
Object-Oriented Design Lecture 3
CSU 370 Fall 2007 (Pucella) Friday, Sep 14, 2007

Java

We will be programming in Java in this course. Partly because it is a reasonable language,
and partly because you already have seen some Java in CSU 213. In fact, I will assume you
know the basics of the language: how to define a basic class, derive some objects from the
class, what are methods, what are fields (which we’ll also call variables to confuse things
sometimes), and what are the basic types such as integers, booleans, and some fundamental
operations on those types.

Now, working in a specific language such as Java will lead to terminological problems. In
particular, many of the terms we use when discussing design in a language-independent way
(as we have been doing until now) also have a meaning in Java, a meaning which is often
quite similar to the generic language-independent meaning, but often much more specific.
For instance, the term constructor has a specific meaning in Java which is along the lines of
the meaning we gave it last lecture, but actually means something much more specific, viz.
a method automatically invoked when using new to create a new object. Another example is
interface, which means something specific in Java that we will cover in a couple of lectures.
There are many others. Generally, the context will make it clear whether I am talking about
the generic term, or a specific term that has a technical meaning in Java. It is your job to
try to keep the two apart. Please ask when you are unsure.

An Implementation of Voice ADT

The plan today is to give a quick and dirty implementation of the Voice ADT, to illustrate
the basic uses of Java, and also to introduce the conventions and new features we will need
in this course. Recall the signature we had:

emptyVoice : -> Voice

oneNote : Note -> Voice

concatenated : Voice x Voice -> Voice

isEmpty : Voice -> boolean

firstNote : Voice -> Note

otherNotes : Voice -> Voice

The first step is to convert this signature into an object oriented signature, using a more
Java-like syntax. First, the creators:

1



public static Voice emptyVoice ();

public static Voice oneNote (Note);

public static Voice concatenated (Voice, Voice);

We will see the meaning of public and static in a little bit. For the accessors, we will use
the fact that every method in Java has an implicit parameter of the same type of the object
to which it is associated. Since all the accessors take a voice as a parameter, we will use the
implicit parameter for this.

public boolean isEmpty ();

public Note firstNote ();

public Voice otherNotes ();

We can similarly convert the specification using the above syntax, for instance:

emptyVoice().isEmpty() = true

oneNote(n).isEmpty() = false

concatenated(v1,v2).isEmpty() = false

I leave the other equations as an exercise.

Let’s implement the above signature, then. We will define a class Voice in a file Voice.java.
Recall that in Java, we can only put one public class (that is, a world-accessible class) per
file, and the name of the file should be the same name as the class, with .java appended.

// Class implementing the Voice ADT given in lecture

public class Voice {

}

Let’s fill in the body of this class.

Now, the main rule we will follow in this class is that the only methods in the class that we
should be able to invoke are those methods that are in the signature. Now, the class can
define other methods, we just have to make sure they are not accessible from outside the
class.

Java’s lets us restrict accessibility to methods (and to fields) using the private keyword. In
contrast, accessible methods can be specified using the public keyword. (Thus, our use of
public in the signature above.)

In particular, because a classical Java constructor (the method invoked upon a new) is not
described in the signature, we should make it private. Intuitively, the only way we allow to
create a new object of the class is via one of the creators defined in the interface. These
creators are sometimes called factory methods, and the technique of only using creators to
create new objects instead of Java constructors is called the factory design pattern. The Java
constructor for the class is rather simple:

2



// Voice constructor, made private

private Voice () { }

It really does nothing.

But now we have a problem. We would like to write a creator such as emptyVoice as a
public method that calls the constructor (which it can because the emptyVoice method is
inside the class). But how will we able to call the emptyVoice method? Recall that invoke
a method, we need an objet of that class. And we just made sure that the constructor of
the class was private, that is, not invokable from outside that class. So there is no way to
have an object that would let us invoke any of the creators in the first place. Ouch. That’s
a problem.

The key is to somehow make sure that the creator methods are available even when no
objects of the class exist. How can we do that? Well, it helps to think of the world of the
program to be split in two. One part, the part that correspond to the source code, is the
static part. Static means non-moving, which we take to be non-executing, and the static part
of the program correspond to what information about the program we have before anything
executes. In Java, the only thing we know before the program executes are what classes are
defined. Thus, the classes belong to the static world. These classes exist, in some sense, even
before programs start executing. The other part is the dynamic part, which corresponds to
program execution. During executions, instances of the classes, that is, objects, get created,
updated, destroyed. Thus, objects belong to the dynamic world.

To make sure that a method is available even when no object is present, we need to associate
it with the class itself, rather than with the objects. That is, we need to move it to the static
world. To do this, we use the static qualifier. Any method which is qualified to be a static
method is a method that is available even when no object of the class has been created. To
invoke a static method, instead of writing object.method(), we use class.method().1 Creators
will be static methods (hence why I wrote static in the signature above for the creators).

Before implementing the creators, though, we need to figure out how to represent a voice.
This is a quick and dirty implementation, and I will use a quick and dirty solution. There is
a pedagogical reason for doing that, which I will come back to at the end of the class. We
will see a better way of implementing it later on, and you will be able to appreciate how
much better that way is when we get to it.

We will represent a voice using two fields, one to hold the first note in the voice, and the
other to hold the rest of the voice, minus the first note.

private Note first; // holds the first note of a voice

private Voice rest; // holds the rest of the notes of a voice

1There are some rules about static methods; in particular, a static method cannot refer to methods or
fields that are defined in objects, which makes sense because a static method exists even when there are no
objects around.

3



An empty voice will be represented by having both fields hold the null value. Because these
fields are not part of the signature, they will be made private, and therefore not accessible
from outside a voice object. (Thankfully, the accessors will be able to extract information
from those fields.)

First, the creators.

// Creator for an empty voice

public static Voice emptyVoice () {

Voice obj = new Voice ();

obj.first = null;

obj.rest = null;

return obj;

}

// Creator for a voice made up of one note only

public static Voice oneNote (Note n) {

Voice obj = new Voice ();

obj.first = n;

obj.rest = emptyVoice ();

return obj;

}

// Creator for a voice made up of two voices in succession

public static Voice concatenated (Voice v1, Voice v2) {

Voice obj;

if (v1.isEmpty ())

return v2;

obj = new Voice ();

obj.first = v1.firstNote ();

obj.rest = concatenated (v1.otherNotes(),v2)

return obj;

}

Then, the accessors.

// Predicate for an empty voice

public boolean isEmpty () {

return (this.first == null);

}

// Accessor for the first note of a voice

public Note firstNote () {

4



if (this.isEmpty())

throw new Error ("firstNote() of empty voice");

return this.first;

}

// Accessor for the rest of the notes of a voice

public Voice otherNotes () {

if (this.isEmpty())

throw new Error ("otherNotes() of empty voice");

return this.rest;

}

A couple of things to notice. First off, I explicit use this. as a qualifier when invoking a
method of the current object, or accessing a field of the current object. Also, when noticing
an error, I throw an exception (in this case, the Error exception). We will see exceptions in
more detail later on in the course.

I have also followed a couple of conventions for naming, which you should follow as well.
The Java compiler will not enforce them, but your brain will learn to recognize them and
use them to spot some errors some times. Class names are capitalized, like Voice, and later
on VoiceTester. Method names and variable names are capitalized but for the first letter,
like oneNote, or first.

All code should be commented. Not putting any comments is a sin that I will not permit
you to indulge in. Every class should have a comment at the top indicating the purpose of
the class, and every method and variable should have a comment indicating the role of the
method or variable.

Tester and the canonical toString method

I would like to write a simple tester for the above code. To do that, I need a nice way to
print out a representation of a voice. So let’s add a method to the interface that let’s us
get a string representation of a voice for printing and debugging purposes. (We need to add
it to the interface because we want the function to be available, and I told you that only
operations in the interface should be available.)

So here is the signature, and the specification that you should add to the interface.

public String toString ();

emptyVoice().toString = ""

oneNote(n).toString = n.toString()

concatenated(v1,v2).toString = v1.toString() + " " + v2.toString()

This specification assumes that notes have a toString method attached to them as well.

5



It is straightforward to transform this specification into a method to add to the Voice class.

// Canonical method to print notes in the voice

public String toString () {

if (this.isEmpty())

return "";

return (this.first.toString() + " " + this.rest.toString());

}

The name toString we used for this method is not random. It is one of those special
names that Java understands implicitly. (There are several like that, if you read the Java
documentation carefully.) We call those canonical methods. Here’s how toString is special:
whenever you use an object in a place where Java expects a string—for example, invoking
System.out.println which expects a string and prints it out on the console—then Java
will invoke the toString method of that object if it is defined instead of giving you back a
type error.

With this in mind, we can now write a small testing program. Of course, we need an
implementation for notes. Here is something simple that gets us off the ground, in a file
Note.java. We can do nothing with notes except create them and print out their name.

// A simple implementation of a note

class Note {

// Private constructor, taking the name of the note as argument

private Note (String s) {

this.name = s;

}

// The name of the note

private String name;

// Creator for a note, taking the name as an argument

public static Note named (String s) {

Note obj = new Note(s);

return obj;

}

// Canonical method for printing name of a note

public String toString () {

return this.name;

}

}

6



With this, we can write a very simple minded tester in VoiceTester.java:

// Simple tester for the Voice class

class VoiceTester {

// The main testing function

static public void main (String[] args) {

Note nDo = Note.named("do");

Note nRe = Note.named("re");

Note nMi = Note.named("mi");

Note nFa = Note.named("fa");

Voice v1 = Voice.concatenated (Voice.oneNote (nFa),

Voice.oneNote (nMi));

Voice v2 = Voice.concatenated (v1,Voice.oneNote (nRe));

System.out.println("v1 = " + v2);

System.out.println("otherNotes(v1) = " + v2.otherNotes());

}

}

Can you spot where I made us of the implicit invokation of the toString canonical functions?

Compiling and running this code gives us the expected result:

> javac VoiceTester.java

> java VoiceTester

v1 = fa mi re

otherNotes(v1) = mi re

As I said, this is very simple-minded testing. Just running a test or two to make sure we can
create simple voices. In a few lectures, we will be considering testing much more carefully.

Static Variables

Before stopping today, let me talk about another feature of the Java object system which
comes in useful, and is related to static methods.

Consider the problem of keeping track of how many voice objects are created during the
course of an execution. In fact, suppose we augment the interface with an operation
totalVoices:

public static int totalVoices ();

We need the method to be static, because it needs to be invokable even when no objects are
defined (and in that case return the value 0, of course).

7



But where do we store the information? It cannot be in any object, because it needs to hold
a value (0) even when there are no objects around. The answer, which may be obvious, is
to somehow store the information in a field that is kept in the class itself, transcending all
the instances of that class. This field, because it exists in the class itself instead of objects
of that class, will be called a static field, static variable, or class variable, variously.

We add the following field to the Voice class:

// Class variable holding total # of voices created

private static integer totalVoices = 0;

Note that we provide an initial value for the field.

The corresponding accessor is similarly simple:

// Accessor for total number of voices created

public static integer totalVoices() {

return totalVoices;

}

Finally, we need to update the class variable whenever a Voice object is created. The variable
can be updated either in each of the creators, or we can just do it once in the constructor:

// Voice constructor, made private, and updating the class variable

private Voice () {

totalVoices++;

}

Note that, in contrast with everything else we have seen until now, this variable is mutated
during execution. There are some reasons why doing this for class variables is not as prob-
lematic as for fields in normal objects. But for now, just be aware that updating a class
variable is a mutation.

8


