is just like a set, except that it allows repetition of elements; for example,
the multiseta, b, b, c is different from the multiseta, a, b, b, c, since the number of
as in each multiset differ. Predicates are used to record the state of each agent
in the system, the messages on the network that have not yet been delivered, the
messages intercepted and derived by the adversary, and so on.

Transitions between states are specified using rewrite rules. A rewrite rule has
the form

P1(~t1), . . . , Pm(~tm) −→ ∃x1 . . .∃xk.Q1(~t′1), . . . , Qn(~t′n)

where the atomic formulasP1(~t1), . . . , Pm(~tm) on the left-hand side of the rule
may have free variables, while all the variables inQ1(~t′1), . . . , Qn(~t′n) must either
appear on the left-hand side, or be one ofx1, . . . , xk. A rule is applicable in a state
if each atomic formula on the left-hand side of the rule matches a distinct atomic
formula in the state. (Two atomic formulas match if they are the same predicates,
applied to terms that match; two terms match is one is a substitution instance of the
other.) Moreover, applying a rule in a state involves identifying the matched atomic
formulasP1(~t1), . . . , Pm(~tm) in the state, keeping track of the term matched by
each variable in the matched formulas, removing the matched atomic formulas
from the state, and forming the new state by addingQ1(~t′′1), . . . , Qn(~t′′n), where

Qi(~t′′i) is obtained fromQi(~t′i) by replacing every variable appearing on the left-
hand side of the rule by the term it matched, and replacing the variablesx1, . . . , xk
by new constants that do not occur in the state or in any of the rules. It is this
existential quantification that makes this framework usable for protocol analysis,
as it can be used to model nonce generation.

Representing protocols in MSR is relatively straightforward. As an example,
consider the following implementation of the SENDSHAREDNONCEprotocol. The
atomic formulaN(x) indicates that the messagex is on the network, that is, it has
been sent by an agent, but has not been received by any agent. Clearly, there can
be many messages in the network at the same time. Protocols are described by
giving rewrite rules corresponding to the initiator and the responder. The rules for
the initiator, in this caseA, are straightforward:

A0(m, kAB) −→ N(A), A1(m, kAB)

A1(m, kAB), N(nB) −→ A2(m, kAB), N(A, {m,nB}kAB
).

(As this example shows, it is often necessary to have predicates that take a variable
number of arguments. Rather than using a family of predicates, each of a different
arity, we use a single predicate, overloaded at all appropriate arities.) Executing
a step of the protocol corresponds to applying one of these rewrite rules. The
predicatesA0,A1, andA2 capture the states of the agent: the initial state, after the

98 6 Security Protocols

first message has been sent, after the second message has been sent, respectively.
The first transition rule says that in the initial state, represented by the atomic
formulaA0(m, kAB) indicating that the message he wants to send ism and the key
to use iskAB , the protocol can execute by putting the messageA on the network,
and moving the agent to stateA1(m, kAB). The second transition rule says that
when the agent is in stateA1(m, kAB), and if a valuenB appears on the network,
then the protocol can execute by receiving the valurenB, putting the message
(A, {m,nB}kAB

) on the network, and moving the agent to stateA2(m, kAB).
The transition rules for the responder are similar:

B0(kAB), N(A) −→ ∃nB.B1(kAB , nB), N(nB)

B1(kKAB, nB), N(A, {m,nB}kAB
) −→ B2(kAB , nB,m).

The first transition rule uses existential quantification to create a fresh nonce. More
precisely, the first rule says that if the responder is in his initial stateB0(kAB) and
a messageA appears on the network, then the protocol can execute by creating
a fresh noncenB, putting it on the network viaN(nB), and moving the agent to
stateB1(kAB , nB), which also records the nonce. The second transition rule is
straightforward.

To specify the initial states of the system, an initialization rule is necessary. The
following rule creates a shared key betweenA andB, and initializesA to the
initiator’s first state, andB to the responder’s first state, both states recording the
created shared key.

−→ ∃kAB .A0(kAB), B0(kAB).

How do we represent the adversary? There are a number of ways of defining an
adversary. Consider the following simple definitions, which represents a Dolev-
Yao adversary using symmetric keys. The idea is to model the knowledge of the
adversary using a predicateM (for memory); the atomic formulaM(m) represents
the fact that the adversary was able to derive the messagem. The following tran-
sition rules describing the adversary reflect the inference rules defining the`DY

relation in Section 6.2:

N(x) −→M(x)

N(x, y) −→M(x, y)

M(x, y) −→M(x),M(y)

M({x}k),M(k) −→M(x),M(k).

(The first two rules say that the adversary can intercept any message on the net-
work.) In order to send messages to other agents, we need to describe the messages
that the adversary can construct. The predicateC is used to denote those messages

6.4 Symbolic Approaches to Security Protocol Analysis 99

that the adversary can construct. The following translation rules describe them:

M(x) −→ C(x),M(x)

C(x), C(y) −→ C(x, y)

C(x),M(k) −→ C({x}k),M(k)

C(x) −→ N(x)

C(x, y) −→ N(x, y)

−→ ∃x.C(x).

Intuitively, any message that the adversary was able to derive can be constructed,
as well as encryptions thereof, and pairings. Moreover, the last transition rule says
that the adversary can generate fresh messages.

Confidentiality properties are straightforward to express in this framework. Fol-
lowing the discussion in Section 6.3, the confidentiality of a messagem amounts
to ensuring that the adversary is not able to derivem. Since the predicateM repre-
sents the messages derivable by the adversary,m remains confidential if the atomic
formulaM(m) does not occur in any state reachable by transitions from the initial
state of the system.

Authentication can be captured using the notion of authenticating events, as we
saw in Section 6.3. Here, the events are the states of the various agents. Consider
specifying that the sending ofA’s first message authenticates the reception ofB’s
last message. Formally, this means that for any sequence of transitions from the
initial state that leads to a state containing an atomic formulaB2(kAB , n,m) for
somen, then the transitions must first go through a state containing an atomic
formulaA0(kAB ,m).

6.4.2 Process-Based Approaches

Process calculi are formal systems developped in the context of concurrency theory
as a way to provide a foundation for concurrent computation, in much the same
way that theλ calculus can be viewed as a foundation for sequential computation.
While the main primitive feature of theλ calculus is function application, the main
primitive for process calculi is that of the “interaction” of concurrent processes.
Process calculi share the view that a process is a set of concurrently executing
sequential processes that communicate (or interact) via shared information.

We model the system to be analyzed as a process in the syntax of the calculus.
This process represents the protocols executed by all the agents, as well as the
system behaviour as a whole, and possibly the adversary as well. This yields a
syntactic representation of the system. The semantics of the calculus provides a
description of the behaviour of the system. One advantage of using a calculus is

100 6 Security Protocols

that we need not always compute this behaviour, but can often simply reason at the
level of the syntactic process that represents the system. For instance, there may be
a set of proof rules available to derive properties of processes by induction on the
structure of the processes.

Specifying properties in process calculi is done in one of two ways. One pos-
sibility is to analyze the transitions given by the operational semantics of the pro-
cess calculus, and specify properties of these transition in terms of reachability,
as in the model-based approaches. The other possibility, more in the spirit of the
process calculus tradition, is to use processes themselves as specifications. The
intuition is straightforward: we write down a description in the calculus of an ideal
system that clearly has the desired behaviour, and prove either that the original pro-
cess “behaves the same” as the ideal process, or that every behaviour of the original
process is a behaviour of the specification process; which approach to take depends
on the kind of specification one is trying to establish.

The process calculus we now describe is CSP, the calculus ofcommunicating
sequential processes. CSP is a notation for describing sequences of events happen-
ing in a distributed system. Roughly speaking, an event in CSP is an occurrence
in the system that can be caused by agents, and on which occurrence other agents
can synchronize. An example of an event is an agent sending a message. Another
agent can synchronize on the message being sent, and thus basically receive it. The
basic CSP processes areStop, which is the process that immediately terminates,
processes of the formevent → P (a process that performsevent , and then behaves
as processP), and processes of the form?event → P (a process that awaits for an
event, and once matched, behaves as processP). More complicated processes can
be constructed from choices, so thatP �Q represents a process that behaves either
asP or asQ. Finally, processes can execute in parallel, whereP |[R]|Q represents
P andQ executing in parallel, synchronizing on the events in the setR (while every
other event happens independently).1 CSP allows parametrized events, of the form
x.y.z, which is an eventx parametrized by valuesy andz. The matching notation
is extended to allow for matching part of the event exactly, and allowing variables.
The common use of such a notation is to have events of the formc.5, which can be
understood as send value5 on channelc, which can be matched by an event of the
form c?5, which matchesc exactly, and bindsx to the received value, here5. Here
is the process corresponding to the initiator in the protocol SENDSHAREDNONCE

given above, for agenti sending to agentj, with messagem:

INIT (i, j,m, k) = trans.i!j!i→

1 Full CSP allows other constructs. For instance, parallel execution can synchronize on events, and there is a
nondeterministic choice, representing the system choosing rather than the process. Processes are also definable
by recursion, or by mutually recursive process definitions.

6.4 Symbolic Approaches to Security Protocol Analysis 101

rec.i.j?nB →
trans.i!j!i!{m,nB}k(i) →
Stop.

The parameterization of the process is similar to that in Section 6.2.
The responder process is similar:

RESP(i, k, n) = rec.i?j?i→
trans.i.j.n→
rec.i.j?j?{m,n}k(j) →
Stop.

The semantics of a processP can be given in a number of ways, depending on what
one wants to observe about a process. The simplest semantics, and the one used by
most security protocol analysis work in CSP, is the trace model. Roughly speaking,
the semantics associate to every processP a set of tracestraces(P), representing
the sequence of events performed by the process. In the case of parallel processes,
traces(P) is an interleaving of the traces of the subprocesses ofP .

How do we use CSP to reason about security protocols? The first step is to
model the system. This is done by creating a process representing the system.
This process includes a process describing the program of each agent in the system
(including trusted servers) and a process describing the behaviour of the adversary.
Thus, a system has the form:

SYS = (|||j∈AGAGENT j) |[trans, rec]| ADV ,

wheretrans andrec are events corresponding to the sending and reception of mes-
sages. As an example, consider the systemSYS for the SENDSHAREDNONCE

protocol. Assume a set of agentsAG . We can represent the agents’ behaviour by
the processes:

AGENT i(m,n, k) = �j∈AG (INIT (i, j,m, k)�RESP(i, k, n)) .

The adversary is specified by encoding a Dolev-Yao adversary, using the`DY

relation of Section 6.2. The process is recursive, and parameterized by a setS of
intercepted messages.

ADV (S) = trans?i?j?m→ ADV (S ∪ {m})
� (�j∈AG,S`DY mrec.i!j!m→ ADV (S)) .

(This could be written up completely in CSP, rather than relying on the`DY rela-
tion.)

How do we specify properties of processes? The basic way, given the semantics
above, is to specify a property of the settraces(P). First, consider confidentiality.

102 6 Security Protocols

Intuitively, a termt is secret if the adversary cannot deduce it. How do we specify
this in CSP? One approach is to change the code of the adversary to add a new
channelknows and have the adversary nondeterministically send any message he
can derive to that channel. Thus,ADV (S) can be written:

ADV (S) = trans?i?j?m→ ADV (S ∪ {m})
� (�j∈AG,S`DY mrec.i!j!m→ ADV (S))
� (�S`DY mknows!m→ ADV (S)) .

Following the discussion in Section 6.3, a messagem is confidential if the ad-
versary cannot derivem. Since every message that the adversary can derive can
be sent to the channelknows, m is confidential if the adversary cannot sendm
on channelknows. This can be formalized by saying that for every tracetr ∈
traces(SYS), knows.m does not appear intr . Using the notationtr � H (where
H is a set of events) to represent the subtrace oftr consisting only of events from
H, and using〈〉 to represent the empty trace, confidentiality ofM can be written
tr � knows.m = 〈〉 for all tr ∈ traces(SYS).

What about authentication? Again, we can use authenticating events. For SEND-
SHAREDNONCE, one authentication properties says that the sending of the ini-
tiator’s first message authenticates the reception of the responder’s last message.
Formally, this means that for all agentsA, B, and any tracetr in traces(SYS),
if trans.A.B.A.{m,n}kAB

appears intr , thentrans.A.B.A appears intr . For-
mally, this can be written as:tr � trans.A.B.A.{m,n}kAB

6= 〈〉 implies tr �
trans.A.B.A 6= 〈〉, for allA,B, kAB , n, and for alltr ∈ traces(SYS).

There is another approach to specification in CSP. A processP refinesa process
Q, writtenP v Q, if traces(P) ⊆ traces(Q). If we view Q as a specification
denoting a set of ”good” traces, and ifP v Q, thenP can be seen as an implemen-
tation that satisfiesQ, in the sense that every trace ofP is a good trace. (This of
course relies on being able to characterize the set of good traces as a processQ, and
on being able to characterize goodness as a property of traces.) Refinement permits
the use of the process language itself as a specification language. Moreover, writ-
ing specifications in the form of a refinement property enables the use of tools that
have been developed to automatically establish refinement relation between CSP
processes.

6.4.3 Logic-Based Approaches

What distinguishes the last class of approaches is the emphasis on the specification
of properties. More precisely, they focus on developing a formal language in which
to write down the properties of the protocols that one intends to verify.

The main formalisms for logic-based verification split across two distinct lines.

6.4 Symbolic Approaches to Security Protocol Analysis 103

On one side, there are first-order and higher-logic logic approaches, and on the
other there are modal logic approaches (often propositional). An expressive lan-
guage such as higher-order logic allows us to model the protocol directly in the
logic (in the form of formulas that characterize the behaviour of the model). We
can then establish that a protocol satisfies a specification by showing that the spec-
ification logically follows from the logical description of the protocol. These ap-
proaches naturally lead to theorem-proving systems, often partially automated.
One advantage of this approach is that infinite systems can be proved correct, by
using inductive techniques. Alternatively, augmented with the appropriate support
for cryptography and adversaries, modal-logic approaches lead to specification lan-
guages in many ways compatible with the model-based approaches to protocol
analysis. While less expressive than approaches based higher-order logic, modal
logics often are decidable, and often support efficient model-checking procedures.

As an illustration of logic-based approach to reason about protocols, we describe
what is historically the most important modal logic for security protocol analysis.
BAN logic (named after the researchers who introduced it, Mike Burrows, Roger
Needham, and Martı́n Abadi) is a modal logic of belief that provides primitives
for reasoning about protocols in a cryptographic setting. Contrary to the model-
theoretic approach to logic that we have considered until now in this dissertation,
BAN logic was essentially developed axiomatically, by giving axioms and infer-
ence rules for deriving new beliefs from old beliefs. BAN logic has formulas that
say thatk is a good key for communicating between agentsA andB (a shared key
known only toA andB), writtenA

k↔ B, thatm is a secret betweenA andB,
writtenA

m

 B, that agentA believes the formulaF , writtenA believes F , that
agentA controls the truth of formulaF , writtenA controls F , that agentA sent a
message meaningF , writtenA said F , that agentA received a message (and was
able to read it, perhaps by decrypting it if it was encrypted and she had the right
decryption key) meaningF , writtenA sees F , that the messagem is fresh, that
is, has never been used before, writtenfresh(m). A sample BAN logic inference
rule is

A believes A k↔ B A sees {F l}k l 6= A

A believes B said F
,

which intuitively says that if agentA believes thatk is a good key between herself
andB, and she receives a message encrypted with keyk that did not originate with
her, then she believes thatB sent the original message. More inference rules are
given in Figure 9.1. We will have much more to say about BAN logic in Chap-
ter 9, including a more careful interpretation of formulas. In the remainder of this
section, we illustrate how BAN logic can be used to prove properties of protocols.

One difference between BAN logic and the other approaches we described ear-

104 6 Security Protocols

lier in this section is that BAN logic does not attempt to model the protocol di-
rectly. Approaches such as MSR and CSP model the protocol using essentially
a state-based transition system, either explicitly in the case of MSR, or implicitly
through the semantics in the case of CSP. In BAN logic, the reasoning occurs di-
rectly on the trace of the protocol. However, because the trace of the protocol does
not quite carry enough information to permit the kind of reasoning advocated by
BAN logic, a process known asidealizationneeds to be performed on the protocol.
Roughly speaking, idealization consists of replacing the messages in the protocol
by formulas of BAN logic that capture the “meaning” of the message exchanged
by the agents. For instance, if an agentA sends a keyk to an agentB, with the
intention of sharing a key thatA considers good, then a suitable idealization of this
protocol step is to haveA send the formulaA

k↔ B to B. Much of the difficul-
ties in reasoning about protocols using BAN logic reside in this idealization phase.
Here is a possible idealizaiton of the protocol SENDSHAREDNONCE:

2′. B → A : nB

3′. A→ B : {A
m

 B,nB}kAB
.

Message (1) in the original protocol carries no information that BAN logic can
use, so it has been removed from the idealized protocol. Message (2’) is unchanged
from the original. Message (3’) is the idealization of agentA sendingm packages
with nB to B; this idealization consists ofA sending the formulaA

m

 B to B,
indicating thatA considersm to be a secret at that point.

Reasoning about the idealized protocol consists of laying out the initial belief of
the agents, and deriving new beliefs from those and from the messages exchanged
between the agents using the inference rules of the logic. For SENDSHARED-
NONCE, consider the following reasonable initial beliefs. First, both agents should
believe that the key they share (kAB) is a key that has not been compromised.
These beliefs are captured by the BAN logic formulas

A believes A
kAB↔ B

B believes A
kAB↔ B.

Another assumption is that the nonce thatB uses has not already been used, that
is, the nonce is fresh. This belief is captured by the BAN logic formula

B believes fresh(nB).

Finally, the message thatAwants to send toB should initially be secret (in order to
prove that this message remains secret after a protocol run). This belief is captured
by the BAN logic formula

A believes A
m

 B.

6.4 Symbolic Approaches to Security Protocol Analysis 105

We can now derive new beliefs from these initial beliefs, and the messages ex-
changed by the agents. After an idealized protocol step of the formA → B : F ,
B receives a message meaningF , and thus the formulaB sees F can be used
to updateB’s beliefs. In the idealized protocol for SENDSHAREDNONCE, after
having received message (3’), the BAN formula

B sees {A
m

 B,nB}kAB

holds. Combined with the initial beliefB believes A
kAB↔ B, one of the BAN

logic inference rules (rule R1) allows us to derive

B believes A said (A
m

 B,nB). (6.1)

From the initial beliefB believes fresh(nB), it is clear thatB should believe
any message combined withnB to be fresh as well. This is captured by one of the
BAN logic inference rules (rule R9), which lets us derive

B believes fresh(A
m

 B,nB).

Finally, from this last formula and formula (6.1), applying one of the BAN logic
inference rules (rule R3) lets us derive

B believes A believes A
m

 B. (6.2)

Thus, after protocol interaction,B believes thatA believes thatm is a secret be-
tweenA andB. We can say something stronger if we make the additional assump-
tion thatB initially believes that the secrecy ofm is completely up to agentA,
that is, ifB believes thatA controls the truth ofA

m

 B. From this initial belief
B believes A controls A

m

 B and formula (6.2), we can apply one of the BAN
logic inference rules (rule R4) to derive

B believes A
m

 B.

This simple example illustrates the kind of axiomatic reasoning that can be per-
formed using BAN logic.

One consequence of the decision to reason directly about the protocol text is
that the adversary is not modeled directly within the BAN logic framework, but is
rather implicit in the valid inference rules of the logic. This makes it difficult to
see what is happening operationally, or change the system to accomodate different
adversaries.

BAN logics seems a reasonable specification language, as far as attempting to
capture the right concepts for security protocol analysis. However, BAN logic has
been the subject of many criticisms. The two main criticisms affect BAN logic
both as a specification language and as an approach to protocol verification. First,

106 6 Security Protocols

the logic has a multitude of operators, but no semantics to speak of.2 The main
consequence of not having an independently motivated semantics is that it is not
clear exactly what one is proving when a “proof” of security is exhibited for a
protocol. In general, when a BAN-style analysis manages to exhibit a bug in a
protocol, chances are good there is indeed a bug, but a proof of security does not
guarantee much. Attempts have been made to supply a more adequate semantics
for BAN-style logics, but without simplifying the logic. Second, theverification
methodassociated with the logic, that is, how to use the logic to verify protocols,
itself relies on a dubious idealization process that, among other things, is insensitive
to the order of protocol steps.

6.4.4 Discussion

The above classes of approaches represent the most common ones. (A number
of approaches do not fit so cleanly in that classification; we examine one such,
strand spaces, in more detail in Chapter 7.) They each have their advantages and
disadvantages with respect to the three aspects of interest, namely, how protocols
are modeled, how security properties are specified, and how security properties are
verified.

– For model-based approaches, the emphasis is on the models:

(a) protocols are modeled explicitly via state-based transition systems: a set
of states, with distinguished initial states, and a transition function from
states to states indicating the evolution of the system;

(b) a specification is a predicate on states, often indicating which states are
bad states;

(c) verification is performed by proving that no bad state is reachable from
the initial states.

Thus, the specifications are restricted, often a simple language of description of
states, with perhaps some extensions ot deal with the temporal evolution of the
states.

– For process-based calculi, compositionality of the modeling process is central:

(a) protocols are described programmatically; this description is composi-
tional, and generally higher-level than other approaches;

(b) specifications are often described using either the properties of the pro-
grams, or as other programs (in the former case, they resemble specifi-
cations of the form for model-based approaches, in the latrer, they are
“idealized” programs);

2 The original semantics merely encodes the inference rules of the logic. Arguably, the Hoare-style presentation
of the logic does provide some hints as to the meaning of the BAN logic operators, but this is far from being
a satisfactory semantics.

6.4 Symbolic Approaches to Security Protocol Analysis 107

(c) the verification is either performed by hand, or by proof systems.

– Finally, logic-based approaches put the focus on the specifications:

(a) protocols are generally modeled as in the model-based approaches, by
specifying transition systems;

(b) specifications are written in a logical language, perhaps with security-
specific primitives;

(c) verification varies, from model-checking for approaches based on modal
logic, to theorem-proving for more expressive logics.

From the point of view of specification, the most flexible approach is certainly
the logic-based approaches, especially those approaches like BAN logic that are
explicitly geared towards expressing security properties. (There are some ques-
tions pertaining to the foundation of those primitives; we will come back to these
in Chapter 9. For the time being, they can be taken for granted.) However, the
verification procedure for BAN-style logics, based on idealization, is very prob-
lematic. There are logics with more straightforward verification mechanisms, such
as temporal logic, epistemic logic, and higher-order logic, but they tend to be more
generic and often do not support the kind of primitives that permit the natural ex-
pression of security properties.

Moreover, the adversary model in logic-based approaches generally cannot be
significantly altered, and thus does not really provide the flexibility needed to ad-
dress some of the issues discussed in Section 6.2. The process-based approaches
can support different adversary models, as witnessed by the CSP examples in Sec-
tion 6.4.2. However, the specification language for process-based approaches does
not seem easily expressible as a standard specification language augmented with
security primitives.

In the next chapters, we develop a framework to try and get the best of all these
worlds, from the point of view of modeling and specifications. Specifically, our
goal is to get a framework that:

– models protocols using a general framework that can capture the knowledge of
agents;

– supports deriving models from a protocol notation that is compositional;
– represents adversary capabilities in a natural and flexible way;
– supports a logical specification language that is expressive enough to capture

useful security primitives;
– relates specifications of properties to the models of protocols in an intuitive way.

While we will not talk about automatic verification in this dissertation, it should be
clear that a further desideratum is to have the framework support effective verifica-
tion procedures.

108 6 Security Protocols

Notes

Cryptography is a field with a long history. Stinson [1995] and Schneier [1996]
give excellent overviews of the practice of cryptography. Goldreich [2001] gives
an excellent account of the theoretical side of modern cryptography.

The symbolic approach to security protocol analysis goes back to Needham and
Schroeder [1978], who were among the first to point out the fact that some attacks
on protocols are essentially independent of the encryption scheme. Dolev and Yao
[1983] first formalized such attacks using their now standard model of the adver-
sary.

Protocol SENDSERVER is a value-passing variant of a protocol by Woo and Lam
[1992]. The first attack presented in Section 6.2 is an adaptation of the attack due to
Abadi and Needham [1996] on the original Woo-Lam protocol. The second attack
is an adaptation of the attack due to Anderson and Needham [1995]. Clark and
Jacob [1997] offer an excellent literature review on security protocols.

Abadi [2000] gives a general overview of security properties for protocols. Con-
fidentiality is the cornerstone of security properties. A more general notion of
confidentiality is studied in the context of information flow. See McLean [1994]
for an overview. Such a general notion of confidentiality is studied by Halpern and
O’Neill [2002].

Gollmann [1996] gives a typical analysis of the various notions of authentica-
tion. He describes peer-entity authentication (what we called agent authentica-
tion) versus data-origin authentication (what we called message authentication).
Authenticating events were used by Schneider [1996] in CSP. Begin and end as-
sertions were first studied by Woo and Lam [1993]. Lowe [1997] gives a taxon-
omy of authentication properties in CSP using correspondence assertions. Most
current frameworks for analyzing protocols use correspondence assertions in one
form or another to specify authentication properties. Gollmann [2003] provides an
overview and critique of this technique.

Roscoe [1996] advocates intensional specifications, which essentially say that a
protocol works exactly as intended. They are meant to be protocol-dependent spec-
ifications. In contrast, extensional properties are meant to be protocol-independent.
Boyd [1997] attempts a classification of security properties along the intensional
and extensional specification lines. In a sense, correspondence assertions with be-
gin and end events are extensional versions of authenticating events.

The multiset rewriting approach MSR is described in [Cervesato, Durgin, Lin-
coln, Mitchell, and Scedrov 1999]. It is strongly related to linear logic [Girard
1987]. MSR has been used to analyze, among others, version 5 of the Kerberos
protocol [Butler, Cervesato, Jaggard, and Scedrov 2002]. It was also used to es-
tablish some of the first decidability and undecidability results for the symbolic

Notes 109

analysis of security protocols [Cervesato, Durgin, Lincoln, Mitchell, and Scedrov
1999]. Other model-based approaches include the NRL protocol analyzer [Mead-
ows 1996], derived from an earlier tool, the Interrogator [Millen, Clark, and Freed-
man 1987]. NRL is based on a logic-programming engine, and works by specify-
ing an insecure state and attempting to construct a path to that state from an initial
state, or proving that the state is unreachable. Meadows [1990] describes an ap-
proach that can accomodate partial knowledge of messages in NRL. Another logic
programming tool is the protocol verifier of Blanchet [2001, 2002]. It has been
used to verify an email protocol [Abadi and Blanchet 2003a], and forms the basis
of a verification tool for Web Services [Bhargavan, Fournet, Gordon, and Pucella
2004].

The process calculus CSP is due to Hoare [1985]; Roscoe [1997] gives a modern
account. An overview of the use of CSP for security protocol analysis is given
by Ryan and Schneider [2000]. Rank functions [Schneider 1998] can be used in
CSP to prove properties of infinite systems. FDR3 [Roscoe 1994] can be used to
automatically establishP v Q. FDR works by explicitly enumerating and then
exploring the state space of the system. Thus, it can only deal with finite state
systems. Casper [Lowe 1998] is a compiler that takes a message-passing style
representation of protocols and produces a CSP process representing the protocol;
the compiler invokes FDR for checking the built-in properties that can be specified
along with the protocol.

Another popular process calculus framework for analyzing security protocols is
the spi calculus of Abadi and Gordon [1999]. The spi calculus is based on theπ

calculus of Milner [1999] (see also Sangiorgi and Walker [2001]), an extension of
CCS [Milner 1989] with communication channels. The main feature here is name
hiding, where the name of a channel can be hidden from other processes. The spi
calculus further extends theπ calculus with cryptographic primitives. A specifica-
tion in the spi calculus is simply a spi process that is “obviously” correct, perhaps
because it relies on a private channel for communication. A process satisfies a
specification if it “behaves the same” in all contexts. Making this precise requires
a notion of observational equivalence. Intuitively, two processesp1 andp2 are ob-
servationally equivalent if no contextC[·], that is, a process calculus term with a
hole, can distinguishp1 andp2 in terms of what can be observed. Thus, ifC[p1],
that is, the contextC where the hole is “plugged” byp1 deadlocks, butC[p2] does
not, thenC[·] can distinguishp1 andp2. Different notions of observational equiv-
alence for the spi calculus can be defined [Abadi and Gordon 1999; Abadi and
Gordon 1998; Boreale, de Nicola, and Pugliese 2001]. Focardi, Gorrieri, and Mar-

3 Failure-Divergence Refinement, a product of Formal Systems (Europe) Ltd.

110 6 Security Protocols

tinelli [2003] study various notions of authentication properties via observational
equivalence.

The key feature of the spi calculus is that it does not require an explicit descrip-
tion of the adversary. Rather, by consider arbitrary contexts, the idea is that we get
to reason about any adversary that can be expressed as a process in the spi calculus.
Thus, we get automatic quantification over all attackers expressible in the system.
Other process calculi can be extended with cryptography, in the spirit of the spi
calculus. For instance, the sjoin calculus extends the join calculus [Fournet and
Gonthier 1996], and was used by Abadi, Fournet and Gonthier [2002] to analyze
secure channels.

It is sometimes possible to recast process-based specifications into a more con-
ventional form of specification. Behavioural equivalence, for instance, can some-
times be characterized logically, in the sense that there exists a modal logic over
process such thatP andQ are behaviourally equivalent if and only if they sat-
isfy the same formulas of the logic [Hennessy and Milner 1985; Milner, Parrow,
and Walker 1993]. CSP refinement can be similarly characterized [Stirling 2001].
Frendrup et al. [2002] discuss such a logic for the spi calculus.

Another approach to reasoning about protocols using the spi calculus is to intro-
duce a type system. Abadi [1999] and Abadi and Blanchet [2003b] develop type
systems for the spi calculus that captures a form of secrecy. Recently, Gordon and
Jeffrey [2001, 2002a, 2002b] have extended the type system of Abadi to essentially
prove within a type system correspondence assertions between different entities in
a communication protocol. This type system is a form of effects system [Tofte and
Talpin 1997].

One of the most successful modern approaches to logic-based analysis of proto-
cols is theinductive assertionsmethod [Paulson 1998], formalized in higher-order
logic [Andrews 1986], and proved using the higher-oder logic interactive theorem
prover Isabelle [Paulson 1994]. TAPS [Cohen 2000; Cohen 2002] is a verifier
based on first-order logic, and uses similar ideas. There has been a fair amount of
work on applying temporal logic to the problem of reasoning about security pro-
tocol analysis; see for example [Gray and McLean 1995; Mitchell, Mitchell, and
Stern 1997; Clarke, Jha, and Marrero 1998]. Some approaches reminiscent of Dy-
namic Logic [Harel, Kozen, and Tiuryn 2000] have also recently emerged [Durgin,
Mitchell, and Pavlovic 2001].

BAN logic was introduced by Burrows, Abadi, and Needham [1990a]. A vast
literature, starting with Abadi and Tuttle [1991], has emerged to follow up on their
work, extend the logic, and attempt to supply it with a more adequate semantics
[Gong, Needham, and Yahalom 1990; Syverson and Oorschot 1994; Stubblebine
and Wright 1996; Wedel and Kessler 1996]. Syverson and Cervesato [2001] pro-
vide a good overview. The main problem with some of those approaches is that

Notes 111

semantics of the logic (to the extent that one is provided) is typically not tied to
protocol executions or attacks. As a result, protocols are analyzed in an ideal-
ized form, and this idealization is itself error-prone and difficult to formalize [Mao
1995]. Snekkenes [1991] showed that because BAN idealization was insensitive to
the order of protocol steps, some protocols are deemed correct by BAN when they
are in fact flawed. Syverson [1990] and Bieber [1990] consider approaches based
on logics of knowledge that do not suffer from those particular problems.

7
Modeling Security Protocols

TO analyze protocols, we need a way to represent them and model the aspects
that are relevant for the properties that we want to prove. As we saw in the

previous chapter, there are many frameworks for representing and reasoning about
security protocols. In this chapter, We present a general framework for modeling
security protocols that is amenable to the kind of knowledge-based logical analysis
performed later in the dissertation. The models used are adapted from models
typically used in distributed computing.

After presenting the general framework and defining security systems, we present
a few ways to generate such security systems from descriptions of protocols. The
first is to derive systems from programs of the kind used in Chapter 6 to describe
protocols. In essence, the semantics of the programs are given in terms of security
systems. Since the language is related to process calculi, this highlights the rela-
tionship between security systems and the models underlying process calculi. The
second way of generating systems is to derive them from other representations of
protocols. By way of illustration, we show how to do this starting from a popular
representation based onstrand spaces.

Note that the framework in this chapter does not deal with the adversary. Mod-
eling adversaries is discussed in Chapter 8.

7.1 Security Systems

The multiagent systems framework provides a model for knowledge that has the
advantage of also providing a discipline for modeling executions of protocols. A
multiagent system consists ofn agents, each of which is in some local state at a
given point in time. Assume that an agent’s local state encapsulates all the informa-
tion to which the agent has access. In the security setting, the local state of an agent
might include some initial information regarding keys, the messages she has sent

113

114 7 Modeling Security Protocols

and received, and perhaps the reading of a clock. In a poker game, a player’s local
state might consist of the cards he currently holds, the bets made by other players,
any other cards he has seen, and any information he may have about the strategies
of the other players (for example, Bob may know that Alice likes to bluff, while
Charlie tends to bet conservatively). The basic framework makes no assumptions
about the precise nature of the local state.

We can then view the whole system as being in some global state, which is a
tuple consisting of each agent’s local state, together with the state of the environ-
ment, where the environment consists of everything that is relevant to the system
that is not contained in the state of the agents. Thus, a global state has the form
(se, s1, . . . , sn), wherese is the state of the environment andsi is agenti’s state,
for i = 1, . . . , n. The actual form of the agents’ local states and the environment’s
state depends on the application. For definiteness, letLoci be the set of local state
for agenti, includingLoce for the environment.

A system is not a static entity. To capture its dynamic aspects, define a run to be
a function from time to global states. Intuitively, a run is a complete description
of what happens over time in one possible execution of the system. For future
reference, note that we have a great deal of flexibility regarding what counts as a
“time step”. We could, for example, take a “time step” to correspond of a tick on
a global clock, a step in a protocol, or the amount of time needed to perform a
computation. We could also, as BAN logic does, consider only two time instants:
the first representing the state of the world before the protocol is run and the second
time represents the state of the world after the protocol is run. The local state
of each agent after the protocol is run will contain all the events the agent has
participated in. It is up to the modeler to decide which notion of time is most
appropriate for an analysis.

A point is a pair(r, t) consisting of a runr and a timet. For simplicity, take
time to range over the natural numbers in the remainder of this discussion. At a
point (r, t), the system is in some global stater(t). If r(t) = (se, s1, . . . , sn), then
takeri(t) to besi, agenti’s local state at the point(r, t). Formally, define a system
R to consist of a set of runs (or executions). Therefore, a system is just a trace
model, except that there is much more flexibility in representing the states, as well
as allowing for simultaneous events for different agents. It is compatible with the
trace models used in process calculi, as well as the transition systems used by the
model-based approaches.

It is relatively straightforward to model security protocols as systems. Since se-
curity protocols are essentially protocols based on messages exchanged between
distributed participants, a natural class of systems to use is that ofmessage-passing
systems. Consider a fixed setM of messages. Ahistory for agenti (overM) is a
sequence of elements of the formsend(j, u), recv(u), andint(a), whereu ∈ M

7.1 Security Systems 115

anda is some internal action. We think ofsend(j, u) as representing the event
“messageu is sent to agentj”, recv(u) as representing the event “messageu is
received”, andint(a) as representing the event “internal actiona was performed”.
Intuitively, i’s history at(r, t) consists ofi’s initial state, taken to be the empty se-
quence, followed by the sequence describingi’s actions up to timet. If i performs
no actions in roundt, then its history at(r, t) is the same as its history at(r, t− 1).
For an agenti, letri(t) be agenti’s history in(r, t). An evente occurs ini’s history
in roundt+ 1 of run r if e is in (the sequence)ri(t+ 1) but not inri(t).

In a message-passing system, the agent’s local state at any point is its history.
Of course, ifh is the history of agenti at the point(r, t), then we want it to be the
case thath describes what happened inr up to timet from i’s point of view. To do
this, we need to impose some consistency conditions on global states. In particular,
we want to ensure that message histories do not shrink over time, and that every
message received in roundt corresponds to a message that was sent at some earlier
round.

Given a setM of messages, define amessage-passing system(overM) to be a
system such that for each point(r, t) and each agenti, the following constraints
are satisfied:

MP1. ri(t) is a history overM ;
MP2. for every eventrecv(u) in ri(t) there exists a correspondingsend(i, u) in

rj(t), for somej;
MP3. ri(0) is the empty sequence andri(t+ 1) is either identical tori(t) or the

result of appending one event tori(t).

MP1 says that an agent’s local state is its history, MP2 guarantees that every mes-
sage received at roundt corresponds to one that was sent earlier, and MP3 guaran-
tees that histories do not shrink.

An asynchronous message-passing system systemis a message-passing system
that does not place any constraints on the relative order of events in different agents’
histories beyond those imposed by MP1 and MP2. Such asynchrony can be cap-
tured by considering systems that consist ofall runs satisfying MP1–3 for some set
of histories. Formally,R is anasynchronous message-passing systemif there exists
a sequenceV1, . . . , Vn, whereVi is a set of histories over some setM of messages,
such thatR consists of all runs satisfying MP1–3 where agenti’s local state is a
history inVi at every point. The systemR is the systemgenerated byV1, . . . , Vn.
Informally, the setVi specifies the possible histories agenti could have. The sys-
tem generated byV1, . . . , Vn consists of all runs satisfying MP1–3 such that agent
i’s histories are inVi for all i.

For the purposes of analyzing security protocols, define the class ofsecurity sys-
tems. The messages exchanged by the agents are taken from the symbolic encryp-

116 7 Modeling Security Protocols

tion schemeM generated by a setP of plaintexts and a setK of keys. A security
system is an asynchronous message-passing systems overM where the local state
of an agent consists of the agent’s initial information followed by the sequence of
events that the agent has been involved in. An event is either the receptionrecv(m)
of a messagem, the sendingsend(i,m) of a messagem to another agenti, or the
updateupdate(var ,m) of variablevar to valuem. We write〈evt1, . . . , evtn〉 for
sequences of events, where〈〉 is the empty sequence, and writeevts · evt for the
result of appending eventevt to the sequence of eventsevts.

Assume a distinguished valuenull ∈ M used for undefined values, such as the
initial value of variables. As we shall see shortly, the cryptographic operations all
returnnull if one of their argument isnull ; moreover, assume that if decryption
fails, it returnsnull .

Definev onM as the smallest relation satisfying the following constraints:

(1) m v m
(2) if m v m1, thenm v (m1,m2)
(3) if m v m2, thenm v (m1,m2)
(4) if m v m1, thenm v {m1}k.

Intuitively,m1 v m2 if m1 couldbe used in the construction ofm2. For example,
if m = {|m1|}k = {|m2|}k, then bothm1 v m andm2 v m. Therefore, if we want
to establish thatm1 v m2 for a givenm1 andm2, then we have to look at all the
possible ways in whichm2 can be taken apart, either by pairing or encryption, to
finally decide ifm1 can be derived fromm2.

There are a number of useufl operations that can be performed on local states.
The functionθ(`) gives a mapping from variables to values as recorded in local
state`, by looking up the last binding for the variable (returningnull if none is
found). Letθ0 be the mapping that assignsnull to every variables.

θ(〈〉) = θ0

θ(evts · evt) =

{
θ(evts)[var 7→ m] if evt = update(var ,m)

θ(evts) otherwise,

where the notationf [x 7→ y] for a functionf represents the functionf ′ defined as

f ′(z) =

{
y if z = x

f(z) otherwise.

The functionρ(`) returns the value of the last received message in local state`,
or null if no message has been received yet.

ρ(〈〉) = null

7.1 Security Systems 117

ρ(evts · evt) =

{
m if evt = recv(m)

ρ(evts) otherwise.

An important concept that arises in both the next section and the next chapter is
that of a term representing a message in a local state. Roughly speaking, a term is
just an expression that describes how to construct a message, by applying encryp-
tions and decryptions, pairings and projections. A term can refer to variables, and
when a message is constructed from the term, the values of those variables is taken
from the bindings in the local state of an agent. The syntax of terms is as follows:

term ::= m

| var
| {term1}term2

| decrypt(term1, term2)

| (term1, term2)

| π1(term)

| π2(term)

| received()

wherem is an arbitrary element ofM, and var is an arbitrary variable. We
write (term1, . . . , termn) for (term1, (. . . , (termn−1, termn) . . .)). Given a term
term, we canevaluatethe term in a given local statèto get the message it repre-
sents, denoted[[term]]`:

[[m]]` = m

[[var]]` = θ(`)(var)

[[{term1}term2]]` =

{
null if m1 = null orm2 = null

{m1}m2 otherwise
wherem1 = [[term1]]`

m2 = [[term2]]`

[[decrypt(term1, term2)]]` =

null if m1 = null orm2 = null

null if m1 = {m′
1}k andm2 6= k−1

m′
1 if m1 = {m′

1}k andm2 = k−1

wherem1 = [[term1]]`
m2 = [[term2]]`

118 7 Modeling Security Protocols

[[(term1, term2)]]` =

{
null if m1 = null orm2 = null

(m1,m2) otherwise
wherem1 = [[term1]]`

m2 = [[term2]]`

[[π1(term)]]` =

null if m = null

null if m 6= (m1,m2) for somem1,m2

m1 if m = (m1,m2)
wherem = [[term]]`

[[π2(term)]]` =

null if m = null

null if m 6= (m1,m2) for somem1,m2

m2 if m = (m1,m2)
wherem = [[term]]`

[[received()]]` = ρ(`).

For the purposes of this chapter, assume that the adversary in a security protocol
can be modeled as just another agent. The adversary’s information at a point in a
run can be modeled by his local state. We return to adversaries and the intricacies
of modeling them in Chapter 8.

7.2 A Language for Security Protocols

We now present a programming language IMPSEC that can be used to program
an agent’s actions in a system. This language is a formalization of the informal
language we used in the previous chapter. The idea is to provide a program for
each agent that, along with an execution context for the program, gives rise to
a particular security system. In a precise sense, programs are given a semantics
using security systems.

A program for agenti can rely on Boolean tests performed on the local state of
the agent. The syntax of Boolean tests is as follows:

bool ::= term1 = term2 | bool1 ∧ bool2 | ¬bool .

As usual, takebool1 ∨ bool2 as an abbreviation for¬(¬bool1 ∧ ¬bool2). To every
test and agenti, associate the set[[bool]]i of local states of agenti at which the test
is true:

[[term1 = term2]]i = {` ∈ Loci | [[term1]]` = [[term2]]`}
[[¬bool]]i = Loci − [[bool]]i

[[bool1 ∧ bool2]] = [[bool1]]i ∩ [[bool2]]i.

7.2 A Language for Security Protocols 119

A testbool is true in` (for agenti) if ` ∈ [[bool]]i.
A programfor agenti specifies what action the agent should perform next. What

do we take as actions? Primitive actions includenil, the null action,snd(i,m), the
sending of messagem to agentj, rcv, the reading of a message from the input
buffer, andupd(var ,m), the update of variablevar to valuem. The language in
which we write the programs is essentially a language of while loops. It also cor-
responds to the sequential fragment of a process calculus such as the one described
in Section 6.4.2. However, there is no attempt to capitalize on the process-calculus
ability to represent the structure of the network as a whole; networking assump-
tions can be captured by the environment. Mostly, the focus is on communication
between agents in as simple a network topology as possible.

A program is a statement, given by the following grammar:

stmt ::= send term1 term2

| skip

| recv
| var ← term

| stmt1; stmt2

| if bool then stmt1 else stmt2

| while bool do stmt .

Informally, send term1 term2 is the sending of the message denoted byterm2 to
the agent denoted byterm1; skip is the null statement with no effect;recv awaits
for a message to arrive in the agent’s buffer;var ← term updates the variable
var to the value denoted byterm in the local state of the agent. The remaining
constructs are the standard sequencing, conditional, and looping constructs. In
Chapter 6, we used the notation

recv var

which in fact is simply an abbreviation for

recv;

var ← received().

The semantics of IMPSEC, given in Figure 7.1, is defined in terms of a transition
relation, where the notatioǹ i stmt a−→ stmt ′ says thatstmt rewrites into
programstmt ′, performing actiona, at local statè.

An IMPSEC program describes the behaviour of a single agent. To describe
the behaviour of a whole system requires at least a program for each agent. Ac-
cordingly, define ajoint IMPSEC programto be a tupleS = (stmt1, . . . , stmtn)

120 7 Modeling Security Protocols

` i send(term1, term2)
snd([[term1]]`,[[term2]]`)−−−−−−−−−−−−−−−→ skip

` i send(term1, term2)
nil−−→ send(term1, term2)

` i skip nil−−→ skip

` i recv rcv−−→ skip ` i recv nil−−→ recv

` i var ← term
upd(var ,[[term]]`)−−−−−−−−−−−−→ skip

` i var ← term nil−−→ var ← term

` i stmt a−→ stmt ′

` i skip; stmt a−→ stmt ′
` i stmt1

a−→ stmt ′

` i stmt1; stmt2
a−→ stmt ′; stmt2

` ∈ [[bool]]i ` i stmt1
a−→ stmt ′1

` i if bool then stmt1 else stmt2
a−→ stmt ′1

` 6∈ [[bool]]i ` i stmt2
a−→ stmt ′2

` i if bool then stmt1 else stmt2
a−→ stmt ′2

` ∈ [[bool]]i ` i stmt a−→ stmt ′

` i while bool do stmt a−→ stmt ′;while bool do stmt

` 6∈ [[bool]]i
` i while bool do stmt nil−−→ skip

Figure 7.1. Semantics of IMPSEC

of programs, one per agent. Given an initial global states = (se, s1, . . . , sn),
defineR[[S]](s) to be the set of runs consistent withS from states. A run r
is consistent with the joint programS from states if r(0) = s, and if the se-
quence of global states inr corresponds to a possible execution of the joint pro-
gram S, that is, if there exists a sequence of joint programsS0, S1, . . . (with

S0 = S) and joint actionsa0, a1, . . . such thatri(t) i Sti
at

i−−→ St+1
i and the

7.3 Strand Spaces and Multiagent Systems 121

statesr(t) = (se, s1, . . . , sn) andr(t+ 1) = (s′e, s
′
1, . . . , s

′
n) satisfy the following

constraints, for all agentsi:

– if ati = upd(var ,m), thens′i = si · update(var ,m);
– if ati = snd(j,m), thens′i = si · send(j,m);
– if ati = rcv, then either there existsj such thatatj = snd(i,m) ands′i = si ·

recv(m), or {a | a ∈ se, a = snd(i,m)} 6= ∅ ands′i = si · recv(m) for some
m such thatsnd(i,m) ∈ se.

Furthermore, the messages that are not delivered are buffered by the environment.
Formally, if

S = {snd(j,m) | ∃i.ati = snd(j,m)}
R = {snd(j,m) | ∃j.atj = rcv, s′j = sj · recv(m)},

thens′e = (se ∪ S)−R.
If Σ is a set of initial states, defineR[[S]](Σ) to be the set of all runsr consistent

with S from some states in Σ. Thus, given a joint programS and a set of initial
global stateΣ, the systemR[[S]](Σ) models the protocol represented by the joint
programS.

Note that there is a clear relationship between IMPSEC programs and process
calculi of the kind we described in Section 6.4.2. Intuitively, we can think of
IMPSEC programs as written in a sequential fragment of a process calculus. (While
IMPSEC does not have a concurrency operator, it is straightforward to add one.)
One difference is that the semantics of IMPSEC is more concrete, in that there is an
explicit scheduler in the form of the environment. The semantics above does not
take advantage of this flexibility, since the environment is simply used as a buffer
to hold messages in transit. Moreover, connectivity assumptions (for instance,
network topology) can also be added to the environment, rather than encoded in
the process describing the system as a whole. It remains to compare the respective
advantages and disadvantages of these approaches to modeling protocols.

7.3 Strand Spaces and Multiagent Systems

The strand-spaces framework is a recent popular framework for the analysis of se-
curity protocols. Roughly speaking, the strand space corresponding to a protocol is
the set of the traces of the various interactions between the agents under considera-
tion. Strand spaces are meant to capture the “causality” between the various events
of a protocol; According to the strand-space theory, an event causes an other event
if the presence of the latter implies the presence of the former. Thus, a causality
relation in this sense is simply an authenticating relation, of the kind described in

122 7 Modeling Security Protocols

Section 6.3. There are clear similarities between strand spaces and multiagent sys-
tems, as introduced above. We examine the relation between these two frameworks
more carefully, focussing on strand spaces as a tool for modeling protocols.

The key issue in relating the two frameworks is the handling of agents. Most im-
portantly, an agent has a state that is shared across all the interactions that the agent
performs. In multiagent systems, there is a clear notion of an agent participating in
an interaction. In strand spaces, there is not. Each protocol interaction (described
by a strand) is viewed as independent from all others. In fact, each strand can be
viewed as representing a different agent. This approach to modeling agents is de-
liberate in the definition of strand spaces, and gives a theory that yields general
results. Strand spaces do treat agents, in a fashion, by essentially assigning to ev-
ery strand a name representing the “agent” executing the strand. However, it is still
the case that strands corresponding to the same “agent” can exchange values only
through explicit communication, i.e. there is no shared state across the strands cor-
responding to the same “agent” name. For all intents and purposes, these strands
may as well be assigned to different actual agents.

To highlight the role of agents, we provide a family of translations from strand
spaces tostrand systems, a subclass of multiagent systems related to security sys-
tems that seem to capture the intuition underlying strand spaces. The translations
are parameterized by an assignment from strands to agents. This assignment as-
sociates with a strand the agent performing the protocol interaction described by
the strand. Such an assignment captures the intuition that different strands can
potentially be executed by the same agent.

Why is the role of the agents so significant? For the protocols typically consid-
ered in the literature it is not. On the other hand, it should be clear that belief and
knowledge are useful concepts when reasoning about security protocols. There are
a number of ways that an adversary can gain knowledge in a system. Certainly
when an adversary intercepts a message, he learns the contents of the message.
But he may learn much more if he knows the protocol being run. In addition, dif-
ferent agents representing the same adversary may be able to pool the information
they have acquired. In any case, as soon as one talks about belief or knowledge,
there must be agents in the picture to which belief or knowledge is ascribed. One
advantage of a multiagent system is that it explicitly identifies agents and provides
an easy way to ascribe knowledge to agents In the context of security, that means
we are forced to reason about, for example, which names represent the same agent
or which ones may represent the same agent.

Significantly, the translations in this section are not surjective. Some strand
systems are not the image of any strand space, regardless of the assignment of
agents to strands. This is not just an artifact of our particular translation. Any
translation from strand spaces to strand systems that preserves the message history

7.3 Strand Spaces and Multiagent Systems 123

of the agents, in a precise sense, cannot be surjective. Intuitively, this is because
in a strand space we cannot say “either this sequence of events happens or that
one does, but not both”. This indicates a fundamental lack of expressiveness in the
current formulation of strand spaces.

LetM be the set of possible messages that can be exchanged by the agents in a
protocol.1 A signed termis a pair〈σ, u〉 with σ ∈ {+,−} andu ∈ M . A signed
term 〈+, u〉 represents the sending of messageu and is typically written+u, and
a signed term〈−, u〉 represents the reception of messageu and is typically written
−u. We write (±M)∗ for the set of finite sequences of signed terms. A strand
space overM signed terms. Astrand spaceoverM consists of a setΣ, whose
elements are calledstrands, together with a trace mapping tr: Σ → (±M)∗,
associating each strand inΣ with a sequence of signed terms. A strand space is
typically represented by the underlying setΣ, leaving the trace mapping implicit.

In a strand spaceΣ, a nodeis a pair〈s, i〉, with s ∈ Σ and an integeri with
1 ≤ i ≤ |tr(s)|. The set of nodes ofΣ is represented byN. The node〈s, i〉 is
said tobelong tothe strands, written 〈s, i〉 ∈ s by abuse of notation. Given a
noden = 〈s, i〉, where tr(s) = 〈σ1, u1〉 . . . 〈σk, uk〉, define term(n) = 〈σi, ui〉.
If n1 andn2 are nodes, the notationn1 → n2 indicates that term(n1) = +u and
term(n2) = −u; the notationn1 ⇒ n2 indicates that bothn1 andn2 occur on the
same strands andn1 = 〈s, i〉 andn2 = 〈s, i + 1〉. Note that the setN of nodes
together with both sets of edgesn1 → n2 andn1 ⇒ n2 forms a directed graph
(N, (→ ∪ ⇒)).

A bundle represents a snapshot of a possible protocol execution. For a given
strand spaceΣ, let C = (NC, (→C ∪ ⇒C)) be a subgraph of(N, (→ ∪ ⇒)). The
graphC is abundleif

B1. C is finite,
B2. if n2 ∈ NC and term(n2) is negative, then there is a uniquen1 such that

n1 →C n2,
B3. if n2 ∈ NC andn1 ⇒ n2, thenn1 ⇒C n2,
B4. C is acyclic.

In B2 and B3, becauseC is a graph, it follows thatn1 ∈ NC. A noden is in the
bundleC if it is in NC.

It will be useful in this section to allow infinite bundles. Aninfinite bundleis just
a subgraph of(N, (→ ∪ ⇒)) that satisfies B2–B4 (that is, we no longer require
the finiteness condition B1). Theheightof an infinite bundle is the length of the
longest finite sequence of nodesn1, n2, n3, . . . , nk in C such thatn1 n2
. . . nk, where is either→ or⇒. (A bundle can have infinite height if there

1 The actual contents of the message and the structure ofM are not important for the purpose of this section.

124 7 Modeling Security Protocols

is no bound on the length of the longest sequence of this type.) Of course, all
finite bundles have finite height. It is easy, however, to construct infinite bundles of
infinite height (even if all individual strands have length at most 2). For example,
consider the strand spaceΣ = {si | i ∈ Z}, with a trace mapping tr(si) =
〈−ui,+ui+1〉. The strand spaceΣ itself in this case is an infinite bundle of infinite
height. All the arguments pertaining to strand spaces that are applied to finite
bundles go through without change for infinite bundles of finite height. (Indeed,
they go through for infinite bundles that arewell-founded, in the sense of having
no infinite “descending” sequences of the form. . . n3 n2 n1, although
we end up using only bundles of finite height in our arguments.)

The multiagent systems that will be constructed from the strand spaces repre-
sentation of a protocol are a class of systems we callstrand systems, related to the
asynchronous message-passing systems of Section 7.1, that provide the foundation
for security systems. Due to the assumptions made by the strand-space approach,
namely that events in strands consist of sending and receiving messages, we con-
sider only systems where the local state of an agent is the sequences of messages
that the agent has sent and received. Thus, we deliberately ignore internal actions
such as variable updates (or, more accurately, treat them as irrelevant). There are
other minor differences. For instance, messages do not specify a receiver, so that
send events are of the formsend(u), instead ofsend(a, u), for an agenta. Strand
systems also allow for an infinite number of agents, whereas in the systems we
describe above, there are only finitely many agents. (In this section, we usea for
agent names rather thani, to emphasize this fact.) The definitions earlier in the
chapter generalize to infinitely many agents in a straightforward way. Moreover,
agents are allowed in security systems to have a nontrivial initial state, while for
strand systems, the initial state is always the empty sequence.

7.3.1 Translating Strand Spaces to Systems

We now turn to the problem of translating strand spaces into systems. This is
done by formalizing the strand space intuition that bundles represent snapshots of
possible executions. Our construction derives the possible execution traces in terms
of sequences of bundles, which are then used to construct the runs of the system.

A multiagent system requires an explicit set of agents; a strand space does not.
To perform the translation, specify a setA of agents and a particularagent assign-
mentA : Σ → A, which intuitively associates with each strands ∈ Σ the agent
A(s) executings. In the generated strand system, an agent behaves as if it were
concurrently executing the various strands assigned to it. The motivation behind
this approach is that if the same agent is in reality executing many strands, then it
should share its knowledge across all the strands it is executing.

7.3 Strand Spaces and Multiagent Systems 125

The choice of agents and the agent assignment for a given strand space is left
to the model designer. Different choices lead to different multiagent systems. As
we show at the end of this section, associating a different agent with each strand
enforces the basic strand space tenet that information is exchanged only through
explicit messages, that is, there is no shared state between different strands.

The translation takes as arguments a strand spaceΣ, a setA of agents, and an
agent assignmentA from strands inΣ to agents. To define the translation, first
define a relation on bundles that represents the actions that the agents in the strand
space can perform. Given a strands ∈ Σ and a bundleC, letB-height(s) be the
largesti such that〈s, i〉 ∈ NC. (We takeB-height(s) = 0 if no node ins appears
in C.)2 A function f : Σ → Σ respectsA if A(s) = A(f(s)), that is, the same
agent is associated with both strandss andf(s) for all strandss ∈ Σ. If B1, B2

are (possibly infinite) bundles ofΣ, andf : Σ → Σ is a bijection that respectsA,
we writeB1 vf B2 if the following two conditions hold:

(1) if 〈s, i〉 is inB1, then〈f(s), i〉 is inB2 and term(〈s, i〉) = term(〈f(s), i〉),
(2) if 〈s, i〉 → 〈s′, j〉 is an edge inB1, then〈f(s), i〉 → 〈f(s′), j〉 is an edge

in B2.

These clauses guarantee that the prefix ofs that is inB1 is a prefix of the prefix
of f(s) that is inB2. For example, ifB1 consists of the single node〈s, 1〉 andB2

consists of〈s′, 1〉 and〈s′, 2〉, where term(〈s, 1〉) = term(〈s′, 1〉), thenB1 vf B2,
wheref is the bijection that permutess ands′, while acting as the identity on all
other strands.

For many cases of interest, we can simply take the bijectionf to be the identity;
in that case,B1 vf B2 if and only if B1 is a subgraph ofB2. We discuss the
reason for allowing arbitrary bijections and the role of the bijection at the end of
this section.

We writeB1 7→ B2 if there is a bijectionf : Σ→ Σ that respectsA such that

(1) B1 vf B2, and
(2)

∑
s∈A−1(a)B2-height(f(s))−B1-height(s) ≤ 1 for all agentsa ∈ A.

Informally, B1 7→ B2 if, for each agenta ∈ A, B2 extends the prefix of at most
one strand inB1 corresponding toa, and extends it by at most one node. (Note that
the strandf(s) in B2 extending the prefix of strands in B1 may be different from
s, depending on the definition off .) If B2 does extend the prefix of one of the
strands inB1 corresponding to agenta by one node, letea,B1 7→B2 denote the event
corresponding to that node: if the node isn and term(n) = +u, thenea,B1 7→B2 is
send(u), and if term(n) = −u, thenea,B1 7→B2 is recv(u). Define a7→-chain (or

2 This notion of height of a strand in a bundle should not be confused with the notion of height of a bundle we
defined earlier.

126 7 Modeling Security Protocols

simply a chain) to be an infinite sequence of bundlesB0, B1, . . . such thatB0 is
the empty bundle andB0 7→ B1 7→

Let Chains(Σ,A, A) be the set of all chains inΣ. Associate with every chain
in Chains(Σ,A, A) a run as follows: Given a chainC = B0 7→ B1 7→ . . . and an
agenta ∈ A, definehist ta(C) inductively. Lethist0

a(C) = 〈 〉; let histn+1
a (C) =

histna(C) if no strand corresponding to agenta in Bn is extended inBn+1; oth-
erwise, lethistn+1

a (C) = histna(C) · ea,Bn 7→Bn+1 . (Informally, histn+1
a (C) is the

result of appending tohistna(C) the unique event performed by agenta in going
fromBn toBn+1.) Thus,histna(C) consists of all the events thata has performed
in Bn. Let rC be the run such thatrCa (t) = hist ta(C) and letR(Σ,A, A) = {rC |
C ∈ Chains(Σ,A, A)}.

Theorem 7.1.R(Σ,A, A) is a strand system.

In light of Theorem 7.1, define the mapTA from strand spaces to strand systems
by takingTA(Σ) = R(Σ,A, A).

As we mentioned at the beginning of this section, strand spaces as originally
described can be modeled by taking the set of agents of a strand spaceΣ to beΣ,
and taking the identity functionid as the agent assignment. This captures explicitly
the intuition that strands are independent protocol executions, that for all intents
and purposes may be assumed to be executed by different agents. This is the case
since there is no state shared between strands, and every communication is made
explicit. In other words, there is no conceptual difference between two strandss1
ands2 executed by different processes of an agent or by two distinct agents if there
cannot be any shared state betweens1 ands2.

There is a small amount of information that is lost in the translation from strand
spaces to strand systems, which will become evident in Theorem 7.2 below. This
loss stems from the fact that messages in strand systems are completely anony-
mous. For example, if agent 2 and agent 3 both send a messageu and later agent
1 receives it, there is no way in a strand system to tell if agent 1 receivedu from
agent 2 or agent 3. By way of contrast, in a strand space, there is an edge indicating
who agent 1 received the message from. The multiagent system framework can in
fact keep track of who an agent received a message from by adding an additional
component to the global state; this is the state of theenvironment, which intuitively
describes everything relevant to the system not included in the local states of the
processes.3 We will not bother going into the details of the environment in this sec-
tion, as the issue does not affect our results. We can characterize the information
loss resulting from our translation by defining a relation between globals states of

3 In this particular case, the environment could record the sender of each message that is received at any given
round.

7.3 Strand Spaces and Multiagent Systems 127

R(Σ,Σ, id) and bundles ofΣ. A global state〈σs | s ∈ Σ〉 (recall that hereA = Σ)
is message-equivalentto a bundleB if for eachs ∈ Σ, if σs = 〈e1, . . . , ek〉 then
B-height(s) = k and, for eachi such that1 ≤ i ≤ k, if term(〈s, i〉) = +u thenei
is send(u), and if term(〈s, i〉) = −u thenei is recv(u). Intuitively, a global state
is message-equivalent to any bundle that has the same nodes. This captures the
intuition that an agent receiving a message is not aware of the sender. The follow-
ing theorem shows that, except for this loss of information, our translation from
strand spaces to strand systems essentially identifies bundles and global states (if
all strands are treated as being associated with a different agent).

Theorem 7.2.Every global state ofR(Σ,Σ, id) is message-equivalent to a bundle
of Σ of finite height, and every bundle ofΣ of finite height is message-equivalent
to a global state ofR(Σ,Σ, id).

If the environment state is used to record the sender of each received message,
Theorem 7.2 can be strengthened to a 1-1 correspondence between global states of
R(Σ,Σ, id) and bundles ofΣ of finite height.

With these results in hand, we now discuss some of the choices made, in par-
ticular, why we allowed infinitely many agents, infinite bundles, and an arbitrary
bijectionf in the definition of7→. It turns out that these choices are somewhat re-
lated. First observe that, in Theorem 7.2, each strand was identified with an agent.
Thus, if there are infinitely many strands in the strand space, the corresponding
strand system requires infinitely many agents. Naturally, if we restrict our analysis
to strand spaces with only finitely many strands, then we can take the correspond-
ing strand systems to have only finitely many agents. Infinite bundles are needed in
order to prove Theorem 7.1 when there are infinitely many agents. To understand
why, consider a strand spaceΣ, whereΣ = {s1, s2, . . .} and tr(sn) = 〈+un〉. In
other words, strandsn has exactly one node, at which a send action is performed.
If a different agent is associated with each strand, then in the corresponding strand
system, the set of histories for agentn will consist of the empty history and the
history 〈send(un)〉. The system based on this set of histories has a run where all
the agents send their message simultaneously at round 1. This history corresponds
to the infinite bundle consisting of all the strands inΣ. Intuitively, if all the agents
can send a message, there is no reason that they should not all send it in the first
round.

Why do strand spaces allow infinitely many strands? Often, security protocols
rely onnonces, which are values guaranteed to be unique within a run of the sys-
tem. Strand spaces model nonces by specifying a different strand for each possible
value of a nonce. Since, theoretically, there can be infinitely many nonces (as a
consequence of uniqueness), it is necessary to consider infinitely many strands for

128 7 Modeling Security Protocols

a given protocol. Note that these strands do not necessarily represent computations
of differentagents. Indeed, it probably makes sense to consider them all as being
performed by the same agent (but at most one of them being performed in a given
execution of the protocol).

The bijectionf in vf is not needed if a different agent is associated with each
strand. (That is, in this case it suffices to takef to be the identity.) Similarly,f
is not needed if there is a boundk on the length of all strands inΣ. Indeed, it
is needed only to take care of the possibility that there is an infinite sequence of
strands, each intuitively a prefix of the next, and all associated with the same agent.
For example, consider the strand spaceΣ where, again,Σ = {s1, s2, . . .} but now
tr(sn) = 〈+u1, . . . ,+un〉. Intuitively, in this strand space,sn is a substrand of
sn+1 (although, formally, there is no notion of substrand in strand spaces). Suppose
that the mapping is such thatA consists of one agenta1 andA associates all the
strands inΣ with a1. If such a mapf (or, equivalently, requiredf to be the identity)
were not allowed, then the only chains would be those of the formB0 7→ B1 7→
. . . 7→ Bk 7→ Bk 7→ Bk 7→ . . . (for some finitek), where, for some strands, each
Bi is a prefix ofs. Applying the mapping to this collection of strands gives a single
set of histories

Va1 = {〈send(u1)〉, 〈send(u1), send(u2)〉, 〈send(u1), send(u2), send(u3)〉, . . .}

in the resulting system, where each history inVa1 is finite. However, the system
generated by this set of histories contains an infinite run, which sends message
ui at time i. Unfortunately, there is no chain corresponding to this run. On the
other hand, once nontrivial bijectionsf are allowed, there is no problem. Abusing
notation somewhat, there is a chain of the forms1 7→ s2 7→ s3 7→ . . . wherea1’s
history is unbounded, sincesk vfk

sk+1, wherefk permutessk andsk+1 and is
the identity on all other strands.

Intuitively, if f must be the identity, then every chain must “choose” the strand it
is executing, which implicitly corresponds to choosing how many messages to send
in that particular run. Providing a functionf that permits “jumping” to strands with
the same prefix between any consecutive bundles of a chain essentially models an
agent that does not choose the length of the strand up front, but rather just performs
the actions (and thus, if one strand is a prefix of another, it cannot tell which of the
two strands it is performing).

While it is important to recognize these subtleties, they do not arise in most pro-
tocols. For instance, strands for specific protocols will typically be of bounded
length, and therefore the bijectionf is not needed to define chains in the corre-
sponding strand space.

7.3 Strand Spaces and Multiagent Systems 129

7.3.2 Translating Systems to Strand Spaces

What about the other direction, that is, the the translation of strand systems into
strand spaces. Specifically, given a strand systemR, is there a strand space which
maps toR under a suitable agent assignment? In general, there is not. This result
is not an artifact of our translation, but reflects a fundamental difference between
strand spaces and strand systems. In particular, it does not depend on any of the
subtleties that were pointed out at the end of last section.

To understand the difficulties, consider the following simple systemR1. It es-
sentially contains two runsr1 andr2, with distinct messagesx, y, u, v:

-

-

-

3

2

1

r
r

�
�
��

u

r
rA

A
AU

v

-

-

-

3

2

1

r
rA

A
AU

x r
r

�
�
��y

Because the MP1–3 assumptions on strand systems allow arbitrary delays between
the events, there are more than two runs in the system; the essential fact is that,
in any given run, agent2 communicates only with agent1 or only with agent3.
Formally,R1 is the strand system generated by taking:

V1 = {〈〉, 〈recv(u)〉, 〈recv(u), send(v)〉}
V2 = {〈〉, 〈send(u)〉, 〈send(x)〉, 〈send(u), recv(v)〉, 〈send(x), recv(y)〉}
V3 = {〈〉, 〈recv(x)〉, 〈recv(x), send(y)〉}.

Under the mapping presented in the previous section, there does not exist a
strand space that maps to this system, for any agent assignment. Intuitively, any
strand space modeling the systemR1 will need at least strands corresponding to
runsr1 and strands corresponding to runsr2. Since these sets of strands do not in-
teract (that is, they do not exchange any message), the translation of Section 7.3.1
will produce a system that contains runs that amount to all possible interleaving
of the strands corresponding tor1 andr2. This results in a system that is strictly
larger thanR1. For example, it must contain runs with the following histories for
agents 1, 2, and 3:

-

-

-

3

2

1

r
r

�
�
��

u

r
rA

A
AU

v r
rA

A
AU

x r
r

�
�
��y

130 7 Modeling Security Protocols

-

-

-

3

2

1

r
r

�
�
��

u

r
rA

A
AU

vr
rA

A
AU

x r
r

�
�
��y

Roughly speaking, what is happening in the strand system is that agent 2 non-
deterministically decides whether to send messageu to agent 1 or messagex to
agent 3. In any run of the system, it sends one or the other, but not both. The prob-
lem here is that, in the strand-space framework, we cannot say “one or the other,
but not both”.

To make this precise, given an agent assignmentA, define a translationT from
strand spaces to strand systems to beA-history preservingif, given a strand space
Σ,

– for each agenta ∈ A, run r ∈ T (Σ), and timet, there exists a bundleC in Σ
such that the events in agenta’s history ra(t) are exactly those that appear in
nodes〈s, i〉 in C such thatA(s) = a;

– conversely, for each agenta ∈ A and bundleC of finite height inΣ, there exists
a runr ∈ T (Σ) and timet such that the events in agenta’s history ra(t) are
exactly those that appear in nodes〈s, i〉 in C such thatA(s) = a.

Notice that the translationTA defined in the previous section isA-history pre-
serving.

Theorem 7.3. There is no agent assignmentA andA-history preserving transla-
tion T from strand spaces to strand systems such that the strand systemR1 is in
the image ofT .

The example above suggests that in general, systems arising from an agent run-
ning a nondeterministic protocol may not be the image of a strand space under
the particular translation used. The problem in fact is more profound. Even if the
agents are running deterministic protocols, the nondeterminism inherent in the de-
lay of messages delivery may prevent a system from being the image of a strand
space. Consider the following system with two agents. Agent 1 sends a message
u to agent 2. If agent 2 hasn’t received it yet, and hasn’t sent anack message yet,
she sends anack . When she gets messageu, she sends anack . Here, the strand
space intuitively corresponding to this situation will include a strand for agent 1
where he sendsu. For agent 2, we can consider at least the following two strands,
〈−u,+ack〉 and〈+nack ,−u,+ack〉. One can check that there exists a chain lead-
ing to the bundle made up of the following strand prefixes:〈+u〉, 〈−u,+ack〉, and
〈+nack〉, leading, through our translation, to a possible history for agent agent of
the form〈recv(u), send(ack), send(nack)〉, which does not arise in the original

7.3 Strand Spaces and Multiagent Systems 131

system. In this example, the problem does not occur because the agent makes a
choice, but, intuitively, because the “environment” is making a choice when deliv-
ering messages.

7.3.3 Discussion

In this section, we have investigated the relationship between strand spaces and
multi-agent systems. Our results show that strand spaces are strictly less expressive
than strand systems, a subclass of multiagent systems that seems to capture the
assumptions underlying strand spaces, in two quite distinct respects. The first is
that strand spaces cannot express choice, the fact that exactly one of two possible
behaviours is chosen. The second is that strand spaces have no notion of agents.

How serious are these two issues? That depends, of course, on what we are
trying to prove. Consider first the inability of strand spaces to express choice.
Typical properties properties proved using strand spaces have the form “for all
bundles in the strand space, X happens”. One way to interpret Theorem 7.3 is
that when a strand space is used to model a system, some of the bundles may not
correspond to situations that actually arise in the system—those bundles can be
seen as “impossible” bundles. This is not a problem, of course, if the property of
interest in fact holds in the larger system. However, this may not always be the
case. For example, we may well want to prove that a property like “agent 2 sends
at most one message” holds in all executions of a protocol. If the protocol also has
the property that agent 2 can send messages to either 1 or 3 (as is the case in the
protocol described by the systemR1 in Section 7.3.2), then the fact that agent 2
sends at most one message in every execution of the protocol will simply not be
provable in the strand-space framework.

The runs of a strand system can be viewed as a linearization of bundles, that is,
an explicit ordering of the actions performed by agents in different bundles. This
suggests that results about strands can be imported to runs. The results in this
section point to subtleties in doing this. More precisely, while results about strands
can be imported to results about runs (the runs that arise from translating the strand
space to a system), the converse may not be true, depending on the expressiveness
of the language.

Turning to the issue of agents, the strand-space framework assumes that mes-
sages relayed between strands form the only means of exchanging information
between strands. In other words, there is no shared state between strands. There-
fore, for all intents and purposes, we can imagine that every strand is executed by a
different agent. On the other hand, if the same agent is executing two strands then,
intuitively, it should know whatever is happening on both strands, without requir-
ing communication between them. Furthermore, as soon as one wants to analyze

132 7 Modeling Security Protocols

the properties of strand spaces using belief and knowledge, agents to which the
knowledge can be ascribed are needed. But even without bringing in knowledge,
we need to be careful in interpreting security results proved under the assumption
that different agents perform different strands. Clearly this assumption is not, in
general, true. Ideally, security protocols should be proved correct under any “rea-
sonable” assignment of agents to roles in the security protocol. At the very least it
should be clear under which assignments the result holds. For instance, it is known
that methods for the analysis of cryptographic protocols that fail to handle multiple
roles for the same agent do not yield dependable results, as they may not reveal
multi-role flaws. Multi-role flaws commonly arise when a cryptographic protocol
logic implicitly assumes that if an agenta takes on a roleA in some session, then
he will not also take on another roleB in some different session. This assumption
is often a consequence of the identification of the notions of role and agent. It
is possible to show that reasonable protocols that can be proved correct under the
assumption that an agent takes on the same role in all sessions are flawed if this
assumption is dropped.

The set of runs in the system and the agent assignment are particularly significant
when considering specifications that are notrun-based. A run-based specification
is checked on a per-run basis. For example, “agent 2 sends at most 1 message” is
a run-based specification: given a run, one can check whether the property holds
for that run. A run-based specification holds for a set of runs if it holds for all runs
in the set. In contrast, aknowledge-based specificationsuch as “after running the
protocol, agent 2 knowsX” cannot be checked on a per-run basis, as it relies on
the set of runsas a wholeto verify the property. It holds if, in all runs in the system
that agent 2 considers possible after running the protocol,X holds. Clearly it does
not suffice to look at an individual run to determine whether such a property holds.
Similarly, probabilistic specifications like “X holds in at most 3% of the runs”
also depend on the whole system and cannot be checked simply by examining
individual runs.

Typical specifications in the security literature are safety properties, which are
often paraphrased as “bad things don’t happen”, and hence are run-based. Run-
based specifications have the property that if they hold in a system, they hold in
any subset of the runs of the system. It is “safe” to prove that a run-based specifi-
cation holds of a strand space which translates to a superset of the intended system.
Proving that the property holds for “impossible” runs does not hurt. This is not the
case for properties that are not run-based. We believe that knowledge-based speci-
fications, as well as probabilistic ones, will play a significant role in the design and
analysis of security protocols. Fairness is a good example. A protocol isfair if
intuitively no protocol participant can gain an advantage over other participants by
misbehaving. In the context of fair exchange protocols where two agents exchange

Notes 133

one item for another, fairness ensures that either each agent receives the item it
expects, or neither receives any information about the other’s item. This notion
of “not receiving any information” can be interpreted as meaning that no knowl-
edge is gained. The results in this section suggest that strand spaces, as currently
defined, will have difficulty handling such specifications.

Notes

The work in Section 7.3 first appeared in [Halpern and Pucella 2003b].
Multiagent systems are a popular model of protocols from the distributed com-

puting literature. Our presentation in Section 7.1 is based on that of Fagin, Halpern,
Moses, and Vardi [1995, Chapter 4]. Arguments for capturing asynchrony by
considering all runs consistent with the constraints MP1–3 are given by Fagin,
Halpern, Moses, and Vardi [1995, Section 4.4.6]. Variants of multiagent systems
have been previously considered in the security literature [Halpern, Moses, and
Tuttle 1988; Bieber 1990; Abadi and Tuttle 1991; Syverson and Oorschot 1994;
Stubblebine and Wright 1996]. There are minor differences between the asyn-
chronous message-passing systems described in this chapter and those from Fagin,
Halpern, Moses, and Vardi [1995]. The main one is that messages in this chapter
are essentially anonymous. A message does not specify a sender or an actual re-
ceiver. Messages in the asynchronous message-passing systems of [Fagin, Halpern,
Moses, and Vardi 1995], on the other hand, are usually not anonymous: the events
are of the formsend(u, a, b) (u is send froma to b) andrecv(u, a, b) (u is received
by b from a).

The generation of multiagent systems from programs is adapted from the gen-
eral approach of Fagin, Halpern, Moses, and Vardi [1995, Chapter 5]. They define
the notion of a protocol, which is just a function from local states to actions, and
show how protocols in that sense give rise to multiagent systems by being execut-
ing in a context, which includes a protocol for the environment. They introduce a
programming language based on state machines, and show how the semantics of
such a language is a protocol, that can then be used to generate a system. They
mention that it is possible to extend the language with higher-level features, but
that it is not necessary for the purpose of expressiveness. Since we are not aiming
for generality here, we dispensed with the general notion of a context and envi-
ronment protocol, essentially hardwiring it in into the semanticsR[[S]]. Moreover,
we also dispensed with the intermediate notion of protocol, and gave a semantics
directly to programs. Of course, it is possible to express the work in Section 7.2 us-
ing the framework of Fagin, Halpern, Moses, and Vardi [1995], but doing so might
lose some of the intuition of the underlying semantics, since it would amount to

134 7 Modeling Security Protocols

compiling IMPSEC into a lower-level language. The semantics of IMPSEC is es-
sentially a form of small-step operational semantics [Winskel 1993], in the tradition
of Plotkin’s [1981] structural operational semantics.

Strand spaces were introduced by Thayer, Herzog, and Guttman [1999b]. Athena
[Song 1999] performs automated checking of security protocols expressed in the
strand-space framework using a mixture of model checking and theorem proving.

It is possible to augment strand spaces in such a way that restores the expressive-
ness. One way to do this is by adding a notion of conflicting strands that essentially
say that either one of two strands can appear in a bundle, but not both. See Halpern
and Pucella [2003b] for details. Independently, Crazzolara and Winskel [2001]
reached the same conclusions, and came up with a similar fix.

Snekkenes [1992] studies multi-role flaws in the context of various cryptographic
protocol logics. Recent work on analyzing mixed protocols using strand spaces
[Thayer, Herzog, and Guttman 1999a] shows that strand spaces can be extended to
deal with what essentially amount to multi-role flaws. However, the approach often
requiresphantom messages(messages that are not actually exchanged during runs
of the protocols) to carry state information between the different protocol strands
corresponding to the same agent. Logics for reasoning explicitly about names of
agents, the kind of notions that arise in multi-role flaws, have been described by
Halpern and Grove [1993] and Grove [1995].

Some of the topics explored in Section 7.3 appear in various forms in other
work. For example, Cervesato et al. [2000] define a notion ofparametric strand,
essentially a strand where messages may contain variables. Parametric strands
correspond to roles, which are implicit in the original work on strand spaces. The
work of Cervesato et al. also deals with the evolution of the system described by
a strand space; they define a one-step transition between bundles. The transition is
reminiscent of the one we describe in Section 7.3.1, but is restricted to extending
a single strand at a time. (They also allow actions specific to their formalization,
such as the instantiation of a strand from a parametric strand.) Parametric strands
also appear as trace-types in Athena, a model-checker based on the strand space
approach [Song 1999].

The formal definition of a safety property is due to Alpern and Schneider [1985].
The distinction between run-based specification and knowledge-based specifica-
tion is clarified by Halpern [2000].

Fair exchange protocols are introduced and described, for instance, by Ben-Or,
Goldreich, Micali, and Rivest [1990], Asokan, Shoup, and Waidner [1998], and
Shmatikov and Mitchell [2000].

8
A Logic for Reasoning about Security Protocols

A RGUABLY, the problem of verifying that a protocol satisfies particular secu-
rity properties (for instance, confidentiality) has received the most attention

in the recent literature on security protocol analysis. However, the task of speci-
fying security properties themselves is far from having received a satisfactory so-
lution. Many formal methods for the analysis of security protocols rely on spe-
cialized logics to rigorously state and prove properties of the protocols they study.
Here, we take a very general view of logic, to encompass formal methods where
the specification language is implicit, or where the properties to be checked are
fixed. Those logics provide constructs for expressing the basic notions involved
in security protocols, such as secrecy, recency, and message composition, as well
as providing means (either implicitly or explicitly) for describing the evolution of
the knowledge or belief of the agents as the protocol progresses. Indeed, informal
specifications of security in the literature are typically phrased in terms of knowl-
edge. It thus seems natural to use a specification language where specifications are
written directly in terms of knowledge. Knowledge specifications also have other
advantages. They tend to be more abstract, since they need not specify exactly how
the agents obtain knowledge. For instance, it is easy to write a property that says
that an adversary never knows a key, instead of writing a property saying that the
adversary never receives the key unencrypted, or never finds the key sitting in a
database, and so on.

There is of course another aspect to security protocols analysis. Every logic for
reasoning about security protocols aims at proving security in the presence of ma-
licious adversaries. To analyze the effect of adversaries, a security logic specifies
(again, either implicitly or explicitly) anadversary model, that is, a description of
the capabilities of adversaries. Almost all existing logics are based the Dolev-Yao
adversary model already described in Section 6.2. Recall that a Dolev-Yao adver-
sary can compose messages, replay them, or decipher them if he knows the right
keys, but cannot otherwise “crack” encrypted messages.

135

136 8 A Logic for Reasoning about Security Protocols

The Dolev-Yao adversary is a useful abstraction, in that it allows reasoning about
protocols without worrying about the actual encryption scheme being used. It
also has the advantage of being restricted enough that interesting theorems can
be proved with respect to security. However, in many ways, the Dolev-Yao model
is too restrictive. For example, it does not consider the information an adversary
may infer from properties of messages and knowledge about the protocol that is
being used. Recall the Duck-Duck-Goose protocol of Section 6.2: an agent has an
n-bit key and, according to her protocol, sends the bits that make up her key one
by one. Of course, after intercepting these messages, an adversary will know the
key. However, there is no way for security logics based on a Dolev-Yao adversary
to argue that, at this point, the adversary knows the key. Another limitation of the
Dolev-Yao adversary is that it does not easily capture probabilistic arguments. Af-
ter all, the adversary can always be lucky and justguessthe appropriate key to use,
irrespective of the strength of the encryption scheme.

The importance of being able to reason about adversaries with capabilities be-
yond those of a Dolev-Yao adversary is made clear when looking at the sometimes
subtle interactions between the cryptographic protocol and the encryption scheme.
It is known that various protocols that appear secure under a symbolic encryption
scheme can be insecure when implemented using encryption schemes with specific
properties. A more refined logic for reasoning about security protocols will have to
be able to handle adversaries more general than the Dolev-Yao adversary. Because
they effectively build in the adversary model, existing formal methods for analyz-
ing protocols are not able to reason directly about the effect of running a protocol
against adversaries with properties other than those built in.

In this chapter, we describe a logic for reasoning about security protocols that
allows an explicit and natural modeling of adversaries. The idea, which should be
unsurprising at this point, is to model the adversary in terms of what the adversary
knows. This approach has some significant advantages. Logics of knowledge have
been shown to provide powerful methods for reasoning about trace-based execu-
tions of protocols. They can be given semantics that is tied directly to protocol
execution, using the models introduced in the last chapter, thus avoiding problems
of having to analyze an idealized form of the protocol. A straightforward applica-
tion of logics of knowledge leads to the conclusion that in the Duck-Duck-Goose
protocol, the adversary knows the key. Logics of knowledge can also be extended
with probabilities so as to be able to deal with probabilistic phenomena. Unfor-
tunately, as we saw in Chapter 2, traditional logics of knowledge suffer from a
well-known problem known as thelogical omniscienceproblem: an agent knows
all tautologies and all the logical consequences of her knowledge. The reasoning
that allows an agent to infer properties of the protocol also allows an adversary to

8.1 The Logic 137

deduce properties that cannot be computed by realistic adversaries in any reason-
able amount of time.

This is exactly the motivation for explicit knowledge, and the particular approach
described in Chapter 2, algorithmic knowledge: assume that agents (including ad-
versaries) have “knowledge algorithms” that they use to compute what they know.
The capabilities of the adversary can be captured by his algorithm. Hence, Dolev-
Yao capabilities can be provided by using a knowledge algorithm that can only
compose messages or attempt to decipher them using known keys. By changing the
algorithm, the capabilities of the adversary can be extended, so that he can attempt
to crack encrypted messages by factoring (in the case of RSA), using cryptanal-
ysis, or just by guessing keys. Moreover, the algorithmic knowledge framework
can also handle the case of an agent sending the bits of his key, by providing the
adversary’s algorithm with a way to check whether this is indeed what is happen-
ing. By explicitly using algorithms, it is possible to analyze the effect of bounding
the resources of the adversary, and thus make progress toward bridging the gap
between the symbolic analysis of cryptographic protocols and more computational
accounts of cryptography. (See Chapter 10.) Note that both traditional knowledge
and algorithmic knowledge are necessary in the analysis. Traditional knowledge
is used to model an agent’s beliefs about what can happen in the protocol; algo-
rithmic knowledge is used to model the adversary’s computational limitations (for
example, the fact that he cannot factor).

The focus of this work is on developing a general and expressive framework for
modeling and reasoning about security protocols, in which a wide class of adver-
saries can be represented naturally. Therefore, we emphasize the expressiveness
and representability aspects of the framework, rather than studying the kind of
security properties that are useful in such a setting, or developing techniques for
proving that properties hold in the framework. These are all relevant questions that
need to be pursued once the framework proves useful as a specification language.
We will return to this point in Chapter 10.

8.1 The Logic

The goal is to be able to reason about properties of security systems as defined in
Section 7.1, including properties involving the knowledge of agents in the system.
To formalize this type of reasoning, we first need a language. Take as a base
language the logicLKX

n of Chapter 2. Recall that starting with a setΦ0 of primitive
propositions, which we can think of as describing basic facts about the system,
such as “the key isk” or “agentA sent the messagem toB”, formulas ofLKX

n (Φ0)

138 8 A Logic for Reasoning about Security Protocols

are formed by closing off under negation, conjunction, and the modal operators
K1, . . .,Kn andX1, . . . , Xn.

Recall thatLKX
n is given a semantics in terms of algorithmic knowledge struc-

tures. A system can be viewed as an algorithmic knowledge structure, once we
add a functionπ telling us how to assign truth values to the primitive proposi-
tions, and add knowledge algorithms for the agents. Aninterpreted algorithmic
knowledge systemI is a tuple(R, π, A1, . . . , An), whereR is a system,π is an in-
terpretation for the propositions inΦ0, andAi is the knowledge algorithm of agent
i. The interpretationπ assigns truth values to the primitive propositions at the
global states. Thus, for everyp ∈ Φ0 and global states that arises inR, we have
π(s)(p) ∈ {true, false}. Of course,π also induces an interpretation over the points
of R; simply takeπ(r, t) to beπ(r(t)). We refer to the points of the systemR as
points of the interpreted algorithmic knowledge systemI. The knowledge algo-
rithms are used to compute the explicit knowledge of the agents. In local state`,
the agent computes whether he knowsϕ by applying his knowledge algorithm to
input (ϕ, `).

The interpreted algorithmic knowledge systemI = (R, π, A1, . . . , An) can be
made into an algorithmic knowledge structure by taking the possible worlds to be
the points ofR, and by definingVi so thatVi(r, t) = ri(t). Thus, agenti considers
a point(r′, t′) possible at a point(r, t) if i has the same local state at both points;
thus, the agents’ knowledge is completely determined by their local states. Define
(r, t) ∼i (r′, t′) if and only if ri(t) = r′i(t

′).
Define what it means for a formulaϕ to be true (or satisfied) at a point(r, t) in

an interpreted algorithmic knowledge systemI, written (I, r, t) |= ϕ, inductively
as follows:

(I, r, t) |= p if π(r, t)(p) = true
(I, r, t) |= ¬ϕ if (I, r, t) 6|= ϕ

(I, r, t) |= ϕ ∧ ψ if (I, r, t) |= ϕ and(I, r, t) |= ψ

(I, r, t) |= Kiϕ if (I, r′, t′) |= ϕ for all (r′, t′) such thatri(t) = r′i(t
′)

(I, r, t) |= Xiϕ if Ai(ϕ, ri(t)) = “Yes”.

As before, the first clause shows how to use the interpretationπ to define the se-
mantics of the primitive propositions. The next two clauses, which define the se-
mantics of¬ and∧, are the standard clauses from propositional logic. The fourth
clause is designed to capture the intuition that agenti knowsϕ exactly ifϕ is true
in all the worlds thati thinks are possible. The last clause captures the fact that
explicit knowledge is determined using the knowledge algorithm of the agent.

To reason about security protocols, consider a specific set of primitive proposi-
tionsΦS

0 ⊆ Φ0:

8.1 The Logic 139

– send i(m): agenti sent messagem
– recv i(m): agenti received messagem
– has i(m): agenti has messagem.

Intuitively, send i(m) is true when agenti has sent a message containingm at some
point, recv i(m) is true when agenti has received messagem at some point, and
has i(m1) is true if agenti has received a messagem2 such thatm1 v m2. Note
that thehas i predicate is not restricted by issues of encryption: sincem v {m}k,
the has i predicate characterizes the messages that agenti has implicitly in his
possession, given the messages that he has received.

An interpreted algorithmic knowledge security systemis simply an interpreted
algorithmic knowledge systemI = (R, π, A1, . . . , An) whereR is a security sys-
tem, andπ is anacceptableinterpretation, that is, it gives the following fixed inter-
pretation for the primitive propositions inΦS

0:

– π(r, t)(send i(m)) = true if and only if there existsj andm′ such thatm v m′

andsend(j,m′) ∈ ri(t)
– π(r, t)(recv i(m)) = true if and only if recv(m) ∈ ri(t)
– π(r, t)(has i(m)) = true if and only if there existsm′ such thatm v m′ and

recv(m′) ∈ ri(t).

What properties can we express using the above language? The property that
will be the focus of this chapter is that of confidentiality of messages, as described
in Section 6.3. Intuitively, confidentiality guarantees that throughout a protocol
interaction, the adversary does not come to know a particular message. Confiden-
tiality properties are stated naturally in terms of knowledge, for example, “agent1
knows that the keyk is a key known only to agent2 and himself”. Confidential-
ity properties are well studied, and central to most of the approaches to symbolic
reasoning about security protocols. Higher-level security properties, such as au-
thentication properties, can often be derived from confidentiality properties.

To illustrate some of the issues involved, consider the Needham-Schroeder pub-
lic key authentication protocol, which was presented in Section 1.2:

1. A→ B : {|nA, A|}kB

2. B → A : {|nA, nB, B|}kA

3. A→ B : {|nB|}kB
.

This protocol uses asymmetric cryptography, andkA andkB are agentA andB’s
respective public encryption keys. The valuesnA andnB are nonces, which are
assumed to be unpredictable. The confidentiality property of this protocol can be
expressed informally as follow: under suitable assumptions on the keys known to
the adversary and the fact thatB is running his part of the protocol,A knows that

140 8 A Logic for Reasoning about Security Protocols

nA andnB are kept confidential between her andB.1 From this, it is possible to
derive an authentication property, namely thatA knows that she is interacting with
B, because she has received a message containingnA, which onlyB could have
produced. Similarly,A also knows that whenB receives her message,B will know
that he is interacting withA, because onlyA knows the noncenB which is part of
the last message. Similar reasoning can be applied toB. This argument relies on
the confidentiality of the noncesna andnb. Using knowledge, this is simply the
fact that no agent butA andB knowshas i(nA) or has i(nB).

However, the knowledge operator suffers from the drawback of logical omni-
science. More specifically, at every point where an adversaryi intercepts a mes-
sage{|nA, nB, B|}kA

, thenKi(has i(nA)) is true (sincenA v {|nA, nB, B|}kA
),

and hence the adversary knows that he has seen the noncenA, irrespectively of
whether or not he knows the decryption key corresponding tokA. This is clearly
not a desirable result. The adversary having the implicit knowledge thatnA is part
of the message does not suffice, in general, for the adversary toexplicitlyknow that
nA is part of the message. Intuitively, the adversary may not have the capabilities
to realize he has seennA.

A more reasonable interpretation of confidentiality in this particular setting is
expressed by¬Xi(has i(nA)), that is, the adversary does not explicitly know (can-
not compute) whether he has seen the noncenA. Most logics of security introduce
special primitives to capture the fact that the adversary can see a messagem en-
crypted with keyk only if he has access to the keyk. Doing this hardwires the
capabilities of the adversary into the semantics. Changing these capabilities re-
quires changing the semantics. With algorithmic knowledge, we simply need to
supply the appropriate knowledge algorithm to the adversary, capturing his capa-
bilities. In the following section, we examine in more detail the kind of knowledge
algorithms that correspond to interesting capabilities.

8.2 Passive Adversaries

As we outlined in Sections 7.1 and 8.1, interpreted algorithmic knowledge security
systems provide a foundation for representing security protocols, and support a
logic for writing properties based on knowledge, both traditional and algorithmic.
For the purposes of analyzing security protocols, traditional knowledge models an
agent’s beliefs about what can happen in the protocol, while algorithmic knowledge
models the adversary’s capabilities, possibly resource-bounded. We have not said
anything yet as to what kind of algorithms are useful, short of the fact that we

1 Strictly speaking, it may make more sense to talk about belief in the confidentiality ofnA andnB rather than
belief. For simplicitly, we will talk about knowledge in this chapter, but most of what we say about knowledge
can be said about belief.

8.2 Passive Adversaries 141

typically care about sound knowledge algorithms. For the purpose of security, the
knowledge algorithms given to adversaries are the most important, as they capture
the facts that adversaries can compute given what they have seen. In this section,
we show how we can capture different capabilities for the adversary rather naturally
in this framework. We first show how to capture the standard Dolev-Yao model
of adversary. We then show how to account for adversaries in the Duck-Duck-
Goose protocol, as well as adversaries that can perform self-validating guesses
(also known as offline-dictionary attacks).

For this section, assume a passive (or eavesdropping) adversary, that simply
records every message exchanged by the agents. For simplicity, assume a sin-
gle adversary per system; our results extend to the general case immediately, but
the notation starts becoming cumbersome. Passive adversaries can be modeled
formally as follows. Aninterpreted algorithmic knowledge security system with
passive adversarya (for a ∈ {1, . . . , n}) is an interpreted algorithmic knowledge
security systemI = (R, π, A1, . . . , An) such that for all points(r, t), the following
constraints are satisfied:

P1. ra(t) consists only ofrecv(u) events;
P2. there exists an eventrecv(u) in ra(t) for every eventsend(j, u) in rj(t),

for all j.

P1 captures the passivity of the adversary—he can only receive messages, not send
any; P2 says that every message sent by an agent is copied to the adversary’s local
state.

The only thing that remains to be done now is to define the capabilities of the
adversary to derive information from those messages in his local state. This is done
by defining suitable knowledge algorithms.

8.2.1 The Dolev-Yao Adversary

Recall that the Dolev-Yao adversary model is a combination of assumptions on the
encryption scheme used and the capabilities of the adversaries. Specifically, the
encryption scheme is taken to be the symbolic encryption scheme generated byP

andK, while the capabilities are given by the derivationH `DY m indicating that
messagem can be derived from the set of messagesH using the inference rules
described in 6.2.

To capture the capabilities of a Dolev-Yao adversary, we specify how the ad-
versary can tell if he in facthasa message, by defining a knowledge algorithm
ADY
i for adversaryi. Recall that a knowledge algorithm for agenti takes as input

a formula and agenti’s local state (which by assumption contains the messages
received byi). The most interesting case in the definition ofADY

i is when the for-

142 8 A Logic for Reasoning about Security Protocols

submsg(m,m′,K) = if m = m′ then
returntrue

if m′ is {m1}k andk−1 ∈ K then
returnsubmsg(m,m1,K)

if m′ is (m1,m2) then
returnsubmsg(m,m1,K) ∨ submsg(m,m2 ,K)

returnfalse

getkeys(m,K) = if m ∈ K then
return{m}

if m′ is {m1}k andk−1 ∈ K then
returngetkeys(m1,K)

if m′ is (m1,m2) then
returngetkeys(m1,K) ∪ getkeys(m2,K)

return{}

keysof (`) = K ← initkeys(`)
loop until no change inK
K ←

⋃
recv(m)∈`

getkeys(m,K)

returnK

Figure 8.1. Dolev-Yao knowledge algorithm auxiliary functions

mula ishas i(m). To computeADY
i (has i(m), `), the algorithm simply checks, for

every messagem′ received by the adversary, whetherm is a submessage ofm′,
according to the keys that are known to the adversary. Assume that the adversary’s
initial state consists of the set of keys initially known by the adversary. This will
typically contain, in a public-key cryptography setting, the public keys of all the
agents. The functioninitkeys(`) denotes the set of initial keys known by agent
i in local statè . (Recall that a local state for agenti is the sequence of events
pertaining to agenti, including any initial information in the run, in this case, the
keys initially known.) Checking whetherm is a submessage ofm′ is performed
by a functionsubmsg , which can take apart messages created by concatenation, or
decrypt messages as long as the adversary knows the decryption key.

ADY
i (has i(m), `) = if m ∈ initkeys(`) then return “Yes”

K = keysof (`)
for eachrecv(m′) in `

if submsg(m,m′,K) then
return “Yes”

return “No”.

8.2 Passive Adversaries 143

The auxiliary functions used by the algorithm are given in Figure 8.1.
According to the Dolev-Yao model, the adversary cannot explicitly compute

anything interesting about what other messages agents have. Hence, for other
primitives, includinghasj(m) for j 6= i, ADY

i returns “?”. For formulas of the
formKjϕ andXjϕ, ADY

i also returns “?”. For Boolean combinations of formulas,
ADY
i returns the corresponding Boolean combination (where the negation of “?” is

“?”, the conjunction of “No” and “?” is “No”, and the conjunction of “Yes” and
“?” is “?”) of the answer for eachhas i(m) query.

The following result shows that an adversary usingADY
i recognizes (i.e., returns

“Yes” to) has i(m) in state` if and only if m exactly the messages determined to
be in the set of messages that can be derived (according to`DY) from the messages
received in that state together with the keys initially known, Moreover, if ahas i(m)
formula is derived at the point(r, t), thehas i(m) is actually true at(r, t) (so that
ADY
i is sound).

Theorem 8.1.LetI = (R, π, A1, . . . , An) be an interpreted algorithmic knowledge
security system whereAi = ADY

i . Then(I, r, t) |= Xi(has i(m)) if and only if{m |
recv(m) ∈ ri(t)} ∪ initkeys(ri(t)) `DY m. Moreover, if(I, r, t) |= Xi(has i(m))
then(I, r, t) |= has i(m).

In particular, for an interpreted algorithmic knowledge security system with a
passive adversarya with Aa = ADY

a , Proposition 8.1 captures the knowledge of a
passive Dolev-Yao adversary.

8.2.2 The Duck-Duck-Goose Adversary

The key advantage of our framework is that it is easy to change the capabilities
of the adversary beyond those prescribed by the Dolev-Yao model, to incorporate
protocol-specific knowledge, for instance. In the Duck-Duck-Goose example, as-
sume that the adversary maintains in his local state a list of all the bits received
corresponding to the key of the other agent. It is easy to write the algorithm so that
if the adversary’s local state contains all the bits of the key of the other agent, then
the adversary can decode messages that have been encrypted with that key. Specif-
ically, assume that keyk is being sent in the Duck-Duck-Goose example. Then for
an adversaryi, has i(k) will be false until all the bits of the key have been received.
This translates immediately into the following algorithmADDG

i :

ADDG
i (has i(k), `) = if all the bits recorded iǹ form k then

return “Yes” else return “No”.

ADDG
i handles other formulas in the same way asADY

i .
Of course, nothing keeps us from combining algorithms, so that we can imagine

144 8 A Logic for Reasoning about Security Protocols

an adversary intercepting both messages and key bits, and using an algorithmAi
which is a combination of the Dolev-Yao algorithm and the Duck-Duck-Goose
algorithm, such as:

Ai(ϕ, `) = if ADY
i (ϕ, `) = “Yes” then

return “Yes”

else returnADDG
i (ϕ, `).

This assumes that the adversary knows the protocol, and hence knows when the key
bits are being sent. The algorithm above captures this protocol-specific knowledge.

8.2.3 The Lowe Adversary

For a more realistic example of an adversary model that goes beyond Dolev-Yao,
consider the following adversary model, due to Gavin Lowe, that permits the anal-
ysis of protocols subject to offline guessing attacks. The intuition is that some
protocols provide for a way to “validate” the guesses of an adversary. For a simple
example of this, here is a simple challenge-based authentication protocol:

1. A→ S : A

2. S → A : ns
3. A→ S : {ns}pa .

Intuitively, A tells the serverS that she wants to authenticate herself.S replies
with a challengens. A sends back toS the challenge encrypted with her password
pa. Presumably,S knows the password, and can verify that she gets{ns}pa . Unfor-
tunately, an adversary can overhear bothns and{ns}pa , and can “guess” a valueg
for pa and verify his guess by checking if{ns}g = {ns}pa . The key feature of this
kind of attack is that the guessing (and the validation) can be performed offline,
based only on the intercepted messages. A well known variant of this problem
is the problem of weak passwords, that is, passwords that can be verified offline
using a dictionary. Dictionary attacks can be modeled using offline guessing, by
assuming that the dictionary is part of the initial state of the adversary.

To account for this capability of adversaries is actually fairly complicated. We
present a slight variation of Lowe’s description, mostly to make it notationally
consistent with the rest of the section.

Lowe’s model relies on a basic one-step reduction function,S Blm, saying that
the messages inS can be used to derive the messagem. This is essentially the
same as̀ DY , except that it represents a single step of derivation. Moreover, the
relation is “tagged” by the kind of derivation performed (l):

{m, k}Benc {m}k

8.2 Passive Adversaries 145

{{m}k, k−1}Bdec m

{(m1,m2)}Bfst m1

{(m1,m2)}Bsnd m2.

Lowe also includes a reduction to derive(m1,m2) from m1 andm2. We do not
add this reduction to simplify the presentation. It is straightforward to extend the
work in this section to account for this augmented derivation.

Given a setH of message, and a sequencet of one-step reductions, define in-
ductively the set[H]t of messages obtained from the one-step reductions given in
t:

[H]〈〉 = H

[H]〈SBlm〉·t =

{
[H ∪ {m}]t if S ⊆ H
undefined otherwise.

Here,〈〉 denotes the empty trace, andt1 ·t2 denotes trace concatenation. A tracet is
said to bemonotoneif, intuitively, it does not perform any one-step reduction that
“undoes” a previous one-step reduction. For example, the reduction{m, k}B{m}k
undoes the reduction{{m}k, k−1}Bm.

A setH of messagesvalidatesa guessm if, intuitively, H contains enough
information to verify thatm is indeed a good guess. Intuitively, this happens if
a valuev (called a validator) can be derived from the messages inH ∪ {m} in
a way that uses the guessm, and either that (a) validatorv can be derived in a
different way fromH ∪ {m}, (b) the validatorv is already inH ∪ {m}, or (c) the
validatorv is a key whose inverse is derivable fromH ∪ {m}. For example, in the
protocol exchange at the beginning of this section, the adversary sees the messages
H = {ns, {ns}pa}, and we can check thatH validates the guessm = pa: clearly,
{ns,m} Benc {ns}pa , and{ns}pa ∈ H ∪ {m}. In this case, the validator{ns}pa

is already present inH ∪ {m}.
We can now define the relationH `L m that says thatm can be derived from

H by a Lowe adversary. Intuitively,H `L m if m can be derived by Dolev-
Yao reductions, orm can be guessed and validated by the adversary, and hence
susceptible to an attack. Formally,H `L m if and only ifH `DY m or there exists
a monotone tracet, a setS, and a validatorv such that

(1) [H ∪ {m}]t is defined,
(2) S Bl v is in t,
(3) there is no tracet′ such thatS ⊆ [H]t′ , and
(4) either:

(a) there exists(S′, l′) 6= (S, l) with S′ Bl′ v in t,

146 8 A Logic for Reasoning about Security Protocols

guess(m, `) = H ← reduce({m | recv(m) in `} ∪ initkeys(`)) ∪ {m}
reds ← {}
loop until reductions(H)− reds is empty

(S, l, v)← pick an element ofreductions(H)− reds
if ∃(S′, l′, v) ∈ reds s.t.S′ 6= S andl′ 6= l then return “Yes”
if v ∈ H then return “Yes”
if v ∈ K andv−1 ∈ H then return “Yes”
reds ← reds ∪ {(S, l, v)}
H ← H ∪ {v}

return “No”

reduce(H) = loop until no change inH
r ← reductions(H)
for each(S, l, v) in r
H ← H ∪ {v}

returnH

reductions(H) = reds ← {}
for each(m1,m2) in H

reds ← {({m}, fst,m1), ({m}, snd,m2)}
for eachm1,m2 in H

if m2 ∈ K andsub({m1}m2 ,H) then
reds ← {({m1,m2}, enc, {m1}m2)}

if m1 is {m′}k andm2 is k−1 then
reds ← {({m1,m2}, dec,m′)}

returnreds

sub(m,H) = if H = {m} then returntrue
if H = {(m1,m2)} then

returnsub(m, {m1}) ∨ sub(m, {m2})
if H = {{m′}k} then returnsub(m, {m′})
if |H| > 1 andH = {m′} ∪H ′ then

returnsub(m, {m′}) ∨ sub(m,H ′)
returnfalse

Figure 8.2. Lowe knowledge algorithm auxiliary functions

(b) v ∈ H ∪ {m}, or
(c) v ∈ K andv−1 ∈ [H ∪ {m}]t.

We can verify that the above formalization captures the intuition about validation
given earlier. Specifically, condition (1) says that the tracet is well-formed, condi-
tion (2) says that the validatorv is derived fromH ∪ {m}, condition (3) says that
deriving the validatorv depends on the guessm, and condition (4) specifies when
a validatorv validates a guessm, as given earlier.

It is straightforward to define a knowledge algorithmAL
i to capture the capabili-

ties of the Lowe adversary. Again, the only case of real interest is whatAL
i does on

8.3 Probabilistic Adversaries 147

inputhas i(m).

AL
i (has i(m), `) = if ADY

i (has i(m), `) = “Yes” then
return “Yes”

if guess(m, `) then
return “Yes”

return “No”.

The auxiliary functions used by the algorithm are given in Figure 8.2.
As before, we can check the correctness and soundness of the algorithm:

Theorem 8.2.LetI = (R, π, A1, . . . , An) be an interpreted algorithmic knowledge
security system whereAi = AL

i . Then(I, r, t) |= Xi(has i(m)) if and only if{m |
recv(m) ∈ ri(t)} ∪ initkeys(ri(t)) `L m. Moreover, if(I, r, t) |= Xi(has i(m))
then(I, r, t) |= has i(m).

8.3 Probabilistic Adversaries

The Lowe adversary model described in Section 8.2.3 does not involve random-
ization, since the adversary needs to explicitly specify which value to guess and
validate. Another guessing model consists in extending a Dolev-Yao adversary by
allowing him to try to guess keys before determining if he has a given message.
But how should these keys be chosen? One obvious way is that they should be
chosen from the space of keys according to some probability distribution (perhaps
chosen at random).

As expected, probabilistic algorithmic knowledge can deal well with an adver-
sary who guesses keys randomly in an effort to crack an encrypted message. Con-
sider the Dolev-Yao knowledge algorithmADY

i , modified so as to allow for key
guesses. Assume that the key space is finite, and letguesskeys(n) returnn of
these, chosen uniformly at random. LetADY+rg(n)

i be the result of modifying the
second line ofADY

i to take random guessing into account (the rg stands forrandom
guess).

ADY+rg(n)

i (has i(m), `) = if m ∈ initkeys(`) then return “Yes”

K = keysof (`) ∪ guesskeys(n)

for eachrecv(m′) ∈ ` do

if submsg(m,m′,K) then

return “Yes”

return “No”.

148 8 A Logic for Reasoning about Security Protocols

Essentially, usingADY+rg(n)

i , the adversary gets to work with whatever keys he al-
ready had available, all the keys he can obtain using the standard Dolev-Yao algo-
rithm, and an additionaln randomly chosen keys. Of course, if the total number
|K| of keys is large relative ton, makingn random guesses should not help much.
The algorithmic knowledge framework lets us make this precise.

An interpreted probabilistic algorithmic knowledge security system is the obvi-
ous generalization of an interpreted algorithmic knowledge security system, along
the lines developed in Chapter 4 to give a semantics to randomized knowledge
algorithms.

Theorem 8.3.Suppose thatJ = (R, π, Ad1, . . . , A
d
n, ν) is an interpreted probabilis-

tic algorithmic knowledge security system with an adversary as agenti and that
Ai = ADY+rg(n)

i . Let K be the number of distinct keys used in the messages in
the adversary’s local stateri(t) (that is, the number of keys used in the messages
that the adversary has intercepted at a point(r, t)). Suppose thatK/|K| < 1/2
and thatν is the uniform distribution on sequences of coin tosses. If(J, r, t, v) |=
¬KiXi(has i(m)), then(J, r, t, v) |= Pr(Xi(has i(m))) < 1 − e−2nK/|K|. More-
over, if(J, r, t, v) |= Xi(has i(m)) then(J, r, t, v) |= has i(m).

Theorem 8.3 says that what we expect to be true is in fact true: random guessing
of keys does not help much (at least, if the number of keys guessed is a small frac-
tion of the total numbers of keys). In other words, if it is possible that the adversary
does not have algorithmic knowledge ofm, then the probability that it has algo-
rithmic knowledge is low. While this result just formalizes our intuitions, it does
show that the probabilistic algorithmic knowledge framework has the resources to
formalize these intuitions naturally. More importantly, it allows us to characterize
an adversary without being limited to Dolev-Yao style adversaries.

8.4 Active Adversaries

In the last section, we were concerned with describing the capabilities of adver-
saries in term of deriving explicit information from messages stored in their lo-
cal state. The adversaries were assumed passive, intercepting every message ex-
changed by the protocol participants. Eavesdropping adversaries can breach confi-
dentiality of messages.

There are many attacks on security protocols that do not necessarily involve a
breach of confidentiality. For instance, some authentication properties aim at en-
suring that no adversary can pass himself off as another agent. This presumes that
the adversary is able to interact with other agents. Even as as far as confidential-

8.4 Active Adversaries 149

ity is concerned, an active adversary can attempt to manipulate other agents into
revealing secrets.

Active adversaries are more complex to reason about, since they interact with
other agents. Moreover, there is the question of exactly what messages they can
send. The answer depends of course on their capabilities, which are already cap-
tured using knowledge algorithms. Formally, at a local state`, an adversary using
knowledge algorithmAi can construct the messagesCons i(`), defined to be the
closure under{·} and(·, ·) of the set{m | Ai(has i(m), `) = “Yes”} of messages
the adversary has. Thus, we can use the knowledge algorithm describing the capa-
bilities of the adversary not only in the specification language in which we write
down the security properties, but also at the level of modeling the protocol.

When modeling, it is necessary to decide whether adversaries are outsiders to
the system, or insiders. Recall from Section 6.2 that an insider is an adversary that
other agents know about, and with whom they can initiate interactions.

Consider the case where there is a single active adversary. (The definitions gen-
eralize to the multiple adversaries case immediately.) Aninterpreted algorithmic
knowledge security system with active (insider) adversarya (for a ∈ {1, . . . , n}) is
an interpreted algorithmic knowledge security systemI = (R, π, A1, . . . , An) such
that for all points(r, t), the following constraints are satisfied:

A1. for everyrecv(m) ∈ ra(t), there is a correspondingsend(j, u) in ri(t)
for somei;

A2. for everysend(j,m) ∈ ra(t), we havem ∈ Consa(ra(t)).

A1 says that every message sent by the agents can be intercepted by the adversary,
and end up in the adversary’s local state, rather than reaching its destination. A2
says that every message sent by the adversary must have been constructed out of the
messages in his local state according to his capabilities. (Note that the adversary
can forge the “send” field of the messages.)

To accomodate outsider adversaries, it suffices to add the restriction that no mes-
sage is sent directly to the adversary. Formally, aninterpreted algorithmic knowl-
edge security system with active (outsider) adversarya (for a ∈ {1, . . . , n}) is
an interpreted algorithmic knowledge security system with an active insider adver-
sarya I = (R, π, A1, . . . , An) such that for all points(r, t) and for all agentsi, the
following additional constraint is satisfied:

A3. for everysend(j,m) ∈ ri(t), j 6= a.

150 8 A Logic for Reasoning about Security Protocols

8.5 The Logical Approach

We have presented a framework for security analysis using algorithmic knowledge.
The knowledge algorithm can be tailored to account for both the capabilities of the
adversary and the specifics of the protocol under consideration. Of course, it is al-
ways possible to take a security logic and extend it in anad hocway to reason about
adversary with different capabilities. Our approach has many advantages overad
hocapproaches: it is a general framework (changing the algorithm used by the ad-
versary changes his capabilities), and it permits reasoning about protocol-specific
issues (such as the agent sending the bits of its key). Another advantage of our
approach is that it naturally extends to the probabilistic setting. For instance, prob-
abilistic protocols are easily handled, by considering multiagent systems with an
associated probability distribution on the runs. Randomized knowledge algorithms
can also be handled, using the techniques developed in Chapter 4.

One natural question that remains is whether there is in fact a need for formal
logics for reasoning about security. After all, many of the approaches described
in Chapter 6 are not based on a logical specification language, and are certainly
successful. In the remainder of this section, let me attempt to motivate the logical
methodology.

First, what do we mean by logic for reasoning about a phenomenon? There are
essentially two (not incompatible) views on the role of logics. The first view is
that a logic captures valid patterns of reasoning about a particular phenomenon,
where the models simply “justify” the reasoning process. The second view starts
with a structure, which is used to capture abstractly a situation. The logic provides
a language in which to write down properties of the structure. Of course, these
two views are intimately related, but they have distinct methodologies. In this
dissertation, we have mostly subscribed to the second view, and structured my
arguments accordingly.

Of course, the structure-centric view begs a question: why should we bother in-
troducing a formal language to reason about the structure, since we could do our
reasoning directly on the structure, using standard mathematical techniques? This
is the approach used, for instance, in probability theory and in economics. There
are at least two reasons for advocating a logic. First, it provides a formal language
for capturing certain notions independently of a particular structure. For instance,
authentication can sometimes be established by proving that two agents share se-
crets initially known to the individuals only. In a different context, authentication
corresponds to a different property of the abstract model representing the situation.
Having a formal language gives us the possibility of writing down a formula that
captures authentication in general, meaningful across different models. Secondly,

Notes 151

a formal language provides the structure for deriving proofs, either via the proof
theory of the logic, or by induction on the structure of formulas in the language.

Therefore, there is a distinction between reasoning directly about a phenomenon
over a particular structure, and using a formal language capturing the phenomenon
in question. While we advocate the use of a formal language in this dissertation,
there is the second question of the appropriate language to use. There are at least
two choices. The first, which is the one we follow in this dissertation, is to intro-
duce a special-purpose logic for reasoning about the phenomenon of interest. This
involves carefully choosing the structures with which to capture the particulars of
the real-world phenomenon being studied, and then carefully choosing the logical
operators with a suitable and natural semantics. The language also has to be ex-
pressive enough to express the specifications of interest. The second alternative is
to use a generic logic, such as first-order logic or higher-order logic. The advantage
of using, say, higher-order logic is that most of mathematics is directly available,
since much of it can be formalized in higher-order logic. Moreover, there exists
theorem proving environments for higher-order logic that provide tools for prov-
ing theorems semi-automatically. Such an approach is therefore useful for proving
hard (or tedious) theorems about particular situations. However, this is just highly
formalized reasoning about a particular structure. Most of the criticisms laid out
about reasoning directly about structures apply here, in that it may become diffi-
cult to highlight the commonality between different structures when reasoning at
the level of the structures themselves—even if this reasoning is done via a for-
malized notation rather than informal mathematics. Finally, expressive logics such
as higher-order logic are typically highly undecidable, as opposed to hand-crafted
logics, which can often be tailored to be decidable.

Notes

Most of the work in this chapter first appeared in [Halpern and Pucella 2002],
except for Section 8.3, which first appeared in [Halpern and Pucella 2003c].

While we focus on confidentiality and authentication properties in this disserta-
tion, we should point out that the models described in Chapter 7 and the epistemic
core of the logic in this chapter have been used to reason about other security
properties, such as information flow and anonymity [Halpern and O’Neill 2002;
Halpern and O’Neill 2003]. Halpern and O’Neill [2002], in particular, present a
knowledge-based definition of secrecy that goes beyond the kind of confidential-
ity property studied here. (They do not take cryptography into account, however.)
Higher-level security properties, such as authentication properties, can often be

152 8 A Logic for Reasoning about Security Protocols

established via confidentiality properties; Syverson and Cervesato [2001] discuss
some of these issues.

The adversary in Section 8.2.3 was introduced by Lowe [2002]. We refer the
reader to the original paper for a discussion of the design choices, for details on
undoing reductions, and for a discussion of implementation issues.

The Dolev-Yao adversary is the most widespread adversary in the literature. Part
of its attraction is its tractability, making it possible to develop formal systems to
automatically check for safety with respect to such adversaries [Millen, Clark, and
Freedman 1987; Mitchell, Mitchell, and Stern 1997; Paulson 1998; Lowe 1998;
Meadows 1996]. The idea of moving beyond the Dolev-Yao adversary is not new.
Other approaches offer some possibility of extending the adversary model. For
instance, the framework of Paulson [1998], Clarke, Jha and Morrero [1998], and
Lowe [1998] describe the adversary via a set of derivation rules, which could be
modified by adding new derivation rules.

There are other approaches that weaken the Dolev-Yao adversary assumptions
either by taking concrete encryption schemes into account, or at least by adding
new algebraic identities to the algebra of messages. Bieber [1990] does not assume
that the encryption scheme is a free algebra, following an idea due to Merritt and
Wolper [1985]. Even et al. [1985] analyze ping-pong protocols under RSA, taking
the actual encryption scheme into account. The appliedπ-calculus of Abadi and
Fournet [2001] permits the definition of an equational theory over the messages
exchanged between processes, weakening some of the symbolic encryption scheme
assumptions when the appliedπ-calculus is used to analyze security protocols.

Most frameworks for reasoning about security protocols using knowledge or
belief have had to circumvent the logical omniscience problem. In the context of
security, this has taken the form of using different semantics for knowledge, either
by introducing hiding operators that hide part of the local state for the purpose
of indistinguishability (as done, for example, in [Abadi and Tuttle 1991]), or by
using notions such asawareness[Fagin and Halpern 1988] to capture an intruder’s
inability to decrypt [Accorsi, Basin, and Viganò 2001]. The use of awareness
by Accorsi et al. [2001] is not motivated by the desire to model more general
adversaries, but by the desire to restrict the number of states one needs to consider
in models. Halpern, Moses and Tuttle [1988] analyze zero-knowledge protocols
using a notion of resource-bounded knowledge defined by Moses [1988].

9
Epistemic Foundations of Security Protocols

THE logic we described in the last chapter was based on a formal notion of
knowledge. Of course, this is not the first attempt at basing a logic for se-

curity protocol analysis on epistemic notions. For the past fifteen years, there has
been an intuition in the world of security that formal theories of knowledge and
belief should have something interesting to say about security protocols, and cryp-
tographic protocols in particular. One of the earliest and the most discussed is
BAN logic, which we already described in Section 6.4.3. As we pointed out, BAN
has been the subject of many criticisms, mostly in connection with its verification
method based on idealization.

Other approaches to the formal analysis of security protocols have emerged in
recent years that seem to provide stronger correctness guarantees than BAN logic.
These approaches, many of which were described in Chapter 6, work by reasoning
directly about the behaviour of adversaries, which cannot be done in BAN. These
more recent approaches do not make explicit use of logics of knowledge and belief,
and yet have been quite successful, arguably more so than approaches based on
epistemic notions. One might therefore ask whether the intuitions about the utility
of using knowledge and belief to reason about security protocols were misplaced.

We argue in this chapter that epistemic notions are in fact needed in any anal-
ysis of security protocols. We focus on a particular problem: in order to analyze
protocols that use nonces, we need to make precise the properties of these nonces.
We proceed by analyzing the well-known Needham-Schroeder public key authen-
tication protocol, already introduced in Section 1.2, under the standard Dolev-Yao
adversary model. This shows that the Dolev-Yao model does not capture some
of the key intuitions underlying the Needham-Schroeder protocol—in particular,
it leads to unreasonable conclusions about who must have sent certain messages.
Since these conclusions follow from the Dolev-Yao model, they must be reached
by any approach based on this adversary model (the majority of the approaches
described in Section 6.4). This raises concerns about the interpretation of what has

153

154 9 Epistemic Foundations of Security Protocols

been proved. To address these concerns, we formulate a variant of the Dolev-Yao
model in which the adversary can guess nonces. We show that, in such a model,
it does not suffice that a nonce befresh (that is, that a nonce be a new message,
different from any other previously seen message). If this were enough, nonces
could be taken to be sequence numbers. A nonce must also beunpredictable. Un-
predictability is an inherently epistemic notion; we show how it can be modeled in
the logic of Chapter 8, extended with probability and time.

An additional argument for the suitability of such a logic to the purpose of secu-
rity protocol specification is also provided; it is straightforward to capture higher-
level security notions that seem useful when reasoning about protocols. The BAN
logic resulted from a careful analysis of notions useful for protocol analysis. We
show how to recover BAN logic by defining a translation from BAN forulas to
formulas of our logic. This establishes, among other things, the expressive power
of our framework. It also helps illuminate the assumptions underlying BAN, and
more importantly provides insight into notions that are useful for protocol analysis.

How can we justify that we have captured the meaning of the BAN operators?
The original presentation of BAN gave axioms characterizing some properties
of the operators, supplemented with informal descriptions of their meaning. We
would certainly expect that our interpretation of each BAN operator satisfies the
same axioms as the original BAN operator. We show that the (translated versions
of) the BAN axioms are indeed sound with respect to a restricted class of semantic
models that capture our proposed guessing Dolev-Yao adversary behaviour. The
need to consider this restricted class of models is not an artifact of our interpreta-
tion, but is a consequence of assumptions built into BAN.

Of course, it is not enough to show that the BAN axioms are validated. We also
show that the “meaning” of the operators is similar. This cannot be established
formally, since BAN did not provide a formal meaning for their operators. We pro-
vide some evidence for the reasonableness of our translation by showing how our
logic handles the Needham-Schroeder protocol alreeady presented in Section 1.2.
We show that the Needham-Schroeder protocol generates a model that satisfies
the (translated version of the) specifications for the protocol given in the original
BAN analysis of this protocol. Significantly, the reasoning makes no use of the
idealization step that has frequently been argued to be one of the weakest points of
BAN.

We emphasize that we are not attempting to give a full reconstruction of BAN.
And we certainly do not claim that BAN’s choice of primitives was the “right” set.
There has been a debate in the literature about what the appropriate set of primi-
tives for a security logic should be. Our view is that, where possible, one should
minimize the number of primitives, and use constructs that are well understood
and have utility in a broader domain. One advantage of expressing higher-level

9.1 Nonces, Uniqueness, and Unpredictability 155

operators in terms of simpler primitives, such as those provided by the logic of the
previous chapter (extended with time and probability), is that it provides a basis for
extending the higher-level operators to more general situations.

Why focus on BAN at all? The BAN operators are an attempt to clarify the
intuitive notions that arise when reasoning about security protocols: belief, trust,
freshness, jurisdiction. Therefore, they seem like reasonable candidates for the
higher-level security notions that we claim to be able to capture. However, we be-
lieve that the epistemic approach and the insights that we obtain from it go well
beyond BAN, and should be relevant for any formal attempt to reason about secu-
rity.

9.1 Nonces, Uniqueness, and Unpredictability

Recall from Section 1.2, the following version of the Needham-Schroeder public
key authentication protocol, without a server, which we call the SNS protocol (for
“simplified Needham-Schroeder”):

1. A→ B : {|nA, A|}kB

2. B → A : {|nA, nB|}kA

3. A→ B : {|nB|}kB
.

It presumes that agentsA andB know each other’s public keys, denotedkA and
kB, respectively. Here,nA andnB are nonces, andkA andkB are the public keys
of agentsA andB, respectively. The claim is that, at the end of this protocol,
A andB know that they have communicated with each other. The protocol also
establishesnA andnB as secrets known only toA andB.

Assume a context where the adversaryX is not an insider. In other words, the
initiator A of the protocol will will never try to authenticate herself toX. The
adversary can of course intercept messages, but no message is addressed explicitly
to him. (We saw in Section 1.2 that the original SNS protocol is vulnerable to a
man-in-the-middle attack when the adversary is an insider. We do not focus on this
attack in this chapter, although it can certainly be captured in our framework.)

We concentrate on the Dolev-Yao adversary model described in Section 6.2,
since it essentially underlies the BAN approach and most other approaches to sym-
bolic protocol analysis. Recall that this model is a combination of assumptions
on the encryption scheme and the capabilities of the adversaries. The encryption
scheme is the symbolic encryption scheme of Section 6.1, that is, the free algebra
generated by the plaintext and the keys, using the operations of pairing, encryp-
tion, and decryption. It follows that it is always possible in this model to determine
whether a message is a plaintext, a pairing, or an encrypted text. There are also
no collisions; messages always have a unique decomposition. The adversary is

156 9 Epistemic Foundations of Security Protocols

allowed toextract messages (from messages he has intercepted) by taking apart
pairings and decrypting encrypted messages if he knows the decryption key, and
is allowed toconstructnew messages (from messages he has been able to extract)
by pairing and by encryption using known encryption keys. The adversary, how-
ever, is not allowed to guess keys, guess nonces, or attempt to “crack” encrypted
messages using cryptanalysis.

There have been many analyses of the SNS protocol under Dolev-Yao adver-
saries. Most analyses establish a result that can be paraphrased as follows, con-
cerning the first two messages of the protocol: “The guarantees forA are that her
nonce remains secret from the adversary and thatB is present. The latter follows
from the former, for if the adversary does not knownA then he could not have
sent message 2”. This is based on the interpretation of confidentiality from the
adversary given in Section 6.3—the adversary cannot derive the secret. In MSR,
the model-based approach described in Section 6.4.1, this amounts to saying that
the atomic formulaM(nA) does not appear in any state derivable from the initial
state, whereM is the predicate representing the adversary’s knowledge. In order to
prove such a result, most approaches assume that nonces are uniquely generated.
In other words, if a protocol step calls for the generation of a nonce, then the nonce
produced is generated just once in the history. Any other instance of nonce gener-
ation, by the same agent, or by another, produces a different nonce. In MSR, this
is modeled by using the existential quantifier∃ to produce the nonce.

These assumptions lead to somewhat odd conclusions. Consider, for example,
what can be proved about the first message of the protocol. Intuitively, what the
responderB should learn from the first message of the protocol is that some agent,
possibly the adversary, is attempting to authenticate itself asA. The remaining
two messages are designed to convince the responder that this agent is in factA.
The intuitive reason that the first message does not suffice is that it could have
been constructed by the adversary. However, according to the (pure) Dolev-Yao
adversary model, the adversary can send only messages constructed from what he
has been able to extract. If only SNS protocol messages are sent, the adversary is
not an insider, and the keys of the agents are not divulged, then the adversary is
never able to extract any nonce that he can use to forge a message. Thus, agentB

knows that the first message he receives was not constructed by the adversary. (The
message could still be a replay of a previous attempt byA to authenticate herself
toB.) This seems to be a much stronger conclusion than is warranted by intuitions
about the protocol.

Clearly, this limitation of the Dolev-Yao model can be overcome by allowing
the adversary to use nonces that it has not been able to extract in order to construct
messages. And indeed, most approaches to security protocol analysis allow the
adversary to generate nonces that it has not extracted before. But which nonces do

9.2 Temporal and Probabilistic Extensions 157

you allow the adversary to generate? MSR (and many other approaches) only allow
the adversary to generate nonces that are unique, thereby enforcing the uniqueness
assumption on nonces. This is reflected by the rule for nonce generation for the
adversary given in Section 6.4.1:

−→ ∃x.C(x).

How reasonable is this? The choice has a number of consequences. First, the
agents may as well usesequence numbersor timestampsrather than nonces, since
the adversary will never be able to generate a value that already exists. It seems
counterintuitive that a given protocol using nonces and the same protocol using
sequence numbers would behave similarly in all contexts. The nonce-uniqueness
assumption is not sufficient to prove thatA generated the message. For example, if
the current sequence number is taken to be the value of the nonce, then the nonce
is unique, but completely predictable. Thus, a real adversary should be able to
forge the message. However, a Dolev-Yao adversary, even augmented with unique
nonces, would never be able to do this. To analyze the protocol correctly, it is
necessary to be able to assume that the nonces in question cannot be predicted.
Unpredictability is anepistemicnotion. Roughly speaking, it means that the prob-
ability that an adversary will know the nonce is low.

As this discussion shows, we cannot sweep these epistemic concerns under the
rug if we want to get an appropriate analysis of the SNS protocol. The logic intro-
duced in Chapter 8, extended with probability and time, allows us to capture these
notions in what we believe is a reasonable way.

9.2 Temporal and Probabilistic Extensions

There are standard techniques for extending the logic of Section 8.1 with the abil-
ity to reason about time and probability. In fact, systems already incorporate time,
since they are sets of runs, and runs are functions from time to global states. To
reason about probabilities, we considerprobabilistic systems, where there are prob-
ability distributions on the setR of runs of the system. We do not assume a single
probability distribution onR, since that would require a probability on the possible
protocols that the adversary is using. Rather, the idea is to partitionR into subsets,
called cells; intuitively, each cell corresponds to factoring out all the choices that
are best viewed as nondeterministic (such as the choice of protocol, or the keys
used by the participants in a protocol). Assume that there is a probabilityµC on
the runsRC of each cellC.

The logic itself is a straightforward extension of that presented in Chapter 8.
Again start with a symbolic encryption scheme. To be able to model BAN, how-

158 9 Epistemic Foundations of Security Protocols

ever, there must be sufficient structure to the space of plaintexts, namely that it
includes (representations of) formulas. Thus, assume a new set of plaintext mes-
sagesstring(ϕ), whereϕ is a formula in the logic. (These propositions are needed
because BAN allows formulas to be sent as messages. There is noa priori inter-
pretation associated with these representations. They are just strings of characters.)

The syntax of the logic is extended with the formulas©ϕ, ©- ϕ, �ϕ, �- ϕ, and
Pri(ϕ) ≥ α. The temporal operator©ϕ states thatϕ is true at the next time step,
while©- ϕ states thatϕ was true at the previous time step. We use the abbreviations
©lϕ and©- lϕ (for l ∈ N) for the l-fold application of© and©- , respectively,
to ϕ. The temporal operator�ϕ states thatϕ is true at the current time and all
subsequent times. Similarly,�- ϕ states thatϕ is true at the current time and all
previous times. Finally,Pri(ϕ) ≥ α says that the formulaϕ holds with probability
at leastα, according to agenti. Define the usual abbreviations, such asPri(ϕ) < α

for ¬(Pri(ϕ) ≥ α), and so on.
To give semantics to formulas of the formPri(ϕ) ≥ α at a point(r, t), proceed

as follow. LetKi(r, t) be the set of points that agenti cannot distinguish from
(r, t), that is, the set{(r′, t′) | (r, t) ∼i (r′, t′)}. For every runr, there is a unique
cell Cr with r ∈ Cr. Let C(r) be the set of points from the runs inRCr , that
is, the points in the runs in the same cell asr. The prior probabilityµC on the
runsRC of cellC induces a probabilityµr,t,i on the points inKi(r, t) ∩ C(r) in a
straightforward way. IfU ⊆ Ki(r, t) ∩ C(r), define

µr,t,i(U) =
µC({r′ | (r′, t) ∈ U})

µC({r′ | (r′, t) ∈ Ki(r, t) ∩ C(r)})
.

The satisfaction relation of a formulaϕ in an interpreted algorithmic knowl-
edge security system with probabilitiesI = (R, π, µ, A1, . . . , An) at point(r, t) is
extended by the following rules:

(I, r, t) |= ©ϕ iff (I, r, t+ 1) |= ϕ

(I, r, t) |= ©- ϕ iff t ≥ 1 and(I, r, t− 1) |= ϕ

(I, r, t) |= �ϕ iff for all t′ ≥ t, (I, r, t′) |= ϕ

(I, r, t) |= �- ϕ iff for all t′ ≤ t, (I, r, t′) |= ϕ

(I, r, t) |= Pri(ϕ) ≥ α iff µr,t,i({(r′, t′) | (I, r′, t′) |= ϕ}∩Ki(r, t)∩C(r)) ≥ α.

Define the probabilistic knowledge operatorKα
i ϕ as an abbreviation for the for-

mulaKi(Pri(ϕ) ≥ 1−α). This operator simply means that, essentially, no matter
which cellC the agent thinks the current point is in, the probability ofϕ in that
cell is at least1− α. It is easy to check that

I |= (Kα
i ϕ ∧K

β
i ψ)⇒ Kα+β

i (ϕ ∧ ψ).

Moreover, if the systemI does not assign probability0 to any subset of the runs,

9.3 An Interpretation of BAN 159

then

I |= K0
i ϕ⇔ Kiϕ.

In other words, if no nonempty subset of runs has probability0, then knowing with
probability1 collapses to actual knowledge.

9.3 An Interpretation of BAN

One of our claims is that the logic introduced in Section 8.1 and extended in Sec-
tion 9.2 is a good foundation for security protocol logics. To provide evidence for
this claim, we show how we can interpret the constructs of BAN logic by translat-
ing them into the simpler primitives of our logic. Doing so exposes many of the
assumptions underlying these constructs. Our translation provides evidence that
the intuitions underlying authentication logics can be given a rigorous semantic
foundation using well-understood modal operators. Although we focus here on
BAN, we believe that other related logics could be similarly reconstructed.

The set of formulasF and set of messagesm are defined by mutual induction,
since formulas are actually a subset of messages, and can include messages in
them. Messages are defined essentially as in Section 8.1:

m ::= t | k | n | i | (m1,m2) | {mi}k | F.

The superscripti in {mi}k represents a “from”-field, intended to indicate the orig-
inal sender of the message. Note that BAN logic has an extra message construct,
〈mi〉m′ , representing a messagem combined with asecretm′. This is essentially
a pairing(m,m′), except for the need to account for the “from”-fieldi, indicat-
ing the original sender of the message. Since we do not use this construct in the
remainder of this chapter, and since accounting for it complicates the presentation
without adding insight, we do not deal with it here. Formulas are defined by the
following grammar:

F ::= i believes F

| i controls F

| i seesm
| i said F

| i k↔ j

| k7→ j

| i
m

 j

| fresh(m).

160 9 Epistemic Foundations of Security Protocols

R1. i believes j k↔ i i sees {F l}k l 6= i
i believes j said F

R2. i believes j k↔ i i sees {F l}k−1 l 6= i
i believes j said F

R3.
i believes fresh(F) i believes (j said F)

i believes j believes F

R4.
i believes j controls F i believes j believes F

i believes F

R5.
i sees (F, F ′)
i sees F

R6. i believes j k↔ i i sees {F}k
i sees F

R7. i believes k7→ i i sees {F}k
i sees F

R8. i believes k7→ j i sees {F}k−1

i sees F

R9.
i believes fresh(F)

i believes fresh(F, F ′)

Figure 9.1. BAN inference rules

The intuitive reading of the formulas is as follows. The formulaibelievesF holds
if agenti believes formulaF . The formulai controls F means that agenti is an
authority on or has authority or jurisdiction overF . The formulai seesm indicates
that i has received a message containingm. The formulai said F indicates that
agenti at some time sent a message containingF and (if it was sent recently) that
i believesF . The formulafresh(m) indicates that the messagem is fresh, that
is, it was sent recently. The formulai

k↔ j means that agentsi and j can use
key k to communicate (and thatk is a good key). The formula

k7→ j means that
the keyk is j’s public key (and thatk is a good key). Finally,i

m

 j means that
messagem is a secret between agentsi andj. Most logics in the BAN tradition
extend the logic, adding formulas such asi says F (i recently saidF), andi has k
(i is in possession of keyk). For ease of exposition, we do not consider these
modifications here.

BAN uses inference rules to derive new formulas from others. A representative
fragment of these rules is given in Figure 9.1. For instance, rule R3 says that ifi

believes both thatF is fresh and thatj said it, theni also believes thatj believesF .
R3 encapsulates the assumptions that statements do not change their truth value in
short intervals of time and that agents say only things that they believe to be true.

The BAN operators seem to capture the intuitive notions that arise when reason-
ing about security protocols: belief, trust, freshness, jurisdiction. The criticisms

9.3 An Interpretation of BAN 161

aimed at BAN do not argue this point, but rather focus on the lack of semantics and
on the protocol verification method. We have an additional criticism, namely, the
choice of primitive notions. We believe that there should be relatively few primi-
tive notions, with all the rest defined in terms of them. We believe that the logic
presented in the second part of this dissertation overcomes these deficiencies, while
still being able to express the key features of the BAN operators.

We now define a translation from BAN formulas to formulas in the logic of Sec-
tion 9.2. We emphasize, however, that this is not the only translation that captures
a useful interpretation of BAN; we discuss variants where appropriate. The trans-
lation takes a BAN formula and produces a family of formulas. The formulas in
the family differ only in the probability used to determine belief. A formulaF T is
apossible translation ofF if it can be produced by the translation rules below.

Because BAN formulas include messages and are messages, messages also need
to be translated; writemM for a possible translation of messagem. The translation
of messages that are not formulas is the obvious one: for a primitive messagem,
mM = m, and(m1,m2)

M = (m1
M ,m2

M), wherem1
M andm2

M are possible
translations ofm1 andm2. Translate encryptions{mi}k by treating the “from”-
field as concatenated to the end of the encrypted message:{mM , i}k, wheremM is
a possible translation ofm. A possible translation of a formulaF (when viewed as
a message) isstring(F T), whereF T is a possible translation ofF , when viewed
as a formula.

Here is the translation of formulas of BAN logic.

– The translation forbelieves is based on the assumption that an agent oper-
ates with a set of default assumptions, expressed as a formulaA. An agent’s
belief in ϕ, relative to assumptionsA, can then be captured by the formula
Ki(A⇒ ϕ). That is, the agent believesϕ relative to assumptionsA if it knows
thatϕ holds under assumptionsA. The translation for the BAN logic expression
i believes F uses this idea, but adds probabilities. The agent’s default assump-
tions are characterized by a set of “good” runs. Intuitively, these are the runs
in which undesirable events like the adversary guessing a nonce do not occur.
Any set of runs can be taken as the good runs, but one should expect the prior
probability of the set of good runs to be high (a fact that can be expressed in
the logic). The particular choice of good runs used in proving that a protocol
satisfies a BAN logic specification will depend on the details of the protocol and
the system used to model the behaviour of the adversary. Letgood be a prim-
itive proposition that expresses “the run is good”. The possible translations of
i believes F have the formKα

i (good ⇒ F T), where0 ≤ α ≤ 1 andF T is
a possible translation ofF . (Note thatK1

i ϕ is vacuously true for allϕ.) As
we shall see, the soundness of the translation does not depend on the particular

162 9 Epistemic Foundations of Security Protocols

choice ofgood . In many cases of interest, we can takeα = 0 (in particular, this
is true for our analysis of SNS in Section 9.4); in that case, many details of the
translation below can be simplified. If all runs have positive probability (as is as
the case in the analysis of SNS),K0

i reduces toKi; that is, we are back to the
original definition of defeasible belief.

– The possible translations of(i seesm)T have the formXi(has i(mM)), where
mM is a possible translation ofm. Here, the knowledge algorithm for agenti is
is doing all the work of deciding what information can be extracted from the set
of messages received.

– The translation ofi said F is somewhat complicated, since thesaid opera-
tor is conflating a number of distinct notions that must be untangled to express
it in our logic. For one thing, it means that a message is sent. However, an
agent should not be interpreted as sayingF when it sends a message containing
F encrypted under a key that the agent does not possess (this situation arises
in some protocols that rely on agents to forward server generated tickets.) To
capture this intuition, the translation ofsaid also incorporates the notion of ex-
traction; nothing is said that was not extracted at the time when the message
was sent. Accordingly, take a possible translation ofi said F to have the form
send i(FM)∧�- (¬send i(FM)∧©send i(FM)⇒ Xi(has i(FM))), whereFM

is a possible translation ofF . The BAN reading ofsaid also involves claims
about belief; BAN assumes that all formulas said recently byi are believed byi.
This assumption is not part of the translation, but is captured in the systems for
which the translation is proved sound, by imposing an “honesty” requirement.1

– Capturing thatk is a good key betweeni andj depends on what is meant by
“good key”. There are at least two interpretations. One interpretation is that
“no one buti and j sends messages encrypted withk” for the length of the
protocol interaction. Another possible interpretation is that no one other than
possiblyi andj has extracted the key. Both interpretations can be encoded, but
the second, while stronger, seems more in keeping with the intuitive reading of
k being a good key. Roughly, if a key is leaked to an adversary that never uses
it to encrypt messages, BAN would consider the key a good key, despite the
adversary being able to read all traffic encrypted with that key. While BAN’s
precise intention could be captured, it would again complicate things, and it
runs somewhat counter to the intuitive reading of “goodness”. Accordingly, take

1 While it suffices for the purposes of this chapter, this translation does not quite capture all the subtleties of
BAN’s reading ofsaid. According to their reading, an agenti should not be considered to havesaidm if it
sent{m}k, did not possessk at the time, but was nevertheless able to extractm from some other message.
According to the interpretation above,i said m does hold in this case. While it is possible to come up
with an interpretation that was even closer to BAN’s (at the cost of complicating the logic), it does not seem
worthwhile. Our translation satisfies BAN’s axioms and seems to capture the essence of their notion.

9.3 An Interpretation of BAN 163

(i k↔ j)
T

to be

Xi(has i(k)) ∧Xj(hasj(k)) ∧

 ∧
i′ 6=i,j

¬Xi′(has i′(k))

 .

Interpreting “good key” in general is not that simple, unfortunately. Many pro-
tocols studied in the literature assume the existence of a key server in charge of
distributing session keys to agents. In such a context, a good key is not only
known to the agents exchanging messages, but also of course to the server that
initially distributed the key. It is easy to accommodate such an interpretation of
“good key” by assuming that the server, as well asi andj, can extract the key.
For simplicity, however, we will consider only the interpretation of “good key”
given above. Note that BAN interpretsk being a good key as a statement that
also talks about the future; in essence, ifk is a good key, it remains so throughout
a protocol interaction. Such an interpretation can be captured by prefixing the
translated formula by a� operator. Of course, this interpretation precludes the
analysis of protocols that leak the key value. Ideally, the analysis should reveal
such leaks, rather than presupposing that they do not happen.

–
k7→ j says thatk is j’s public key, and that the key is a good key. The formula is

intended to mean that onlyj knows the keyk−1. Thus, its translation is similar
in spirit to that of the formula for shared keys, and the same comments apply;

take(k7→ j)
T

to beXj(hasj(k−1)) ∧
(∧

i′ 6=j ¬Xi′(has i′(k−1))
)
.

– i
m

 j says thatm is a secret shared byi andj. This is intended to mean that
only i andj knowm, that is, that only they can extract it. Hence, take a possible
translation of(i

m

 j) to have the formXi(has i(mM)) ∧ Xj(hasj(mM)) ∧(∧
i′ 6=i,j ¬Xi′(has i′(mM))

)
, wheremM is a possible translation ofm.

– A message is fresh if it could not have been sent, except possibly recently. It
is up to the user to decide what counts as “recently”, by choosing a suitablel.
Thus, a possible translation offresh(m) has the form©- l

∧
i(�- ¬send i(mM)),

wheremM is a possible translation ofm. Of course, this translation does not
address the issue of what makes a nonce fresh, or how to prove that a nonce is
fresh. Intuitively, this is where the unpredictability of the nonce comes in; we
return to this issue in Section 9.4.

– We interpreti controls F as “i knowsF if and only if F is true”. Thus, a
possible translation ofi controls F has the formKi(F T) ⇔ F T , whereF T

is a possible translation ofF . This captures, to some extent, the intuition thati

is an authority onF . There is no way forF to change without agenti knowing
it, so thatF is in some sense “local” to agenti. Our translation, however, while
capturing a reasonable consequence ofcontrols, does not fully capture the in-

164 9 Epistemic Foundations of Security Protocols

tent of the operator. For instance, the translation seems inappropriate whenF T

is a formula for which neitherF T norKi(F T) holds; in this case,i controlsF
vacuously. A better translation might be:i necessarily knowsF T if and only
if F T is true. While it is straightforward to add a “necessarily” operator to the
logic, the overhead of doing so does not seem justified.

To what extent does the translation above capture BAN? The minimum we can ask
is that the translation validates the axioms of BAN. This ensures that we capture
at least the reasoning underlying BAN. As the following theorem shows, it does
provided that we use the appropriate knowledge algorithm, and make appropriate
assumptions about agents. Capturing the reasoning is not quite enough however,
since a formula and its translation should also have the same meaning. This cannot
be made precise, however, since BAN does not provide meanings for its formu-
las. In Section 9.4, we address this issue by examining the extent to which our
translation above validates the conclusions of BAN analyses.

In order to validate the axioms of BAN, we need to make assumptions on the
system. Intuitively, these are assumptions that are made implicitly by BAN logic,
and which must be made explicit in order to prove the soundness of the transla-
tion. In particular, it is necessary to assume that agents have essentially no prior
information, that agents tell the truth (since BAN assumes that when a “good”
agent sents a formula, it believes it), and adversaries’ capabilities are characterized
by the Dolev-Yao model. Agentshave no additional prior information beyond
guessesin an interpreted algorithmic knowledge security systemI if the initial
states of all agents include only public keys, their own private keys, the nonces
required by their protocol (in the case of nonadversary agents), and a finite set of
other keys or nonces they have guessed. It is also necessary to make precise the
intuition that agents tell the truth, since BAN assumes that when a (nonadversary)
agent sends a formula, it believes the formula. Without this requirement, the va-
lidity of R3 cannot be ensured. Implicit in the notion of honesty is the idea that
an agent does not forge “from”-fields in messages. Furthermore, BAN assumes
that agents’ capabilities of creating and decomposing messages are those charac-
terized by the Dolev-Yao model. These capabilities, together with the assumption
that agents not forge “from”-fields, are captured by providing a suitable knowledge
algorithm for the agent. (This is similar to what was done in Section 8.2, except
that a knowledge algorithm is not given explicitly; rather, the properties it should
have are specified.) Assume there is a functioninit(s) that, given a local states,
returns the set of messages contained in the initial state. Ifs is a local state for
agenti, definecan computei(s) to be the smallest setM of messages such that
m ∈M if one of the following conditions hold:

(1) recv(m) ∈ s orm ∈ init(s);

9.3 An Interpretation of BAN 165

(2) there existsm′ with (m,m′) ∈M or (m′,m) ∈M ;
(3) there exists a keyk (symmetric or asymmetric) with{m}k ∈M andk−1 ∈

M ;
(4) m = (m1,m2), withm1 ∈M andm2 ∈M ;
(5) m = {m1, j}k, withm1 ∈M , k ∈M , and1 ≤ j ≤ N .

Similarly, we can define the “nonforging” version,can computeNF
i (s), by replac-

ing rule (5) by the following:

(5’) m = {m1, i}k, withm1 ∈M , k ∈M .

Rule (5’) ensures ensures that when the agent constructs an encrypted message, he
includes a “from”-field set to its own name. The interpreted algorithmic knowledge
security systemI models agenti as a Dolev-Yao agentif for all runs r in I, for all
t ≥ 0, and for all messagesm,

(1) (I, r, t) |= Xi(has i(m)) if and only ifm ∈ can computei(ri(t));
(2) if ri(t+ 1) = ri(t) · send(i,m), thenm ∈ can computei(ri(t)).

The definition of anonforging Dolev-Yao agentis similar, but usescan computeNF
i

for can computei. An agenti is aγ-honest Dolev-Yao agent(for 0 ≤ γ < 1) in
an interpreted algorithmic knowledge security systemI if

(1) i is a nonforging Dolev-Yao agent inI, and
(2) for allϕ and all points(r, t), if i sends a messagem at roundt (i.e., between

times t − 1 and t), string(ϕ) v m (i.e., ϕ is a submessage ofm), and
(I, r, t− 1) |= Xi(has i(ϕ)), then(I, r, t− 1) |= Kγ

i (
∧
l′≤l©

l′ϕ).

The intuition for the last condition is that an agent will say only things that he
believes will still be true some time in the near future after its message is received.
Again, this is parameterized by a timel, which should be taken as the same time
parameter used to interpret freshness.

Observe that while the restriction to Dolev-Yao agents is hardwired into the def-
initions of said andsees by BAN and later logics, it is modeled using knowledge
algorithms in our framework. This means that our framework can be used to deal
with other adversaries besides those that satisfy the Dolev-Yao properties, without
changing the underlying syntax and semantics. Similarly, rather than hardwiring
honesty into the definition ofsaid, it is built into the class of structures. It is there-
fore possible to model the kind of operators BAN advocates without being tied to
the particular choices made by BAN and its successors.

The next step is to show that this translation preserves the validity of the BAN
inference rules. Making this statement precise requires care, since translations of
formulas are not unique. Note that an instance of a BAN inference rule has the

166 9 Epistemic Foundations of Security Protocols

form “from F1 [andF2] infer F3”. This instance translates into a set of formulas
of the formF T1 [∧F T2] ⇒ F T3 , whereF Ti is a possible translation ofFi, subject to
some consistency conditions:

– The possible translations of rule R6 have the formKα
i (good ⇒ (i k↔ j)

T
) ∧

Xi(has i({FM}k)) ⇒ Xi(has i(FM)), whereFM is a possible translation of
F . (Of course, the same possible translation ofF appears in both the antecedent
and the conclusion.) The rules R5, R7, and R8 are translated similarly.

– Rules R1, R2, and R9 all have abelieves formula in their antecedent. The
sameα is required in the translation ofbelieves in both the antecedent and
the conclusion. For example, the possible translations of rule R9 have the form
Kα
i (good ⇒ fresh(F)T) ⇒ Kα

i (good ⇒ fresh(F, F ′)T), where the possible
translations offresh(F) and fresh(F, F ′) use the same possible translation
FM .

– For R3, there are twobelieves formulas in the antecedent, and one in the
conclusion. The possible translations of rule R3 have the formKα

i (good ⇒
(fresh(F))T) ∧ Kβ

i (good ⇒ (j said F)T) ⇒ Kα+β
i (good ⇒ Kγ

j (good ⇒
F T)), where theγ is taken from theγ-honesty assumption.

– Finally, for R4, the possible translations have the formKα
i (good ⇒ (KjF

T ⇔
F T)) ∧Kβ

i (good ⇒ Kδ
j (good ⇒ F T))⇒ Kα+β

i (good ⇒ F T).

Note that if belief is translated usingK0
i and ifγ = 0 in the definition ofγ-honesty

(as is natural in many applications), then there is a unique translation where all the
superscripts toKi are 0.

The following theorem, where the notationrTij is used to emphasize that the
formulas in the translation ofr refer to agentsi andj, states that the translation
preserves soundness.

Theorem 9.1. Every translationrTij of an instancerij of the BAN inference rule
Rn, forn = 1, 2, is valid in systems that model Dolev-Yao agents that have no addi-
tional prior information beyond guesses and where agentsi andj are nonforging
Dolev-Yao agents. Every translationrTij of an instancerij of the BAN inference
rule R3 is valid in systems that model Dolev-Yao agents that have no additional
prior information beyond guesses and where agentsi andj areγ-honest. Finally,
every translationrT of an instancer of Rn for n ≥ 4 is valid in systems that model
Dolev-Yao agents that have no additional prior information beyond guesses.

It follows from the theorem that ifbelieves is interpreted as “holds with prob-
ability 1” (so that i believes F is translated asK0

i (good ⇒ F T)), then this
translation also preserves validity. With this translation, if each run has positive
probability, the translation of BAN belief as knowledge follows as a special case.

9.4 An Analysis of the SNS Protocol 167

Thus, our translation generalizes two of the standard interpretations of BAN belief
in the literature.

The soundness of our translation is independent of how the primitive proposition
good is interpreted. However, it should be the case that the initial probability of
good is high. In other words, it should be the case that(I, r, 0) |= Kα

i (good) holds
for all runsr, for a smallα. Otherwise, the conclusions drawn about a protocol
are unlikely to be of great interest. The analysis in the next section illustrates this
point.

9.4 An Analysis of the SNS Protocol

We now show how to perform an analysis of the SNS protocol using the logic
of Sections 8.1 and 9.2, and illustrate how to justify the conclusions of the BAN
analysis of that protocol.

It is straightforward to construct a systemIGDY modeling executions of the
SNS protocol. Consider the case of two agents,A andB, and an adversaryX.
Suppose thatA runs the protocol just once. This means that the analysis does not
cover replay attacks, but it suffices to illustrate the role of nonces and probability.
Intuitively, for every choice ofnA andnB (the nonces forA andB), kA andkB
(the public keys ofA andB), and for every choice of a deterministic protocolP

(compatible with the Dolev-Yao capabilities) for the adversary,IGDY contains a
run where agentA uses noncenA and private keyk−1

A , agentB uses noncenB and
private keyk−1

B , and where the adversary starts with the knowledge of the public
keys, runs protocolP , and guessesnXA andnXB for the nonces thatA andB use.
For simplicity, assume that the key space is such thatkA 6= k−1

B if kA 6= kB (that
is, one key cannot be the inverse of another) and the spaceN of nonces is finite.
Let IGDY

P,nX
A ,n

X
B

be the subsystem consisting of all runs in which the adversary uses

protocolP and noncesnXA andnXB . (To simplify the presentation, assume that the
adversary only attempts to guess a single nonce per agent. It is easy to extend our
results to the more general case of a finite number of initial guesses.)

Take the adversary’s choice of protocol and nonces to be nondeterministic. In
other words, assume that the adversary has complete freedom of choice (uncon-
strained by any distribution) concerning which attack he is going to mount. In
order to ensure that nonces are unpredictable, we take the agents’ choice of nonce
to be random. The agents use these random choices to protect themselves against
the unknown but fixed adversary. Formally, define a distribution on the runs of each
subsystemIGDY

P,nX
A ,n

X
B

, by taking the valuesnA andnB to be uniformly distributed.

Consider the specifications of the SNS protocol given in the original BAN anal-
ysis of this protocol. (Given our simplification of the protocol, only the specifi-

168 9 Epistemic Foundations of Security Protocols

cations that do not involve the server are relevant.) LetF (nA, nB, kA, kB) be the
conjunction of the following formulas, wherenA andnB are nonces, andkA and
kB are keys:2

A believes
kB7→ B

B believes
kA7→ A

A believes A
nA

 B

B believes A
nB

 B

A believes B believes A
nB

 B

B believes A believes A
nA

 B

B believes A believes B believes A
nB

 B.

F (nA, nB, kA, kB) is the conclusion that BAN would like to reach for a run of the
protocol wherekA isA’s key,kB isB’s key,nA isA’s nonce, andnB isB’s nonce.

The goal is to show that the (translated) conclusions hold at points inIGDY

where the protocol has successfully run to completion. In order to do this, it is
necessary to define the notion of a good run. Intuitively, a run is good if the ad-
versary has not guessed the correct noncenA or nB for A orB respectively, and if
nA 6= nB, that is, ifA andB choose different nonces. Definegood to be true at a
point (r, t) if and only if the adversary has not correctly guessednA andnB, and
nA 6= nB on runr. (Thus,good has the same truth value at all the points in a given
run.) Because the agents choose their nonces at random, and because the adversary
uses a deterministic protocol, which is independent of the choice of nonce by the
agents, the prior probability of the adversary being able to guess the right nonces is
low. In other words, the unpredictability of the nonces ensures thatgood is likely
to be true. Formally, for all runsr, (IGDY , r, 0) |= Kα

A(good)∧Kα
B(good), where

α = 3/|N|. Moreover, on good runs, messages with nonces in them must be fresh.
Since nonces are unpredictable, the only way that an adversary could have gener-
ated a message with a nonce is by guessing it, and this is precisely what does not
happen in good runs.

As this discussion suggests, on good runs, all the conclusions of interest hold, so
we can take belief to hold with probability1 in the translation of the conclusions of
the BAN formulas. LetF T,0 be the possible translationF T where every occurrence
of i believesG is interpreted asK0

i (good ⇒ GT,0). Since every run inIGDY has
positive probability. we can replaceK0

i byKi; that is, we can interpret BAN belief

2 BAN logic does not have conjunction, but it is convenient here to assume it does.

Notes 169

as knowledge. The following result shows that our translation of the last section
validates the goals of authentication for SNS as given by BAN.

Theorem 9.2. If r is a run whereA’s key iskA, B’s key iskB, A’s nonce isnA,
andB’s nonce isnB, then

(IGDY , r, 0) |= �(recvB({nB}kB
)⇒ (F (nA, nB, kA, kB))T,0).

Theorem 9.2 helps elucidate the role of unpredictability for nonces in SNS. In-
tuitively, the BAN beliefs are justified whenever a run is good. Unpredictability
of the nonces translates into the fact that the probability of a run being good is
high. Hence, the BAN beliefs are justified with high probability, assuming un-
predictability of the nonces. By way of contrast, suppose that nonces are chosen
as sequence numbers. The good runs are still the ones where the adversary does
not guess the nonce. However, now there will be a protocol for the adversary
where he takes the nonce to be the sequence number; with this protocol, the adver-
sary guesses the nonce correctly. As a consequence, there is noα < 1 such that
(IGDY , r, 0) |= Kα

A(good) ∧Kα
B(good), sinceKα

i (good) holds initially only if i
believes that, no matter what protocol the adversary uses, the set of good runs with
that protocol has probability at least1 − α. While Theorem 9.2 still holds in this
setting, it is no longer that interesting, since the set of good runs is not guaranteed
to have high probability.

We stress that our result shows the original version of SNS (without the change
described in Section 1.2 to prevent the insider attack) to be correct in certain set-
tings, rather than showing that it does not work in other settings. These results are
established by checking that the appropriate formulas hold at appropriate points
of the model; There was no use of protocol idealization. Rather, a system was
obtained directly from the original description of the protocol.

Notes

The work in this chapter, joint with Halpern and Meyden, is as yet unpublished.
The issue of nonce freshness and unpredictability is somewhat related to whether

or not nonces should be kept secret. In some protocols, the nonce need not be
kept secret, in which case it may as well be a timestamp. Guttman and Thayer
[2002] discuss some of these issues. Different notions of freshness are discussed
by Syverson and Meadows [1996].

Temporal logic has its roots in the philosophy of language [Prior 1957]. For the
past few decades, it has been used to reason about temporal properties of sequences
of events, or sequences of states in computer systems and software [Pnueli 1977;
Gabbay, Pnueli, Shelah, and Stavi 1980]. One of the first logics for reasoning

170 9 Epistemic Foundations of Security Protocols

about probabilities is due to Nilsson [1986]. The approach taken here, to view
probability as a modal operator, is due to Fagin, Halpern, and Megiddo [1990]. The
semantics forPri is due to Halpern and Tuttle [1993]. While all subsets of points
are measurable given the definitions in Section 9.2, the framework of Halpern and
Tuttle [1993] makes certain set of points unmeasurable.

The syntax of BAN logic in this chapter is along the lines of the reformulation
given by Abadi and Tuttle [1991].

The definition of defeasible belief on which our interpretation of BAN belief is
based is due to Moses and Shoham [1993]. Abadi and Tuttle [1991] also define
belief based on a set of good runs, but we differ from them in the way that the
set of good runs is obtained. They define the good runs by a complicated fixpoint
construction based on the original set of beliefs ascribed to the agents by the BAN
analysis.

The interpretation ofsees by providing a way to extract information from a mes-
sage has been advocated before [Wedel and Kessler 1996; Dekker 2000], however,
without an algorithmic interpretation.

The interpretation of good key as “no one buti andj sends messages encrypted
with k” is advocated by Abadi and Tuttle [1991]. The fact that interpreting good
key as a statement that talks about the future means that BAN cannot capture key
leaks is discussed by Nessett [1990] and Burrows, Adadi and Needham [1990b]

Abadi and Tuttle [1991] interpretcontrols by taking only the forward direction.
More precisely, they definei controls F as:i saysF T impliesF T . The fact that
they focus oni sayingF in order to controlF , as opposed to simply knowingF ,
is orthogonal to the main concerns ofcontrols.

To account for the fact that an agent may forward a formula without necessarily
believing it, Abadi and Tuttle [1991] introduce a special notation (quotation) for
forwarded message; this does not remove the need for honesty, in that the original
sender of the formula still must have believed the formula before sending it. For
ease of exposition, We did not deal with forwarded messages here; they do not
cause any difficulties. The fact that BAN requires honesty was pointed out by
Abadi and Tuttle [1991]; they avoid the need for honesty by replacing R3, the only
rule for which honesty is essential, by other rules.

The Needham-Schroeder protocol was analyzed in the original paper on BAN
logic [Burrows, Abadi, and Needham 1990a].

10
Conclusion

THIS dissertation initiated a study of the applicability of theories of resource-
bounded knowledge to the problem of reasoning about security protocols.

Our approach consisted of investigating a theory of resource-bounded knowledge
in some generality and examining its applicability to the particular domain of se-
curity protocol analysis. By way of conclusion, we now review what has been
achieved, and point out some of the most interesting directions in which this work
can be extended.

10.1 Algorithmic Knowledge and Evidence

The first part of this dissertation aimed at establishing that it was possible to de-
velop a logic for resource-bounded knowledge. Has this goal been reached? Start-
ing with the existing framework of algorithmic knowledge, it is fair to ask what it
actually means to develop a reasonable logic of resource-bounded knowledge. The
first desideratum is expressive power. We would like a framework that allows us to
model and reason about all the relevant features of a security protocol. The general
framework of algorithmic knowledge was show to be quite expressive, especially
once extended to deal with randomized knowledge algorithms.

A theme that emerges from this development is that, aside from giving us a
specification language that can talk about both implicit and explicit knowledge, the
framework lets us naturally describe the epistemic properties of knowledge algo-
rithms. If we view knowledge algorithms as computing approximations of knowl-
edge, the logic can be used to make precise the conditions under which algorithmic
knowledge yields knowledge. For instance, in Chapter 3, we described deductive
knowledge algorithms. Studying the use of such algorithms to approximate knowl-
edge amounts to studying the epistemic content of answers to queries to deductive
databases. Another example is given in Chapter 4, where we examined reliable

171

172 10 Conclusion

knowledge algorithms. Evidence helps formalize what can be learned from such
knowledge algorithms, that is, what the epistemic content of the answers given by
reliable knowledge algorithms is. An interesting question is whether this approach
could help shed light on probabilistic deductive databases. These databases are
deductive databases with probability weights on their inference rules. Most of the
issues surrounding probabilistic deductive databases are not settled, partly because
it is not clear how to interpret the probability weights. The algorithmic knowledge
framework could help clarify what one learns from a probabilistic deduction.

Another theme that emerges is the importance of evidential reasoning. As we
already pointed out in Chapter 5, evidence arises naturally in the presence of prob-
abilistic and nondeterministic choices. There has been a lot of work on formal
frameworks for modeling stochastic concurrent systems; these systems exhibit both
nondeterministic and probabilistic behaviour. We believe that evidence can help
write down more precise specifications in those frameworks. For example, con-
sider a system with a number of possible executions, and in every execution, there
is an associated probability of eventA occurring. Most frameworks can only han-
dle specifications of the form “the probability of eventA is at least1/2”, meaning
that for every execution, the probability of eventA on the execution is at least1/2.
A notion of evidence can help tie the occurrence of eventA with an associated
hypothesis.

It seems that a deeper study of the notion of evidence is required. The notion
of evidence space and weight of evidence developed in Chapter 4 is not quite suf-
ficient in general. For instance, the probability of an observation often does not
depend only on whether or not an hypothesis is true, but of other aspects of the
world, which the evidence space cannot take into consideration. An example of
this was already given in Chapter 4, where the probabilistic behaviour of the Rabin
algorithm depends on the actual natural number tested for primality, and not just
whether or not the number is prime. An obvious approach would be to use aset of
probability measuresrather than a single probability measure for the likelihood of
an observation given any particular hypothesis. Such a set of probability measures
represents the uncertainty as to the actual probability of observation. As far as we
can tell, no measure of evidence has been defined in the literature based on sets of
probability measures. There are obvious questions with such a generalization. For
instance, is it the case that the notion of weight of evidence that arises can be inter-
preted as a function from priors to posteriors, and if so, what are the properties of
such a function? It is also possible to generalize the notion of evidence to represent
the uncertainty of an observation using one of the many existing representations of
uncertainty. Again, how to interpret evidence is an intriguing question.

10.2 Security Protocol Analysis 173

10.2 Security Protocol Analysis

In the second part of the dissertation, we examined in detail a particularly appropri-
ate area of application of algorithmic knowledge. In security protocol analysis, one
studies protocols in the presence of an adversary that uses the knowledge he gains
through intercepting messages and possibly interacting with other agents to learn
secrets and perform other actions. To get meaningful results, we should consider
the knowledge that the adversary can compute. This knowledge can be captured
in a natural way using algorithmic knowledge, where the knowledge algorithms
capture restrictions on the capabilities of an adversary.

It is fair to ask at this point what can be gained by using this framework. For one
thing, we believe that the ability of the framework to describe the capabilities of
the adversary will make it possible to specify the properties of security protocols
more precisely. We also believe that an epistemic language is a natural language
for the specification of security protocols. We argued in Chapter 9 that many no-
tions underlying protocol analysis are essentially epistemic. Moreover, many secu-
rity properties are intrinsically epistemic: confidentiality specifies information that
agents should not know, while authentication involves an agent knowing the origin
of a message, or the identity of another agent. This is not a new observation—
many informal arguments are based on such an epistemic formulation. Having an
epistemic language lets us make this formulation explicit.

An obvious question that arises is whether other security properties can be cast
naturally in this epistemic framework. More general forms of confidentiality can
be captured, including anonymity, which can be which viewed as a form of confi-
dentiality with respect to the identity of the agents.Fairness, the property that no
agent can gain an advantage over other agents by misbehaving in a protocol, can
sometimes be expressed epistemically, when this advantage amounts to obtaining
information about another agent. (This is the case in fair exchange protocols, where
two agents exchange one item for another, and where fairness ensures that either
each agent receives the item it expects, or neither receives any information about
the other’s item.)Non-repudiation, the property that the sender of a message should
not be able to deny sending the message, can also be given an epistemic reading:
the receiver of a message knows that the sender of the message actually sent it (and
is able to convince other agents of this fact). One could also view non-repudiation
as stating that the receiver of a message has enough evidence to establish that the
sender in fact sent the message. It is interesting to speculate whether it is possible
to quantify this kind of evidence using techniques described in Chapter 5.

The approach to protocol analysis presented in the second part of this disserta-
tion is a general framework for handling different adversary models in a natural
way. With this framework, it should be possible to provide a formal foundation for

174 10 Conclusion

new attacks that are introduced by the community. We gave concrete examples of
this in Chapter 8. This can be pushed much further, while remaining in a purely
symbolic setting. Many protocols require operations on the “message space” be-
yond the simple encryption and pairing. For instance, it is straightforward to model
operations such asxor (⊕). This requires reasoning under the assumption that
x⊕ y ⊕ y = x. Other operations can be similarly handled.

There are at least two topics that especially deserve further investigation. The
first topic isverification. While we have focussed on modeling protocols and de-
veloping a logic in which it is possible to specify the capabilities of adversaries and
reason about the knowledge of agents, we have yet to address the problem of auto-
matic verification of properties expressed using the language. Two approaches are
worth pursuing. The first is model-checking. While we do not expect that general
model-checking techniques for arbitrary knowledge algorithms can be developed,
it may well be possible to extend current techniques to handle more restricted ad-
versaries (for example, Dolev-Yao extended with random guessing). Another ap-
proach is to reason about protocols at the language-level, that is, at the level of
IMPSEC (or any other language for protocols that can be given a semantics in terms
of security systems.) It may be possible to borrow techniques from the study of pro-
gramming languages, process calculi in particular, to analyze a class of properties
expressible in the logic. For example, a type-based analysis on IMPSEC programs
could be used to establish confidentiality properties.

The second topic deserving further investigation is to move beyond symbolic
analysis, and reason aboutcomputational properties of the encryption schemes. We
suspect that the framework in the second part of this dissertation can be useful for
capturing more computational approaches to security protocol analysis. Compu-
tational approaches are characterized by reasoning about encryption schemes with
a probability of distinguishing distinct encrypted messages (among other things).
This probability is defined in terms of asecurity parameter(for instance, the key
length) that captures the “hardness” of the encryption scheme. For example, a
encryption scheme issemantically secureif, intuitively, given two equal length
messagesm1 andm2, an adversary given an encryption of a random one of them
cannot tell which it was with a probability significantly better than that of guess-
ing. The adversary, in this context, can perform any probabilistic polynomial-time
computation on the messages in order to try to distinguish the two messages. Thus,
rather than having a fixed number of capabilities corresponding to abstractions of
the operations of the underlying encryption scheme, the capabilities are arbitrary,
but restricted by computational limitations. To account for this, it is necessary to
reason about the probability of events parameterized by a security parameter and
about classes of knowledge algorithms, for instance, the class of all probabilistic
polynomial-time knowledge algorithms. In a computational setting, confidential-

Notes 175

ity is taken to mean not that the adversary does not derive any information from
the encrypted messages. Thus, the specifications still have an epistemic flavour.
Moreover, since this notion of confidentiality refers to information that can be ex-
plicitly derived, it should be possible to capture it using algorithmic knowledge.
Of course, it may be the case that to prove correctness of a security protocol with
respect to certain types of adversaries (for example, polynomial-time bounded ad-
versaries), we will not be able to do much within the logic—we will need to appeal
to techniques developed in the cryptography community. However, modeling com-
putational approaches using algorithmic knowledge provides the hope for a truly
general specification language that bridges both the symbolic and computational
approaches to security protocol analysis.

Notes

Representative samples of recent work in the literature on probabilistic deductive
database literature include [Lukasiewicz 1999; Lakshmanan and Sadri 2001]. Us-
ing sets of probability distributions is a common approach to capture uncertainty
[Huber 1981; Kyburg 1974; Levi 1980]. A good overview of different measures of
uncertainty and associated properties is given by Halpern [2003].

The importance of reasoning aboutxor was made clear by Ryan and Schneider
[1998], who showed that a prior analysis by Paulson [1997] on a recursive au-
thentication protocol was flawed when these properties of the protocol related to
the use ofxor were completely abstracted away. Related extensions to the basic
symbolic approach include multiplication and Diffie-Hellman exponentiation; see
[Millen and Shmatikov 2003] for more detail.

Meyden and Su [2004] have developed a tool to model-check some forms of
security protocols using epistemic logic, although not security protocols involving
encryption.

Goldreich [1998, 2001] provides excellent overviews and pointers to the litera-
ture of computational approaches to security protocol analysis and cryptography.
Semantic security is defined by Goldwasser and Micali [1982]. A standard model
for protocol analysis in a computational framework is due to Bellare and Rogaway
[1993]. Impagliazzo and Kapron [2003] have developed a logic for reasoning about
cryptographic notions by capturing the notion of indistinguishability of probability
distributions parameterized by a security parameter.

Bridging the gap between symbolic and computational approaches has been the
focus of recent work in security protocol analysis. Many of the approaches de-
scribed in Chapter 6 have been extended (in a somewhatad hocmanner) to deal
with cryptographic assumptions. For instance, Lincoln et al. [1998] introduce a

176 10 Conclusion

probabilistic process calculus along the lines of the spi calculus. They establish
formal relationships between security expressed using bisimulations in this calcu-
lus and more computational definitions of security based on computational indis-
tinguishability. Similarly, Guttman et al. [2001] introduce a quantitative version of
strand spaces to model cryptographic assumptions.

A distinct thread of recent work, originating with Abadi and Rogaway [2002],
tries to justify the abstractions used by symbolic approaches with respect to more
computational assumptions, by examining properties of the encryption scheme suf-
ficient to ensure that a formal analysis in terms of symbolic encryption schemes
yields correct results.

Appendix A

On the Problem of Human Knowledge

I N the 1960’s, Hintikka gave the now standard possible-worlds interpretation of
knowledge.1 In this interpretation, there are different possible worlds (or state

of affairs), some of which an agent considers as possible alternatives to the actual
world. The agent then knowsP if P is true at all the worlds the agent considers as
possible alternatives to the actual world.

However, the usefulness of this interpretation is somewhat limited by what Hin-
tikka called thelogical omniscience problem. Roughly speaking, logical omni-
science is a closure property of an agent’s knowledge; it says that if an agent knows
certain facts, and if certain conditions hold, then the agent must also know some
other facts. Generally, this takes the following form: if an agent knowsP , andP
logically impliesQ, then the agent also knowsQ. A consequence of this is that if
an agent knowsP , then he knows allQ that are logically equivalent toP .2

In many fields, the above notion of knowledge has proved useful despite the phe-
nomenon of logical omniscience. For instance, it has been shown to be appropriate
for reasoning about the knowledge of processes in a distributed system, or as a way
to capture the notion of “information set” available to an agent in game theory.3 In
all of these setting, knowledge is ascribed by an external observer of the system
under consideration.

On the other hand, how do we reconcile such a theory of knowledge, that implies

1 See Hintikka [1962].
2 There are in fact many closure conditions that go under the heading of logical omniscience. The general form

is as follows: an agent isfully logical omniscientif whenever he knows all the formulas in a setΨ, andΨ
logically impliesϕ, then the agent also knowsϕ. Logical implication is always defined with respect to a class
of models for a logic under consideration. Roughly,ϕ logically impliesψ if wheneverϕ is true,ψ is true. In
classical logic, this is equivalent to the validity of material implication:ϕ ⇒ ψ is valid. In different logics,
however, these notions may differ. See Faginet al. [1990] for more details.

3 Uses of knowledge in the distributed computing literature include Dwork and Moses [1990] and Moses and
Tuttle [1988]. For a good overview, see Faginet al. [1995]. The game-theoretic use of knowledge goes back
to the seminal work of Aumann [1976]. Interestingly, the problem of logical omniscience also appears in
game theory under the guise of rationality assumptions that are difficult to justify. See Rubinstein [1998] for
more details on rationality and bounded rationality.

177

178 Appendix A On the Problem of Human Knowledge

that agents are logically omniscient, with the fact that humans are clearly not? As
Stalnaker puts it,

It is obvious that if belief and knowledge are understood in their ordinary sense,
then no nonsupernatural agent, real or artificial, will be logically omniscient.
Despite this obvious fact, many formal representations of states of knowledge
and belief, and some explanations of what it is to know or believe, have the
consequence that agents are logically omniscient. [Stalnaker 1991]

There are two common and contrasting ways to account for this reconciliation. The
first is to take that notion of knowledge as one for ideal knowers, or represent an
idealized notion of knowledge. The other is to view this notion of knowledge as a
normative notion, describing the ideal to be attained.4

Most of the formal representations of knowledge, including the one presented
here, make assumptions on the nature of propositions, or on the objects of knowl-
edge. A particularly simple view is simply to take propositions as sets of possible
worlds (a proposition represents a way a world might be, and we identify a propo-
sition with the set of worlds that are that way), and take objects of knowledge to be
propositions. This is the so-calledcoarse-grainedview of content.5 This view has
the advantage of being natural. To knowP is to know that the world is a certain
way, which way is given by the propositionP . Since the propositionP is a set
of possible worlds, an agent knowsP if the set of worlds he considers as possible
alternatives to the actual world is a subset of the worlds inP . The problem is that
such a notion of knowledge intrinsically suffers from logical omniscience.

To illustrate why, consider the following example. SupposeP is a proposition,
or set of possible worlds. Suppose moreover thatP logically impliesQ, that is,
at every world that is a way represented byP , the world is also a way represented
by Q. Then, when viewed as sets of possible worlds,P ⊆ Q. Now, if the agent
knowsP , then the set of worlds he consider as possible alternatives to the actual
world is a subset ofP , hence a subset ofQ, and thus the agent knowsQ. This
holds irrespectively of how complex the relationship betweenP andQ is.

Observe that a form of logical omniscience arises for most propositional atti-
tudes. Say that Oscar convinced Alice to make a bet so that Alice gets money
if P is true, but loses money ifQ is false. Unbeknownst to Alice,P andQ are
logically equivalent, maybe through a complex logical manipulation. Just like Al-
ice could know thatP without knowing thatQ, Alice can certainly hope thatP
without hoping thatQ. In decision theories that are based on a coarse-grained
view of propositions, the fact that one could accept such a bet would make one
4 There is a sense in which Hintikka’s [1962] view is normative; he interpretsKϕ to mean thatϕ is knowledge

(or belief) that isdefensible. Cresswell [1973, p. 47, footnote 61] is more forward, calling this notion of
knowledgerational, indicating it is the kind of knowledge that a rational agent should possess.

5 See Stalnaker [1984]. It is commonly adopted by philosophers of a logical persuasion, such as Cresswell
[1973].

179

irrational, but just as logical omniscience seems unreasonable when representing
human knowledge, it seems unreasonable in the above example as well.

There is a general way to understand this. In most cases of interest, propositional
attitudes describe the attitude of the agent towards the world being a certain way
(belief that the world is a certain way, knowledge, hope, fear, and so on). But there
can be many ways of describing such a world, all equivalent, and the agent will
realistically only be aware of some such ways. With this view, it is clear that any
propositional attitude is subject to a form of logical omniscience if propositions
are to be the object of propositional attitudes, and propositions are sets of possible
worlds.

Hence, it appears that taking propositions as sets of possible worlds cannot avoid
the logical omniscience problem. A possible response is to take a more fine-grained
view of the content of propositional attitudes, such as sentences in some language
of thought.6. Stalnaker argues that this does not solve the problem, by examining
a particular proposal, thesentence storagemodel of belief.7 (While this model
applies to belief, it can be straightforwardly be used for knowledge.) This model
is particularly simple: every agent has a “belief box” that holds the sentences that
the agent believes. Here, the objects of belief are sentences, not propositions. This
allows us to make a direct distinction between what we might term implicit and
explicit belief: a belief is explicit if its sentence is stored in the box, while it is
implicit if it is not. The claim here is that the notion of explicit belief does not
suffer from logical omniscience, and hence more accurately captures the notion of
belief that real agents have. For instance, while the sentenceP might logically
imply Q, if P is in the belief box andQ is not, then the agent explicitly believes
P , but does not explicitly believeQ.

However, argues Stalnaker, equating real belief with explicit belief is not quite
the identification we want to make. On the one hand, we do not want trivial con-
sequences of beliefs in our belief box to clutter the belief box, yet these trivial
consequences ought to be as explicit as the sentences actually stored in the belief
box. What one really wants here is a notion of a belief beingaccessiblefrom the
beliefs stored in the belief box. Accounting for such a notion of accessibility of
belief is essentially the same problem as accounting for a notion of belief that does
not suffer from logical omniscience.8 Clearly, if we allow for any logical conse-
quence of the content of the belief box to be accessible, we simply recover the

6 See Fodor [1976].
7 See Harman [1973] or Cherniak [1986].
8 Stalnaker [1984, p.73] admits that in the case of mathematical propositions, the objects of knowledge may have

to take the presentation of the proposition into account, in an attempt to circumvent the fact that mathematical
propositions are necessarily true or false. In Stalnaker [1987], he examines the view that objects of knowledge
and belief are always propositions, by allowing thethat-clause of a knowledge or belief attribution to not
always represent the same proposition all contexts, via his notion of propositional concept.

180 Appendix A On the Problem of Human Knowledge

standard notion of belief, closed under logical consequence, and thus subject to
logical omniscience. Therefore, we need to define a notion of accessibility that
is more restricted, yet can capture obvious (or reasonable) consequences of the
content of the belief box.

In this chapter, we will try to argue for a way to define knowledge to retain as
much as possible the coarse-view of content, while avoiding logical omniscience.
The intuition is in fact taken from the belief box approach, and relies on taking a
more explicitly cognitive view of the knowledge attribution process. We describe
a notion of knowledge by taking into account the “mechanisms” in which agents
can obtain their knowledge. More precisely, we will assume a representation of
propositions in the mind of the agents. We then describe mechanisms in which a
sentence of the language can be, for an agent, associated with a particular repre-
sentation of the proposition that the sentence expresses. We maintain the view that
the object of knowledge is a proposition, but allow for the agent not to be able to
actually derive a representation of the proposition corresponding to that particular
sentence.9 This difficulty on the part of the agent in deriving a representation of
the proposition expressed by a sentence is the reason why this approach does nota
priori suffer from the logical omniscience problem.

The above account requires some precisions. First, what do we mean by a rep-
resentation of propositions in the mind? A proposition is a set of possible worlds.
Note that there are uncountably many propositions, at least, in any reasonable ac-
count of possible worlds. We will restrict representations to be effective, and hence
will take the set of representations to be countable (in fact, recursive). So, we seem
to be limited in the number of propositions we can represent. We shall argue that
this is a reasonable restriction for any natural agent. Second, going back to Stal-
naker’s quote, accounting for a reasonable notion of knowledge for nonsupernatu-
ral agents presupposes that we can specify what make an agent nonsupernatural for
the purposes of attributing knowledge. As we shall argue, this can be understood
computationally, that is, what differentiates a supernatural agent from a nonsuper-
natural agent is that the latter is subject to inherent computational limitations.

A.1 Impossible Worlds

Let us first examine an idea that has been advocated to deal with the logical om-
niscience problem, while remaining within a possible-worlds framework. This
account has proved popular in some communities, mostly because it allows for
a technically flexible solution to the logical omniscience problem. However, the
philosophical underpinnings seem shaky.

9 Such an approach is alluded to in Stalnaker [1984, p.72], but not developed.

A.1 Impossible Worlds 181

The idea is to consider, along with the familiar possible worlds, so-calledim-
possible worlds, worlds where the laws of logic do not hold, where contradictions
occur.10 Perhaps the clearest account of impossible worlds is given by Cresswell,
who calls themnon-classical worlds. The idea is easily summarized:

A way out is to divide the worlds into those we may call ‘classical’ and those we
can call ‘non-classical’. Two propositions are logically equivalent if and only if
they contain the same classical worlds, though they may differ in the presence or
absence of certain non-classical worlds. [Cresswell 1973, p.40]

The intuition behind non-classical worlds is that, for instance, contradictions may
hold at a non-classical world. As Cresswell points out, it is certainly possible to
make sense of non-classical worlds in a purely formal setting, without questioning
what those worlds are. Many such formal semantics of knowledge have been pro-
posed based on non-classical worlds, without addressing the metaphysical status
of those worlds.

A standard argument against such a presentation is that it leads to a contradic-
tion.11 Let us say that a propositionP is true at a world if the world is a way
represented byP . Suppose a non-classical worldw in which bothP and¬P are
true. Consider a modal operator ‘inw’, such that ‘inw, P ’ is true at a world if
and only ifP is true in worldw. Hence, ‘inw, P ’ and ‘in w, ¬P ’ are both true
in the actual world. But ‘inw, ¬P ’ is logically equivalent to ‘¬ in w, P ’. So a
contradiction is true at the actual world, which it is fair to presuppose, is a classical
world, not non-classical.

Cresswell’s response to this argument is to actually take non-classical worlds as
those where the logical operators (negation, conjunction, and the likes) do not have
their classical truth-tables. The idea is to say that ifP∧¬P is true at a non-classical
world, it is not becauseP and¬P are truly contradictory, but simply that∧ and
¬ do not have their usual interpretation. An important point of Cresswell’s view
is that while his aim is to define propositions in such a way that they can describe,
for instance, contradictory states of affairs (or states of affairs whereP ∨¬P is not
true), sets of possible worlds cannot in fact describe contradictions.

To achieve this, he defines a proto-proposition to be a set of possible worlds.
Accordingly, proto-propositions are essentially what we called ‘propositions’ until
now. These cannot be contradictory, and satisfy the usual rules of classical logic.
A set of proto-position forms a heaven, which plays the role of a world, except that
it should be thought of as a state of affairs that need not be consistent with the laws
of logic. A proposition is finally defined as a set of heavens.

10 Proponents of this approach include Cresswell [1972], Hintikka [1975], Rantala [1982], Rescher and Bran-
dom [1979], and Wansing [1990]. Kripke [1965] talks about non-normal worlds, which can be considered a
precursor to impossible worlds.

11 See Stalnaker [1996], for a discussion of this argument.

182 Appendix A On the Problem of Human Knowledge

One attractive feature of the impossible-worlds approach, from a formal point
of view, is its flexibility. Indeed, it is possible, formally, to add impossible worlds
that provide a counterexample to any specific logical equivalence. Returning to our
initial example, supposeP andQ are propositional formulas such thatP logically
impliesQ. This means that at every (classical) world, ifP is true, thenQ is true as
well. On the standard account of knowledge, this yields that if an agent knowsP ,
then he knowsQ. Consider adding an impossible world that the agent considers as
a possible alternative to the actual world to the model, a world whereP is true, but
Q is not. This is an impossible world, since it does not obey the logical law that if
P impliesQ, thenQ is true wheneverP is true. In this extended model, the agent
knowsP , sinceP is still true at all worlds he considers as possible alternatives to
the actual world, but does not knowQ, since there is a world, namely the impossi-
ble one, that he considers as a possible alternative to the actual world and whereQ

is not true.
This showcases the flexibility of the approach. However, it also raises the ques-

tion of how one chooses the impossible worlds to add to any particular model. This
question has rarely been addressed in the literature.12 Adding impossible worlds to
break specific equivalence seemsad hoc, and does not help explain which equiva-
lences should be broken. Adding all impossible worlds breaks all equivalences, and
does not begin to explain why some equivalences are indeed known. Finally, the
flexibility of the framework comes at the cost of the intuitive view of propositions
as sets of possible worlds. Even Cresswell admits:

It would perhaps have been nicer to remain with propositions as sets of possible
worlds. ... The more complex analysis seems needed only when we have functors
which represent ‘propositional attitudes’, ... A full justification of our procedure
would need a far deeper semantical analysis of these notions that has yet been
given. [Cresswell 1973, p.47]

As we advocate in the remainder of this chapter, we can recover the intuition un-
derlying impossible worlds (that there are situations that are impossible but are not
recognized as such by agents) by taking a more cognitive view of the knowledge
attribution process.

A.2 Awareness and Mental Representations

While the notion of impossible worlds allows for a formally elegant solution to the
logical omniscience problem, it remains difficult to account for the metaphysical
status of those worlds. In this section, we describe a different approach to the prob-

12 Rantala [1975] gives an approach based on urn models. Impossible worlds have been used in decision theory
to model bounded rationality by Lipman [1999], who advocates a particular construction of impossible worlds.

A.2 Awareness and Mental Representations 183

lem of logical omniscience that remains compatible with the view of propositions
as sets of possible worlds.

The idea is to consider the knowledge attribution process as a cognitive one.
Roughly speaking, to know a fact is to be able to derive a representation of the
proposition capturing that fact, and to have that proposition true at all worlds that
the agent considers as possible alternatives to the actual world. Thus, we retain
the view that propositions are sets of possible worlds, but now capture the limited
reasoning process of the agent by restricting what representations the agent can
handle.

We can illustrate the issue as follows. Recall the problematic consequence of
logical omniscience: if Alice knowsP , andP is logically equivalent toQ, then
Alice knowsQ. As many people have noticed, this is particularly problematic in
the context of mathematical expressions. To avoid dragging in issues of mathemat-
ical foundations, consider a simple class of sentences, that suffices to exhibit the
problem of interest:

Alice knows thatϕ is a valid formula of classical first-order logic.

Here,ϕ ranges over formulas of classical first-order logic. Clearly, for anyϕ, the
sentencepϕ is a valid formula of classical first-order logicq is either the neces-
sarily true proposition, or the necessarily false proposition. The standard account
of knowledge simply says that Alice knows all such sentences whereϕ is indeed
a valid formula of classical first-order logic. This includes such uncontroversial
formulas such astrue.

What happens, however, if Alice does not know any classical first-order logic?
Even if we assume that Alice is a competent English speaker, nothing warrants that
she knows what a valid formula of classical first-order logic is! So she is certainly
in no position to agree that ‘thattrue is a valid formula of classical first-order
logic’, however uncontroversial, represents the necessarily true proposition. What
is going on here is that Alice, who does not know any classical first-order logic,
cannot assent to the fact that she knows thattrue is a valid formula of first-order
logic, despite the fact that it is the necessarily true proposition; she doesn’t have
enough information, so to speak. One way to capture this is to assume that Alice
has an internal representation of the meaning of sentences, which in this case we
take to be propositions. We can understand that Alice doesn’t have information to
assent to the fact thattrue is a valid formula of classical first-order logic by saying
that she cannot derive that the meaning of ‘true is a valid formula of classical first-
order logic’ is a representation of the necessarily true proposition.

With this view in mind, let us say that an agent isaware of a sentence if he
can derive a representation of the proposition corresponding to the sentence. The
actual form of the representation is not relevant for our purposes, as long as there is

184 Appendix A On the Problem of Human Knowledge

a well-defined way of relating the representation of a proposition to the proposition
it represents. Note further that this presentation is agnostic as to which proposition
we take to be the meaning of the sentence.13 A reasonable notion of knowledge
can be defined by saying that an agent knowsS (whereS is a sentence) if the
agent is aware ofP , the representation of the propositionP expressed byS, and
P is true at all worlds he considers as possible alternatives to the actual world.14

Observe first that knowledge applies to sentences, even though in a formal sense
the final objects of knowledge really are proposition (via their representation in the
agent’s internal language). Second, this requires us to talk about representation
issues when dealing with knowledge.15

What should an agent be aware of? More to the point, if an agent is aware of a
particular sentence, does this imply that he is aware of other sentences? Intuitively,
this should be the case. For instance, it seems reasonable to say that if an agent
is aware of the sentenceP andQ, then he is in fact aware of bothP andQ.
More generally, it appears plausible that awareness is closed under subsentences;
if Q is a subsentence ofP , then if the agent is aware ofP , then he is aware ofQ.
This seems to be the content of standard linguistic compositionality principles, that
among other things say that to determine the meaning ofP , we need the meaning of
its subsentences, includingQ.16 Hence, deriving the representation of the meaning
of P should require a representation of the meaning ofQ, that is, this requires
that we are aware ofQ. However, one can check that if awareness is closed under
subsentences, then awareness is closed under material implication: if an agent is
aware ofP and is aware of(P ⇒ Q), then the agent is aware ofQ. This is not
quite logical omniscience, but still a strong principle nonetheless.

Is this really such a strong principle? Consider the Alice example from earlier
in this section. Assume Alice is in fact a logician, and is thus aware of a sound
and complete deductive system for first-order logic. The deduction rules are of the
form S1 ⇒ S2, for instance,pif ϕ is a valid formula of classical first-order logic
andψ is a valid formula of classical first-order logic, thenϕ∧ ψ is a valid formula
of classical first-order logicq. Alice is aware of all such rules, which simply means

13 For instance, this is compatible with Stalnaker’s [1987] propositional-concept approach to belief attribution.
14 A general notion of awareness is formally defined Fagin and Halpern [1988], and studied further by Huang

and Kwast [1991]. Interestingly, awareness can be shown to be equivalent in expressive power to impossible
worlds. In other words, from a purely formal point of view, any situation that can be described or analyzed
in terms of impossible worlds can also be described in terms of awareness. Wansing [1990] shows how
impossible worlds can capture what awareness can capture. The converse result is an exercise in Faginet al.
[1995, Ex.9.45].

15 Dienes and Perner [1999] attempt to make a distinction between implicit and explicit knowledge via cognitive
notions, although in a sense different than what we try to do here. They are much close to the kind of
distinctions that the sentence storage model of belief attempts to make.

16 On the other hand, there are situations where this is not so clear. The best candidate along those lines would
be a sentenceS or notS, which we can reasonbly expect to be aware of as representing the necessarily true
proposition, without being aware of the sentenceS (that is, without having a representation for the proposition
expressed byS).

A.3 Towards Computational Mental Representations 185

that she can derive a representation of the proposition expressed by all such rules.
Part of the assumption that Alice is a logician includes that she is aware of the
sentence ‘true is a valid formula of classical first-order logic’. Letϕ be an arbitrary
complex and valid formula of classical first-order logic. Since the deductive system
is complete, there is a deduction in the deductive system that provesϕ. Because
Alice is aware of ‘true is a valid formula of classical first-order logic’, and she is
aware of all the deduction rules of the complete deductive system, she is aware of
pϕ is a valid formula of classical first-order logicq. In other words, she can derive a
representation for this sentence, which must be a representation of the necessarily
true proposition: she can derive thatϕ is valid, for all validϕ. Thus, it seems that
closure under awareness is still too strong a principle to capture a reasonable notion
of knowledge.

Closure under material implication (and thus closure under subsentences) essen-
tially misses out on a particular feature of real reasoning agents, the same feature
that appears to be the problem with logical omniscience. Intuitively, it does not
capture that fact that deriving a logical conclusion from a set of hypotheses is a
processthat requires mental resources, perhaps more resources than the agent pos-
sesses. This suggest that while we need in some sense a “theory” of what sentences
an agent is aware of, this theory should not only take the form of a set of rules de-
scribing what an agent is aware of, based on sentences he is already aware of, but
also take into account the process of deriving sentences he is aware of, keeping
track of the mental resources needed to perform the derivation.

A.3 Towards Computational Mental Representations

How can we characterize, then, awareness of sentences by taking into account the
process of deriving the representation of a proposition expressing the meaning of
a sentence? The answer is implicit in the use of the term “process” above. More
precisely, we will view the process of deriving the representation of a proposition
expressing the meaning of a sentence to be an effectively computable process per-
formed by the agent.

The notion of effectively computable process (or effectively computable func-
tion) goes back to Church and Turing.17 Roughly speaking, a function is effectively
computable if there is a “mechanical” procedure (mechanical in the sense that it
does not require intuition) that produces the results of the function given its inputs.
(We must also assume that the inputs are, in some sense, themselves computable.)
A Turing machine is an abstract device that captures a particular form effective
computability. TheChurch-Turing thesis(CT) is the widely believed thesis that

17 See Church [1936] and Turing [1936].

186 Appendix A On the Problem of Human Knowledge

Turing machines in fact capture all forms of effective computability. (This thesis is
supported by the fact that every other alternative to Turing machines that captures a
form of effective computability can be shown to be equivalent to Turing machines.)
In other words, if a function can be effectively computed by any conceivable mech-
anism, then it can be computed by a Turing machine. This may not have been the
belief of Church and Turing, but it has become the common interpretation of CT.18

We can posit that a nonsupernatural being, for our purposes, is one for which
the process of deriving the representation of the proposition expressed by a sen-
tence is an effectively computable process. (As opposed, say, to a being that could
magically derive the representation of the proposition expressed by the sentence.)
Assuming CT, and assuming that the representation of the proposition is of a suit-
able form, this means that this derivation process can be simulated by a Turing
machine.

This view that the activity of the brain might be somehow related to the notion
of effective computability is certainly not original. The general assumption that
the brain, or in fact any biological system, is an effectively computable process,
and thereby can be simulated by a Turing machine is shared by many philosophers.
Searle, for instance, writes:

Can the operations of the brain be simulated on a digital computer? ... The
answer seems to me ... demonstrably ‘Yes’ ... That is, naturally interpreted,
the question means: Is there some description of the brain such that under that
description you could do a computational simulation of the operations of the
brain. But given Church’s thesis that anything that can be given a precise enough
characterization as a set of steps can be simulated on a digital computer, it follows
trivially that the question has an affirmative answer. [Searle 1992, p.200]

Similarly, Johnson-Laird and the Churchlands write:

If you assume that [consciousness] is scientifically explicable ... [and] [g]ranted
that the [Church-Turing] thesis is correct, then ... [i]f you believe [functionalism]
to be false ... then ... you [should] hold that consciousness could be modeled in
a computer program in the same way that, say, the weather can be modeled ...
[and if] you accept functionalism ... you should believe that consciousness is a
computational process. [Johnson-Laird 1987, p.252]

Church’s Thesis says that whatever is computable is Turing computable. Assum-
ing, with some safety, that what the mind-brain does is computable, then it can
in principle be simulated by a computer. [Churchland and Churchland 1983, p.6]

While these are all interesting statements which, if true, have deep consequences
for the study of cognition, we must remark that for the purposes of this chapter, one

18 See Copeland [2002] for a discussion of these views. There are also dissenting opinions, holding that Turing
machines do not fully capture effective computability; see Penrose [1989, 1994] and Steiglitz [1988] for
typical arguments along those lines.

A.3 Towards Computational Mental Representations 187

need not go so far as assume that the whole process of cognition is captured by Tur-
ing machines. Specifically, it is sufficient that there is a notion of a representation
of a proposition, and a notion of effectively computing this representation from a
sentence.

Perhaps the most vocal advocate of the computational view of propositional at-
titudes is Fodor, who holds a view quite close to the one presented here, at least
superficially. Fodor argues19 that a propositional attitude such abelieving thatP
should be understood as a computational relation between an organism and a men-
tal representation expressing the propositionP . In a way, this chapter describes a
particular formalization of Fodor’s ideas, and in the next section provides a suitable
logic for reasoning about knowledge in such a setting.

Our thesis is that computational issues are relevant to a notion of knowledge
that pertains to address human-like knowledge. As we argued in the last section, it
seems required to consider the process under which representations of propositions
are derived from sentences, in order to capture the fact that the mental capacities
of nonsupernatural beings are resource-limited. An interesting consequence of this
view is that if we believe that the Church-Turing thesis applies to this derivation
process, that it is somehow effective, then there are fundamental limits to the repre-
sentations of propositions we can derive from sentences. What kind of limits? One
of the main results related to Turing machines, and in fact the motivation behind
Turing’s research, was to show that there exists problems that are not computable
using Turing machines, and hence, via CT, that are not effectively computable.
These are the so-calledundecidableproblems.

A classical problem that is undecidable is the problem of deciding the validity
of an arbitrary classical first-order logic formula. More specifically, consider the
problem of deciding, given a formula of classical first-order logic, whether or not it
is valid, that is, true in all models. It can be proved that there is no Turing machine
that can answer such a question uniformly for all formulas. Assuming CT, this
means that there is no effectively computable process that can reliably answer the
question of whether a formula of first-order logic is valid or not. The existence of
undecidable problems seems to imply that it is not possible for a nonsupernatural
entity to always be able to derive a representation of the proposition corresponding
to a sentence. Returning to the example of Alice in the last section, consider again
the knowledge attribution:

Alice knows thatϕ is a valid formula of classical first-order logic.

If the process of deriving a representation of the proposition expressed bypϕ is
a valid formula of classical first-order logicq for any givenϕ is indeed subject

19 See Fodor [1976, 1981].

188 Appendix A On the Problem of Human Knowledge

to the Church-Turing thesis, then there is no effectively computable process that
can derive for eachϕ whether that representation is the necessarily true or the
necessarily false proposition. In other words, Alice cannot knowpϕ is a valid
formula of classical first-order logicq for all ϕ, even if she has complete mastery
of classical first-order logic.

As we mentioned, there is some debate as to the question of whether our brains
can be simulated by Turing machines. We also pointed out that all we need is
the somewhat more restricted assumption that only our ability to derive a repre-
sentation of propositions corresponding to the meaning of sentences need to be so
simulated. In fact, the argument goes through relatively unchanged if we allow the
computation of the representation of propositions to be simulated by more powerful
forms of Turing machines, such as relativized Turing machines. (Roughly speak-
ing, a relativized Turing machine is a Turing machine with access to an oracle that
can itself be noncomputable.)

A.4 Computational Knowledge

The approach of Hintikka, to explain knowledge in terms of epistemically possible
worlds, has the advantage of immediately giving rise to a logic for knowledge.
Indeed, a possible-worlds account of knowledge, where the objects of knowledge
are propositions, gives us a semantics for a normal modal logic of knowledge.20

Why is this interesting? Essentially, it gives a way to argue, in an abstract setting,
for various properties of knowledge, such as positive and negative introspection,
and argue whether they are reasonable or not. For instance, some properties of
knowledge that come out of the possible-words formalization translate directly into
axioms for knowledge such as the knowledge distribution axiomKϕ ∧ K(ϕ ⇒
ψ) ⇒ Kψ or the knowledge introspection axiomKϕ ⇒ KKϕ. Of course, there
is some debate as to what properties knowledge ought to have even in Hintikka’s
definition, and these debates translate into debates as to the correct axioms that
knowledge satisfies in such a logic. But the point is that Hintikka’s definition of
knowledge has an associated logic which is amenable to interesting axiomatization
about which one can debate.

In this section, we examine to what extent we can talk about a logic for the
account of knowledge that we have been talking about, and that we will callcom-
putational knowledge. Clearly, such an account intrinsically depends on the com-
putational process of going from sentences to a representation of propositions.

The idea is simple: we model explicitly the process of deriving a representation
of the proposition expressed by a sentence, or perhaps simply an abstraction of

20 See Hughes and Cresswell [1972].

A.4 Computational Knowledge 189

this process. To this end, we assume for every agent ameaning algorithmtaking a
sentence of the language and a representation of the actual world for the agent, and
returning a representation of the proposition corresponding to the sentence (or per-
haps an indication that the derivation cannot happen). We will represent the latter
event by the token? , assumed not to correspond to the representation of any ex-
isting proposition. Since this algorithm is computational in nature, it falls under the
discussion of the previous section, and hence is subject to the CT limitations that
it be simulated by a Turing machine, assuming that our representations themselves
effective, which we will also assume. An agent is then said to computationally
know a sentence if the agent’s meaning algorithm says that the sentence, given the
agent’s representation of the actual world, corresponds to the representation of a
propositionP , andP holds at all the worlds that the agent considers as possible
alternatives to the actual world. We assume that the meaning algorithm always ter-
minates, and returns? when a representation cannot be derived (perhaps because
it requires too much mental resources).21

The above refers to a representation of the actual world. Intuitively, this is meant
to encompass everything that the agent needs to take into consideration in order to
derive a representation of the proposition of the sentence. Among other things, the
“meaning” of the words (or lexical entities) in the sentence need to be known. Not
every competent English speaker will know all the words in all the grammatical
English sentences, or even all the synonyms for a given word.

Let me now give a logical formalization of the above, in a way done for instance
by Hintikka. The models of the logic still use possible worlds, so that we can make
sense of the notion of a proposition, and implicit knowledge is still defined as truth
at all possible worlds. We furthermore equip the agent about whose knowledge we
are ostensibly reasoning with a meaning algorithm that gives, for every sentence, a
representation of the proposition corresponding to the sentence.

We have to be a little bit careful here. We need to distinguish the primitive
facts about the world, that make us the propositions, from the primitive vocabulary.
Under any reasonable interpretation of propositions, there are uncountably many
primitive facts. On the other hand, the primitive vocabulary in which we express
ourselves (or more accurately in which the agents express themselves) has at most
countably many words. They can be enumerated in a dictionary, for instance. Note
that only countably many sentences can be written, given this countable primitive
vocabulary. We certainly do not have a name for every real number, say, although

21 This approach is inspired by the work of Parikh [1987], who introduced a form oflinguistic knowledge, and
Halpern, Moses and Vardi [1994], who introduced a form ofalgorithmic knowledge. In the latter case, the
algorithms associated with the agents directly return “Yes”, “No”, or “?” to the question of whether the agent
knows the given formula in the agent’s current state.

190 Appendix A On the Problem of Human Knowledge

we can describe the “naturally” occurring ones using more and more complex sen-
tences.22

The logic itself needs to distinguish sentences, which are technically objects of
knowledge in this setting, from representations of propositions. For simplicity, we
only consider a propositional logic in this chapter. The ideas extend straightfor-
wardly to predicate logic. We assume a primitive vocabularyΦv, containing the
basic elements of the vocabulary of the language. We assume that this set is count-
able, following the above discussion. We also assume a setΦf of primitive facts
about the world, and we assume thatΦv ⊆ Φf .

We define a sentenceσ to be either a primitive vocabulary elementv ∈ Φv, a
conjunctionσ1 and σ2 (for sentencesσ1 andσ2), a disjunctionσ1 or σ2 (for sen-
tencesσ1 andσ2), an implicationσ1 implies σ2 (for sentencesσ1 andσ2), or a
negationnot σ1 (for a sentenceσ1). This defines a very simply sentential lan-
guage, and clearly could be extended to cover more of English. The above lets us
retain the flavour of propositional logic. Note that we do not define implication and
disjunction by abbreviation as it is often done in many accounts of propositional
logic.

We define a representation for proposition as a formula of a propositional logic.
(Recall that a proposition is a set of possible worlds; we will have the equivalence
that a set of possible worlds is equivalent to the representation of a propositionP

that is true at all of the worlds inP) The representation is a formula of a propo-
sitional language that we presently introduce. A formula is either a primitive fact
p ∈ Φf , a conjunctionϕ1 ∧ ϕ2 (for formulasϕ1 andϕ2), a negation¬ϕ1 (for a
formulaϕ1), and a knowledge attributionKσ (for a sentenceσ). Note that syntac-
tically, the object of knowledge in this setting is a sentence. In this propositional
logic, we do defineϕ ∨ ψ as an abbreviation for¬(¬ϕ ∧ ¬ψ), andϕ ⇒ ψ as an
abbreviation for¬ϕ ∨ ψ.

To give a semantics to this logic, we start with augmented Kripke structures
M = (W,K, π,A), whereW is a set of worlds, andK is a binary relation on
worlds that represents the worlds that an agent considers as possible alternatives to
the actual world. We typically writew′ ∈ K(w) if (w′, w) ∈ K. The functionπ
associate with every world a set of primitive facts, essentially the primitive facts
that are true at that world. We also have a meaning algorithmA that takes as in-
put the sentence whose representation of the proposition we want to establish, as
well as a representation of the world that the agent takes into consideration when
deriving the propositional meaning. We do not go into the details of this representa-

22 This statement does not have as much content as one may think. What is a “naturally” occurring real number?
Say this is a real number that occurs during the course of mathematical investigation. This mathematical
investigation that gives rise to this real number can be considered as a description of that real number, which
seems expressible using a countable language, in this case, English supplemented by the apparatus of formal
mathematics.

A.4 Computational Knowledge 191

tion, but simply posit a functionrep(w) that takes a world and somehow hands out
representation of that world that the agent can take into account. We assume this
representation to be effective. This representation should also be compatible with
theK relation, so that ifw′ ∈ K(w), we haverep(w′) = rep(w). In other words, if
the agent considers bothw andw′ as possible alternatives to the actual world, then
the agent should not have different representations corresponding to these worlds.
As we discussed above, we assume that the algorithm always terminates, perhaps
with ? if no meaning can be derived for the sentence.

We can now define the truth of a formula(M,w) |= ϕ, as follows:

(M,w) |= p if p ∈ π(w)
(M,w) |= ϕ1 ∧ ϕ2 if (M,w) |= ϕ1 and(M,w) |= ϕ2

(M,w) |= ¬ϕ1 if (M,w) 6|= ϕ1

(M,w) |= Kσ if A(σ, rep(w)) 6= ? and for allw′ ∈ K(w), (M,w′) |=
A(σ, rep(w)).

As usual, we writeM |= ϕ if (M,w) |= ϕ for all w ∈W .
Given the discussion in the previous sections, it should be clear that the above

logic does not suffer from the logical omniscience problem. Depending on the
meaning algorithmA, it certainly can be the case that(M,w) |= Kσ and(M,w) |=
K(σ implies σ′), but that(M,w) 6|= Kσ′, if the meaning algorithm cannot derive
the appropriate representation forσ′, given his representation of the worldw.

As a simple example, consider once again Alice, the logician. This example can
be modeled using a modelM with a single worldw, the actual world. LetΦv be the
set of sentencespϕ is a valid formula of classical first-order logicq for all formulas
ϕ, and letΦf = Φv. Let the interpretationπ atw be all the sentences inΦv where
the formulaϕ appearing in the sentence is indeed a valid formula of classical first-
order logic. The representationrep(w) of the actual world is inconsequential for
this example, so we simply take it to be null. As Alice’s algorithmA, take a
variant of the resolution procedure23 restricted to a fixed number of resolvents, say
ten. The algorithm will return one of the following tokens:T as a representation
of the necessarily true proposition,F as a representation of the necessarily false
proposition, and? if the procedure does not return a result within ten resolvents.
It is easy to see that if a sentenceσ in Φv talks about a formula of first-order
logic ϕ that is valid but too complicated for the restricted resultion procedure to
handle, thenA(σ, rep(w)) = ? , and thus(M,w) |= ¬Kσ. In other words, there
is a sentence that expressses the necessarily true proposition, but that Alice does
not know. If σ talks about a formula of first-order logic that is simple enough
and is valid, thenA(σ, rep(w)) = T, the necessarily true proposition, and thus
(M,w) |= Kσ, sinceT is true atw.
23 See Nerode and Shore [1994], for instance.

192 Appendix A On the Problem of Human Knowledge

This is a very generic account of computational knowledge, and by itself does
not give rise to any logical theory of knowledge. In some sense, if we do not
put restrictions on the meaning algorithms we consider, there are no interesting
valid formulas involving knowledge. What kind of restrictions could we impose on
meaning algorithms to yield classes of meaning algorithms such that with respect to
models over algorithms in that class, we have interesting and relevant properties of
knowledge? Let us focus on one here. First, define the true meaning of a sentence
σ, writtenσT , to be the proposition representing the true meaning ofσ. This can
defined inductively as follows:vT is justv (recall that we assumed thatΦv ⊆ Φf),
(σ1 and σ2)T isσT1 ∧σT2 , (σ1 or Σ2)T isσT1 ∨σT2 , (σ1 implies σ2)T isσT1 ⇒ σT2 ,
and(not σ)T as¬σT . We say an algorithmA is sound inM = (W,K, π,A) if
for all w such thatA(σ, rep(w)) 6= ? , we haveA(σ, rep(w)) logically equivalent
to σT . In other words, if the algorithm returns a nontrivial result, it is the correct
result (as far as the meaning of the sentence is concerned). LetMs be the class of
augmented Kripke structures over sound meaning algorithms. It is easy to see that
in all modelsM in Ms, M |= Kσ ⇒ σT is valid, which is essentially the truth
axiom for knowledge.

Other general principles of knowledge could potentially be extracted if we as-
sume a universality to the meaning algorithms used by, say, humans. For instance,
the kind of universal principle that Chomsky believed was common to all human
languages.24

A.5 Conclusions

In this chapter, we have investigated a framework for knowledge that retains the
flavour of knowledge as truth in all possible worlds, while not suffering from the
problem of logical omniscience. This is achieved by essentially capturing the men-
tal process of deriving from a sentence of which knowledge is claimed the mental
representation of the proposition corresponding to the meaning of the sentence.

This approach to understanding knowledge pushes the problem of determining
the properties of knowledge into the mechanisms used by agents to derive the rep-
resentation of propositions expressed by sentences. We can view the notion of
knowledge as defined by Hintikka as a limit case of the kind of knowledge we have
here. The standard possible-worlds approach to knowledge truly represents the
knowledge that an ideal agent (not limited by computational issues) would have.
In that sense, it is idealized. The strong statement that we can make, if we assume
the Church-Turing thesis, and the effectiveness of the representation of proposi-

24 See, for instance, Chomsky [1968].

A.5 Conclusions 193

tions and the view of the actual world, is that this ideal simply cannot be realized
by any human, however much good will one puts into it.

We observe that there appears to be a relationship between our notion of knowl-
edge and Ryle’s notion of knowing-how.25 Ryle describes a dichotomy between
knowing-that and knowing-how. That is, there is a distinction of sorts between
knowing that a fact is true, and knowing how to perform an action. In some sense,
we take the view that knowing a fact is knowing how to derive this fact using an
internal mental process. It would be interesting to see if our approach is subject to
the same criticisms as the Ryle account of knowing-how. Of course, it may simply
be the case that knowing a fact, even on our view, is not equivalent to knowing how
to derive this fact using an internal mental process, since the internal process is not
explicit to the agent.

It is our belief that we cannot have a uniform notion of knowledge, a theory that
encompasses in the abstract what can be known by any individual, without going
into some specifics of how that individual is thinking, so to speak. The current
approach provides a reasonable hope that some kind of logic can be developed to
account for realistic knowledge.

25 See Ryle [1949]. This relationship was first pointed out by Parikh [1987].

Appendix B

Proofs

THIS appendix gives the proofs of the technical results in the body of the text.
For ease of reference, we repeat the statement of the results proved.

B.1 Proofs for Chapter 2

Theorem 2.2. AXKX is a sound and complete axiomatization forLKX with respect
to algorithmic knowledge structures.

Proof. Proving soundness is straightforward. For completeness, we prove the
equivalent statement that ifϕ is consistent (i.e., if¬ϕ is not provable from the
axioms inAXKX) thenϕ is satisfiable in some algorithmic knowledge structure.
We can do this by adapting the canonical model constructions typically found in
the modal logic literature [Hughes and Cresswell 1972]; we assume knowledge of
constructions based on maximal consistent sets of formulas throughout this section.

First, given a setV of formulas, letV/K = {ϕ | Kϕ ∈ V }. Let C be the set
of all maximal consistent sets of formulas ofLKX. Define the relation≈ overC by
takingV ≈ U if and only if V/K ⊆ U . We first check that this is an equivalence
relation, assuming the axioms K1–K5. For reflexivity, we showV/K ⊆ V . As-
sumeϕ ∈ V/K. ThenKϕ ∈ V , by definition ofV/K. By axiom K3,ϕ ∈ V ,
as desired. For symmetry, we show thatV/K ⊆ U implies U/K ⊆ V . Let
ϕ ∈ U/K. By definition,Kϕ ∈ U . Assume, by way of contradiction, that
ϕ 6∈ V . Then by maximality ofV , ¬ϕ ∈ V . By K3, we have¬Kϕ ∈ V . By K5,
K¬Kϕ ∈ V , so that¬Kϕ ∈ V/K ⊆ U , so that¬Kϕ ∈ U , but this contradicts
Kϕ ∈ U andU consistent. Thus,ϕ ∈ V , so thatU/K ⊆ V , as desired. Finally,
for transitivity, we show thatT/K ⊆ U , assumingT/K ⊆ V andV/K ⊆ U . Let
ϕ ∈ T/K. By definition,Kϕ ∈ T . By K4,KKϕ ∈ T . Thus,Kϕ ∈ T/K ⊆ V .

195

196 Appendix B Proofs

Therefore,ϕ ∈ V/K ⊆ U , andT/K ⊆ U , as desired. So≈ is an equivalence
relation.

A property of interest is that for allψ in LKX, if V ≈ U , thenXψ ∈ V if
and only ifXψ ∈ U . This follows easily from X1. AssumeXψ ∈ V . Then
KXψ ∈ V by X1, and thusXψ ∈ V/K, and sinceV ≈ U , Xψ ∈ U . The
converse direction follows from the fact that≈ is symmetric.

Let ϕ be a consistent formula ofLKX, and letSub(ϕ) be the set of subformulas
of ϕ (includingϕ itself). Sinceϕ is consistent, there is a setV ϕ ∈ C with ϕ ∈ V ϕ.
Let [V ϕ]≈ be the≈-equivalence class that containsV ϕ. We will use [V ϕ]≈ to
define the states of our canonical structure. More specifically, define the canonical
algorithmic knowledge structureMϕ = (Wϕ,Vϕ, πϕ, Aϕ) by taking:

Wϕ = {wV | V ∈ [V ϕ]≈}
Vϕ(wV) = ⊥

πϕ(wV)(p) =

{
true if p ∈ V
false if p 6∈ V

Aϕ(ψ,⊥) =

“Yes” if ψ ∈ Sub(ϕ),Xψ ∈ V ϕ

“No” if ψ ∈ Sub(ϕ),Xψ 6∈ V ϕ

“?” otherwise.

SinceSub(ϕ) is finite, it is easy to see thatAϕ is an algorithm that simple searches
a given finite list.

We now show that for allwV ∈ Wϕ and all subformulasψ ∈ Sub(ϕ), we have
(Mϕ, wV) |= ψ if and only ifψ ∈ V , by induction on the structure of formulas.

For true and false, the result is immediate, sincetrue is in every maximally
consistent set, andfalse is in none. For a primitive propositionp, which is recall a
term inT gΣ, the result follows immediately.(Mϕ, s) |= p if and onlyπϕ(s)(p) =
true (by definition) if and only ifp ∈ V (by definition ofπϕ). For a conjunction
ψ1 ∧ψ2, we have(Mϕ, s) |= ψ1 ∧ψ2 if and only if (Mϕ, s) |= ψ1 and(Mϕ, s) |=
ψ2 if and only (by the induction hypothesis)ψ1 ∈ V andψ2 ∈ V if and onlyψ1 ∧
ψ2 ∈ V (by maximal consistency ofV). For a negation¬ψ, we have(Mϕ, s) |=
¬ψ if and only if (Mϕ, s) 6|= ψ if and only ifψ 6∈ V (by the induction hypothesis)
if and only if¬ψ ∈ V (by maximal consistency ofV).

For a knowledge formulaKψ, we have the result following from essentially the
same proof as that of Halpern and Moses [1992]. First, assume(Mϕ, wV) |= Kψ.
It follows that (V/K) ∪ {¬ψ} is not consistent. (Otherwise, it would be con-
tained in some maximal consistent setU in C, and by construction, we would
haveV/K ⊆ U , and thusV ≈ U , and sinceV ≈ V ϕ, we haveU ≈ V ϕ, and
wU ∈ Wϕ; but since we have¬ψ ∈ U , we haveψ 6∈ U , and by the induction hy-

B.1 Proofs for Chapter 2 197

pothesis,(Mϕ, wU) 6|= ψ, contradicting(Mϕ, wV) |= Kψ.) Since(V/K)∪{¬ψ}
is not consistent, there must be some finite subset{ϕ1, . . . , ϕk,¬ψ} which is not
consistent. By propositional reasoning, we can derive thatϕ1 ⇒ (ϕ2 ⇒ (. . . ⇒
(ϕk ⇒ ψ) . . .)) is provable, and thusK(ϕ1 ⇒ (ϕ2 ⇒ (. . . ⇒ (ϕk ⇒ ψ) . . .)))
is provable by K2. It is straightforward to derive from this by induction, proposi-
tional reasoning, and K1, thatKϕ1 ⇒ (Kϕ2 ⇒ (. . . ⇒ (Kϕk ⇒ Kψ) . . .)) is
provable. Thus,Kϕ1 ⇒ (Kϕ2 ⇒ (. . . ⇒ (Kϕk ⇒ Kψ) . . .)) ∈ V . Because
ϕ1, . . . , ϕk ∈ V , we haveKϕ1, . . . ,Kϕk ∈ V , and by MP, we haveKψ ∈ V , as
desired. Conversely, if we assumeKψ ∈ V , thenψ ∈ V/K. LetwU be an arbi-
trary state ofWϕ. By construction ofMϕ, V ≈ U and thusV/K ⊆ U . Therefore,
we haveψ ∈ U , and by the induction hypothesis,(Mϕ, wU) |= ψ. SincewU was
arbitrary, andV(wU) = V(wV), this means that(Mϕ, wV) |= Kψ.

Now, consider an algorithmic knowledge formulaXψ. Assume that(Mϕ, wV) |=
Xψ. By definition,Aϕ(ψ,V(wV)) = “Yes”, which by the properties ofAϕ means
thatXψ ∈ V ϕ. SinceV ≈ V ϕ, by the property of≈ given above, we have
Xψ ∈ V , as required. Conversely, assume thatXψ ∈ V . Sinceψ is a subfor-
mula ofϕ (sinceXψ is), we have by definition thatAϕ(ψ,⊥) = “Yes”. Thus,
(Mϕ, wV) |= Xψ.

Completeness ofAXKX now follows immediately. Sinceϕ ∈ V ϕ andϕ ∈
Sub(ϕ), we have(Mϕ, wV ϕ) |= ϕ, and thusϕ is satisfiable. ut

Theorem 2.3. AXKXD is a sound and complete axiomatization forLKXD over
algorithmic knowledge structures.

Proof. Soundness is straightforward. The proof of completeness is just like that of
Theorem 2.2, except that now we must also account for the operatorDϕ.

First, we verify the following property ofDϕ, namely that allψ in LKXD, if V ≈
U , thenDψ ∈ V if and only if Dψ ∈ U . This follows easily from X3. Assume
Dψ ∈ V . ThenKDψ ∈ V by X3, and thusDψ ∈ V/K, and sinceV ≈ U ,
Dψ ∈ U . The converse direction follows from the fact that≈ is symmetric.

We construct a canonical structureMϕ = (Wϕ,Vϕ, πϕ, Aϕ), as before, except
that we take the following definition forAϕ:

Aϕ(ψ,⊥) =

“Yes” if ψ ∈ Sub(ϕ),Xψ ∈ V ϕ

“No” if ψ ∈ Sub(ϕ),Xψ 6∈ V ϕ,Dψ ∈ V ϕ

“?” otherwise

We can again show that for allwV ∈ Wϕ and all subformulasψ ∈ Sub(ϕ),
we have(Mϕ, wV) |= ψ if and only if ψ ∈ V , by induction on the structure of
formulas. The only case that we need to add is the one forDψ. Assume first that

198 Appendix B Proofs

(Mϕ, wV) |= Dϕ. Thus, we haveAϕ(ψ,⊥) ∈ {“Yes”, “No” }. By definition, this
means eitherXψ ∈ V ϕ, orXψ 6∈ V ϕ andDψ ∈ V ϕ. In the first case, we have
Xψ ∈ V (sinceV ≈ V ϕ), and thusDψ ∈ V (by axiom X2). In the second case,
we haveDψ ∈ V ϕ, so thatDψ ∈ V (becauseV ≈ V ϕ). Thus, in all cases,
Dψ ∈ V , as required. Conversely, assumeDψ ∈ V . BecauseV ≈ V ϕ, we have
Dψ ∈ V ϕ. By maximality ofV ϕ, eitherXψ ∈ V ϕ (in which caseAϕ(ψ,⊥) =
“Yes”), or ¬Xψ ∈ V ϕ, so thatXψ 6∈ V ϕ, and thusAϕ(ψ,⊥) = “No”. Thus,
in either case,Aϕ(ψ,⊥) ∈ {“Yes”, “No” }, so that(Mϕ, wV) |= Dψ, as required.
The resulting completeness ofAXKXD now follows as before. ut

Theorem 2.4. AXKXD + {X4,X5} is a sound and complete axiomatization for
LKXD over algorithmic knowledge structures with sound algorithms.

Proof. Soundness is straightforward. The proof of completeness is exactly as
that of Theorem 2.3. The only thing is that we need to verify that the knowledge
algorithmAϕ is in fact sound.

GivenwV ∈ Wϕ, assumeAϕ(ψ,V(wV)) = “Yes”. By the definition ofAϕ, we
haveXψ ∈ Sub(ϕ) andXψ ∈ V ϕ. SinceV ϕ ≈ V , Xψ ∈ V . By Axiom X4,
Kψ ∈ V . Hence,ψ ∈ V/K. SinceXψ ∈ Sub(ϕ), ψ ∈ Sub(ϕ). Let wU be
any state ofMϕ. By construction, we haveV ≈ U , and thusV/K ⊆ U , so that
ψ ∈ U . By the result in the proof of Theorem 2.3,(M,wU) |= ψ. SincewU was
arbitrary,(M,wV) |= Kψ, as required.

Similarly, givenwV ∈ Wϕ, assumeAϕ(ψ,V(wV)) = “No”. Then by the defi-
nition of Aϕ, we haveXψ ∈ Sub(ϕ), Xψ 6∈ V ϕ, andDψ ∈ V ϕ. SinceV ϕ ≈ V ,
Xψ 6∈ V andDψ ∈ V . By maximality of V , ¬Xψ ∈ V . By Axiom X5,
¬Kψ ∈ V . SinceXψ ∈ Sub(ϕ), ψ ∈ Sub(ϕ). We can apply the appropriate part
of the proof of Theorem 2.3, to get that if we have(M,wV) |= Kψ, thenKψ ∈ V ,
contradicting the consistency ofV ; therefore,(M,wV) |= ¬Kψ, as required.

ut

The following known result about the satisfiability ofLK formulas is central to
many proofs of this section. We write(M,w) |=K ϕ for the satisfaction relation of
LK. Recall that, following Section 2.2,LK is interpreted over epistemic structures
M = (W,K, π), where we assume thatK is an equivalence relation onW .

Lemma B.1. [Ladner 1977]Givenf an LK formula, iff is satisfiable in an epis-
temic structure, thenf is satisfiable in an epistemic structureM = (W,K, π)
where|W | ≤ |f |, andK is the universal relation, that is,K = W ×W .

Theorem 2.5. AXKXD+{X4,X5,X6} is a sound and complete axiomatization for
LKXD over algorithmic knowledge structures with sound and complete algorithms.

B.1 Proofs for Chapter 2 199

Proof. Soundness is straightforward. For completeness, we cannot use the same
technique as used in Theorem 2.4. Certainly, we cannot define the knowledge
algorithm as we did there. Intuitively, we cannot have the algorithmAϕ return “?”,
because we want it to be complete. In the original algorithms, we replied “?” when
ψ 6∈ Sub(ϕ). This allowed us to only have to consider finitely many formulas,
those inSub(ϕ). Because we want the algorithm to be both sound, we cannot
simply reply “No” whenψ 6∈ Sub(ϕ). In fact, the only sensical algorithm is the
following:

Aϕ(ψ,⊥) =

{
“Yes” if Xψ ∈ V ϕ

“No” if Xψ 6∈ V ϕ.

However, in general, this does not work, as we have no general way to check
whetherXψ ∈ V ϕ algorithmically.

Instead, we take a different approach. We again prove the equivalent statement
that if a formulaϕ is consistent, then it is satisfiable. We rely on the intuition that
is A is a sound and complete knowledge algorithm, thenXϕ behaves likeKϕ, and
Dϕ behaves liketrue. Formally, define a translation from a formulaϕ of LKXD

into a formulaϕ̂ of LK by takingp̂ = p, ¬̂ϕ = ¬ϕ̂, ϕ̂1 ∧ ϕ2 = ϕ̂1∧ϕ̂2, K̂ϕ = Kϕ̂,
X̂ϕ = Kϕ̂, andD̂ϕ = true. It is easy to prove that for allϕ, ` ϕ ⇔ ϕ̂, using
axioms X4–6. We first establish that ifϕ is consistent, then̂ϕ is AXK-consistent.
This follows rather immediately from the fact that for allϕ, if `AXK ϕ̂, then` ϕ.
(Since every axiom inAXK is an axiom ofAXKXD + {X4,X5,X6}, `AXK ϕ̂

implies that` ϕ̂, and applying̀ ϕ ⇔ ϕ̂ yields` ϕ.) By completeness ofAXK

for LK, ϕ̂ AXK-consistent means that̂ϕ is satisfiable in an epistemic structure. By
Lemma B.1,(M,w) |=K ϕ̂ for some epistemic structureM = (W,K, π) where
|W | ≤ |ϕ̂| andK = W × W . We derive fromM an algorithmic knowledge
structureM ′ = (W,V, π, A) by takingV(w) = ⊥ andA(ϕ,⊥) be the algorithm for
checking that(M,w) |= ϕ for allw ∈W . (For instance, we can take the algorithm
from Theorem 2.8.) It is straightforward to check that(M ′, w) |= ϕ, and thatA is
a sound and complete knowledge algorithm, establishing our result. ut

Theorem 2.6. Let M = (W,V, π, A) be an algorithmic knowledge structure.
If A weakly respects negation, thenM |= Xϕ ⇒ ¬X¬ϕ. If A strongly respects
negation, thenM |= Xϕ⇔ ¬X¬ϕ.

Proof. We prove the result whenA weakly respects negation. (The result when
A strongly respects negation is similar and left to the reader.) Letw ∈ W . If
(M,w) |= Xiϕ, thenA(ϕ,Vi(w)) = “Yes”. SinceA weakly respects negation, this
implies thatA(¬ϕ,Vi(w)) = “No” and hence that(M,w) 6|= Xi¬ϕ, so(M,w) |=

200 Appendix B Proofs

¬Xi¬ϕ. Thus,(M,w) |= Xiϕ ⇒ ¬Xi¬ϕ. Sincew was arbitrary, we have that
M |= Xiϕ⇒ ¬Xi¬ϕ. ut

Theorem 2.7.

(a) AXKX
n is a sound and complete axiomatization forLKX

n with respect to al-
gorithmic knowledge structures forn agents.

(b) AXKXD
n is a sound and complete axiomatization forLKXD

n with respect to
algorithmic knowledge structures forn agents.

(c) AXKXD
n +{X4,X5} is a sound and complete axiomatization forLKXD

n over
algorithmic knowledge structures forn agents with sound algorithms.

(d) AXKXD
n + {X4,X5,X6} is a sound and complete axiomatization forLKXD

n

over algorithmic knowledge structures forn agents with sound and com-
plete algorithms.

Proof. (a) This is a straightforward generalization of the proof of Theorem 2.2.
Soundness is easy to check. For completeness, we again show that ifϕ is consis-
tent, thenϕ is satisfiable. We give the definitions here, leaving the details of the
proof to the reader. Given a setV of formulas, letV/Ki = {ϕ | Kiϕ ∈ V }. Let
C be the set of all maximal consistent sets of formulas ofLKX

n . We define≈i over
C, for everyi, by takingV ≈i U if and only if V/Ki ⊆ U . We can check that≈i
is an equivalence relation for everyi, assuming the axioms K1–K5, just like in the
proof of Theorem 2.2. We can also check that for allψ, if V ≈i U , thenXiψ ∈ V
if and only ifXiψ ∈ U .

Let ϕ be a consistent formula ofLKX and letSub(ϕ) be the set of subformulas
of ϕ (includingϕ itself). Sinceϕ is consistent, there is a setV ϕ ∈ C with ϕ ∈
V ϕ. For everyi, let [V ϕ]≈i be the≈i-equivalence class that containsV ϕ. We
will use [V ϕ]≈1 ∩ · · · ∩ [V ϕ]≈n to define the states of our canonical structure.
More specifically, define the canonical algorithmic knowledge structureMϕ =
(Wϕ,Vϕ1 , . . . ,V

ϕ
n, πϕ, A

ϕ
1 , . . . , A

ϕ
n) by taking

Wϕ = {wV | V ∈ [V ϕ]≈1∩···∩≈n}
V
ϕ
i (wV) = ⊥

πϕ(wV)(p) =

{
true if p ∈ V
false if p 6∈ V

Aϕi (ψ,⊥) =

“Yes” if ψ ∈ Sub(ϕ),Xiψ ∈ V ϕ

“No” if ψ ∈ Sub(ϕ),Xiψ 6∈ V ϕ

“?” otherwise.

We can check thatMϕ is a deductive algorithmic knowledge structure withn

B.1 Proofs for Chapter 2 201

agents. We can prove, adapting the proof of Theorem 2.2, that for allwV ∈ Wϕ

and all subformulasψ ∈ Sub(ϕ), (Mϕ, wV) |= ψ if and only ifψ ∈ V . Complete-
ness follows from the fact thatϕ ∈ V ϕ andϕ ∈ Sub(ϕ), so that(Mϕ, wV) |= ϕ,
and thusϕ is satisfiable.

(b) This is a straightforward generalization of the proof of Theorem 2.3, along
the lines of part (a). We can verify that for allψ in LKXD

n , if V ≈i U , thenDiψ ∈
V if and only if Diψ ∈ U . We construct the canonical algorithmic knowledge
structureMϕ = (Wϕ,Vϕ1 , . . . ,V

ϕ
n, πϕ, A

ϕ
1 , . . . , A

ϕ
n) as in part (b), except that we

take the following definition forAϕi :

Aϕi (ψ,⊥) =

“Yes” if ψ ∈ Sub(ϕ),Xiψ ∈ V ϕ

“No” if ψ ∈ Sub(ϕ),Xiψ 6∈ V ϕ,Diψ ∈ V ϕ

“?” otherwise.

(c) This is a straightforward generalization of the proof of Theorem 2.4, along
the lines of part (a). Soundness ofAϕi is proved in exactly the same way.

(d) This is a straightforward generalization of the proof of Theorem 2.5, along
the lines of part (a). One (slight) difficulty is that the proof of Theorem 2.5 relies on
Lemma B.1, which does not hold forLK

n . However, a weaker but sufficient result
is asmall model theoremfor LK

n, namely, that if a formulaf of LK
n is satisfiable in

an epistemic structure forn agents, then it is satisfiable in an epistemic structure
M = (W,K1, . . . ,Kn, π), where|W | is finite [Halpern and Moses 1992]. ut

Theorem 2.9. There is a procedure that runs in time polynomial in|ϕ|·|W |·f(|ϕ|)
(wheref(n) = max{fAi(n) | i ∈ {1, . . . , n}}) for deciding, given an algorithmic
knowledge structure forn agentsM = (W,V1, . . . ,Vn, π, A1, . . . , An) andϕ ∈
LKX
n , whether(M,w) |= ϕ.

Proof. Let ϕ1, . . . , ϕk be the subformulas ofϕ listed in order of length, with
ties broken arbitrarily. Thus, we haveϕk = ϕ, and ifϕi is a subformula ofϕj ,
then i < j. There are at most|ϕ| subformulas ofϕ, so we must havek < |ϕ|.
An easy induction onk′ shows that we can klabel each worldw in M with ϕj
or ¬ϕj , for j = 1, . . . , k′, depending on whether or notϕj is true atw, in time
O(k′ · |W | · f(|ϕ|)). In the case whereϕj is of the formKiϕj′ , wherej′ < j, we
label a worldw with Kiϕj′ if and only if each worldw′ such thatVi(w) = Vi(w′)
is labeled withϕj′ . Assuming inductively that each world has already been labeled
with ϕj′ or ¬ϕj′ , this step can be carried out in timeO(|W |), as desired. In the
case whereϕj is of the formXiϕj′ , wherej′ < j, we label a worldw with Xiϕj′

if and onlyAi(ϕj′ ,Vi(w)) = “Yes”. By assumption, this can be done in time
O(fAi(|ϕj′ |)), which isO(f(|ϕ|)), since|ϕj′ | < |ϕ|. ut

202 Appendix B Proofs

Lemma B.1, about the satisfiability ofLK formulas, is central to the decision
procedures forLKX. For one thing, we can easily reduce the decision problem for
LK to our logic, by simply ignoring theXϕ formulas.

Lemma B.2. If f ∈ LK, thenf is satisfiable in an epistemic structure if and only
if f is satisfiable inMalg.

Proof. For the forward direction, assumef is satisfiable in an epistemic struc-
ture. M = (W,K, π). Construct the algorithmic knowledge structureM ′ =
(W,V, π, A) by takingV(w) = [w]K, the equivalence class ofw with respect to
K. Thus,(w,w′) ∈ K if and only if V(w) = V(w′), and thusK =∼. It is im-
mediate to check by induction on the structure off that if (M,w) |=K f , then
(M ′, w) |= f . For the backwards direction, assumef is satisfiable in an algo-
rithmic knowledge structureM = (W,V, π, A). Construct the epistemic structure
M ′ = (W,K, π) by takingK =∼. It is immediate to check by induction on the
structure off that if (M,w) |= f , then(M ′, w) |=K f , from which the result is
immediate. ut

There is a similar relationship between satisfiability of a formulaϕ in LKX,
and satisfiability inLK. More precisely, givenϕ ∈ LKX(Φ0), let ϕ̃ be defined
as follows. The set of formulas{Xψ | ψ ∈ LKX(T gΣ)} is countable, so let
Φ′

0 = {qψ | ψ ∈ LKX(Φ0)} be a countable set of primitive propositions dis-
joint from Φ0, whereqψ corresponds to the formulaXψ. Let ϕ̃ be the translation
of ϕ obtained by replacing every occurrence of a formulaXψ by the correspond-
ing qψ, in conjunction with formulasqψ ⇔ Kqψ for all Xψ appearing inϕ. This
translation is essentially compositional:̃ϕ1 ∧ ϕ2 is logically equivalent toϕ̃1∧ ϕ̃2,
¬̃ϕ is logically equivalent to¬ϕ̃, andK̃ϕ is logically equivalent toKϕ̃. Note that
|ϕ̃| is polynomial in|ϕ|.

Lemma B.3. If ϕ ∈ LKX(Φ0), thenϕ is satisfiable inMalg if and only if ϕ̃ is
satisfiable in an epistemic structure.

Proof. Assumeϕ is satisfiable inMalg, that is, there is an algorithmic knowledge
structureM = (W,V, π, A) such that(M,w) |= ϕ for somew ∈ W . Construct
an epistemic structureM ′ = (W,K, π′) by takingπ′(w)(p) = π(w)(p), if p ∈
Φ0, andπ′(w)(qψ) = true if and only if (M,w) |= Xψ, if qψ ∈ Φ′

0, and by
takingK =∼ onW . It is easy to check by induction on the structure ofϕ that if
(M,w) |= ϕ, then(M ′, w) |=K ϕ̃.

Conversely, assumẽϕ is satisfied in some epistemic structure. By Lemma B.1,
we know that there exists an epistemic structureM = (W,K, π) where|W | ≤ |ϕ̃|

B.1 Proofs for Chapter 2 203

and(M,w) |=K ϕ̃ for somew ∈ W . Let [w1]K, . . . , [wk]K be an enumeration
of the equivalence classes ofK, of which there are at most|ϕ̃|, a polynomial in
|ϕ|. Construct the algorithmic knowledge structureM ′ = (W,V, π′, A), where
V(w) = i (such thatw ∈ [wi]K), whereπ′ is the restriction ofπ to the primitive
propositions inΦ0, and whereA(ψ, i) is a lookup algorithm that returns “Yes” if
and only ifXψ is a subformula ofϕ, andπ(wi)(qψ) = true. It is easy to check by
induction on the structure ofϕ that if (M,w) |=K ϕ̃, then(M ′, w) |= ϕ. ut

Theorem 2.11. The problem of deciding whether a formulaϕ of LKX
n is satisfiable

in an algorithmic knowledge structure forn agents is NP-complete ifn = 1 and
PSPACE-complete ifn > 1.

Proof. Consider first the casen = 1. For the lower bound, we show how to reduce
from the decision problem ofLK. Let f be a formula ofLK. By Lemma B.2,f is
satisfiable in an epistemic structure if and only iff̂ is satisfiable inMalg. Thus, the
complexity of the decision problem forLK is a lower bound for our decidability
problem, that is, NP. For the upper bound, we need to exhibit a nondeterministic
polynomial time algorithm that decides ifϕ ∈ LKX is satisfiable. We will use the
decision problem forLK itself as an algorithm. By Lemma B.3,ϕ is satisfiable
if and only if ϕ̃ is satisfiable, so we can simply invoke the NP algorithm forLK

satisfiability onϕ̃.
The proof for the casen > 1 is entirely analogous, except that we use the

modal logicLK
n rather thanLK. Let f be a formula ofLK

n . We can prove the
analogue of Lemma B.2, thatf is satisfiable in Kripke structures forn agents if
and only iff is satisfiable inMalg

n , with a proof similar to that of Proposition B.2.
This gives us an immediate lower bound, as follows. Letf be anLK

n formula.
We knowf is satisfiable if and only iff is satisfiable inMalg

n structures. Since
the decision problem forLK

n (n ≥ 2) is PSPACE-complete, the lower bound of
PSPACE follows.

Let ϕ be a formula ofLKX
n (Φ0). For everyi, the set of formulas{Xiψ | ψ ∈

LKX
n } is countable, so letΦi

0 = {qiψ | ψ ∈ LKX
n } be a countable set of primitive

propositions, disjoint fromΦ0, whereqiψ corresponds to the formulaXiψ. Let ϕ̃
be the translation ofϕ obtained by replacing every occurrence of a formulaXiψ by
the correspondingqiψ, in conjunction with formulasqiψ ⇔ Kiq

i
ψ for all formulas

Xiψ appearing inϕ. Note that|ϕ̃| is polynomial in|ϕ|. We can prove an analogue
of Lemma B.3, thatϕ is satisfiable inMalg

n if and only if ϕ̃ is satisfiable in an
epistemic structure forn agents, using a proof similar to that of Lemma B.3. This
gives us an immediate upper bound for our decision problem:ϕ is satisfiable if
and only ifϕ̃ is satisfiable, so we can simply invoke the PSPACE algorithm forLK

n

satisfiability onϕ̃. ut

204 Appendix B Proofs

B.2 Proofs for Chapter 3

Theorem 3.5. The axiomatizationAXded is sound and complete forLKX(T gΣ) with
respect toMded(Σ).

Proof. Proving soundness is straightforward. For completeness, we prove the
equivalent statement that ifϕ is consistent (i.e., if¬ϕ is not provable from the
axioms inAXded) thenϕ is satisfiable in some structure inMded(Σ). The proof is
similar to that of Theorem 2.2.

First, given a setV of formulas, letV/K = {ϕ | Kϕ ∈ V }. Let C be the set
of all maximal consistent sets of formulas ofLKX(T gΣ). ForV ∈ C, let Obs(V) =
{ob ∈ Obs | ob ∈ V }. Define the relation≈ overC by takingV ≈ U if and only if
V/K ⊆ U . We first check that this is an equivalence relation, assuming the axioms
K1–K5. For reflexivity, we showV/K ⊆ V . Assumeϕ ∈ V/K. ThenKϕ ∈ V ,
by definition ofV/K. By axiom K3,ϕ ∈ V , as desired. For symmetry, we show
that V/K ⊆ U impliesU/K ⊆ V . Let ϕ ∈ U/K. By definition,Kϕ ∈ U .
Assume, by way of contradiction, thatϕ 6∈ V . Then by maximality ofV , ¬ϕ ∈ V .
By K3, we have¬Kϕ ∈ V . By K5, K¬Kϕ ∈ V , so that¬Kϕ ∈ V/K ⊆ U ,
so that¬Kϕ ∈ U , but this contradictsKϕ ∈ U andU consistent. Thus,ϕ ∈ V ,
so thatU/K ⊆ V , as desired. Finally, for transitivity, we show thatT/K ⊆ U ,
assumingT/K ⊆ V andV/K ⊆ U . Let ϕ ∈ T/K. By definition,Kϕ ∈ T .
By K4, KKϕ ∈ T . Thus,Kϕ ∈ T/K ⊆ V . Therefore,ϕ ∈ V/K ⊆ U , and
T/K ⊆ U , as desired. So≈ is an equivalence relation.

The following properties of≈will turn out to be important. First, ifV ≈ U , then
V ∼ U (i.e.,Obs(V) = Obs(U)). Let ob ∈ Obs(V) ⊆ V . SinceV is maximally
consistent, all instances of X3 are inV , and thusob ⇒ Kob is in V , so by MP,
Kob ∈ V , and thusob ∈ V/K ⊆ U . Therefore,ob ∈ U , andObs(V) ⊆ Obs(U).
Since≈ is an equivalence relation,V ≈ U implies thatU ≈ V , and by the above
result, we getObs(U) ⊆ Obs(V). Thus,V ∼ U , as desired.

The second property of interest is that for allψ in LKX(T gΣ), if V ≈ U , then
Xψ ∈ V if and only ifXψ ∈ U . This follows easily from X1. AssumeXψ ∈ V .
ThenKXψ ∈ V by X1, and thusXψ ∈ V/K, and sinceV ≈ U , Xψ ∈ U . The
converse direction follows from the fact that≈ is symmetric.

Let ϕ be a consistent formula ofLKX(T gΣ), and letSub(ϕ) be the set of subfor-
mulas ofϕ (includingϕ itself). Sinceϕ is consistent, there is a setV ϕ ∈ C with
ϕ ∈ V ϕ with |Obs(V ϕ)| < ∞: construct the setS starting withϕ, addingob for
every observationsob appearing inϕ if ob ∧ ϕ is consistent, and adding¬ob for
every observationob either not appearing inϕ or inconsistent withϕ; it easy to
establish thatS is consistent, soS is extensible to a maximally consistent setV ϕ

with |Obs(V ϕ)| < ∞. Let obsϕ = Obs(V ϕ). Let [V ϕ]≈ be the≈-equivalence

B.2 Proofs for Chapter 3 205

class that containsV ϕ. We will use [V ϕ]≈ to define the states of our canonical
structure. More specifically, define the canonical deductive algorithmic knowledge
structureMϕ = (Wϕ, πϕ, Dϕ) by taking:

Wϕ = {(wV , obsϕ) | V ∈ [V ϕ]≈}

πϕ((wV , obsϕ))(p) =

{
true if p ∈ V
false if p 6∈ V

Dϕ = {(∅, ψT) | Xψ ∈ Sub(ϕ), Xψ ∈ V ϕ, ψT 6∈ Obs}.

To simplify the discussion, and becauseobsϕ is fixed in Mϕ, we refer to the
state(wV , obsϕ) as simplywV ; for instance, we freely writewV ∈ Wϕ. We
can check thatDϕ defines a KD deductive system, sinceψT cannot be an ob-
servation, nor a variable that can be substituted with an observation. Decidabil-
ity of Dϕ holds trivially, sinceDϕ contains finitely many deduction rules, as
Sub(ϕ) is finite. We can also check thatπϕ respects the observation made at
a state, sinceπϕ(wV , obsϕ)(ob) = true if and only if ob ∈ V if and only
ob ∈ Obs(V) = obsϕ. Thus,Mϕ is a deductive algorithmic knowledge struc-
ture.

We now show that for allwV ∈ Wϕ and all subformulasψ ∈ Sub(ϕ), we have
(Mϕ, wV) |= ψ if and only ifψ ∈ V , by induction on the structure of formulas.

For true and false, the result is immediate, sincetrue is in every maximally
consistent set, andfalse is in none. For a primitive propositionp, which is recall a
term inT gΣ, the result follows immediately.(Mϕ, s) |= p if and onlyπϕ(s)(p) =
true (by definition) if and only ifp ∈ V (by definition ofπϕ). For a conjunction
ψ1 ∧ψ2, we have(Mϕ, s) |= ψ1 ∧ψ2 if and only if (Mϕ, s) |= ψ1 and(Mϕ, s) |=
ψ2 if and only (by the induction hypothesis)ψ1 ∈ V andψ2 ∈ V if and onlyψ1 ∧
ψ2 ∈ V (by maximal consistency ofV). For a negation¬ψ, we have(Mϕ, s) |=
¬ψ if and only if (Mϕ, s) 6|= ψ if and only ifψ 6∈ V (by the induction hypothesis)
if and only if¬ψ ∈ V (by maximal consistency ofV).

Now, consider a deductive algorithmic knowledge formulaXψ. First, assume
that we have(Mϕ, wV) |= Xψ. By definition,obsϕ `Dϕ ψT . If ψT is an ob-
servation, then by construction ofDϕ, it is easy to see thatψT = ob for some
ob ∈ obsϕ, and thusψ ∈ obsϕ ⊆ V . By axiom X2, we haveXψ ∈ V . If ψT is
not an observation, then again by construction ofDϕ, there must exist a rule.ψT in
Dϕ. In other words,Xψ ∈ V ϕ. SinceV ≈ V ϕ by choice ofWϕ, we getXψ ∈ V ,
following the result we established above. Conversely, assume thatXψ ∈ V . If
ψT is an observation, thenψ ∈ V by axiom X2, meaning thatψ ∈ obsϕ, meaning
that(Mϕ, wV) |= Xψ immediately. IfψT is not an observation, then by definition
of Dϕ, (∅, ψT) ∈ Dϕ, and thusobsϕ `Dϕ ψT , meaning that(Mϕ, wV) |= Xψ.

For a knowledge formulaKψ, we have the result following from essentially the

206 Appendix B Proofs

same proof as that of Halpern and Moses [1992]. First, assume(Mϕ, wV) |= Kψ.
It follows that (V/K) ∪ {¬ψ} is not consistent. (Otherwise, it would be con-
tained in some maximal consistent setU in C, and by construction, we would have
V/K ⊆ U , and thusV ≈ U , and henceV ∼ U ; but since we have¬ψ ∈ U ,
we haveψ 6∈ U , and by the induction hypothesis,(Mϕ, wU) 6|= ψ, contradict-
ing (Mϕ, wV) |= Kψ.) Since(V/K) ∪ {¬ψ} is not consistent, there must be
some finite subset{ϕ1, . . . , ϕk,¬ψ} which is not consistent. By propositional
reasoning, we can derive thatϕ1 ⇒ (ϕ2 ⇒ (. . . ⇒ (ϕk ⇒ ψ) . . .)) is prov-
able, and thusK(ϕ1 ⇒ (ϕ2 ⇒ (. . . ⇒ (ϕk ⇒ ψ) . . .))) is provable by K2. It
is straightforward to derive from this by induction, propositional reasoning, and
K1, thatKϕ1 ⇒ (Kϕ2 ⇒ (. . . ⇒ (Kϕk ⇒ Kψ) . . .)) is provable. Thus,
Kϕ1 ⇒ (Kϕ2 ⇒ (. . . ⇒ (Kϕk ⇒ Kψ) . . .)) ∈ V . Becauseϕ1, . . . , ϕk ∈ V ,
we haveKϕ1, . . . ,Kϕk ∈ V , and by MP, we haveKψ ∈ V , as desired. Con-
versely, if we assumeKψ ∈ V , thenψ ∈ V/K. Let wU be an arbitrary state
of Wϕ. By construction ofMϕ, V ≈ U and thusV/K ⊆ U . Therefore, we
haveψ ∈ u, and by the induction hypothesis,(Mϕ, wU) |= ψ. SincewU was
arbitrary, and sinceU ∼ V (sinceU ≈ V by choice ofWϕ), this means that
(Mϕ, wV) |= Kψ.

Completeness ofAXded now follows immediately. Sinceϕ ∈ V ϕ andϕ ∈
Sub(ϕ), we have(Mϕ, wV ϕ) |= ϕ, and thusϕ is satisfiable. ut

Theorem 3.6. The axiomatizationAXded + {AxD} is sound and complete for
LKX(T gΣ) with respect toMded

D⊆(Σ).

Proof. Soundness is again straightforward. For completeness, we prove the equiv-
alent statement that ifϕ is consistent (i.e., if¬ϕ is not provable from the axioms in
AXded∪AxD) thenϕ is satisfiable in some structure inMded

D (Σ). The procedure is
exactly the one that is used to prove Theorem 3.5, except with a different deductive
systemDϕ.

We simply indicate where the proof differs from that of Theorem 3.5, and let
the reader fill in the details. We construct, for a givenϕ, a deductive algorithmic
knowledge structureMϕ = (Wϕ, πϕ, Dϕ), whereWϕ andπϕ are constructed as
in Theorem 3.5, andDϕ is given by

D ∪ {(∅, ψT) | Xψ ∈ Sub(ϕ), Xψ ∈ V ϕ, ψT 6∈ Obs}.

We can check thatMϕ is a deductive algorithmic knowledge structure inMded
D⊆(Σ).

The deductive systemDϕ has the following interesting property: ifobsϕ `D ψT ,
then there is a rule.ψT in Dϕ. In other words, every termψT derivable from the
rules inD is derivable directly with a single rule inDϕ. Here is the proof of this
property. Assumeobsϕ `D ψT . Clearly, it is sufficient to show thatXψ ∈ V ϕ. If

B.2 Proofs for Chapter 3 207

ψT is an observation, then becauseD is a KD deductive system, we haveψT = ob
for someob ∈ obsϕ, and thusψ ∈ obsϕ ⊆ V . By axiom X2, we haveXψ ∈ V ϕ.
If ψT is not an observation, then there must exist a deductiont1, . . . , tm in D such
that tm = ψT is a conclusion of the deduction. We show by induction on the
length of the deduction that for everyi,X(ti)R ∈ V ϕ. If i = 1, then eitherti is an
observation inV ϕ, and thus we have(t1)R = t1, andXt1 ∈ V ϕ follows from X2,
or ti follows from the application of a deduction rule inD, with no antecedents.
By construction, there is an instance of this rule inV ϕ, of the formtrue ⇒ X(t1),
and thusX(t1) ∈ V ϕ. For i > 1, again, eitherti is an observation, and the result
follows as above, or there is a rulet′1, . . . , t

′
k . t

′ in D such that for some ground
substitutionρ such thatρ(t′) = ti andρ(t′j) appears in the deduction before term
ti. By construction, there is an instance ofX(t′1)

R ∧ · · · ∧X(t′k)
R ⇒ X(t′)R in

V ϕ, and by induction hypothesis, we haveX(t′ij) ∈ V
ϕ for eachij < i. Thus, by

MP, we haveX(ti)R ∈ V ϕ. SinceϕT = tm, the last element of the deduction, we
get thatX(ϕT)R = Xϕ is in V ϕ, as desired.

The rest of the proof follows as before. ut

For the decision procedures, we can use the same ideas as in the proof of The-
orem 2.11, but adapted to deductive systems. As before, we can easily reduce the
decision problem forLK to our logic, by simply ignoring theXϕ formulas. One
difficulty is that we need to account for the fact that primitive propositions are
terms in a term algebra inLKX(T gΣ). Consider the following construction. Letf
be a formula ofLK. Let p1, . . . , pk be the primitive proposition appearing inf .
We first come up with an encoding of these primitive propositions into the lan-
guage ofΣ. For example, we can takep1 to betrue, p2 to benot(true), p3 to be
not(not(true)), and so forth. Lettp be the term encoding the primitive proposition
p. The one restriction we make on this encoding is that notp is an observation
in Obs. Let f̂ be the formula obtained by replacing every instance of a primitive
propositionp in f by tp. Note that|f̂ | is polynomial in|f |, and thatf̂ contains no
instance of theX operator.

Proposition B.4. Givenf ∈ LK, and givenD an arbitrary KD deductive system
overΣ, the following are equivalent:

(1) f is satisfiable in an epistemic structure,

(2) f̂ is satisfiable inMded
D (Σ),

(3) f̂ is satisfiable inMded(Σ).

Proof. (1)⇒ (2): Assumef is satisfiable in an epistemic structure. By Lemma B.1,
we know that there exists an epistemic structureM = (W,K, π) where|W | ≤ |f |,

208 Appendix B Proofs

K is an equivalence relation onW and (M,w) |=K f for somew ∈ W .1 Let
{[w]K | w ∈ W} be the set of equivalence classes ofK, of which there are
at most|f |. We encode these equivalence classes using an encoding similar to
that for primitive propositions, except we take the encoding terms to be obser-
vations. Letob(false), ob(not(false)), ob(not(not(false))), . . . be an encoding of
these equivalence classes, where we denote bytw the encoding of[w]K. Thus,
(w,w′) ∈ K if and only if tw = tw′ . Construct the deductive algorithmic knowl-
edge structureM ′ = (W ′, π′, D), whereW ′ = {(w, {tw}) | w ∈ W}, and
π′ is given as follows. For a termtp, π′((w, {tw}))(tp) = π(w)(p). For a
term tw, thenπ′((w′, {tw′}))(tw) = true if and only if tw = tw′ . For all other
terms t, we takeπ′((w, {tw′}))(t) = false. It is easy to see thatπ′ respects
observations. It is also easy to check by induction on the structure off that if
(M,w) |=K f , then(M ′, (w, {tw})) |= f̂ . Here are the interesting cases of the
induction. If f is p, then by assumption,(M,w) |=K p, so π(w)(p) = true;
thus,π′((w, {tw}))(tp) = true, and(M ′, (w, {tw})) |= tp. If f is Kg, then by
assumption,(M,w) |=K Kg, so that for allw′ ∈ K(w), (M,w′) |=K g. By the
induction hypothesis, we have for allw′ ∈ K(w), (M ′, (w′, {tw′})) |= ĝ, which is
equivalent to saying that for all(w′, {tw′}) ∼ (w, {tw}), (M ′, (w′, {tw′})) |= ĝ,
and thus(M ′, (w, {tw})) |= Kĝ, as required.

(2)⇒ (3): This is immediate, sinceMded
D (Σ) ⊆Mded(Σ).

(3)⇒ (1): Assumef̂ is satisfiable in a deductive algorithmic knowledge struc-
tureM = (W,π,D′), that is, (M,w) |= f̂ for somew ∈ W . Construct the
epistemic structureM ′ = (W,K, π′) by takingπ′(w)(p) = true if and only if
π(w)(tp) = true, andK =∼. It is easy to check by induction on the structure of
f that if (M,w) |= f̂ , then(M ′, w) |=K f . Here are the interesting cases of the
induction. If f is p, then by assumption,(M,w) |= tp, so thatπ(w)(tp) = true.
Thus meansπ′(w)(p) = true, and thus(M ′, w) |=K p. If f is Kg, then by as-
sumption,(M,w) |= Kĝ, that is, for allw′ ∼ w, (M,w′) |= ĝ. By the induction
hypothesis, this yields for allw′ ∼ w, (M ′, w′) |=K g, which is equivalent to the
fact that for allw′ ∈ K(w), (M ′, w′) |=K g, that is,(M ′, w) |=K Kg, as required.

ut

There is a similar relationship between satisfiability of a formulaϕ in our logic,
and satisfiability inLK. More precisely, givenϕ ∈ LKX(T gΣ), let ϕ̃ be defined
as follows. The setT gΣ is countable, so let{pt | t ∈ T gΣ} be a countable set of
primitive propositions corresponding to the ground terms ofTΣ. Similarly, the
set of formulas{Xψ | ψ ∈ LKX(T gΣ), ψT 6∈ Obs} is countable, so let{qψ |
ψ ∈ LKX(T gΣ), ψT 6∈ Obs} be a countable set of primitive propositions where
1 While Proposition B.1 says that the equivalence relationK can be taken to be universal, we will not take

advantage of this in this proof or the proof of Proposition B.5. This is in order to simplify the generalization
of these proofs to the multiple agents case (Theorem 3.13).

B.2 Proofs for Chapter 3 209

qψ corresponds to the formulaXψ. Let ϕ̃ be the translation ofϕ obtained by
replacing every occurrence of a termt in T gΣ by pt, every occurrence of a formula
Xψ whereψT ∈ Obs by pψT , and every occurrence of a formulaXψ where
ψT 6∈ Obs by the correspondingqψ, in conjunction with formulaspob ⇔ Kpob for
all observationsob appearing inϕ. This translation is essentially compositional:
ϕ̃1 ∧ ϕ2 is logically equivalent toϕ̃1 ∧ ϕ̃2, ¬̃ϕ is logically equivalent to¬ϕ̃, and
K̃ϕ is logically equivalent toKϕ̃. Note that|ϕ̃| is polynomial in|ϕ|.

Proposition B.5. If ϕ ∈ LKX(T gΣ), thenϕ is satisfiable inMded(Σ) if and only ifϕ̃
is satisfiable in an epistemic structure.

Proof. Assumeϕ is satisfiable inMded(Σ), that is, there is a deductive algo-
rithmic knowledge structureM = (W,π,D) such that(M,w) |= ϕ for some
w ∈W . Construct an epistemic structureM ′ = (W,K, π′) by takingπ′(w)(pt) =
π(w)(pt) andπ′(w)(qψ) = true if and only if (M,w) |= Xψ, andK =∼. It
is easy to check by induction on the structure ofϕ that if (M,w) |= ϕ, then
(M ′, w) |=K ϕ̃. Here are the interesting cases of the induction. Ifϕ is t, then by
assumption,(M,w) |= t, andπ(w)(t) = true. This yieldsπ′(w)(pt) = true, and
(M ′, w) |=K pt. If ϕ is Xψ, then by assumption,(M,w) |= Xψ, and therefore
π′(w)(qψ) = true, so that(M ′, w) |=K qψ. If ϕ is Kψ, then by assumption,
(M,w) |= Kψ, that is, for allw′ ∼ w, (M,w′) |= ψ. By the induction hypothe-
sis, and the definition ofK, we have for allw′ ∈ K(w), (M ′, w′) |=K ψ̃, that is,
(M ′, w) |=K Kψ̃, as required.

Conversely, assumẽϕ is satisfied in some epistemic structure. By Lemma B.1,
we know that there exists an epistemic structureM = (W,K, π) where|W | ≤ |ϕ̃|
and(M,w) |=K ϕ̃ for somew ∈ W . Let {[w]K | w ∈ W} be the set of equiv-
alence classes ofK, of which there are at most|ϕ̃|, which is polynomial in|ϕ|.
Let ob(t1), ob(t2), . . . be an encoding of these equivalence classes using terms
ti ∈ T gΣ such that none ofob(ti) appears inϕ. We denote bytw the term encod-
ing the class[w]K. Thus,(w,w′) ∈ K if and only if tw = tw′ . For every world
w ∈ W , let obs(w) = {ob | ob ∈ Obs, π(w)(pob) = true, ob appears inϕ},
that is, the observations made atw. By the construction of̃ϕ, we have that if
(w,w′) ∈ K, thenobs(w) = obs(w′). Construct the deductive algorithmic knowl-
edge structureM ′ = (W ′, π′, D), whereS′ = {(w, {tw} ∪ obs(w)) | w ∈ W},
andπ′ is given as follows. For a termob(ti), π′((w, obs))(ob(ti)) = true if and
only if ob(ti) ∈ obs. For any other termt, π′((w, obs))(t) = true if and only if
π(w)(pt) = true. It is easy to see, from the definition ofobs(w), thatπ′ respects
observations. Finally, takeD = {({tw}, ψT) | π(w)(qψ) = true, ψT 6∈ Obs)}.
It is easy to check by induction on the structure ofϕ that if (M,w) |=K ϕ̃, then
(M ′, (w, {tw} ∪ obs(w))) |= ϕ. Here are the interesting cases of the induction.

210 Appendix B Proofs

If ϕ is a termt (not any ofob(ti), by the choice of encoding), then by assump-
tion, (M,w) |=K pt, so thatπ(w)(pt) = true. Thus, we haveπ′((w, {tw} ∪
obs(w)))(t) = true, and (M ′, (w, {tw} ∪ obs(w))) |= t. If ϕ is Xψ where
ψT ∈ Obs, then by assumption,(M,w) |=K pψT , soπ(w)(pψT) = true, and thus
π′((w, {tw} ∪ obs(w)))(ψT) = true, yielding (M ′, (w, {tw} ∪ obs(w))) |= ψT ,
and thus(M ′, (w, {tw} ∪ obs(w))) |= XψT . If ϕ is Xψ whereψT 6∈ Obs,
then we have by assumption(M,w) |=K qψ, and soπ(w)(qψ) = true, meaning
that ({tw}, ψT) is a deduction rule inD, and thus(M ′, (w, {tw} ∪ obs(w))) |=
Xψ. If ϕ is Kψ, consider an arbitraryw′ such that(w′′, {tw′} ∪ obs(w′)) ∼
(w, {tw} ∪ obs(w)). This certainly implies, by the assumptions on the encoding,
that tw = tw′ , and thusw′ ∈ K(w). By the fact that(M,w) |= Kψ, we have
(M,w′) |= ψ, and by the induction hypothesis,(M, {tw′} ∪ obs(w′)) |= ψ̃. Since
w′ was arbitrary, we get(M, {tw} ∪ obs(w)) |= Kψ̃, as required. ut

Theorem 3.7. The problem of deciding whether a formulaϕ of LKX(T gΣ) is
satisfiable in a structure inMded(Σ) is NP-complete.

Proof. For the lower bound, we show how to reduce from the decision problem
of LK. Let f be a formula ofLK. By Lemma B.4,f is satisfiable if and only if
f̂ is satisfiable inMded(Σ). Thus, the complexity of the decision problem forLK

is a lower bound for our decidability problem, that is, NP. For the upper bound,
we need to exhibit a nondeterministic polynomial time algorithm that decides if
ϕ ∈ LKX(T gΣ) is satisfiable. We will use the decision problem forLK itself as an
algorithm. By Lemma B.5,ϕ is satisfiable if and only if̃ϕ is satisfiable, so we can
simply invoke the NP algorithm forLK satisfiability onϕ̃. ut

Theorem 3.8. For any given propositional deductive systemD that is decidable
in polynomial time, the problem of deciding whether a formulaϕ of LKX(T gΣ) is
satisfiable in a structure inMded

D (Σ) is NP-complete.

Proof. The lower bound follows from Lemma B.4: letf be anLK formula, and
f is satisfiable if and only iff̂ is satisfiable overMded

D (Σ) structures. Since the
decision problem forLK is NP-complete, the lower bound follows.

For the upper bound, we can do something similar to what we did in Theo-
rem 3.7, except we need to keep track of the size of the objects we manipulate.
Letϕ be a formula ofLKX(T gΣ). We exhibit an algorithm that nondeterministically
decides ifϕ is satisfiable. First, we prove a small model theorem forLKX(T gΣ)
overMded

D (Σ): if ϕ is satisfiable inM ∈ Mded
D (Σ), thenϕ is satisfiable in a struc-

tureM ′ ∈ Mded
D (Σ) with the set of worlds inM ′ polynomial in |ϕ|. Assume

ϕ is satisfiable in some structureM . Let M1 = (W1,K1, π1) be the epistemic

B.2 Proofs for Chapter 3 211

structure obtained by the construction in Lemma B.5, with(M1, w1) |=K ϕ̃, for
somew1 = (e, obs) in W1. By Lemma B.1, we know that̃ϕ is satisfied in an
epistemic structureM2 = (W2,K2, π2) where|W2| ≤ |ϕ̃|, K2 is a universal rela-
tion onW2 (that is,K2 = W2 ×W2), and(M2, w2) |=K ϕ̃ for somew2 ∈ W2.
We reconstruct a satisfying deductive algorithmic knowledge structure fromM2.
Specifically, defineM ′ = (W ′, π′, D) by takingW ′ = {(w, obs) | w ∈ W2}
(whereobs is the set of observations fromw1), andπ′((w, obs))(t) = π2(w)(pt)
whent is not inObs, andπ′(w)(ob) = true if and only if ob ∈ obs. Clearly,π′ re-
spects observations. A straightforward induction on the structure ofϕ shows that if
(M,w) |= ϕ (or equivalently, by Lemma B.5,(M1, w1) |=K ϕ̃ for somew1), then
(M ′, (w2, obs)) |= ϕ, for somew2. Here are the interesting cases of the induction.
If ϕ is t ∈ Obs, then(M1, w1) |= pt, with t ∈ obs, wherew1 = (e, obs), which
immediately yields thatπ′((w2, obs))(t) = true, and thus(M ′, (w2, obs)) |= t.
If ϕ is t 6∈ Obs, then(M1, w1) |= pt, andπ1(w1)(pt) = true; this means that
π2(w2)(pt) = true (by construction ofM2), so thatπ′((w2, obs))(t) = true,
and(M ′, (w2, obs)) |= t. If ϕ is Xψ, then by the fact that(M, s) |= Xψ, and
that s = (e, obs) whereobs = {ob1, . . . , obn}, we haveob1, . . . , obn `D ψT ,
and thus,(M ′, (w2, obs)) |= Xψ, since the same observations are used. Fi-
nally, if ϕ is Kψ, then consider an arbitraryw′ such that(w′, obs) ∼ (w2, obs);
since all states have the same observations,w′ can be arbitrary inW2. SinceK2

was the universal relation onW2, we havew′ ∈ K2(w2). By assumption, we
know (M1, w1) |=K Kψ̃, and thus(M2, w2) |=K Kψ̃, so that(M2, w

′) |=K ψ̃.
By the induction hypothesis,(M ′, (w′, obs)) |= ψ, and sincew′ was arbitrary,
(M ′, (w2, obs)) |= Kψ, as required.

The upper bound follows directly from this result. It suffices to nondeterministi-
cally guess a satisfying structureM with a set of worlds polynomial in|ϕ|, which
is guaranteed to exist if and only ifϕ is satisfiable. We can verify thatϕ is satis-
fied inM in time polynomial in|ϕ|, by adapting the polynomial time algorithm of
Theorem 2.9. Roughly speaking, the algorithm consists of enumerating all the sub-
formulas ofϕ, and for each subformulaψ (in order of length), marking the every
state ofM with eitherψ or ¬ψ depending on whetherψ or ¬ψ holds at the state:
primitive propositions are handled by invoking the interpretation, formulas of the
formXψ′ are handled by invoking the polynomial time decision procedure for the
deductive systemD, conjunctions and negations are handled in the obvious way,
and formulasKψ′ are handled by looking up whether every reachable state from
the current state is marked withψ′. ut

Corollary 3.9. For any local KD deductive systemD, the problem of deciding
whether a formulaϕ of LKX(T gΣ) is satisfiable in a structure inMded

D (Σ) is NP-
complete.

212 Appendix B Proofs

Proof. Immediate from the property of local deductive system, and from Theo-
rem 3.8. ut

Theorem 3.11. The axiomatizationAXded
n is sound and complete forLKX

n (T gΣ)
with respect toMded

n (Σ).

Proof. This is a straightforward generalization of the proof of Theorem 3.5.
Soundness is easy to check. For completeness, we again show that ifϕ is con-
sistent, thenϕ is satisfiable. We give the definitions here, leaving the details of the
proof to the reader. Given a setV of formulas, letV/Ki = {ϕ | Kiϕ ∈ V }. Let
C be the set of all maximal consistent sets of formulas ofLKX

n (T gΣ). ForV ∈ C, let
Obs i(V) = {ob ∈ Obs i | ob ∈ V }. We define≈i overC, for everyi, by taking
V ≈i W if and only if V/Ki ⊆ W . We can check that≈i is an equivalence rela-
tion for everyi, assuming the axioms K1–K5, just like in the proof of Theorem 3.5.
We can also check that ifV ≈i W , thenV ∼i W , and that for allψ, if V ≈i W ,
thenXiψ ∈ V if and only ifXiψ ∈W .

Let ϕ be a consistent formula ofLKX
n (T gΣ), and letSub(ϕ) be the set of sub-

formulas ofϕ (including ϕ itself). Sinceϕ is consistent, there is a setV ϕ ∈
C with ϕ ∈ V ϕ and |Obs i(V ϕ)| < ∞ for every i. For everyi, let obsϕi =
Obs i(V ϕ), and let [V ϕ]≈i be the≈i-equivalence class that containsV ϕ. We
will use [V ϕ]≈1 ∩ · · · ∩ [V ϕ]≈n to define the states of our canonical structure.
More specifically, define the canonical deductive algorithmic knowledge structure
Mϕ = (Wϕ, πϕ, Dϕ

1 , . . . , D
ϕ
n) by taking

Wϕ = {(wV , obsϕ1 , . . . , obs
ϕ
n) | V ∈ [V ϕ]≈1 ∩ · · · ∩ [V ϕ]≈n}

πϕ((wV , obs
ϕ
1 , . . . , obs

ϕ
n))(p) =

{
true if p ∈ V
false if p 6∈ V

Dϕ
i = {(∅, ψT) | Xiψ ∈ Sub(ϕ), Xiψ ∈ V ϕ, ψT 6∈ Obs i}.

We can check thatMϕ is a deductive algorithmic knowledge structure withn
agents.

We can prove, adapting the proof of Theorem 3.5, that for allwV ∈Wϕ and all
subformulasψ ∈ Sub(ϕ), (Mϕ, wV) |= ψ if and only if ψ ∈ V . Completeness
follows from the fact thatϕ ∈ V ϕ andϕ ∈ Sub(ϕ), so that(Mϕ, wV) |= ϕ, and
thusϕ is satisfiable. ut

Theorem 3.12. The axiomatizationAXded
n + {AxD1

n , . . . ,AxDn
n } is sound and

complete forLKX
n (T gΣ) with respect toMded

D1,...,Dn⊆(Σ).

B.2 Proofs for Chapter 3 213

Proof. Soundness is again straightforward. For completeness, we prove the
equivalent statement that ifϕ is consistent thenϕ is satisfiable in some structure
in Mded

D1,...,Dn
(Σ). The procedure is exactly the one that is used to prove Theo-

rem 3.11, except that we construct the deductive systemsDϕ
1 , . . . , D

ϕ
n differently.

We simply indicate where the proof differs from that of Theorem 3.11, and let
the reader fill in the details. We construct, for a givenϕ, a deductive algorithmic
knowledge structure withn agentsMϕ = (Wϕ, πϕ, Dϕ

1 , . . . , D
ϕ
n), whereWϕ and

πϕ are constructed as in Theorem 3.11, andDϕ
1 , . . . , D

ϕ
n are obtained by taking

Dϕ
i to be

Di ∪ {(∅, ψT) | Xiψ ∈ Sub(ϕ), Xiψ ∈ V ϕ, ψT 6∈ Obs i}.

Mϕ is a deductive algorithmic knowledge structure inMded
D1,...,Dn⊆(Σ). As in the

proof of Theorem 3.6, we can show that ifobsϕ `Di ψ
T , then there is a rule.ψT

in Dϕ
i . The rest of the proof follows that of Theorem 3.11. ut

Theorem 3.13. If n ≥ 2, the problem of deciding whether a formulaϕ ofLKX
n (T gΣ)

is satisfiable in a structure inMded
n (Σ) is PSPACE-complete.

Proof. The proof is entirely analogous to that of Theorem 3.7, except that we use
the modal logicLK

n rather thanLK. We can define translations betweenLKX
n (T gΣ)

andLK
n, and we can prove analogues of Lemmas B.4 and B.5. We simply give the

translations here, leaving the reader to fill in the details.
Let f be a formula ofLK

n . Letp1, . . . , pk be the primitive propositions appearing
in f . We first come up with an encoding of these primitive propositions into the
language ofΣ. For example, we can takep1 to betrue, p2 to benot(true), p3 to be
not(not(true)), and so forth. Lettp be the term encoding the primitive proposition
p. We again make the restriction on this encoding that notp is an observation in
Obs1, . . . ,Obsn. Let f̂ be the formula obtained by replacing every instance of
a primitive propositionp in f by tp. Note that|f̂ | is polynomial in|f |, and that
f̂ contains no instance of theX operator. We can show thatf is satisfiable in
epistemic structures forn agents if and only iff̂ is satisfiable inMded

n (Σ), with
a proof similar to that of Lemma B.4. This gives us an immediate lower bound,
as follows. Letf be anLK

n formula. We knowf is satisfiable if and only iff̂ is
satisfiable overMded

n (Σ) structures. Since the decision problem forLK
n (n ≥ 2) is

PSPACE-complete, the lower bound of PSPACE follows.
Letϕ be a formula ofLKX

n (T gΣ). The setT gΣ is countable, so let{pt | t ∈ T gΣ} be
a countable set of primitive propositions corresponding to the ground terms ofTΣ.
Similarly, for everyi, the set of formulas{Xiψ | ψ ∈ LKX

n (T gΣ), ψT 6∈ Obs i} is
countable, so let{qiψ | ψ ∈ LKX

n (T gΣ), ψT 6∈ Obs i} be a countable set of primitive
propositions whereqiψ corresponds to the formulaXiψ. Let ϕ̃ be the translation of

214 Appendix B Proofs

ϕ obtained by replacing every occurrence of a termt in T gΣ by pt, every occurrence
of a formulaXiψ whereψT ∈ Obs i by pψT , and every occurrence of a formula
Xiψ whereψT 6∈ Obs i by the correspondingqiψ, in conjunction with formulas
pob ⇔ Kipob for all observationsob ∈ Obs i appearing inϕ. Note that|ϕ̃| is
polynomial in|ϕ|. We can show thatϕ is satisfiable inMded

n (Σ) if and only if ϕ̃
is satisfiable in an epistemic structure forn agents, using a proof similar to that of
Lemma B.5. This gives us an immediate upper bound for our decision problem:ϕ

is satisfiable if and only if̃ϕ is satisfiable, so we can simply invoke the PSPACE
algorithm forLK

n satisfiability onϕ̃. ut

B.3 Proofs for Chapter 4

Theorem 4.1. Let N = (W,V1, . . . ,Vn, π, Ad1, . . . , A
d
n, ν) be a probabilistic

algorithmic knowledge structure, whereA1, . . . , An are deterministic. LetM =
(W,V1, . . . ,Vn, π, A1, . . . , An). If there are no occurrences ofPr in ϕ, then for all
w ∈W and allv ∈ V , (N,w, v) |= ϕ if and only if(M,w) |= ϕ.

Proof. The key observation here is that if a knowledge algorithmA is determin-
istic, then for allv ∈ V , Ad(ϕ, `, vi) = A(ϕ, `). The result then follows eas-
ily by induction on the structure ofϕ. If ϕ is p, then (N,w, v) |= p if and
only if π(w)(p) = true if and only if (M,w) |= p. If ϕ is ψ1 ∧ ψ2, then
(N,w, v) |= ψ1 ∧ ψ2 if and only if (N,w, v) |= ψ1 and(N,w, v) |= ψ2 if and
only if (M,w) |= ψ1 and(M,w) |= ψ2 (by the induction hypothesis) if and only if
(M,w) |= ψ1 ∧ψ2. If ϕ is¬ψ, then(N,w, v) |= ¬ψ if and only if (N,w, v) 6|= ψ

if and only(M,w) 6|= ψ (by the induction hypothesis) if and only if(M,w) |= ¬ψ.
If ϕ isKiψ, consider first(N,w, v) |= Kiψ, that is, for allv′ ∈ V and allw′ ∼i w,
(N,w′, v′) |= ψ; by the induction hypothesis, this means that for allw′ ∼i w,
(M,w′) |= ψ, that is,(M,w) |= Kiψ. Conversely, assume(M,w) |= Kiψ, so
that for allw′ ∼i w, (M,w′) |= ψ; by the induction hypothesis, for everyw′ ∼i w,
we have(N,w′, v′) |= ψ for all v′ ∈ V , and thus(N,w, v) |= Kiψ. If ϕ isXiψ,
then (N,w, v) |= Xiψ if and only if Adi (ψ,Vi(w), vψi) = “Yes” if and only if
Ai(ψ,Vi(w)) = “Yes” (sinceAi is deterministic) if and only if(M,w) |= Xiψ.

ut

Theorem 4.2. LetN = (W,V1, . . . ,Vn, π, Ad1, . . . , A
d
n, ν) be a probabilistic al-

gorithmic knowledge structure, and letM = (W,V1, . . . ,Vn, π, A′1, . . . , A
′
n) be

an algorithmic knowledge structure whereA′1, . . . , A
′
n are arbitrary deterministic

knowledge algorithms. If there are no occurrences ofXi andPr in ϕ, then for all
w ∈W and allv ∈ V , (N,w, v) |= ϕ if and only if(M,w) |= ϕ.

B.3 Proofs for Chapter 4 215

Proof. This result in fact follows from the proof of Theorem 4.1, since the only use
of the assumption that knowledge algorithms are deterministic is in the inductive
step for subformulas of the formXiψ. ut

Theorem 4.3. For all ob, we havewE(ob, hi) ≥ wE(ob, h2−i) if and only
if l(ob, hi) ≥ l(ob, h2−i), for i = 1, 2, and for all h, ob, and ob ′, we have
wE(ob, h) ≥ wE(ob ′, h) if and only ifl(ob, h) ≥ l(ob ′, h).

Proof. Let ob be an arbitrary observation. The result follows from the following
observation:

wE(ob, hi) ≥ wE(ob, h2−i)

iff µhi
(ob)/(µhi

(ob) + µh2−i
(ob)) ≥ µh2−i

(ob)/(µhi
(ob) + µh2−i

(ob))

iff µhi
(ob)µhi

(ob) ≥ µh2−i
(ob)µh2−i

(ob)

iff µhi
(ob)/µh2−i

(ob) ≥ µh2−i
(ob)/µhi

(ob)

iff l(ob, hi) ≥ l(ob, h2−i).

A similar argument establishes the result for hypotheses. ut

Theorem 4.5. For all probabilistic algorithmic knowledge structuresN , worlds
w ofN , and derandomizersv ∈ V , wEAi,ϕ,`

(pAdi (ϕ,Vi(w), vi)q, ϕ) is defined.

Proof. GivenN ,w a world ofN , and a derandomizerv, (N,w, v) |= Evi(ϕ) is de-
fined if and only ifµϕ,Vi(w)(pAdi (ϕ,Vi(w), vi)q)+µ¬ϕ,Vi(w)(pAdi (ϕ,Vi(w), vi)q) >
0. This condition holds if and only if at least one ofµϕ,Vi(w)(pAdi (ϕ,Vi(w), vi)q) >
0 or µ¬ϕ,Vi(w)(pAdi (ϕ,Vi(w), vi)q) > 0 holds.

Suppose thatAdi (ϕ,Vi(w), vi) = “Yes”, so thatpAdi (ϕ,Vi(w), vi)q = {“Yes”}.
Clearly, eitherWϕ,Vi(w) 6= ∅, or W¬ϕ,Vi(w) 6= ∅. If Wϕ,Vi(w) 6= ∅, then by
our assumption about derandomizers,µϕ,Vi(w) = ν({v′ | Adi (ϕ,Vi(w), v′i) =
“Yes”}) > 0, sincev is such a derandomizer. Similarly, ifW¬ϕ,Vi(w) 6= ∅, then
by our assumption about derandomizers,µϕ,Vi(w) = ν({v′ | Adi (ϕ,Vi(w), v′i) =
“Yes”}) > 0. In either case,µϕ,`(“Yes”) > 0, as desired. A similar argument
applies ifAdi (ϕ,Vi(w), vi) = “No” or Adi (ϕ,Vi(w), vi) = “?”. ut

Theorem 4.6. For all probabilistic algorithmic knowledge structuresN , we have

N |= Evi(ϕ) = 1⇒ Kiϕ.

Proof. Assume(N,w, v) |= Evi(ϕ) = 1, sowEAi,ϕ,Vi(w)
(pAdi (ϕ,Vi(w), vi)q, ϕ) =

1. By definition ofwEAi,ϕ,Vi(w)
, this means thatµ¬ϕ,Vi(w)(pAdi (ϕ,Vi(w), vi)q) = 0.

First, we establish that if(N,w, v) |= Evi(ϕ) = 1, it must be the case that

216 Appendix B Proofs

Adi (ϕ,Vi(w), vi) = “Yes”. If not, thenpAdi (ϕ,Vi(w), vi)q = {“No” , “?”}. By
assumption,µ¬ϕ,Vi(w)({“No” , “?”}) = 0, so thatµ¬ϕ,Vi(w)(“Yes”) = 1, and thus
ν({v′ | Adi (ϕ,Vi(w), v′i) = “Yes”}) = 1. Equivalently,ν({v′ | Adi (ϕ,Vi(w), v′i) 6=
“Yes”}) = 0, so that{v′ | Adi (ϕ,Vi(w), v′i) 6= “Yes”} = ∅, by our assumption on
ν. But this contradicts the fact thatv is just such a derandomizer.

Therefore, we must haveAdi (ϕ,Vi(w), vi) = “Yes”, so thatpAdi (ϕ,Vi(w), vi)q =
{“Yes”}. Sinceµ¬ϕ,Vi(w)(“Yes”) = 0, we must have{(w′, v′) | Vi(w′) =
Vi(w), (N,w′, v′) |= ¬ϕ} = ∅. (Otherwise,ν({v′ | Adi (ϕ,Vi(w), v′i) = “Yes”}) =
0, which means that{v′ | Adi (ϕ,Vi(w), v′i) = “Yes”} = ∅, contradicting the fact
that v is just such a derandomizer.) Let(w′, v′) be such thatVi(w′) = Vi(w).
By the above, we cannot have(N,w′, v′) |= ¬ϕ, and thus(N,w′, v′) |= ϕ. This
simply means that(N,w, v) |= Kiϕ, as desired. ut

To prove Theorems 4.7, 4.9, and 4.10, the following lemma, alluded to in the
text, is useful. It describes the relationship between the reliability of a knowledge
algorithm and the properties of the probability measuresµϕ,` andµ¬ϕ,` appearing
in the evidence spaceEAi,ϕ,`, as defined in Section 4.3.

Lemma B.6. If Ai is (α, β)-reliable forϕ in N , then we haveµϕ,`(“Yes”) ≥ α,
µϕ,`({“No” , “?” }) ≤ 1−α, µ¬ϕ,`(“Yes”) ≤ β, andµ¬ϕ,`({“No” , “?” }) ≥ 1−β
for all local states̀ of agenti in N .

Proof. Let ` be a local state of agenti in N , and letW` = {(w, v) | Vi(w) = `},
which is nonempty by assumption. Note thatW` = Wϕ,` ∪W¬ϕ,`.

Considerµϕ,`(“Yes”). If Wϕ,` = ∅, µϕ,`(“Yes”) = 1 ≥ α. If Wϕ,` 6=
∅, let (w, v) ∈ Wϕ,`, so that(N,w, v) |= ϕ, and sinceAi is (α, β)-reliable,
µϕ,`(“Yes”) = ν({v′ | Adi (ϕ, `, v′i) = “Yes”}) ≥ α. Thus,µϕ,`({“No” , “?”}) =
1− µϕ,`(“Yes”) ≤ 1− α.

A completely symmetric argument applies forµ¬ϕ,`. We leave the details to the
reader. ut

The following lemma captures the algebraic relationships that are useful in as-
sessing the evidence in Theorems 4.7, 4.9, and 4.10.

Lemma B.7.Supposex, y, a, b are real numbers in[0, 1], such that(x, y) 6= (0, 0),
and (a, b) 6= (0, 0). If x ≥ a and y ≤ b, thenx/(x + y) ≥ a/(a + b) and
y/(x+ y) ≤ b/(a+ b).

Proof. Note thatx(a+ b) = xa+ xb ≥ xa+ ay = a(x+ y), so thatx/(x+ y) ≥
a/(a + b). Similarly, y(a + b) = ya + yb ≤ xb + yb = b(x + y), so that
y/(x+ y) ≤ b(a+ b). ut

B.3 Proofs for Chapter 4 217

Theorem 4.7. If Ai is (α, β)-reliable forϕ in N then

(a) N |= Xiϕ⇒ Evi(ϕ) ≥ α
α+β if (α, β) 6= (0, 0);

(b) N |= Xiϕ⇒ Evi(ϕ) = 1 if (α, β) = (0, 0);
(c) N |= ¬Xiϕ⇒ Evi(ϕ) ≤ 1−α

2−(α+β) if (α, β) 6= (1, 1);

(d) N |= ¬Xiϕ⇒ Evi(ϕ) = 0 if (α, β) = (1, 1).

Proof. For part (a), suppose that(α, β) 6= (0, 0). Let w be a world ofN and
let v be a derandomizer. If(N,w, v) |= Xiϕ, thenAdi (ϕ,Vi(w), vi) = “Yes”, so
pAdi (ϕ,Vi(w), vi)q = {“Yes”}. By Lemma B.6, we haveµϕ,Vi(w)({“Yes”}) ≥ α

andµ¬ϕ,Vi(w)({“Yes”}) ≤ β. Therefore, by Lemma B.7, we have

wEAi,ϕ,Vi(w)
({“Yes”}, ϕ)

= µϕ,Vi(w)({“Yes”})/(µϕ,Vi(w)({“Yes”}) + µ¬ϕ,Vi(w)({“Yes”}))
≥ α/(α+ β).

Thus, we have(N,w, v) |= Evi(ϕ) ≥ α/(α + β). Sincew andv were arbitrary,
we haveN |= Xiϕ⇒ Evi(ϕ) ≥ α/(α+ β).

For part (c), suppose that(α, β) 6= (1, 1), so that(1 − α, 1 − β) 6= (0, 0). If
(N,w, v) |= ¬Xiϕ, then eitherAdi (ϕ,Vi(w), vi) = “No” or Adi (ϕ,Vi(w), vi) =
“?”. Thus, we havepAdi (ϕ,Vi(w), vi)q = {“No” , “?”}. By Lemma B.6, we have
µϕ,Vi(w)({“No” , “?”}) ≤ 1− α andµ¬ϕ,Vi(w)({“No” , “?”}) ≥ 1− β. Therefore,
by Lemma B.7, we have

wEAi,ϕ,Vi(w)
({“No” , “?”}, ϕ)

= µϕ,Vi(w)({“No” , “?”})/(µϕ,Vi(w)({“No” , “?”}) + µ¬ϕ,Vi(w)({“No” , “?”}))
≤ 1− α/(2− (α+ β)).

Thus, we have(N,w, v) |= Evi(ϕ) ≤ 1− α/(2− (α + β)). Sincew andv were
arbitrary, we have

N |= ¬Xiϕ⇒ Evi(ϕ) ≤ 1− α/(2− (α+ β)).

The proofs of parts (b) and (d) are similar and left to the reader. ut

Theorem 4.8. If Ai weakly respects negation andAi is (α, β)-reliable forϕ in N ,
thenAi is (0, 1− α)-reliable for¬ϕ in N . If Ai strongly respects negation, thenAi
is (α, β)-reliable forϕ in N if and only ifAi is (1 − β, 1 − α)-reliable for¬ϕ in
N .

218 Appendix B Proofs

Proof. Suppose thatAi weakly respects negation and is(α, β)-reliable forϕ in N .
Consider the reliability ofAi with respect to¬ϕ. If (N,w, v) |= ϕ, then

ν({v′ | Adi (¬ϕ,Vi(w), v′i) = “Yes”})
= 1− ν({v′ | Adi (¬ϕ,Vi(w), v′i) 6= “Yes”})
= 1− ν({v′ | Adi (¬ϕ,Vi(w), v′i) = “No” })− ν({v′ | Adi (¬ϕ,Vi(w), v′i) = “?”})
= 1− ν({v′ | Adi (ϕ,Vi(w), v′i) = “Yes”})− ν({v′ | Adi (¬ϕ,Vi(w), v′i) = “?”})
≤ 1− ν({v′ | Adi (ϕ,Vi(w), v′i) = “Yes”})
≤ 1− α.

Thus,Ai is (0, 1− α)-reliable for¬ϕ in N .
Now suppose thatAi strongly respects negation and is(α, β)-reliable forϕ in

N . Consider the reliability ofAi with respect to¬ϕ. If (N,w, v) |= ¬ϕ, then

ν({v′ | Adi (¬ϕ,Vi(w), v′i) = “Yes”})
= 1− ν({v′ | Adi (¬ϕ,Vi(w), v′i) 6= “Yes”})
= 1− ν({v′ | Adi (ϕ,Vi(w), v′i) = “Yes”})
≥ 1− β.

Similarly, if (N,w, v) |= ϕ, then

ν({v′ | Adi (¬ϕ,Vi(w), v′i) = “Yes”})
= 1− ν({v′ | Adi (¬ϕ,Vi(w), v′i) 6= “Yes”})
= 1− ν({v′ | Adi (ϕ,Vi(w), v′i) = “Yes”)

≤ 1− α.

Thus,Ai is (1− β, 1− α)-reliable for¬ϕ in N .
Conversely, suppose thatAi is (1− β, 1−α)-reliable for¬ϕ in N , and consider

the reliability ofAi with respect toϕ. If (N,w, v) |= ϕ, then

ν({v′ | Adi (ϕ,Vi(w), v′i) = “Yes”})
= 1− ν({v′ | Adi (ϕ,Vi(w), v′i) 6= “Yes”})
= 1− ν({v′ | Adi (¬ϕ,Vi(w), v′i) = “Yes”})
≥ 1− (1− α)

= α.

Similarly, if (N,w, v) |= ¬ϕ, then

ν({v′ | Adi (ϕ,Vi(w), v′i) = “Yes”})
= 1− ν({v′ | Adi (ϕ,Vi(w), v′i) 6= “Yes”})

B.3 Proofs for Chapter 4 219

= 1− ν({v′ | Adi (¬ϕ,Vi(w), v′i) = “Yes”})
≤ 1− (1− β)

= β.

Thus,Ai is (α, β)-reliable forϕ in N . ut

To prove Theorems 4.9 and 4.10, we need a result similar to Theorem 2.6.

Lemma B.8. If N is a probabilistic algorithmic knowledge structure where agenti

uses a knowledge algorithmAi that weakly (resp., strongly) respects negation, then
the formulaXiϕ⇒ ¬Xi¬ϕ (resp.,Xiϕ⇔ ¬Xi¬ϕ) is valid inN .

Proof. A straightforward adaptation of the proof of Theorem 2.6. ut

Theorem 4.9. If Ai is (α, β)-reliable forϕ in N andAi weakly respects negation,
then

(a) N |= Xiϕ⇒
(
Evi(ϕ) ≥ α

α+β ∧ Evi(¬ϕ) ≤ 1
1+α

)
if (α, β) 6= (0, 0);

(b) N |= Xiϕ⇒ Evi(ϕ) = 1 if (α, β) = (0, 0);
(c) N |= Xi¬ϕ⇒ Evi(ϕ) ≤ 1−α

2−(α+β) if α 6= 1;

(d) N |= Xi¬ϕ⇒ (Evi(¬ϕ) = 1 ∧ Evi(ϕ) = 0) if α = 1.

Proof. Suppose thatAi is (α, β)-reliable forϕ in N . For part (a), suppose that
(α, β) 6= 0. SinceAi weakly respects negation, by Theorem 4.8,Ai is (0, 1 − α)-
reliable for¬ϕ in N . Let w be a world ofN and letv be a derandomizer. By
Theorem 4.7 applied toϕ, (N,w, v) |= Xiϕ ⇒ Evi(ϕ) ≥ α/(α + β). By
Lemma B.8,(N,w, v) |= Xiϕ ⇒ ¬Xi¬ϕ. By Theorem 4.7 applied to¬ϕ,
(N,w, v) |= ¬Xi¬ϕ ⇒ Evi(¬ϕ) ≤ (1 − 0)/(1 − (1 − α) + 1 − 0), that is,
(N,w, v) |= ¬Xi¬ϕ⇒ Evi(¬ϕ) ≤ 1/(1 + α). Putting this together, we get

(N,w, v) |= Xiϕ⇒ (Evi(ϕ) ≥ α/(α+ β) ∧ Evi(¬ϕ) ≤ 1/(1 + α)) .

Sincew andv are arbitrary,

N |= Xiϕ⇒ (Evi(ϕ) ≥ α/(α+ β) ∧ Evi(¬ϕ) ≤ 1/(1 + α)) .

For part (c), suppose thatα 6= 1. By Lemma B.8,(N,w, v) |= Xi¬ϕ⇒ ¬Xiϕ.
By Theorem 4.7 applied toϕ, (N,w, v) |= ¬Xiϕ⇒ Evi(ϕ) ≤ (1−α)/(2− (α+
β)). Thus, we get

(N,w, v) |= Xi¬ϕ⇒ Evi(ϕ) ≤ (1− α/(2− (α+ β)).

Sincew andv are arbitrary, it follows that

N |= Xi¬ϕ⇒ Evi(ϕ) ≤ (1− α/(2− (α+ β)).

220 Appendix B Proofs

The proof of parts (b) and (d) are similar and left to the reader. ut

Theorem 4.10. If Ai is (α, β)-reliable forϕ in N andAi strongly respects nega-
tion, then

(a) N |= Xiϕ⇒
(
Evi(ϕ) ≥ α

α+β ∧ Evi(¬ϕ) ≤ β
α+β

)
if (α, β) 6= (0, 0);

(b) N |= Xiϕ⇒ (Evi(ϕ) = 1 ∧ Evi(¬ϕ) = 0) if (α, β) = (0, 0);

(c) N |= Xi¬ϕ ⇒
(
Evi(¬ϕ) ≥ 1−β

2−(α+β) ∧ Evi(ϕ) ≤ 1−α
2−(α+β)

)
if (α, β) 6=

(1, 1);
(d) N |= Xi¬ϕ⇒

(
Evi(¬ϕ) ≥ 1

2 ∧ Evi(ϕ) ≤ 1
2

)
if (α, β) = (1, 1).

Proof. Suppose thatAi is (α, β)-reliable for ϕ in N . For part (a), suppose
that (α, β) 6= (0, 0). SinceAi strongly respects negation, by Theorem 4.8,Ai is
(1 − β, 1 − α)-reliable for¬ϕ in N . Letw be a world ofN and letv be a deran-
domizer. By Theorem 4.7 applied toϕ, (N,w, v) |= Xiϕ⇒ Evi(ϕ) ≥ α/(α+β).
By Lemma B.8,(N,w, v) |= Xiϕ ⇒ ¬Xi¬ϕ. By Theorem 4.7 applied to¬ϕ,
(N,w, v) |= ¬Xi¬ϕ⇒ Evi(¬ϕ) ≤ (1− (1− β))/(1− (1− α) + 1− (1− β)),
that is,(N,w, v) |= ¬Xi¬ϕ ⇒ Evi(¬ϕ) ≤ β/(α + β). Putting this together, we
get

(N,w, v) |= Xiϕ⇒ (Evi(ϕ) ≥ α/(α+ β) ∧ Evi(¬ϕ) ≤ β/(α+ β)) .

Sincew andv are arbitrary,

N |= Xiϕ⇒ (Evi(ϕ) ≥ α/(α+ β) ∧ Evi(¬ϕ) ≤ β/(α+ β)) .

For part (c), suppose that(α, β) 6= (1, 1). By Theorem 4.7 applied to¬ϕ,
(N,w, v) |= Xi¬ϕ ⇒ Evi(ϕ) ≥ (1 − β)/(2 − (α + β)). By Lemma B.8,
(N,w, v) |= Xi¬ϕ ⇒ ¬Xiϕ. By Theorem 4.7 applied toϕ, (N,w, v) |=
¬Xiϕ⇒ Evi(ϕ) ≤ (1− α)/(2− (α+ β)). Putting this together, we get

(N,w, v) |= Xi¬ϕ⇒ (Evi(¬ϕ) ≥ (1− β)/(2− (α+ β)) ∧
Evi(ϕ) ≤ (1− α/(2− (α+ β))) .

Sincew andv are arbitrary,

N |= Xi¬ϕ⇒ (Evi(¬ϕ) ≥ (1− β)/(2− (α+ β))∧
Evi(ϕ) ≤ (1− α/(2− (α+ β))) .

Again, we leave the proof of parts (b) and (d) to the reader. ut

B.4 Proofs for Chapter 5 221

B.4 Proofs for Chapter 5

Theorem 5.3. Let H = {h1, . . . , hm} andO = {ob1, . . . , obn}, and letf be a
real-valued function with domainO ×H such thatf(ob, h) ∈ [0, 1]. Then there
exists an evidence spaceE = (H,O, µh1 , . . . , µhm) such thatf = wE if and only
if f satisfies the following properties:

WF1. For everyob ∈ O, f(ob, ·) is a probability measure onH.

WF2. There existsx1, . . . , xn > 0 such that, for allh ∈ H,
∑n

i=1 f(obi, h)xi =
1.

Proof. (⇒) Assume thatf = wE for an evidence spaceE = (H,O, µh1 , . . . , µhm).
It is routine to verify WF1, that for a fixedob ∈ O, wE(ob, ·) is a probability mea-
sure onH. To verify WF2, note that we can simply takexi =

∑
h′∈H µh′(obi).

(⇐) Let f be a function fromO ×H to [0, 1] that satisfies WF1 and WF2. Let
x∗1, . . . , x

∗
nh

be the positive reals guaranteed by WF2. It is straightforward to verify
that takingµh(obi) = f(obi, h)/x∗i for eachh ∈ H yields an evidence spaceE
such thatf = wE. ut

The following lemmas are useful to prove the completeness of the axiomatiza-
tions in this section. These results depend on the soundness of the axiomatization
AXfo-ev (Φh,Φo).

Lemma B.9. AXfo-ev (Φh,Φo) is a sound axiomatization forLfo-ev (Φh,Φo) with
respect to evidential structures.

Proof. It is easy to see that each axiom is valid in evidential structures. ut

Lemma B.10. For all hypothesis formulasρ, if [[ρ]] = {h1, . . . , hk}, thenρ ⇔
h1 ∨ · · · ∨ hk is provable inAXfo-ev (Φh,Φo).

Proof. Using Taut, we can show thatρ is provably equivalent to a formulaρ′ in
disjunctive normal form. Moreover, by axiom H2, we can assume without loss of
generality that each of the disjuncts inρ′ consists of a single hypothesis. Thus,ρ is
h1 ∨ · · · ∨ hk. An easy induction on structure shows that for a hypothesis formula
ρ, evidential structureM , and worldw, we have that(M,w) |= ρ iff (M,w) |= h

for someh ∈ [[ρ]]. Moreover, it follows immediately from the soundness of the
axiom system (Lemma B.9) thatρ⇔ h1 ∨ . . .∨hk is provable iff for all evidential
strucuresM and worldsw, (M,w) |= ρ iff (M,w) |= hi for somei ∈ {1, . . . , k}.
Thus,ρ⇔ h1 ∨ . . . ∨ hk is provable iff[[ρ]] = {h1, . . . , hk}. ut

222 Appendix B Proofs

An easy consequence of Lemma B.10 is thatρ1 is provably equivalent toρ2 if
and only if[[ρ1]] = [[ρ2]].

Lemma B.11.Letρ be an hypothesis formula. The formulas

Pr(ρ) =
∑
h∈[[ρ]]

Pr(h),

Pr0(ρ) =
∑
h∈[[ρ]]

Pr0(h), and

w(ob, ρ) =
∑
h∈[[ρ]]

w(ob, h), for all ob,

are provable inAXfo-ev (Φh,Φo).

Proof. Let Φh = {h1, . . . , hnh
} andΦo = {ob1, . . . , obno}. We prove the result

for Pr. We proceed by induction on the size of[[ρ]]. For the base case, assume that
|[[ρ]]| = 0. By Lemma B.10, this implies thatρ is provably equivalent tofalse. By
Po4,Pr(ρ) = Pr(false), and it is easy to check thatPr(false) = 0 is provable
using Po1, Po3, and Po4, thusPr(ρ) = 0, as required. If|[[ρ]]| = n + 1 > 0, then
[[ρ]] = {hi1 , . . . , hin+1}, and by Lemma B.10,ρ is provably equivalent tohi1 ∨
· · · ∨ hin+1 . By Po4,Pr(ρ) = Pr(ρ∧ hin+1) + Pr(ρ∧¬hin+1). It is easy to check
thatρ∧ hin+1 is provably equivalent tohin+1 (using H2), and similarlyρ∧¬hin+1

is provably equivalent tohi1 ∨ · · · ∨ hin . Thus,Pr(ρ) = Pr(hin+1) + Pr(hi1 ∨
· · · ∨ hin) is provable. Since|[[hi1 ∨ · · · ∨ hin]]| = n, by the induction hypothesis,
Pr(hi1 ∨ · · · ∨ hin) =

∑
h∈{hi1

,...,hin} Pr(h) =
∑

h∈[[ρ]]−{hin+1
} Pr(h). Thus,

Pr(ρ) = Pr(hin+1) +
∑

h∈[[ρ]]−{hin+1
} Pr(h), that is,Pr(ρ) =

∑
h∈[[ρ]] Pr(h), as

required.

The same argument appliesmutatis mutandisfor Pr0 andw(ob, ·), using axioms
Pr1–4 and axioms E1–4 (respectively), instead of Po1–4. ut

Theorem 5.5. AXfo-ev (Φh,Φo) is a sound and complete axiomatization for the
logic Lfo-ev (Φh,Φo) with respect to evidential structures.

Proof. Soundness was established in Lemma B.9. To prove completeness, re-
call the following definitions. A formulaϕ is consistentwith the axiom system
AXfo-ev (Φh,Φo) if ¬ϕ is not provable fromAXfo-ev (Φh,Φo). To prove com-
pleteness, it is sufficient to show that ifϕ is consistent, then it is satisfiable, that is,
there exists an evidential structureM and valuationv such that(M, s, µ, v) |= ϕ.

As in the body of the paper, letΦh = {h1, . . . , hnh
} andΦo = {ob1, . . . , obno}.

Let ϕ be a consistent formula. By way of contradiction, assume thatϕ is un-
satisfiable. We reduce the formulaϕ to an equivalent formula in the language

B.4 Proofs for Chapter 5 223

of real closed fields. Letu1, . . . , unh
, v1, . . . , vno , x1, . . . , xnh

, y1, . . . , yno , and
z1
1 , . . . , z

1
nh
, . . . , zno

1 , . . . , zno
nh

be new variables, where, intuitively,

– ui gets value1 if hypothesishi holds,0 otherwise;
– vi gets value1 if observationobi holds,0 otherwise;
– xi representsPr0(hi);
– yi representsPr(hi);
– zi,j representsw(obi, hj).

Let v represent that list of new variables. Consider the following formulas. Letϕh

be the formula saying that exactly one hypothesis holds:

(u1 = 0 ∨ u1 = 1) ∧ · · · ∧ (unh
= 0 ∨ unh

= 1) ∧ u1 + · · ·+ unh
= 1.

Similarly, letϕo be the formula saying that exactly one observation holds:

(v1 = 0 ∨ v1 = 1) ∧ · · · ∧ (vno = 0 ∨ vnh
= 1) ∧ v1 + · · ·+ vnh

= 1.

Letϕpr be the formula that expresses thatPr0 is a probability measure:

ϕpr = x1 ≥ 0 ∧ · · · ∧ xnh
≥ 0 ∧ x1 + · · ·+ xnh

= 1.

Similarly, letϕpo be the formula that expresses thatPr is a probability measure:

ϕpo = y1 ≥ 0 ∧ · · · ∧ ynh
≥ 0 ∧ y1 + · · ·+ ynh

= 1.

Finally, we need formulas saying thatw is a weight of evidence function. The
formula ϕw,p simply says thatw satisfies WF1, that is, it acts as a probability
measure for a fixed observation:

z1,1 ≥ 0 ∧ · · · ∧ z1,nh
≥ 0 ∧ zno,1 ≥ 0 ∧ · · · ∧ zno,nh

≥ 0∧
z1,1 + · · ·+ z1,nh

= 1 ∧ · · · ∧ zno,1 + · · ·+ zno,nh
= 1.

The formulaϕw,f says thatw satisfies WF2:

∃w1, . . . , wno(w1 > 0 ∧ · · · ∧ wno > 0 ∧ z1,1w1 + · · ·+ zno,1wno = 1∧
· · · ∧ z1,nh

w1 + · · ·+ zno,nh
wno = 1)

wherew1, . . . , wno are new variables.

Finally, the formulaϕw,up captures the fact that weights of evidence can be viewed
as updating a prior probability into a posterior probability, via Dempster’s Rule of
Combination:

(v1 = 1⇒ (x1z1,1 = y1x1z1,1 + · · ·+ y1xnh
z1,nh
∧

· · · ∧ xnh
z1,nh

= ynh
x1z1,1 + · · ·+ ynh

xnh
z1,nh

))∧
· · · ∧

224 Appendix B Proofs

(vno = 1⇒ (x1zno,1 = y1x1zno,1 + · · ·+ y1xnh
zno,nh

∧
· · · ∧ xnh

zno,nh
= ynh

x1zno,1 + . . . ynh
xnh

zno,nh)).

Let ϕ̂ be the formula in the language of real closed fields obtained fromϕ by
replacing each occurrence of the primitive propositionhi by ui = 1, each occur-
rence ofobi by vi = 1, each occurrence ofPr0(ρ) by

∑
hi∈[[ρ]] xi, each occurrence

of Pr(ρ) by
∑

hi∈[[ρ]] yi, each occurrence ofw(obi, ρ) by
∑

hj∈[[ρ]] zi,j , and each
occurrence of an integer coefficientk by 1 + · · · + 1 (k times). Finally, letϕ′ be
the formula∃v(ϕh ∧ ϕo ∧ ϕpr ∧ ϕpo ∧ ϕw,p ∧ ϕw,f ∧ ϕw,up ∧ ϕ̂).

It is easy to see that ifϕ is unsatisfiable over evidential structures, thenϕ′ is
false when interpreted over the real numbers. Therefore,¬ϕ′ must be a formula
valid in real closed fields, and hence an instance of RCF. Thus,¬ϕ′ is provable.
It is straightforward to show, using Lemma B.11, that¬ϕ itself is provable, con-
tradicting the fact thatϕ is consistent. Thus,ϕ must be satisfiable, establishing
completeness. ut

Lemma B.12. Let ϕ be a formula ofLfo-ev (Φh,Φo) that is satisfied in some
evidential structureM = (S × P,E). Thenϕ is satisfied in a structureM =
((Φh × Φo)× {µ},E), whereµ ∈ P.

Proof. Let ϕ be a formula ofLfo-ev (Φh,Φo) that is satisfied in some evidential
structureM = (S × P,E). Sinceϕ is satisfied inM , there exists a worldw =
(h, ob, µ) and a valuationv (in caseϕ is not closed) such that(M,w, v) |= ϕ.
Consider the modelM ′ = ((Φh × Φo)× {µ},E). Clearly,w is a world ofM ′. A
straightforward induction on the structure ofϕ shows that(M ′, w, v) |= ϕ. ut

As we saw at the beginning of Section 5.4,Lfo-ev is not monotone with respect
to validity: axiom H1 depends on the set of hypotheses and observations, and will
in general no longer be valid if the set is changed. The same is true for O1, E5, and
E6. We do, however, have a form of monotonicity with respect to satisfiability, as
the following lemma shows.

Lemma B.13. GivenΦh and Φo, let ϕ be a formula ofLfo-ev (Φh,Φo), and let
H ⊆ Φh andO ⊆ Φo be the hypotheses and observations that occur inϕ. If ϕ
is satisfiable in an evidential structure overΦh andΦo, thenϕ is satisfiable in an
evidential structure overΦ′

h andΦ′
o, where|Φ′

h| = |H|+ 1 and|Φ′
o| = |O|+ 1.

Proof. We do this in two steps, to clarify the presentation. First, we show that
we can add a single hypothesis and observation toΦh andΦo and preserve satisfi-
ability of ϕ. This means that the second step below can assume thatΦh 6= H and
Φo 6= O. Assume thatϕ is satisfied in an evidential structure overΦh andΦo. By

B.4 Proofs for Chapter 5 225

Lemma B.12,ϕ is satisfied in an evidential structureM = ((Φh × Φo)× {µ},E),
that is, there existsh, ob such that(M, (h, ob, µ), v) |= ϕ. Let Φ′

h = Φh ∪ {h∗},
whereh∗ is a new hypothesis not inΦh, and letΦ′

o = Φo ∪ {ob∗}, whereob∗ is
a new observation not inΦo. Define the evidential structureM = ((Φ′

h × Φ′
o) ×

{µ′}, cE′) overΦ′
h andΦ′

o. Define the probability measureµ′ by taking

µ′(h) =

{
µ(h) if h ∈ Φh

0 if h = h∗.

Similarly, define the evidence spaceE′ = (Φ′
h,Φ

′
o, {µ′h | h ∈ Φ′

h}) derived from
E = (Φh,Φo, {µh | h ∈ Φh}) by taking:

µ′h(ob) =

µh(ob) if h ∈ Φh andob ∈ Φo

0 if h ∈ Φh andob = ob∗

0 if h = h∗ andob ∈ Φo

1 if h = h∗ andob ∈ ob∗.

Thus,µ′h extends the existingµh by assigning a probability of0 to the new obser-
vation ob∗; in contrast, the new probabilityµ′h∗ assigns probability 1 to the new
observationob∗. We can check that(M ′, (h, ob, µ′), v) |= ϕ.

The second step is to “collapse” all the hypotheses and observations that do not
appear inϕ into one of the hypotheses that do not appear inH andO, which by
the previous step are guaranteed to exist. By the previous step, we can assume that
Φh 6= H andΦo 6= O. Assumeϕ is satisfiable in an evidential structure overΦh

andΦo. Thus, by Lemma B.12, there exist a structureM = ((Φh ×Φo)×{µ},E)
andh, ob such that(M, (h, ob, µ), v) |= ϕ. Pick an hypothesis and an observation
from Φh andΦo as follows, depending on the world(h, ob, µ) whereϕ is satisfied.
Let h† beh if h 6∈ H, otherwise, leth† be an arbitrary element ofΦh − H; let
Φ′

h = H ∪ {h†}. Similarly, let ob† be ob if ob 6∈ O, otherwise, letob† be an
arbitrary element ofΦo−O; let Φ′

o = O∪{ob†}. LetM ′ = ((Φ′
h×Φ′

o)×{µ′},E′)
be an evidential structure overΦ′

h andΦ′
o obtained fromM as follows. Define the

probability measureµ′ by taking

µ′(h) =

{
µ(h) if h ∈ H∑

h′∈Φh−H µ(h′) if h = h†.

DefineE′ = (Φ′
h,Φ

′
o, {µ′h | h ∈ Φ′

h}) from E = (Φh,Φo, {µh | h ∈ Φh}) by

226 Appendix B Proofs

taking

µ′h(ob) =

µh(ob) if h ∈ H andob ∈ O∑

ob′∈Φo−O µh(ob
′) if h ∈ H andob = ob†∑

h′∈Φh−H µh′(ob) if h = h† andob ∈ O∑
h′∈Φh−H

∑
ob′∈Φo−O µh′(ob

′) if h = h† andob = ob†.

We can check by induction that(M ′, (h, ob, µ′), v) |= ϕ, whereh, ob are taken
from the satisfiaction ofϕ in M . ut

Theorem 5.6. There is a procedure that runs in space exponential in|ϕ| · ‖ϕ‖ for
deciding, givenΦh andΦo, whether a formulaϕ of Lfo-ev (Φh,Φo) is satisfiable in
an evidential structure.

Proof. Let ϕ be a formula ofLfo-ev (Φh,Φo). By Lemmas B.12 and B.13,ϕ is
satisfiable if we can construct a probability measureµ onΦ′

h = H ∪ {h∗} (where
H is the set of hypotheses appearing inϕ, andh∗ 6∈ H) and probability measures
µh1 , . . . , µhm onΦ′

o = O∪{ob∗} (whereO is the set of observations appearing inϕ
andob∗ 6∈ O) such thatE = (Φ′

h,Φ
′
o, {µh | h ∈ Φ′

h}),M = ((Φ′
h×Φ′

o)×{µ},E),
and(M,w, v) |= ϕ for some statew of M .

The aim now is to derive a formulaϕ′ in the language of real closed fields that
asserts the existence of these probability measures. More precisely, we can adapt
the construction of the formulaϕ′ from ϕ in the proof of Theorem 5.5. The one
change we need to make is ensure thatϕ′ is polynomial in the size ofϕ, which the
construction in the proof of Theorem 5.5 does not guarantee. The culprit is the fact
that we encode integer constantsk as1 + · · · + 1. It is straightforward to modify
the construction so that we use a more efficient representation of integer constants,
namely, a binary representation. For example, we can write42 as2(1 + 22(1 +
22)), which can be expressed in the language of real closed fields as(1 + 1)(1 +
(1 + 1)(1 + 1)(1 + (1 + 1)(1 + 1))). We can check that ifk is a coefficient of
lengthk (when written in binary), it can be written as a term of lengthO(k) in the
language of real closed fields. Thus, we modify the construction ofϕ′ in the proof
of Theorem 5.5 so that integer constantsk are represented using the above binary
encoding. It is easy to see that|ϕ′| is polynomial in|ϕ| · ‖ϕ‖ (since|Φ′

h| and|Φ′
o|

are both polynomial in|ϕ|). We can now use the exponential space algorithm of
[Ben-Or, Kozen, and Reif 1986] onϕ′: if ϕ′ is satisfiable, then we can construct the
required probability measures, andϕ is satisfiable; otherwise, no such probability
measures exist, andϕ is unsatisfiable. ut

B.4 Proofs for Chapter 5 227

Theorem 5.7. There is a procedure that runs in space exponential in|ϕ| · ‖ϕ‖
for deciding whether there exist sets of primitive propositionsΦh andΦo such that
ϕ ∈ Lfo-ev (Φh,Φo) andϕ is satisfiable in an evidential structure.

Proof. Let h1, . . . , hm be the hypotheses appearing inϕ, and letob1, . . . , obn
be the observations appearing inϕ. Define the setsΦh = {h1, . . . , hm, h

∗} and
Φo = {ob1, . . . , obn, ob∗}, whereh∗ andob∗ are an hypothesis and observation
not appearing inϕ. Clearly,|Φh| and|Φo| are polynomial in|ϕ|. By Lemma B.13,
if ϕ is satisfiable in an evidential structure, it is satisfiable in an evidential structure
over Φh and Φo. By Theorem 5.6, we have an exponential space algorithm to
determine ifϕ is satisfied in an evidential structure overΦh andΦo. ut

Theorem 5.8. The problem of deciding, givenΦh andΦo, whether a formulaϕ of
Lev (Φh,Φo) is satisfiable in an evidential structure is NP-complete.

Proof. To establish the lower bound, observe that we can reduce propositional
satisfiability to satisfiability inLev (Φh,Φo). More precisely, letf be a proposi-
tional formula, wherep1, . . . , pn are the primitive propositions appearing inf . Let
Φh = {h1, . . . , hn, h

∗} be a set of hypotheses, where hypothesishi corresponds to
the primitive propositionpi, andh∗ is another (distinct) hypothesis; letΦo be an
arbitrary set of observations. Consider the formulaf̂ obtained by replacing every
occurrence ofpi in f by Pr0(hi) > 0. It is straightforward to verify thatf is sat-
isfiable if and only iff̂ is satisfiable inLev (Φh,Φo). (We need the extra primitive
propositionh∗ to take care of the casef is satisfiable in a a model where each of
p1, . . . , pn is false. In that case,Pr0(h1) = · · ·Pr0(hn) = 0, but we can take
Pr0(h∗) = 1.) This establishes the lower bound,

The upper bound is straightforward. By Lemma B.12, ifϕ is satisfiable, it is
satisfiable in a structure with a single probability measureµ. The number of states
in that structure is|Φh| · |Φo|. We can therefore guess such a structure in time
polynomial in |Φh| + |Φo|. We can verify that this structure satisfiesϕ in time
polynomial in|ϕ|+ |Φh|+ |Φh|. ut

Theorem 5.9. The problem of deciding, for a formulaϕ, whether there exists sets
of primitive propositionsΦh andΦo such thatϕ ∈ Lev (Φh,Φo) andϕ is satisfiable
in an evidential structure is NP-complete.

Proof. For the lower bound, we reduce from the decision problem ofLev (Φh,Φo)
over fixedΦh andΦo. Let Φh = {h1, . . . , hm} andΦo = {ob1, . . . , obn}, and
let ϕ be a formula inLev (Φh,Φo). We can check thatϕ is satisfiable in evidential
structure overΦh andΦo if and only ifϕ∧ (h1∨· · ·∨hm)∧ (ob1∨· · ·∨hn) is sat-

228 Appendix B Proofs

isfiable in an evidential structure over arbitraryΦ′
h andΦ′

o. Thus, by Theorem 5.8,
we get our lower bound.

For the upper bound, by Lemmas B.12 and B.13, ifϕ is satisfiable, it is satisfi-
able in a structure with a single probability measureµ, where the states are taken
from Φh × Φo, Φh = H ∪ {h∗}, H consists of the hypotheses appearing inϕ,
Φo = O ∪ {ob∗}, O consists of the observations appearing inϕ, andh∗ andob∗

are new hypotheses and observations. Thus,|Φh| ≤ |ϕ| + 1, and|Φo| ≤ |ϕ| + 1.
The number of states in that structure is|Φh| · |Φo| ≤ (|ϕ|+ 1)2. We can therefore
guess such a structure in time polynomial in|ϕ|. We can verify that this structure
satisfiesϕ in time polynomial in|ϕ|, establishing that the problem is in NP. ut

Theorem 5.11. AXfo-ev
dyn (Φh,Φo) is a sound and complete axiomatization for

L
fo-ev
dyn (Φh,Φo) with respect to evidential systems.

Proof. It is easy to see that each axiom is valid in evidential systems. To prove
completeness, we follow the same procedure as in the proof of Theorem 5.5, show-
ing that if ϕ is consistent, then it is satisfiable, that is, there exists an evidential
systemI and valuationv such that(I, r,m, µ, v) |= ϕ for some point(r,m, µ) of
I.

As in the body of the paper, letΦh = {h1, . . . , hnh
} andΦo = {ob1, . . . , obno}.

Let ϕ be a consistent formula. The first step of the process is to reduce the for-
mulaϕ to a canonical form with respect to the© operator. Intuitively, we push
down every occurrence of a© to the polynomial inequality formulas present in
the formula. It is easy to see that axioms T1–T6 can be used to establish thatϕ is
provably equivalent to a formulaϕ′ where every occurrence of© is in the form of
subformulas©n(ob) and©n(p ≥ c), wherep is a polynomial term that contains
at least one occurrence of thePr operator. (As usual, we use the notation©nϕ for
© . . .©ϕ, then-fold application of© to ϕ.) We write©0ϕ for ϕ. LetN be the
maximum coefficient of© in ϕ′, when iterated application of© are written using
then-fold notation.

By way of contradiction, assume thatϕ′ (and henceϕ) is unsatisfiable. As in
the proof of Theorem 5.5, we reduce the formulaϕ′ to an equivalent formula in
the language of real closed fields. Letu1, . . . , unh

, v0
1, . . . , v

0
no
, . . . , vN1 , . . . , v

N
no

,
y0
1, . . . , y

0
no
, . . . , yN1 , . . . , y

N
no

, andz〈i1,...,ik〉,1, . . . , z〈i1,...,ik〉,nh
(for every sequence

〈i1, . . . , ik〉) be new variables, where, intuitively,

– ui gets value1 if hypothesishi holds,0 otherwise;
– vni gets value1 if observationobi holds at timen, 0 otherwise;
– yni representsPr(hi) at timen;
– z〈i1,...,ik〉,j representsw(〈obi1 , . . . , obik〉, hj).

B.4 Proofs for Chapter 5 229

The main difference with the construction in the proof of Theorem 5.5 is that we
have variablesvni representing the observations at every time stepn, rather than
variables representing observations at the only time step, variablesyni representing
each hypothesis probability at every time step, rather than variables representing
prior and posterior probabilities, and variablesz〈i1,...,ik〉,j representing the weight
of evidence of sequences of observations, rather than variables representing the
weight of evidence of single observations. Letv represent that list of new vari-
ables. We consider the same formulas as in the proof of Theorem 5.5, modified to
account for the new variables, and the fact that we are reasoning over multiple time
steps. More specifically, the formulaϕh is unchanged. Instead ofϕo, we consider
formulasϕ1

o , . . . , ϕ
N
o saying that exactly one observation holds at each time time

step, whereϕno is given by:

(vn1 = 0 ∨ vn1 = 1) ∧ · · · ∧ (vnno
= 0 ∨ vnnh

= 1) ∧ vn1 + · · ·+ vnnh
= 1.

Letϕ′o = ϕ1
o ∧ · · · ∧ ϕNo .

Similarly, instead ofϕpr andϕpo, we consider formulasϕ1
p , . . . , ϕ

N
p expressing

thatPr is a probability measure at each time step, whereϕnp is given by:

yn1 ≥ 0 ∧ · · · ∧ ynnh
≥ 0 ∧ yn1 + · · ·+ ynnh

= 1.

Letϕp = ϕ1
p ∧ · · · ∧ ϕNp .

Similarly, we considerϕw,p andϕw,f , except where we replace variableszi,j
by z〈i〉,j , to reflect the fact that we now consider sequences of observations. The
formulaϕw,up, capturing the update of a prior probability into a posterior proba-
bility, is replaced by the formulasϕ1

w,up, . . . , ϕ
N
w,up representing the update of the

probability at each time step, whereϕnw,up is given by the obvious generalization of
ϕw,up:

(vn1 = 1⇒ (yn−1
1 z1,1 = yn1 y

n−1
1 z1,1 + · · ·+ yn1 y

n−1
nh

z1,nh
∧

· · · ∧ yn−1
nh

z1,nh
= ynnh

yn−1
1 z1,1 + · · ·+ ynnh

yn−1
nh

z1,nh
))∧

· · · ∧
(vnno

= 1⇒ (yn−1
1 zno,1 = yn1 y

n−1
1 zno,1 + · · ·+ yn1 y

n−1
nh

zno,nh
∧

· · · ∧ yn−1
nh

zno,nh
= ynnh

yn−1
1 zno,1 + . . . ynnh

yn−1
nh

zno,nh
)).

Letϕ′w,up = ϕ1
w,up ∧ · · · ∧ ϕNw,up.

Finally, we need a new formulaϕw,c capturing the relationship between the
weight of evidence of a sequence of observations, and the weight of evidence of
the individual observations, to capture axiom E8:∧

1≤k≤N
1≤i1,...,ik≤no

z〈i1〉,h1
· · · z〈ik〉,h1

= z〈i1,...,ik〉,h1
z〈i1〉,h1

· · · z〈ik〉,h1

+ · · ·+ z〈i1,...,ik〉,h1
z〈i1〉,hnh

· · · z〈ik〉,hnh
∧

230 Appendix B Proofs

· · · ∧
∧

1≤k≤N
1≤i1,...,ik≤no

z〈i1〉,hnh
· · · z〈ik〉,hnh

= z〈i1,...,ik〉,hnh
z〈i1〉,h1

· · · z〈ik〉,h1

+ · · ·+ z〈i1,...,ik〉,hnh
z〈i1〉,hnh

· · · z〈ik〉,hnh
.

Let ϕ̂ be the formula in the language of real closed fields obtained fromϕ

by replacing each occurrence of the primitive propositionhi by ui = 1, each
occurrence of©nobi by vni = 1, and within each polynomial inequality for-
mula©n(p ≥ c), replacing each occurrence ofPr(ρ) by

∑
hi∈[[ρ]] y

n
i , each oc-

currence ofw(〈obi1 , . . . , obik〉, ρ) by
∑

hj∈[[ρ]] z〈i1,...,ik〉,j , and each occurrence of
an integer coefficientk by 1 + · · · + 1 (k times). Finally, letϕ′ be the formula
∃v(ϕh ∧ ϕ′o ∧ ϕp ∧ ϕw,p ∧ ϕw,f ∧ ϕ′w,up ∧ ϕw,c ∧ ϕ̂).

It is easy to see that ifϕ is unsatisfiable over evidential systems, thenϕ′ is false
about the real numbers. Therefore,¬ϕ′ must be a formula valid in real closed
fields, and hence an instance of RCF. Thus,¬ϕ′ is provable. It is straightforward
to show, via the obvious variant of Lemma B.11 (which establishes, for instance,
that w(ob, ρ) =

∑
h∈[[ρ]]

w(ob, h) is provable for allob) that¬ϕ itself is provable,

contradicting the fact thatϕ is consistent. Thus,ϕ must be satisfiable, establishing
completeness. ut

B.5 Proofs for Chapter 7

Theorem 7.1. R(Σ,A, A) is a strand system.

Proof. Let Va consist of all the historiesra(t) for r ∈ R(Σ,A, A). Let R′ be the
strand system generated by the sequence〈Va | a ∈ A〉. To show thatR(Σ,A, A)
is a strand system, it clearly suffices to show thatR(Σ,A, A) = R′. It is easy to
check from the construction that every run inR(Σ,A, A) satisfies MP1–3, and thus
is in R′. This shows thatR(Σ,A, A) ⊆ R′.

To show thatR′ ⊆ R(Σ,A, A), let r be a run inR′. We know thatr satisfies
MP1–3, and thatra(t) ∈ Va for all t ≥ 0. We need to construct a chainC such
that ra(t) = hist ta(C) for all a ∈ A. Unfortunately, we cannot simply construct
the chain inductively, bundle by bundle. While this would work if different strands
were associated with different agents, in general, making the correct choice of
strands at each step (correct in the sense that the construction will not get stuck at a
later point) turns out to require arbitrary lookahead into the run. Roughly speaking,
this is because it is not clear which combination of strands for agenta to choose to
make upa’s local state in a particular bundle.

Instead, we proceed as follows. Intuitively, we want to determine for each agent
which strand prefix to extend at every step of the chain. Once we have found for

B.5 Proofs for Chapter 7 231

each agent an appropriate way of extending strand prefixes at every step, it is not
hard to construct the bundles in the chain.

We start with some definitions. Given a node〈s, k〉 in Σ, let tr(s, k) be the prefix
of tr(s) of lengthk. Given a bundleB and an agenta, let

Tra(B) = {{tr(s, k) | 〈s, k〉 ∈ NB, 〈s, k + 1〉 /∈ NB, k ≥ 1, A(s) = a}},

where we use the{{}} notation to denote multisets. Thus, Tra(B) is the multiset
consisting of all the maximal prefixes of strands associated witha having at least
one node inB. Note that Tra(B) is a multiset, not a set. It is quite possible that
there are distinct nodes〈s, k〉 and〈s′, k〉 in NB such that tr(s, k) = tr(s′, k) and
〈s, k + 1〉, 〈s′, k + 1〉 /∈ B. In this case, tr(s, k) is listed at least twice in the
multiset. Given a multisetM of sequences, letBa(M) = {B | Tra(B) = M}.
That is,Ba(M) consists of all bundles where the actions performed are precisely
those specified by the sequences inM .

For each agenta, we inductively construct the following tree, whose vertices
are labeled by multisets of sequences. The root is labeled by the empty multiset.
Suppose a vertexu at levelm (that is, at distancem from the root) is labeled with
the multisetM . If ra(m+1) = ra(m), thenu has a unique successor, also labeled
with M . If, on the other hand,ra(m + 1) = ra(m) · e for some evente, then
let t be the term corresponding toe (i.e., if e is send(u) then t is +u, and if e
is recv(u) thent is −u). For each sequenceS in M , letMS be the multiset that
results from replacingS in M by S · t. We construct a successor ofM labeled
MS if Ba(MS) 6= ∅. (If Ba(MS) 6= ∅ and there are several occurrences of
S in M , then we construct one successor for each occurrence.) In addition, if
Ba(M ∪ {{〈t〉}}) 6= ∅, we construct a successor ofu labeledM ∪ {{〈t〉}}. Note
that, for all multisets labeling a level-m vertex, the set of events specified by the
sequences inM are precisely those performed inra(m).

Our goal is to find an infinite path in this tree. That such a path exists is im-
mediate from K̈onig’s Lemma, once we show that the tree has an infinitely many
vertices, each with finite outdegree.

An easy induction shows that a multiset at levelm has at mostm elements
(counted with multiplicity). Moreover, it is immediate from the construction that
the outdegree of a vertex on the tree is at most one more than the cardinality of the
multiset labeling it. Thus, it follows that the outdegree of each vertex is finite.

Showing that the tree has an infinite number of vertices is also relatively straight-
forward. We show by induction onm that for all timest, if ra(t) = histka(C) and
C = B0 7→ B1 7→ . . ., then there is a vertex at levelt in the tree labeled by
the multiset Tra(Bk). The base case is immediate, since Tra(∅) = {{}} is the
label of the root of the tree. Now suppose that the result holds fort; we prove
it for t + 1. Suppose thatra(t + 1) = histka(C). Then there must be some

232 Appendix B Proofs

k′ ≤ k such thatra(t) = histk
′
a (C). Moreover, eitherhistk

′
a (C) = histka(C),

in which casera(t) = ra(t + 1), or histka(C) is the result of appending one
event, saye, to histk

′
a (C) andra(t + 1) is the result of appendinge to ra(t). If

C = B0 7→ B1 7→ . . . then, by the induction hypothesis, there is a vertexu of the
tree at levelt labeled byM = Tra(Bk′). If ra(t) = ra(t+ 1), thenM = Tra(Bk)
is also the label of a successor ofu. Otherwise, ifM ′ = Tra(Bk), it is clear that
M ′ is the result of extending one of the strands inM by one node (corresponding
to evente). Thus,M ′ is the label of some successor ofu. This completes the
inductive step. Sincer is in R′, it follows that, for allt, there exists some chainC
andk such thatra(t) = histka(C). Thus, there are infinitely many vertices in the
tree.

It now follows from König’s Lemma that there is an infinite path in the tree.
Thus, it follows that, for every agenta, there exists an infinite sequenceMa

0 ,M
a
1 , . . .

of multisets, such thatBa(Ma
k) 6= ∅ for all k. We now construct a chainC =

B0 7→ B1 7→ . . ., by building the bundleBk from the traces in{Ma
k | a ∈ A}.

For eacha andk, there is a bundleBa
k such that Tra(Ba

k) = Ma
k . LetBk consists

of the nodes in∪a∈AB
a
k (so that the strands associated witha in Bk are precisely

those associated witha in Ba
k), adding→ edges between corresponding nodes ac-

cording to MP2 in the runr. ThatBk is a bundle follows from the fact that every
node appearing in a multisetMa

k corresponds to an event inra(k), by construction.
It should be clear that for allk, Bk 7→ Bk+1, since for each agent, the traces are
extended by a single node, and we can pick the bijectionf to map strands fromBk
toBk+1 so that the corresponding sequences inMa

k andMa
k+1 match.

A straightforward induction argument shows that the chainC = B0 7→ B1 7→
. . . is such thatra(t) = hist ta(C) for all t ≥ 0. ut

In order to prove Theorem 7.2, we first prove two lemmas about chains.

Lemma B.14.In a chainC = B0 7→ B1 7→ B2 7→ . . ., the height ofBn is at most
2n.

Proof. We show this by induction onn. Clearly, the height ofB0 is 0. Assume
the result holds for the bundleBm. Consider the bundleBm+1. SinceBm 7→
Bm+1, there is a bijectionf such thatBm vf Bm+1. Consider a causal path
n1 n2 . . . in Bm+1, where is either→ or⇒. We claim that it contains
at most two “new nodes”, that is, it contains at most two nodes inBm+1 not of the
form 〈f(s), i〉 for some node〈s, i〉 in Bm; moreover, the “new” nodes must come
at the end of the causal path. To see this, suppose thatn is a new node on the path
andn n′ for somen′ on the path. Ifn′ is not a new node, it cannot be the case
thatn → n′ (for otherwise, by B2,n would not be a new node), and it cannot be

B.5 Proofs for Chapter 7 233

the case thatn ⇒ n′ (for otherwise, by B3,n would not be a new node). Thus,
n′ must be a new node. It follows that all the new nodes on the causal path must
follow the old nodes on the path. Now suppose that there are three new nodes on
the path; then it must be the case that there are three new nodesn, n′, n′′ such that
n n′ n′′. It cannot be the case thatn ⇒ n′, for thenn andn′ are both on
the same strand, contradicting the assumption in the construction that at most one
new event is added per agent. Similarly, it cannot be the case thatn′ ⇒ n′′. Thus,
we must haven→ n′ → n′′. But then term(n′) = −u for some messageu, and it
cannot be the case thatn′ → n′′. Thus, it follows that the causal path has at most
two new nodes. Since, by the induction hypothesis, there are at most2m+1 “old”
nodes on the path, the path has at most2m + 3 nodes and hence length at most
2m+ 2, as desired. ut

Note that Lemma B.14 does not depend on the assumption that each strand is
associated with a distinct agent; the following lemma does.

Lemma B.15. If B is bundle of finite height, then there exists bundlesB1, . . . , Bk
for somek such thatB0 7→ B1 7→ . . . 7→ Bk 7→ B.

Proof. First note that ifn is the last node on a causal path in a bundleB of
maximum length, then either term(n) = −u for someu or term(n) = +u for
someu and there is no corresponding receive node inB.

We now prove the result by induction on the height ofB, that is the length of the
longest causal path. Clearly, if the height ofB is 0, thenB = B0. Otherwise, let
B′ be the bundle derived fromB in the following way: for every strands ∈ Σ, if
the last term of the prefix ofs in B is−u for someu or if the last term is+u and
there is no corresponding−u in B, then letB′ contain the prefix ofs that consists
of every node ins that is inB but the last one; otherwise, letB′ contain the same
prefix ofs asB. Clearly,B′ 7→ B. (Here we need the assumption that each strand
is associated with a different agent to ensure that in going fromB′ toB, each agent
performs at most one action.) Moreover, by the initial observation,B′ does not
include the last node of any causal path of maximum length inB. Therefore, the
height ofB′ is one less than the height ofB. Applying the induction hypothesis,
we get bundlesB0 7→ B1 7→ . . . 7→ Bk 7→ B′ 7→ B, proving the result. ut

Theorem 7.2. Every global state ofR(Σ,Σ, id) is message-equivalent to a bundle
of Σ of finite height, and every bundle ofΣ of finite height is message-equivalent
to a global state ofR(Σ,Σ, id).

Proof. If 〈σs | s ∈ Σ〉 is a global state inR(Σ,Σ, id), then there must be some
chainC = B0 7→ B1 7→ . . . and timet such thatrC(t) = 〈σs | s ∈ Σ〉. By

234 Appendix B Proofs

construction,rCs (t) = hist ts(C), for each strands ∈ Σ. (Recall thatA = Σ;
we are associating each strand with a different agent.) Moreover,hist ts(C) is just
the sequence of events performed in strands in Bt (that is, the prefix of tr(s)
in Bt, under the standard correspondence between terms and events). Therefore,
〈σs | s ∈ Σ〉 is message-equivalent toBt. Moreover, by Lemma B.14,Bt has finite
height.

Conversely, given a bundleB of finite height, by Lemma B.15, there must exist
t and bundlesB0, . . . , Bt such thatB0 7→ . . . 7→ Bt 7→ B. Thus,C = B0 7→
. . . 7→ Bt 7→ B 7→ B 7→ B 7→ . . . is a chain. LetrC be the run inR(Σ,Σ, id) cor-
responding toC. By the same argument as above,rC(t+1) is message-equivalent
toB. ut

Theorem 7.3. There is no agent assignmentA andA-history preserving trans-
lation T from strand spaces to strand systems such that the strand systemR1 is in
the image ofT .

Proof. By way of contradiction, suppose thatΣ is a strand space,A is an agent
assignment,T is a translation which isA-history preserving, andT (Σ) = R1.
SinceT is A-history preserving, the presence ofr1 ensures that there is a bundle
B1 in Σ such that associated with agent2 in B1 is either a strand with prefix
〈+u,−v〉 or strands with prefix〈+u〉 and 〈−v〉, and associated with agent1 in
B1 there is either a strand with prefix〈−u,+v〉 or strands with prefix〈−u〉 and
〈+v〉. Similarly, the presence ofr2 in R1 guarantees that there is a bundleB2 in Σ
such that associated with agent2 in B2 is either a strand with prefix〈+x,−y〉 or
strands with prefix〈+x〉 and〈−y〉, and associated with agent3 is either a strand
with prefix 〈−x,+y〉 or strands with prefix〈−x〉 and 〈+y〉. In all those cases,
there must be a bundle containing nodes with the terms+u,−u, +v,−v, +x,−x,
+y, and−y. The nodes+u, −v, +x, and−y are all on strands associated with
agent2. SinceT is A-history preserving, there must be a run inR1 that contains
four events for agent2. This is a contradiction. ut

B.6 Proofs for Chapter 8

Theorem 8.1. LetI = (R, π, A1, . . . , An) be an interpreted algorithmic knowledge
security system whereAi = ADY

i . Then(I, r, t) |= Xi(has i(m)) if and only if{m |
recv(m) ∈ ri(t)} ∪ initkeys(ri(t)) `DY m. Moreover, if(I, r, t) |= Xi(has i(m))
then(I, r, t) |= has i(m).

Proof. LetK = keysof (ri(t)). First, note thatK ∪ {m′ | recv(m′) ∈ ri(t)} `DY

m if and only ifK∪{m′} `DY m for somem′ such thatrecv(m′) ∈ ri(t). The re-

B.6 Proofs for Chapter 8 235

sult relies on the invariant that ifm 6∈ initkeys(ri(t)), thensubmsg(m,m′,K) =
“Yes” if and only if K ∪ {m′} `DY m. This is established by a straightforward
induction on the structure of recursive calls insubmsg . It is easy to check that if
submsg(m,m′,K) = “Yes”, thenm v m′, which immediately yields soundness
of ADY

i with respect tohas i(m). ut

Theorem 8.2. LetI = (R, π, A1, . . . , An) be an interpreted algorithmic knowledge
security system whereAi = AL

i . Then(I, r, t) |= Xi(has i(m)) if and only if{m |
recv(m) ∈ ri(t)} ∪ initkeys(ri(t)) `L m. Moreover, if(I, r, t) |= Xi(has i(m))
then(I, r, t) |= has i(m).

Proof. LetK = keysof (ri(t)). The result follows readily from Theorem 8.1 and
the invariant that ifm 6∈ initkeys(ri(t)) andK∪{m′ | recv(m′) ∈ ri(t)} 6`DY m,
then guess(m, ri(t)) = “Yes” if and only if K ∪ {m | recv(m) ∈ ri(t)} `L

m. The details of the invariant are similar to those given by Lowe [2002], the
algorithmAL

i being essentially a translation of the CSP process implementing the
Lowe adversary. Again, soundness with respect tohas i(m) is easy to establish.

ut

Theorem 8.3. Suppose thatJ = (R, π, Ad1, . . . , A
d
n, ν) is an interpreted proba-

bilistic algorithmic knowledge security system with an adversary as agenti and
that Ai = ADY+rg(n)

i . LetK be the number of distinct keys used in the messages
in the adversary’s local statè (that is, the number of keys used in the messages
that the adversary has intercepted at a point(r, t), in local stateri(t) = `). Sup-
pose thatK/|K| < 1/2 and thatν is the uniform distribution on sequences of coin
tosses. If(J, r, t, v) |= ¬KiXi(has i(m)), then(J, r, t, v) |= Pr(Xi(has i(m))) <
1−e−2nK/|K|. Moreover, if(J, r, t, v) |= Xi(has i(m)) then(J, r, t, v) |= has i(m).

Proof. It is not hard to show that then keys that the adversary guesses do no good
at all if none of them match a key used in a message intercepted by the adversary.
By assumption,K keys are used in messages intercepted by the adversary. The
probability that a key chosen at random is one of theseK is K/|K|, since there
are |K| keys altogether. Thus, the probability that a key chosen at random is not
one of theseK is 1 − (K/|K|). The probability that none of then keys chosen at
random is one of theseK is therefore(1− (K/|K|))n. We now use some standard
approximations. Note that(1− (K/|K|))n = en ln(1−(K/|K|), and

ln(1− x) = −x− x2/2− x3/3− · · ·
> −x− x2− x3− · · ·
= −x/(1− x).

236 Appendix B Proofs

Thus, if0 < x < 1/2, thenln(1−x) > −2x. It follows that ifK/|K| < 1/2, then
en ln(1−(K/|K|) > e−2nK/|K|. Since the probability that a key chosen at random
does not help to compute algorithmic knowledge is greater thane−2nK/|K|, the
probability that it helps is less than1− e−2nK/|K|.

Soundness ofAi with respect tohas i(m) follows from Theorem 8.1 (since sound-
ness follows for arbitraryinitkeys(`) ⊆ K). ut

B.7 Proofs for Chapter 9

Lemma B.16. For all probabilistic interpreted systemsI and points(r, t) in I, if
(I, r, t) |= Kα

i ϕ and(I, r, t) |= Kβ
i ψ then(I, r, t) |= Kα+β

i (ϕ ∧ ψ).

Proof. This follows from the standard properties of probability measures. For a
probability measureµ, if µ(U) ≥ 1 − α andµ(V) ≥ 1 − β, thenµ(U) ≤ α and

µ(V) ≤ β, so thatµ(U ∪ V) ≤ α+ β, µ(U ∩ V) = µ(U ∪ V) ≥ 1− (α+ β).
Now, assume(I, r, t) |= Kα

i ϕ and(I, r, t) |= Kβ
i ψ. Therefore, for all(r′, t′) ∼i

(r, t), (I, r′, t′) |= Pri(ϕ) ≥ 1− α and(I, r′, t′) |= Pri(ψ) ≥ 1− β, which means
that

µr′,t′,i({(r′′, t′′) | (I, r′′, t′′) |= ϕ} ∩Ki(r′, t′) ∩ C(r′)) ≥ 1− α,

and

µr′,t′,i({(r′′, t′′) | (I, r′′, t′′) |= ψ} ∩Ki(r′, t′) ∩ C(r′)) ≥ 1− β.

From the derivation above, we have that

µr′,t′,i({(r′′, t′′) | (I, r′′, t′′) |= ϕ}∩
{(r′′, t′′) | (I, r′′, t′′) |= ϕ} ∩Ki(r′, t′) ∩ C(r′)) =

µr′,t′,i({(r′′, t′′) | (I, r′′, t′′) |= ϕ ∧ ψ} ∩Ki(r′, t′) ∩ C(r′)) ≥ 1− (α+ β).

Hence,(I, r′, t′) |= Pri(ϕ∧ψ) ≥ 1− (α+β). Since(r′, t′) was an arbitrary point
such that(r′, t′) ∼i (r, t), we have(I, r, t) |= Kα+β

i (ϕ ∧ ψ). ut

Lemma B.17. SupposeI is an an interpreted system modeling Dolev-Yao agents
with no additional prior information beyond guesses, and agentsi andj are non-

forging in I. Then if(I, r, t) |= Xi(has i({ml}k)) ∧ (j k↔ i)
T

wherel 6= i and

(j k↔ i)
T

is a possible translation ofj
k↔ i, then(I, r, t) |= send j(m).

Proof. Since agents have no additional prior information beyong guesses, the mes-
sage{ml}k is part of no agent’s initial state. Thus, by definition ofcan computeNF

i ,

B.7 Proofs for Chapter 9 237

if (I, r, t) |= Xi(has i({ml}k)) with l 6= i theni must have received{ml}k as a
submessage of some message. Lett′ < t be the earliest time at which some agent
h sends a messagem′ with {ml}k v m′. Since all agents in the system are Dolev-
Yao, we have{ml}k ∈ can computeNF

h (rh(t′)). Since agents have no additional
prior information beyond guesses, it follows thatk ∈ can computeNF

h (rh(t′)).
Since(I, r, t) |= j

k↔ i and agents have perfect recall, no agent besidesi andj
can extractk at time t′, and it follows thath = i or h = j. These agents are
both nonforging Dolev-Yao agents, so we have{ml}k ∈ can computeNF

h (rh(t′)).
Sincem′ is the first time a message containing{ml}k is sent, and agents have no
additional prior information beyond guesses,{ml}k must have been constructed at
time t′ using the condition for formation of messages of this form. By nonforging-
ness, this implies thath = j. ut

Theorem 9.1. Every translationrTij of an instancerij of the BAN inference rule
Rn, forn = 1, 2, is valid in systems that model Dolev-Yao agents that have no addi-
tional prior information beyond guesses and where agentsi andj are nonforging
Dolev-Yao agents. Every translationrTij of an instancerij of the BAN inference
rule R3 is valid in systems that model Dolev-Yao agents that have no additional
prior information beyond guesses and where agentsi andj areγ-honest. Finally,
every translationrT of an instancer of Rn for n ≥ 4 is valid in systems that model
Dolev-Yao agents that have no additional prior information beyond guesses.

Proof. We show that for all instances of BAN inference rules “fromF1 andF2

infer F3” and all interpreted systemsI satisfying the assumptions of the theorem,
we haveI |= F1

T ∧ F2
T ⇒ F3

T .

Fix an interpreted systemI satisfying the assumptions of the theorem, and a
point (r, t) in I. We proceed to show that the translation of an instance of each
inference rule holds for that interpreted system at that point, thereby establishing
the result. We assume thatI models Dolev-Yao agents that have no additional prior
information beyond guesses.

For instancesrij of R1 and R2, we assume thatI models Dolev-Yao agents
that have no additional prior information beyond guesses, and agentsi andj as
nonforging Dolev-Yao agents.

Rule R1. A possible translation of an instance of R1 take the form(Kα
i (good ⇒

(j k↔ i)
T
)∧Xi(has i({F T , l}k)))⇒ Kα

i (good ⇒ send j(F T)∧�- (¬send j(F T)∧
©send j(F T) ⇒ Xj(hasj(F T)))), whereF T is a possible translation ofF , and

(j k↔ i)
T

is a possible translation ofj
k↔ i. Assume that

(I, r, t) |= (i believes j k↔ i)
T
∧ (i sees {F l}k)

T
,

238 Appendix B Proofs

with l 6= i. Then(I, r, t) |= Xi(has i({F l}k)). Hence, using the fact that ex-
traction depends only on an agent’s local state, for all(r′, t′) ∼i (r, t), we have

(I, r′, t′) |= (i believes j k↔ i)
T
∧Xi(has i({F l}k)). By Lemma B.17, we have

(I, r′, t′) |= send j(F). This shows that(I, r, t) |= Kisend j(F), that is,(I, r, t) |=
(i believes j said F)T .

Rule R2. A possible translation of an instance of R2 has the form(Kα
i (good ⇒

(j k↔ i)
T
)∧Xi(has i({F T , l}k−1)))⇒ Kα

i (good ⇒ send j(F T)∧�- (¬send j(F T)∧
©send j(F T) ⇒ Xj(hasj(F T)))), whereF T is a possible translation ofF , and

(j k↔ i)
T

is a possible translation ofj
k↔ i. Assume that

(I, r, t) |= (i believes j k↔ i)
T
∧ (i sees {F l}k−1)

T
,

with l 6= i. Sincek is a symmetric key withk−1 = k, this rule is the same as R1.
Hence, by that argument,(I, r, t) |= (i believes j said F)T .

For an instancerij of R3, we assume thatI models Dolev-Yao agents that have
no additional prior information beyond guesses, and agentsi andj areγ-honest.

Rule R3. A possible translation of an instance of R3 has the form(Kα
i (good ⇒

©- l
∧
i(�- ¬send i(F T)))∧Kβ

i (good ⇒ send j(F T)∧�- (¬send j(F T)∧©send j(F T)⇒
Xj(hasj(F T))))) ⇒ Kα+β

i (good ⇒ Kγ
j (good ⇒ F T)), whereF T is a possible

translation ofF . Assume that

(I, r, t) |= (i believes fresh(F))T ∧ (i believes (j said F))T ,

that is, we have(I, r, t) |= Ki(∧i¬©- lXi(has i(F T))), (I, r, t) |= KiXj(hasj(F T)),
(I, r, t) |= Ki(¬©- lXj(hasj(F T)) ⇒ KiF

T), and (I, r, t) |= Kisend j(F T).
For all (r′, t′) ∼i (r, t), we have(I, r′, t′) |= Xj(hasj(F T)) and (I, r′, t′) |=
send j(F T). By honesty ofj (I, r′, t′) |= KjF

T . Hence(I, r, t) |= KiKjF
T , that

is, (I, r, t) |= (i believes j believes F)T .
For instances of the remaining rules, we assume thatI models Dolev-Yao agents

that have no additional prior information beyond guesses.
Rule R4. A possible translation of an instance of R4 is of the form(Kα

i (good ⇒
(KjF

T ⇔ F T)) ∧ Kβ
i (good ⇒ Kjδ(good ⇒ F T))) ⇒ Kα+β

i (good ⇒ F T),
whereF T is a possible translation ofF . Assume that

(I, r, t) |= (i believes j controls F)T ∧ (i believes j believes F)T ,

that is, we have(I, r, t) |= Ki(KjF
T ⇒ F T), and(I, r, t) |= KiKjF

T . For all
(r′, t′) ∼i (r, t), we have(I, r′, t′) |= KjF

T ⇒ F T and(I, r′, t′) |= KjF
T . This

immediately implies(I, r′, t′) |= F T , so that(I, r, t) |= KiF
T , and(I, r, t) |=

(i believes F)T .
Rule R5. A possible translation of an instance of R5 isXi(has i((F T , F ′T)))⇒

B.7 Proofs for Chapter 9 239

Xi(has i(F T)), whereF T andF ′T are possible translations ofF andF ′. As-
sume(I, r, t) |= (i sees (F, F ′))T , that is,(I, r, t) |= Xi(has i((F T , F ′T))). This
implies that(F T , F ′T) ∈ can computei(ri(t)), soF T ∈ can computei(ri(t)).
Hence, we have(I, r, t) |= Xi(has i(F T)), and(I, r, t) |= (i sees F)T .

Rule R6. A possible translation of an instance of R6 is of the form(Kα
i (good ⇒

(j k↔ i)
T
)∧Xi(has i({F T , j}k)))⇒ Xi(has i(F T)), whereF T is a possible trans-

lation of F . Assume(I, r, t) |= (i believes j k↔ i)
T
∧ (i sees {F}k)T , that

is, we have(I, r, t) |= KiXi(has i(k)), (I, r, t) |= KiXj(hasj(k)), (I, r, t) |=
Ki(¬Xi′(has i′(k))) (i′ 6= i, j), and(I, r, t) |= Xi(has i({F T }k)). For all(r′, t′) ∼i
(r, t), we have(I, r′, t′) |= Xi(has i(k)) and(I, r′, t′) |= Xi(has i({F T }k)) (since
the interpretation of algorithmic knowledge depends only on the agent’s local state).
This implies thatk ∈ can computei(r′i(t

′)) and{F T }k ∈ can computei(r′i(t
′)),

and thereforeF T ∈ can computei(r′i(t
′)), and(I, r′, t′) |= Xi(has i(F T)). Again,

since the interpretation of algorithmic knowledge depends only on the local state,
(I, r, t) |= Xi(has i(F T)), and(I, r, t) |= (i sees F)T .

Rule R7. A possible translation of an instance of R7 is of the form(Kα
i (good ⇒

(k7→ i)
T
) ∧Xi(has i({F T , j}k)))⇒ Xi(has i(F T)), whereF T is a possible trans-

lation of F . Assume(I, r, t) |= (i believes k7→ i)
T
∧ (i sees {F}k)T , that is,

(I, r, t) |= KiXi(has i(k−1)), (I, r, t) |= Ki(¬Xj(hasj(k−1))) (j 6= i), and
thus we have(I, r, t) |= Xi(has i({F T }k)). For all (r′, t′) ∼i (r, t), we have
(I, r′, t′) |= Xi(has i(k−1)) and(I, r′, t′) |= Xi(has i({F T }k)) (since the interpre-
tation of algorithmic knowledge depends only on the agent’s local state). This im-
plies thatk−1 ∈ can computei(r′i(t

′)) and{F T }k ∈ can computei(r′i(t
′)), and

thereforeF T ∈ can computei(r′i(t
′)), and(I, r′, t′) |= Xi(has i(F T)). Again,

since the interpretation of algorithmic knowledge depends only on the local state,
(I, r, t) |= Xi(has i(F T)), and(I, r, t) |= (i sees F)T .

Rule R8. A possible translation of an instance of R8 is of the form(Kα
i (good ⇒

(k7→ j)
T
) ∧ Xi(has i({F T , j}k−1))) ⇒ Xi(has i(F T)), whereF T is a possible

translation ofF . Assume(I, r, t) |= (i believes k7→ j)
T
∧(i sees {F}k−1)T , that

is, (I, r, t) |= KiXj(hasj(k−1)), (I, r, t) |= Ki(¬Xi′(has i′(k−1))) (i′ 6= j), and
thus we have(I, r, t) |= Xi(has i({F T }k−1)). For all (r′, t′) ∼i (r, t), we have
(I, r′, t′) |= Xi(has i({F T }k−1)) (since algorithmic knowledge depends only on
the agent’s local state). This implies that{F T }k−1 ∈ can computei(r′i(t

′)). Un-
der the assumption of no additional prior information, the agents have in their initial
state the public keys of all other agents. Hence,k ∈ can computei(r′i(t

′)), and
thereforeF T ∈ can computei(r′i(t

′)), and(I, r′, t′) |= Xi(has i(F T)). Again,
since the interpretation of algorithmic knowledge depends only on the local state,
(I, r, t) |= Xi(has i(F T)), and(I, r, t) |= (i sees F)T .

240 Appendix B Proofs

Rule R9. A possible translation of an instance of R9 takes the formKα
i (good ⇒

©- l
∧
i(�- ¬send i(F T))) ⇒ Kα

i (good ⇒ ©- l
∧
i(�- ¬send i((F T , F ′T)))), where

F T andF ′T are possible translations ofF andF ′. Assume that

(I, r, t) |= (i believes fresh(F))T ,

that is,(I, r, t) |= Ki(∧i¬©- lXi(has i(F T))). For all (r′, t′) ∼i (r, t), we have
(I, r′, t′) |= ¬©- lXi(has i(F T)), and(I, r′, t′) 6|= ©- lXi(has i(F T)). If t′ < l, then
for anyϕ, (I, r′, t′) 6|= ©- lϕ. If t′ ≥ l, thenF T 6∈ can computei(r′i(t

′ − l)). This
implies that(F T , F ′T) 6∈ can computei(r′i(t

′ − l)) for all F ′, and(I, r′, t′) 6|=
©- lXi(has i((F, F ′)T)). Therefore,(I, r, t) |= Ki(∧i¬©- lXi(has i((F, F ′)T)))
and(I, r, t) |= (i believes fresh(F, F ′))T . ut

Theorem 9.2. If r is a run whereA’s key iskA, B’s key iskB, A’s nonce isnA,
andB’s nonce isnB, then

(IGDY , r, 0) |= �(recvB({nB}kB
)⇒ (F (nA, nB, kA, kB))T,0).

Proof. Clearly, it is sufficient to show that for any good runr, for any conjunctC
of F (nA, nB, kA, kB), we have(IGDY , r, 0) |= �(recvB({nB}kB

)⇒ C).
The following statements are straightforward to prove by induction on the length

of a run: (a) on every good runr, if ki is i’s public key (i = A,B), then for
all t ≥ 0, k−1

i ∈ can computei(ri(t)) and k−1
i 6∈ can computej(rj(t)) for

j 6= i; (b) on every good runr, if ni is i’s nonce andki is i’s public key (i =
A,B), then for allt ≥ 0, if recv({|nB|}kB

) ∈ rB(t), thensend(B, {|nB|}kB
) ∈

rA(t), if recv({|nA, nB|}kA
) ∈ rA(t), then send(A, {|nA, nB|}kA

) ∈ rB(t), if
recv({|nA, A|}kB

) ∈ rB(t), thensend(B, {|nA, A|}kB
) ∈ rA(t); (c) on every good

run r, if ni is i’s nonce andki is i’s public key (i = A,B), then for allt ≥ 0 and
all i = A,B, ni 6∈ can computej(rj(t)), for j 6= A,B. (The proofs of these facts
is essentially the same as those of Paulson [1998].)

Case:A believes
kB7→ B. Let r be a good run wherekB isB’s public key, and

let t ≥ 0 be a time whererecv({|nB|}kB
) ∈ rB(t). Let (r′, t′) ∼A (r, t) be a point

on another good runr′. Because public keys are in the initial state of the agents,
it must be the case that on runr′, kB isB’s public key. By (a) above,k−1

B is only

in can computeB(r′B(t′)), and thus we have(IGDY , r′, t′) |= (
kB7→ B)T,0, so that

(IGDY , r, t) |= K0
A(good ⇒ (

kB7→ B)T,0), as desired.

Case:B believes
kA7→ A. Let r be a good run wherekA isA’s public key, and

let t ≥ 0 be a time whererecv({|nB|}kB
) ∈ rB(t). Let (r′, t′) ∼B (r, t) be a point

on another good runr′. Because public keys are in the initial state of the agents,
it must be the case that on runr′, kA isA’s public key. By (a) above,k−1

A is only

B.7 Proofs for Chapter 9 241

in can computeA(r′A(t′)), and thus we have(IGDY , r′, t′) |= (
kA7→ A)T,0, so that

(IGDY , r, t) |= K0
B(good ⇒ (

kA7→ A)T,0), as desired.

Case:A believes A
nA

 B. Let r be a good run whereki is i’s public key and

ni is i’s nonce (i = A,B). If t ≥ 0 is such thatrecv({|nB|}kB
) ∈ rB(t), then by

(b) above, we haverecv({|nA, nB|}kA
) ∈ rA(t). Let (r′, t′) ∼A (r, t), with r′ a

good run. We must haverecv({|nA, nB|}kA
) ∈ r′A(t′). Thus,r′ must be a good run

that uses noncenA. By (c) above and by the definition ofcan computei, we have

(IGDY , r′, t′) |= (A
nA

 B)T,0, so that(IGDY , r, t) |= K0

A(good ⇒ (A
nA

 B)T,0),

as desired.

Case:B believesA believesA
nA

 B. The argument is similar to the previous

case. Letr be a good run whereki is i’s public key andni is i’s nonce (i =
A,B). If t ≥ 0 is such thatrecv({|nB|}kB

) ∈ rB(t), then for any good runr′

with (r′, t′) ∼B (r, t), we must haverecv({|nB|}kB
) ∈ r′B(t′). By (b) above, we

haverecv({|nA, nB|}kA
) ∈ r′A(t′). Let r′′ be a good run with(r′′, t′′) ∼A (r′, t′);

we must haverecv({|nA, nB|}kA
) ∈ r′′A(t′′). Thus,r′′ must be a good run that

uses noncenA. By (c) above and by the definition ofcan computei, we have

(IGDY , r′′, t′′) |= (A
nA

 B)T,0, so that(IGDY , r′, t′) |= K0

A(good ⇒ (A
nA

B)T,0), and(IGDY , r, t) |= K0
B(good ⇒ K0

A(good ⇒ (A
nA

 B)T,0)), as desired.

Case:B believes A
nB

 B. Let r be a good run whereki is i’s public key and

ni is i’s nonce (i = A,B). If t ≥ 0 is such thatrecv({|nB|}kB
) ∈ rB(t), then we

for all good runsr′ with (r′, t′) ∼B (r, t), we must haverecv({|nB|}kB
) ∈ r′B(t′).

Thus,r′ must be a good run that uses noncenB. By (c) above and by the definition

of can computei, we have(IGDY , r′, t′) |= (A
nB

 B)T,0, so that(IGDY , r, t) |=

K0
B(good ⇒ (A

nB

 B)T,0), as desired.

Case:A believes B believes A
nB

 B. Let r be a good run whereki is i’s

public key andni is i’s nonce (i = A,B). If t ≥ 0 is such thatrecv({|nB|}kB
) ∈

rB(t), by (b) above, we haverecv({|nA, nB|}kA
) ∈ rA(t). For all good runsr′

with (r′, t′) ∼A (r, t), we must haverecv({|nA, nB|}kA
) ∈ r′A(t′). By (b) above,

we havesend(B, {|nA, nB|}kA
) ∈ r′B(t′). Let r′′ be a good run with(r′′, t′′) ∼B

(r′, t′); we must havesend(B, {|nA, nB|}kA
) ∈ r′′B(t′′). Thus,r′′ is a good run

that uses noncenB. By (c) above and by the definition ofcan computei, we have

(IGDY , r′′, t′′) |= (A
nB

 B)T,0, so that(IGDY , r′, t′) |= K0

B(good ⇒ (A
nB

B)T,0), and(IGDY , r, t) |= K0
A(good ⇒ K0

B(good ⇒ (A
nB

 B)T,0)), as desired.

Case: B believes A believes B believes A
nB

 B. Let r be a good run

whereki is i’s public key andni is i’s nonce (i = A,B). If t ≥ 0 is such that
recv({|nB|}kB

) ∈ rB(t), then for all good runsr′ with (r′, t′) ∼B (r, t), we must
haverecv({|nB|}kB

) ∈ r′B(t′). By (b) above, we haverecv({|nA, nB|}kA
) ∈ r′A(t′).

242 Appendix B Proofs

Let r′′ be a good run with(r′′, t′′) ∼A (r′, t′); we must haverecv({|nA, nB|}kA
) ∈

r′′A(t′′). By (b) above, we havesend({|nA, nB|}kA
) ∈ r′′B(t′′). Let r′′′ be a good

run with (r′′′, t′′′) ∼B (r′′, t′′); we must havesend({|nA, nB|}kA
) ∈ r′′′B (t′′′).

Thus,r′′′ is a good run that uses noncenB. By (c) above and by the definition of

can computei, we have(IGDY , r′′′, t′′′) |= (A
nB

 B)T,0, so that(IGDY , r′′, t′′) |=

K0
B(good ⇒ (A

nB

 B)T,0), (IGDY , r′, t′) |= K0

A(good ⇒ K0
B(good ⇒ (A

nB

B)T,0)), and (IGDY , r, t) |= K0
B(good ⇒ K0

A(good ⇒ K0
B(good ⇒ (A

nB

B)T,0))), as desired. ut

Bibliography

Abadi, M. (1999). Secrecy by typing in security protocols.Journal of the
ACM 46(5), 749–786.

Abadi, M. (2000). Security protocols and their properties. InFoundations of Se-
cure Computation, NATO Science Series, pp. 39–60. IOS Press. Volume for
the 20th International Summer School on Foundations of Secure Computa-
tion.

Abadi, M. and B. Blanchet (2003a). Computer-assisted verification of a protocol
for certified email. InProc. 10th International Symposium on Static Analysis
(SAS’03), Volume 2694 ofLecture Notes in Computer Science, pp. 316–335.
Springer-Verlag.

Abadi, M. and B. Blanchet (2003b). Secrecy types for asymmetric communica-
tion. Theoretical Computer Science 298(3), 387–415.

Abadi, M. and C. Fournet (2001). Mobile values, new names, and secure com-
munication. InProc. 28th Annual ACM Symposium on Principles of Pro-
gramming Languages (POPL’01), pp. 104–115.

Abadi, M., C. Fournet, and G. Gonthier (2002). Secure implementation of chan-
nel abstractions.Information and Computation 174(1), 37–83.

Abadi, M. and A. D. Gordon (1998). A bisimulation method for cryptographic
protocols.Nordic Journal of Computing 5(4), 267–303.

Abadi, M. and A. D. Gordon (1999). A calculus for cryptographic protocols:
The Spi calculus.Information and Computation 148(1), 1–70.

Abadi, M. and R. Needham (1996). Prudent engineering practice for crypto-
graphic protocols.IEEE Transactions on Software Engineering 22(1), 6–15.

Abadi, M. and P. Rogaway (2002). Reconciling two views of cryptography
(the computational soundness of formal encryption).Journal of Cryptol-
ogy 15(2), 103–127.

Abadi, M. and M. R. Tuttle (1991). A semantics for a logic of authentica-

243

244 Bibliography

tion. InProc. 10th ACM Symposium on Principles of Distributed Computing
(PODC’91), pp. 201–216.

Accorsi, R., D. Basin, and L. Viganò (2001). Towards an awareness-based
semantics for security protocol analysis. In J. Goubault-Larrecq (Ed.),
Proc. Workshop on Logical Aspects of Cryptographic Protocol Verification,
Volume 55.1 ofElectronic Notes in Theoretical Computer Science. Elsevier
Science Publishers.

Alchourrón, C. E., P. G̈ardenfors, and D. Makinson (1985). On the logic of
theory change: partial meet functions for contraction and revision.Journal
of Symbolic Logic 50, 510–530.

Alpern, B. and F. B. Schneider (1985). Defining liveness.Information Process-
ing Letters 21, 181–185.

Anderson, R. and R. Needham (1995). Programming Satan’s computer. In J. van
Leeuwen (Ed.),Computer Science Today: Recent Trends and Developments,
Volume 1000 ofLecture Notes in Computer Science, pp. 426–440. Springer-
Verlag.

Andrews, P. B. (1986).An Introduction to Mathematical Logic and Type Theory:
To Truth through Proof. Academic Press.

Asokan, N., V. Shoup, and M. Waidner (1998). Asynchronous protocols for
optimistic fair exchange. InProc. 1998 IEEE Symposium on Security and
Privacy, pp. 86–99. IEEE Computer Society Press.

Aumann, R. J. (1976). Agreeing to disagree.Annals of Statistics 4(6), 1236–
1239.

Aumann, R. J. (1999). Interactive epistemology I: knowledge.International
Journal of Game Theory 28(3), 263–301.

Baader, F. and T. Nipkow (1998).Term Rewriting and All That. Cambridge Uni-
versity Press.

Basu, S. (1999). New results on quantifier elimination over real closed fields and
applications to constraint databases.Journal of the ACM 46(4), 537–555.

Bellare, M. and P. Rogaway (1993). Entity authentication and key distribution.
In Proc. 13th Annual International Cryptology Conference (CRYPTO’93),
Volume 773 ofLecture Notes in Computer Science, pp. 232–249.

Ben-Or, M., O. Goldreich, S. Micali, and R. L. Rivest (1990). A fair protocol for
signing contracts.IEEE Transactions on Information Theory 36(1), 40–46.

Ben-Or, M., D. Kozen, and J. H. Reif (1986). The complexity of elementary
algebra and geometry.Journal of Computer and Systems Sciences 32(1),
251–264.

Benthem, J. van (1984). Correspondence theory. In D. Gabbay and F. Guenthner
(Eds.),Handbook of Philosophical Logic. Volume II: Extensions of Classical
Logic, pp. 167–247. Reidel.

245

Berman, P., J. Garay, and K. J. Perry (1989). Towards optimal distributed con-
sensus. InProc. 30th IEEE Symposium on the Foundations of Computer
Science (FOCS’89), pp. 410–415.

Bhargavan, K., C. Fournet, A. D. Gordon, and R. Pucella (2004). TulaFale: A
security tool for web services. InProc. 2nd International Symposium on
Formal Methods for Components and Objects (FMCO’03). To appear in
LNCS.

Bieber, P. (1990). A logic of communication in hostile environment. InProc. 3rd
IEEE Computer Security Foundations Workshop (CSFW’90), pp. 14–22.
IEEE Computer Society Press.

Billingsley, P. (1995).Probability and Measure. Wiley Series in Probability and
Mathematical Statistics. John Wiley & Sons.

Blackburn, P., M. de Rijke, and Y. Venema (2001).Modal Logic. Cambridge
University Press.

Blanchet, B. (2001). An efficient cryptographic protocol verifier based on Pro-
log rules. InProc. 14th IEEE Computer Security Foundations Workshop
(CSFW’01), pp. 82–96. IEEE Computer Society Press.

Blanchet, B. (2002). From secrecy to authenticity in security protocols. In
Proc. 9th International Static Analysis Symposium (SAS’02), Volume 2477
of Lecture Notes in Computer Science, pp. 342–359. Springer-Verlag.

Boreale, M., R. de Nicola, and R. Pugliese (2001). Proof techniques for crypto-
graphic processes.SIAM Journal of Computing 31(3), 947–986.

Boyd, C. (1997). Extensional goals for authentication protocols. InProc. DI-
MACS Workshop on Cryptographic Protocol Design and Verification. Avail-
able athttp://dimacs.rutgers.edu/Workshops/Security/.

Brandenburger, A. (1989). The role of common knowledge assumptions in game
theory. In F. Hahn (Ed.),The Economics of Information, Games, and Miss-
ing Markets. Oxford University Press.

Burris, S. and H. P. Sankappanavar (1981).A Course in Universal Algebra.
Springer-Verlag.

Burrows, M., M. Abadi, and R. Needham (1990a). A logic of authentication.
ACM Transactions on Computer Systems 8(1), 18–36.

Burrows, M., M. Abadi, and R. M. Needham (1990b). Rejoinder to Nessett.
ACM Operating Systems Review 24(2), 39–40.

Butler, F., I. Cervesato, A. D. Jaggard, and A. Scedrov (2002). A formal analysis
of some properties of Kerberos 5 using MSR. InProc. 15th IEEE Computer
Security Foundations Workshop (CSFW’02), pp. 175–190. IEEE Computer
Society Press.

Canny, J. F. (1988). Some algebraic and geometric computations in PSPACE.

246 Bibliography

In Proc. 20th Annual ACM Symposium on the Theory of Computing
(STOC’88), pp. 460–467.

Carnap, R. (1962).Logical Foundations of Probability(Second ed.). University
of Chicago Press.

Cervesato, I., N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov (1999). A
meta-notation for protocol analysis. InProc. 12th IEEE Computer Secu-
rity Foundations Workshop (CSFW’99), pp. 55–69. IEEE Computer Society
Press.

Cervesato, I., N. Durgin, J. Mitchell, P. Lincoln, and A. Scedrov (2000).
Relating strands and multiset rewriting for security protocol analysis. In
Proc. 13th IEEE Computer Security Foundations Workshop (CSFW’00), pp.
35–51. IEEE Computer Society Press.

Cherniak, C. (1986).Minimal Rationality. Bradford Books. MIT Press.
Chomsky, N. (1968).Language and Mind. Brace & World.
Church, A. (1936). An unsolvable problem of elementary number theory.Amer-

ican Journal of Mathematics 21, 345–363.
Churchland, P. M. and P. S. Churchland (1983). Stalking the wild epistemic

engine.Nous 17, 5–18.
Clark, J. and J. Jacob (1997). A survey of authentication protocol literature:

Version 1.0. Unpublished manuscript.
Clarke, E., S. Jha, and W. Marrero (1998). Using state space exploration and

a natural deduction style message derivation engine to verify security pro-
tocols. InProc. IFIP Working Conference on Programming Concepts and
Methods (PROCOMET).

Cohen, E. (2000). TAPS: A first-order verifier for cryptographic protocols. In
Proc. 13th IEEE Computer Security Foundations Workshop (CSFW’00), pp.
144–158. IEEE Computer Society Press.

Cohen, E. (2002). TAPS: The last few slides. InProc. Workshop on Formal
Aspects of Security (FASec’02), Volume 2629 ofLecture Notes in Computer
Science, pp. 183–190.

Cook, S. A. (1971). The complexity of theorem proving procedures. InProc. 3rd
Annual ACM Symposium on the Theory of Computing (STOC’71), pp. 151–
158.

Copeland, B. J. (2002). The Church-Turing thesis. In E. N. Zalta (Ed.),The
Stanford Encyclopedia of Philosophy (Fall 2002 Edition). http://plato.
stanford.edu/archives/fall2002/entries/church-turing/.

Crazzolara, F. and G. Winskel (2001). Events in security protocols. InProc. 8th
ACM Conference on Computer and Communications Security (CCS’01), pp.
96–105. ACM Press.

247

Cresswell, M. J. (1972). Intensional logics and logical truth.Journal of Philo-
sophical Logic 1, 2–15.

Cresswell, M. J. (1973).Logics and Languages. Methuen & Co Ltd.
Davis, R., H. Shrobe, and P. Szolovits (1993). What is a knowledge representa-

tion? AI Magazine 14(1), 17–33.
de Alfaro, L. (1998).Formal Verification of Probabilistic Systems. Ph. D. thesis,

Stanford University. Available as Technical Report STAN-CS-TR-98-1601.
Dekker, A. H. (2000). C3PO: A tool for automatic sound cryptographic proto-

col analysis. InProc. 13th IEEE Computer Security Foundations Workshop
(CSFW’00), pp. 77–87. IEEE Computer Society Press.

Dienes, Z. and J. Perner (1999). A theory of implicit and explicit knowledge.
Behavioural and Brain Sciences 22, 735–755.

Dolev, D. and A. C. Yao (1983). On the security of public key protocols.IEEE
Transactions on Information Theory 29(2), 198–208.

Duc, H. N. (2001).Resource-Bounded Reasoning about Knowledge. Ph. D. the-
sis, Universiẗat Leipzig.

Durgin, N., J. Mitchell, and D. Pavlovic (2001). A compositional logic for pro-
tocol correctness. InProc. 14th IEEE Computer Security Foundations Work-
shop (CSFW’01), pp. 241–255. IEEE Computer Society Press.

Dwork, C. and Y. Moses (1990). Knowledge and common knowledge in a
Byzantine environment: crash failures.Information and Computation 88(2),
156–186.

Elgot-Drapkin, J. J. and D. Perlis (1990). Reasoning situation in time I: ba-
sic concepts.Journal of Experimental and Theoretical Artificial Intelli-
gence 2(1), 75–98.

Enderton, H. B. (1972).A Mathematical Introduction to Logic. Academic Press.
Even, S., O. Goldreich, and A. Shamir (1985). On the security of ping-pong pro-

tocols when implemented using the RSA. InProc. Conference on Advances
in Cryptology (CRYPTO’85), Volume 218 ofLecture Notes in Computer
Science, pp. 58–72. Springer-Verlag.

Fagin, R. and J. Y. Halpern (1988). Belief, awareness, and limited reasoning.
Artificial Intelligence 34, 39–76.

Fagin, R. and J. Y. Halpern (1994). Reasoning about knowledge and probability.
Journal of the ACM 41(2), 340–367.

Fagin, R., J. Y. Halpern, and N. Megiddo (1990). A logic for reasoning about
probabilities.Information and Computation 87(1/2), 78–128.

Fagin, R., J. Y. Halpern, Y. Moses, and M. Y. Vardi (1995).Reasoning about
Knowledge. MIT Press.

Fagin, R., J. Y. Halpern, and M. Y. Vardi (1990). A nonstandard approach to the
logical omniscience problem. InProc. 3rd Conference on Theoretical As-

248 Bibliography

pects of Reasoning about Knowledge (TARK’90), pp. 41–55. Morgan Kauf-
mann.

Feller, W. (1957).An Introduction to Probability Theory and its Applications
(Second ed.), Volume 1. John Wiley & Sons.

Fischer, M. J. and L. D. Zuck (1988). Reasoning about uncertainty in fault-
tolerant distributed systems. Technical Report YALEU/DCS/TR–643, Yale
University.

Fitelson, B. (1999). The plurality of Bayesian measures of confirmation and the
problem of measure sensitivity.Philosophy of Science 66 (r:supplement),
S362–378.

Fitting, M. and R. Mendelsohn (1998).First Order Modal Logic. Kluwer Aca-
demic Publishers.

Focardi, R., R. Gorrieri, and F. Martinelli (2003). A comparison of three authen-
tication properties.Theoretical Computer Science 291(3), 285–327.

Fodor, J. A. (1976).The Language of Thought. Harvester Press.
Fodor, J. A. (1981). Propositional attitudes. In J. A. Fodor (Ed.),Representa-

tions: Philosophical Essays on the Foundations of Cognitive Science, pp.
177–203. Harvester Press.

Fournet, C. and G. Gonthier (1996). The reflexive chemical abstract machine
and the join calculus. InProc. 23rd Annual ACM Symposium on Principles
of Programming Languages (POPL’96), pp. 372–385. ACM Press.

Frendrup, U., H. Ḧuttel, and J. N. Jensen (2002). Modal logics for cryptographic
processes. InProc. 9th International Workshop on Expressiveness in Con-
currency (EXPRESS’02), Volume 68.3 ofElectronic Notes in Theoretical
Computer Science. Elsevier Science Publishers.

Fudenberg, D. and J. Tirole (1991).Game Theory. MIT Press.
Gabbay, D., A. Pnueli, S. Shelah, and J. Stavi (1980). On the temporal analysis

of fairness. InProc. 7th Annual ACM Symposium on Principles of Program-
ming Languages (POPL’80), pp. 163–173.

Gallin, D. (1975).Intensional and Higher-Order Modal Logic, Volume 19 of
Mathematics Studies. North-Holland.

Gamow, G. and M. Stern (1958).Puzzle Math. Viking Press.
Garson, J. W. (1984). Quantification in modal logic. In D. Gabbay and F. Guen-

thner (Eds.),Handbook of Philosophical Logic. Volume II: Extensions of
Classical Logic, pp. 249–307. Reidel.

Girard, J.-Y. (1987). Linear logic.Theoretical Computer Science 50, 1–102.
Giunchiglia, F., L. Serafini, E. Giunchiglia, and M. Frixione (1993). Non-

omniscient belief as context-based reasoning. InProc. 13th International
Joint Conference on Artificial Intelligence (IJCAI’93), pp. 548–554.

249

Goldblatt, R. (1992).Logics of Time and Computation. CSLI Lecture Notes,
No. 7. CSLI.

Goldreich, O. (1998).Modern Cryptography, Probabilistic Proofs and Pseudo-
randomness, Volume 17 ofAlgorithms and Combinatorics. Springer-Verlag.

Goldreich, O. (2001).Foundations of Cryptography: Basic Tools. Cambridge
University Press.

Goldwasser, S. and S. Micali (1982). Probabilistic encryption and how to play
mental poker keeping secret all partial information. InProc. 14th Annual
ACM Symposium on the Theory of Computing (STOC’82), pp. 365–377.
ACM Press.

Gollmann, D. (1996). What do we mean by entity authentication? InProc. 1996
IEEE Symposium on Security and Privacy, pp. 46–54. IEEE Computer So-
ciety Press.

Gollmann, D. (2003). Authentication by correspondence.IEEE Journal on Se-
lected Areas in Communications 21(1), 88–95.

Gong, L., R. Needham, and R. Yahalom (1990). Reasoning about belief in cryp-
tographic protocols. InProc. 1990 IEEE Symposium on Security and Pri-
vacy, pp. 234–248. IEEE Computer Society Press.

Good, I. J. (1950).Probability and the Weighing of Evidence. Charles Griffin &
Co. Ltd.

Good, I. J. (1960). Weights of evidence, corroboration, explanatory power, in-
formation and the utility of experiments.Journal of the Royal Statistical
Society, Series B 22, 319–331.

Gordon, A. D. and A. Jeffrey (2001). Authenticity by typing for security
protocols. InProc. 14th IEEE Computer Security Foundations Workshop
(CSFW’01), pp. 145–159. IEEE Computer Society Press.

Gordon, A. D. and A. Jeffrey (2002a). Types and effects for asymmetric cryp-
tography. InProc. 15th IEEE Computer Security Foundations Workshop
(CSFW’02), pp. 77–91. IEEE Computer Society Press.

Gordon, A. D. and A. Jeffrey (2002b). Typing one-to-one and one-to-many
correspondences in security protocols. InProceeding of Software Security
- Theories and Systems (ISSS 2002), Volume 2609 ofLecture Notes in Com-
puter Science, pp. 263–282. Springer-Verlag.

Gray, III, J. W. and J. McLean (1995). Using temporal logic to specify and verify
cryptographic protocols. InProc. 8th IEEE Computer Security Foundations
Workshop (CSFW’95), pp. 108–117. IEEE Computer Society Press.

Grove, A. J. (1995). Naming and identity in epistemic logic II: a first-order logic
for naming.Artificial Intelligence 74(2), 311–350.

Grove, A. J. and J. Y. Halpern (1993). Naming and identity in epistemic logics,

250 Bibliography

Part I: the propositional case.Journal of Logic and Computation 3(4), 345–
378.

Guttman, J. D. and F. J. Thayer (2002). Authentication tests and the structure of
bundles.Theoretical Computer Science 283(2), 333–380.

Guttman, J. D., F. J. Thayer, and L. D. Zuck (2001). The faithfulness of abstract
protocol analysis: message authentication. InProc. 8th ACM Conference
on Computer and Communications Security (CCS’01), pp. 186–195. ACM
Press.

Halpern, J. Y. (1990). An analysis of first-order logics of probability.Artificial
Intelligence 46, 311–350.

Halpern, J. Y. (2000). A note on knowledge-based programs and specifications.
Distributed Computing 13, 145–153.

Halpern, J. Y. (2003).Reasoning About Uncertainty. MIT Press.
Halpern, J. Y. and R. Fagin (1992). Two views of belief: belief as generalized

probability and belief as evidence.Artificial Intelligence 54, 275–317.
Halpern, J. Y. and Y. Moses (1992). A guide to completeness and complexity for

modal logics of knowledge and belief.Artificial Intelligence 54, 319–379.
Halpern, J. Y., Y. Moses, and M. R. Tuttle (1988). A knowledge-based analysis

of zero knowledge. InProc. 20th Annual ACM Symposium on the Theory of
Computing (STOC’88), pp. 132–147.

Halpern, J. Y., Y. Moses, and M. Y. Vardi (1994). Algorithmic knowledge. In
Proc. 5th Conference on Theoretical Aspects of Reasoning about Knowledge
(TARK’94), pp. 255–266. Morgan Kaufmann.

Halpern, J. Y. and K. O’Neill (2002). Secrecy in multiagent systems. In
Proc. 15th IEEE Computer Security Foundations Workshop (CSFW’02), pp.
32–46. IEEE Computer Society Press.

Halpern, J. Y. and K. O’Neill (2003). Anonymity and information hiding in mul-
tiagent systems. InProc. 16th IEEE Computer Security Foundations Work-
shop (CSFW’03), pp. 75–88. IEEE Computer Society Press.

Halpern, J. Y. and R. Pucella (2002). Modeling adversaries in a logic for rea-
soning about security protocols. InProc. Workshop on Formal Aspects of
Security (FASec’02), Volume 2629 ofLecture Notes in Computer Science,
pp. 115–132.

Halpern, J. Y. and R. Pucella (2003a). A logic for reasoning about evidence.
In Proc. 19th Conference on Uncertainty in Artificial Intelligence (UAI’03),
pp. 297–304.

Halpern, J. Y. and R. Pucella (2003b). On the relationship between strand spaces
and multi-agent systems.ACM Transactions on Information and System Se-
curity 6(1), 43–70.

Halpern, J. Y. and R. Pucella (2003c). Probabilistic algorithmic knowledge. In

251

Proc. 9th Conference on Theoretical Aspects of Rationality and Knowledge
(TARK’03), pp. 118–130.

Halpern, J. Y. and M. R. Tuttle (1993). Knowledge, probability, and adversaries.
Journal of the ACM 40(4), 917–962.

Halpern, J. Y. and M. Y. Vardi (1991). Model checking vs. theorem proving: a
manifesto. In V. Lifschitz (Ed.),Artificial Intelligence and Mathematical
Theory of Computation (Papers in Honor of John McCarthy), pp. 151–176.
Academic Press.

Halpern, J. Y. and L. D. Zuck (1992). A little knowledge goes a long way:
knowledge-based derivations and correctness proofs for a family of proto-
cols.Journal of the ACM 39(3), 449–478.

Hamlyn, D. W. (1970).The Theory of Knowledge. MacMillian Press.
Harel, D., D. Kozen, and J. Tiuryn (2000).Dynamic Logic. MIT Press.
Harman, G. (1973).Thought. Princeton University Press.
He, J., K. Seidel, and A. McIver (1997). Probabilistic models for the guarded

command language.Science of Computer Programming 28(2–3), 171–192.
Hennessy, M. and R. Milner (1985). Algebraic laws for nondeterminism and

concurrency.Journal of the ACM 32, 137–161.
Higgins, P. J. (1963). Algebras with a scheme of operators.Mathematische

Nachrichten 27, 115–132.
Hintikka, J. (1962).Knowledge and Belief. Cornell University Press.
Hintikka, J. (1975). Impossible possible worlds vindicated.Journal of Philo-

sophical Logic 4, 475–484.
Hoare, C. (1985).Communicating Sequential Processes. Prentice-Hall.
Huang, Z. and K. Kwast (1991). Awareness, negation and logical omniscience.

In J. v. Eijck (Ed.),Proc. European Workshop on Logics in AI (JELIA’90),
Volume 478 ofLecture Notes in Computer Science, pp. 282–300. Springer-
Verlag.

Huber, P. J. (1981).Robust Statistics. Wiley Interscience.
Hughes, G. and M. Cresswell (1972).An Introduction to Modal Logic. Methuen.
Impagliazzo, R. and B. M. Kapron (2003). Logics for reasoning about crypto-

graphic constructions. InProc. 44th IEEE Symposium on the Foundations of
Computer Science (FOCS’03), pp. 372–383.

Jeffrey, R. C. (1992).Probability and the Art of Judgement. Cambridge Univer-
sity Press.

Johnson-Laird, P. (1987). How could consciousness arise from the computations
of the brain? In C. Blakemore and S. Greenfield (Eds.),Mindwaves. Basil
Blackwell.

Kaplan, A. N. and L. K. Schubert (2000). A computational model of belief.
Artificial Intelligence 120, 119–160.

252 Bibliography

Konolige, K. (1986).A Deduction Model of Belief. Morgan Kaufmann.
Kripke, S. (1963). A semantical analysis of modal logic I: normal modal propo-

sitional calculi.Zeitschrift f̈ur Mathematische Logik und Grundlagen der
Mathematik 9, 67–96.

Kripke, S. (1965). A semantical analysis of modal logic II: non-normal proposi-
tional calculi. In L. Henkin and A. Tarski (Eds.),The Theory of Models, pp.
206–220. North-Holland.

Kyburg, Jr., H. E. (1974).The Logical Foundations of Statistical Inference. Rei-
del.

Kyburg, Jr., H. E. (1983). Recent work in inductive logic. In T. Machan and
K. Lucey (Eds.),Recent Work in Philosophy, pp. 87–150. Rowman & Al-
lanheld.

Ladner, R. E. (1977). The computational complexity of provability in systems
of modal propositional logic.SIAM Journal on Computing 6(3), 467–480.

Lakshmanan, L. V. S. and F. Sadri (2001). On a theory of probabilistic deductive
databases.Theory and Practice of Logic Programming 1(1), 5–42.

Lemmon, E. J. (1966a). Algebraic semantics for modal logics I.Journal of Sym-
bolic Logic 31(1), 46–65.

Lemmon, E. J. (1966b). Algebraic semantics for modal logics II.Journal of
Symbolic Logic 31(4), 191–218.

Levesque, H. J. (1984). A logic of implicit and explicit belief. InProc. 4th Na-
tional Conference on Artificial Intelligence (AAAI’84), pp. 198–202.

Levi, I. (1980).The Enterprise of Knowledge. MIT Press.
Lewis, C. I. and C. H. Langford (1959).Symbolic Logic(2nd ed.). Dover.
Lincoln, P., J. C. Mitchell, M. Mitchell, and A. Scedrov (1998). A probabilistic

poly-time framework for protocol analysis. InProc. 5th ACM Conference
on Computer and Communications Security (CCS’98), pp. 112–121.

Lipman, B. L. (1999). Decision theory without logical omniscience: Toward
an axiomatic framework for bounded rationality.The Review of Economic
Studies 66(2), 339–361.

Lowe, G. (1995). An attack on the Needham-Schroeder public-key authentica-
tion protocol.Information Processing Letters 56, 131–133.

Lowe, G. (1997). A hierarchy of authentication specifications. InProc. 10th
IEEE Computer Security Foundations Workshop (CSFW’97), pp. 31–43.
IEEE Computer Society Press.

Lowe, G. (1998). Casper: A compiler for the analysis of security protocols.
Journal of Computer Security 6, 53–84.

Lowe, G. (2002). Analysing protocols subject to guessing attacks. In
Proc. Workshop on Issues in the Theory of Security (WITS’02).

253

Lukasiewicz, T. (1999). Probabilistic deduction with conditional constraints
over basic events.Journal of Artificial Intelligence Research 10, 199–241.

Mao, W. (1995). An augmentation of BAN-like logics. InProc. 8th IEEE Com-
puter Security Foundations Workshop (CSFW’95), pp. 44–56. IEEE Com-
puter Society Press.

McAllester, D. (1993). Automatic recognition of tractability in inference rela-
tions.Journal of the ACM 40(2), 284–303.

McCarthy, J. (1979). Ascribing mental qualities to machines. Technical Report
STAN-CS-79-725, Stanford University.

McKinsey, J. J. C. and A. Tarski (1944). The algebra of topology.Annals of
Mathematics 45, 141–191.

McLean, J. (1994). Security models. In J. Marciniak (Ed.),Encyclopedia of
Software Engineering. Wiley Press.

Meadows, C. (1990). Representing partial knowledge in an algebraic secu-
rity model. In Proc. 3rd IEEE Computer Security Foundations Workshop
(CSFW’90), pp. 23–31. IEEE Computer Society Press.

Meadows, C. (1996). The NRL protocol analyzer: An overview.Journal of
Logic Programming 26(2), 113–131.

Merritt, M. and P. Wolper (1985). States of knowledge in cryptographic proto-
cols. Unpublished manuscript.

Meyden, R. van der (1998). Common knowledge and update in finite environ-
ments.Information and Computation 140(2), 115–157.

Meyden, R. van der and N. V. Shilov (1999). Model checking knowledge and
time in systems with perfect recall (extended abstract). InProc. Conference
on Foundations of Software Technology and Theoretical Computer Science,
Volume 1738 ofLecture Notes in Computer Science, pp. 432–445. Springer-
Verlag.

Meyden, R. van der and K. Su (2004). Symbolic model checking the knowl-
edge of the dining cryptographers. InProc. 17th IEEE Computer Security
Foundations Workshop (CSFW’04), pp. 280–291. IEEE Computer Society
Press.

Meyer, J.-J. C. and W. van der Hoek (1995).Epistemic Logic for AI and Com-
puter Science, Volume 41 ofCambridge Tracts in Theoretical Computer
Science. Cambridge University Press.

Millen, J. and V. Shmatikov (2003). Symbolic protocol analysis with products
and Diffie-Hellman exponentiation. InProc. 16th IEEE Computer Secu-
rity Foundations Workshop (CSFW’03), pp. 47–61. IEEE Computer Society
Press.

Millen, J. K., S. C. Clark, and S. B. Freedman (1987). The Interrogator: Protocol

254 Bibliography

security analysis.IEEE Transactions on Software Engineering 13(2), 274–
288.

Milne, P. (1996).log[p(h|eb)/p(h|b)] is the one true measure of confirmation.
Philosophy of Science 63, 21–26.

Milner, R. (1989).Communication and Concurrency. Prentice-Hall.
Milner, R. (1999).Communicating and Mobile Systems: Theπ-calculus. Cam-

bridge University Press.
Milner, R., J. Parrow, and D. Walker (1993). Modal logics for mobile processes.

Theoretical Computer Science 114(1), 149–171.
Mitchell, J., M. Mitchell, and U. Stern (1997). Automated analysis of crypto-

graphic protocols using Murϕ. In Proc. 1997 IEEE Symposium on Security
and Privacy, pp. 141–151. IEEE Computer Society Press.

Moreno, A. (1998). Avoiding logical omniscience and perfect reasoning: A sur-
vey.AI Communications 11(2), 101–122.

Moses, Y. (1988). Resource-bounded knowledge. InProc. 2nd Conference on
Theoretical Aspects of Reasoning about Knowledge (TARK’88), pp. 261–
276. Morgan Kaufmann.

Moses, Y. and Y. Shoham (1993). Belief as defeasible knowledge.Artificial
Intelligence 64(2), 299–322.

Moses, Y. and M. R. Tuttle (1988). Programming simultaneous actions using
common knowledge.Algorithmica 3, 121–169.

Motwani, R. and P. Raghavan (1995).Randomized Algorithms. Cambridge Uni-
versity Press.

Needham, R. M. and M. D. Schroeder (1978). Using encryption for authentica-
tion in large networks of computers.Communications of the ACM 21(12),
993–999.

Nerode, A. and R. Shore (1994).Logic for Applications. Springer-Verlag.
Nessett, D. M. (1990). A critique of the Burrows, Abadi and Needham logic.

ACM Operating Systems Review 24(2), 35–38.
Neumann, J. von and O. Morgenstern (1947).Theory of Games and Economic

Behavior(2nd ed.). Princeton University Press.
Nilsson, N. J. (1986). Probabilistic logic.Artificial Intelligence 28(1), 71–88.
Papadimitriou, C. (1994).Computational Complexity. Addison Wesley.
Parikh, R. (1987). Knowledge and the problem of logical omniscience. In

Proc. 2nd International Symposium on Methodologies for Intelligent Sys-
tems, pp. 432–439. North-Holland.

Paulson, L. C. (1994).Isabelle, A Generic Theorem Prover, Volume 828 of
Lecture Notes in Computer Science. Springer-Verlag.

Paulson, L. C. (1997). Mechanized proofs for a recursive authentication

255

protocol. In Proc. 10th IEEE Computer Security Foundations Workshop
(CSFW’97), pp. 84–95.

Paulson, L. C. (1998). The inductive approach to verifying cryptographic proto-
cols.Journal of Computer Security 6(1/2), 85–128.

Penrose, R. (1989).The Emperor’s New Mind. Oxford University Press.
Penrose, R. (1994).Shadows of the Mind. Oxford University Press.
Plotkin, G. D. (1981). A structural approach to operational semantics. Technical

Report DAIMI FN-19, University of Aarhus.
Pnueli, A. (1977). The temporal logic of programs. InProc. 18th IEEE Sympo-

sium on the Foundations of Computer Science (FOCS’77), pp. 46–57.
Pollock, J. L. and J. Cruz (1999).Contemporary Theories of Knowledge(Sec-

ond ed.). Rowman & Littlefield.
Popkorn, S. (1994).First Steps in Modal Logic. Cambridge University Press.
Popper, K. R. (1959).The Logic of Scientific Discovery. Hutchinson.
Prior, A. N. (1957).Time and Modality. Oxford University Press.
Pucella, R. (2004). Deductive algorithmic knowledge. InProc. 8th International

Symposium on Artificial Intelligence and Mathematics. AI&M 22-2004.
Rabin, M. O. (1980). Probabilistic algorithm for testing primality.Journal of

Number Theory 12, 128–138.
Ramanujam, R. (1999). View-based explicit knowledge.Annals of Pure and

Applied Logic 96(1–3), 343–368.
Rantala, V. (1975). Urn models: a new kind of non-standard model for first-

order logic.Journal of Philosophical Logic 4, 455–474.
Rantala, V. (1982). Impossible worlds semantics and logical omniscience.Acta

Philosophica Fennica 35, 18–24.
Renegar, J. (1992). On the computational complexity and geometry of the first

order theory of the reals.Journal of Symbolic Computation 13(3), 255–352.
Rescher, N. and R. Brandom (1979).The Logic of Inconsistency. Rowman and

Littlefield.
Roscoe, A. W. (1994). Model-checking CSP. InA Classical Mind, Essays in

Honour of C. A. R. Hoare, pp. 353–378. Prentice-Hall.
Roscoe, A. W. (1996). Intensional specifications of security protocols. In

Proc. 9th IEEE Computer Security Foundations Workshop (CSFW’96), pp.
28–38. IEEE Computer Society Press.

Roscoe, A. W. (1997).The Theory and Practice of Concurrency. Prentice-Hall.
Rosenschein, S. J. (1985). Formal theories of knowledge in AI and robotics.

New Generation Computing 3(4), 345–357.
Rubinstein, A. (1998).Modeling Bounded Rationality. MIT Press.
Ryan, P. and S. Schneider (2000).Modelling and Analysis of Security Protocols.

Addison Wesley.

256 Bibliography

Ryan, P. Y. A. and S. A. Schneider (1998). An attack on a recursive authen-
tication protocol: A cautionary tale.Information Processing Letters 65(1),
7–10.

Ryle, G. (1949).The Concept of Mind. Hutchinson & Company, Ltd.
Sangiorgi, D. and D. Walker (2001).Pi-calculus: A Theory of Mobile Systems.

Cambridge University Press.
Schneider, S. (1996). Security properties and CSP. InProc. 1996 IEEE Sympo-

sium on Security and Privacy, pp. 174–187. IEEE Computer Society Press.
Schneider, S. (1998). Verifying authentication protocols in CSP.IEEE Transac-

tions on Software Engineering 24(9), 741–758.
Schneier, B. (1996).Applied Cryptography(Second ed.). John Wiley & Sons.
Searle, J. (1992).The Rediscovery of the Mind. MIT Press.
Selman, B. and H. Kautz (1996). Knowledge compilation and theory approxi-

mation.Journal of the ACM 43(2), 193–224.
Shafer, G. (1976).A Mathematical Theory of Evidence. Princeton University

Press.
Shafer, G. (1982). Belief functions and parametric models (with commentary).

Journal of the Royal Statistical Society, Series B 44, 322–352.
Shmatikov, V. and J. C. Mitchell (2000). Analysis of a fair exchange protocol.

In Seventh Annual Symposium on Network and Distributed System Security
(NDSS 2000), pp. 119–128.

Shoenfield, J. R. (1967).Mathematical Logic. Addison Wesley.
Snekkenes, E. (1991). Exploring the BAN approach to protocol analysis. In

Proc. 1991 IEEE Symposium on Security and Privacy, pp. 171–181. IEEE
Computer Society Press.

Snekkenes, E. (1992). Roles in cryptographic protocols. InProc. 1992 IEEE
Symposium on Security and Privacy, pp. 105–119. IEEE Computer Society
Press.

Song, D. X. (1999). Athena: a new efficient automatic checker for security pro-
tocol analysis. InProc. 12th IEEE Computer Security Foundations Work-
shop (CSFW’99), pp. 192–202. IEEE Computer Society Press.

Sowa, J. F. (2000).Knowledge Representation: Logical, Philosophical, and
Computational Foundations. Brooks Cole Publishing Co.

Stalnaker, R. (1984).Inquiry. MIT Press.
Stalnaker, R. (1987). Semantics for belief.Philosophical Topics 15(1), 177–190.
Stalnaker, R. (1991). The problem of logical omniscience, I.Synthese 89, 425–

440.
Stalnaker, R. (1996). Impossibilities.Philosophical Topics 24, 193–204.
Steiglitz, K. (1988). Two nonstandard paradigms for computation: Analog ma-

chines and cellular automata. In J. K. Skwirzynski (Ed.),Performance Limits

257

in Communication Theory and Practice, Number 142 in NATO Advanced
Study Institutes Series E, pp. 173–192. Kluwer Academic Publishers.

Stinson, D. R. (1995).Cryptography: Theory and Practice. CRC Press.
Stirling, C. (2001).Modal and Temporal Properties of Processes. Springer-

Verlag.
Stubblebine, S. and R. Wright (1996). An authentication logic supporting syn-

chronization, revocation, and recency. InProc. 3rd ACM Conference on
Computer and Communications Security (CCS’96). ACM Press.

Syverson, P. (1990). A logic for the analysis of cryptographic protocols. NRL
Report 9305, Naval Research Laboratory.

Syverson, P. and I. Cervesato (2001). The logic of authentication protocols. In
Proc. 1st International School on Foundations of Security Analysis and De-
sign (FOSAD’00), Volume 2171 ofLecture Notes in Computer Science, pp.
63–137.

Syverson, P. and C. Meadows (1996). A formal language for cryptographic pro-
tocol requirements.Designs, Codes, and Cryptography 7(1/2), 27–59.

Syverson, P. F. and P. C. van Oorschot (1994). On unifying some cryptographic
protocol logics. InProc. 1994 IEEE Symposium on Security and Privacy,
pp. 14–28. IEEE Computer Society Press.

Tarski, A. (1951).A Decision Method for Elementary Algebra and Geometry
(Second ed.). University of California Press.

Thayer, F. J., J. C. Herzog, and J. D. Guttman (1999a). Mixed strand spaces.
In Proc. 12th IEEE Computer Security Foundations Workshop (CSFW’99).
IEEE Computer Society Press.

Thayer, F. J., J. C. Herzog, and J. D. Guttman (1999b). Strand spaces: Proving
security protocols correct.Journal of Computer Security 7(2/3), 191–230.

Tofte, M. and J.-P. Talpin (1997). Region-based memory management.Informa-
tion and Computation 132(2), 109–176.

Turing, A. M. (1936). On computable numbers, with an application to the
Entscheidungsproblem.Proceedings of the London Mathematical Society,
ser. 2 42, 230–265.

Vardi, M. Y. (1985). Automatic verification of probabilistic concurrent finite-
state programs. InProc. 26th IEEE Symposium on the Foundations of Com-
puter Science (FOCS’85), pp. 327–338.

Walley, P. (1987). Belief function representations of statistical evidence.Annals
of Statistics 18(4), 1439–1465.

Wansing, H. (1990). A general possible worlds framework for reasoning about
knowledge and belief.Studia Logica 49(4), 523–539.

Wedel, G. and V. Kessler (1996). Formal semantics for authentication logics.
In Proc. 4th European Symposium on Research in Computer Security (ES-

258 Bibliography

ORICS’96), Volume 1146 ofLecture Notes in Computer Science, pp. 219–
241. Springer-Verlag.

Weispfenning, V. (1988). The complexity of linear problems in fields.Journal
of Symbolic Computation 5(1/2), 3–27.

Winskel, G. (1993).The Formal Semantics of Programming Languages. MIT
Press.

Woo, T. Y. C. and S. S. Lam (1992). Authentication for distributed systems.
Computer 25(1), 39–52.

Woo, T. Y. C. and S. S. Lam (1993). A semantic model for authentication proto-
cols. InProc. 1993 IEEE Symposium on Security and Privacy, pp. 178–194.

