
Xiaohai Yu

Dec. 11, 2009

Background
 In recent years, the speed and capacity gap between

processor and memory continues to widen

 Methods for efficient usage of space resource are
becoming increasingly important

 Rather than pursuing extreme time efficiency as the
previous decade

Multiple Virtual Machines
 Case: running multiple virtual machine instances on

one single workstation

 Want: share memory across these VM instances to
improve the memory usage efficiency.

 Observe: many pages are identical across the VMs,
such as system kernel, device drivers, TCP/IP stack and
etc.

VMware ESX Server
 VMware ESX Server allocates one single memory space

for each instance.

 Each memory page in such spaces has its own PPN
(Physical Page Number).

 VMware ESX Server maps these pages into the
memory of the host machine, which maps the PPN to
MPN(Machine Page Number).

Content-based page sharing

Key problem: Hash function
 Key problem: to construct a hash function mapping

the length L long identifier to hash value of O(log L)
length.

 Modern memory pages are usually 4K to 512K bits,
which is a very long input for the hash function.

 Moreover we want the description length of this hash
function should also be O(log L).

Hash Basics
 A universe U with some subset N∈U. We want to store

the subset N using as little space as possible

 This function h: U -> {1,2,……M} is defined as the hash
function.

 Definition: A collision occurs when h(x) = h(y) for two
distinct keys x, y.

Hash function
 Claim: Let F be a hash function, that maps n elements

to table [m], with proper m, then the expected number
of collisions will be at most ½

 Proof:

Universal Hashing
 A universal hash function is one in which the

probability of a collision between any two keys is
provably 1/M.

 Definition: A randomized algorithm H for
constructing hash function h: U -> {1,2,……M} is
universal if for all x<>y in U, we have

Recall: Finite Fields
 A finite field F is a set of objects with operations + and

* that behave as you would expect as real space.

 Example: In a field F={0,1,2……12} with operation +, *
and mod 13:

 Observe: For every prime P the above field with mod P
is a finite field.

Polynomial over Finite Fields
 A polynomial over finite fields is an expression of the

form

 For some non-negative integer n and where the
coefficients are drawn from some designated set S.

 S is called the coefficient set. When a≠0, we have a
polynomial of degree n.

Polynomial arithmetic
 We can add two polynomials:

 We can multiply two polynomials:

 Theorem: Non-zero polynomial P(x) over a finite field
F, with degree d, has at most d roots.

Hash function for long identifiers
 Find a prime P slightly larger than L^2

 Using modular P to define a hash function like
following:

 Where ID[i] denotes the i-th bit of Iong identifier ID,
and x is picked at random in [1..P].

 Represent the identifier as a polynomial over a finite
field with modular P.

Proof: Universal Hashing
 Claim: For any two distinct IDs, the probability, over

the choice of the hash function that their hashes
coincide is at most 1/L.

 Approximately consider that this hash function
hashes L-bit ID to a number in [1..L^2] ,which is of
length 2*log(L)

Proof (cont’)
 For any two different ID and ID’, both of length L, will

show that the probability that = can be induced to the
probability taken over random x on . The equation ∗:

 Assume ID and ID’ have s bits common from the
beginning, it will be a polynomial mod P of degree L-1-
s.

Proof (cont’)
 So will be the number of x’s roots in the

equation ∗ over the size of original ID set.

 (Note: P is a prime and we showed polynomial over a
finite field with operation modular P has most degree
d roots)

 Thus we prove the collision is at most 1/L.

Perfect Hashing
 The above construction is the first step of my hash

function construction. What we want next is Perfect
Hashing, with zero collision.

 Idea: two level hashing. For all the buckets with
collision, we generate another hash function which
will give no collisions for the items in such buckets.

 Still bound the total space of the hash function.

Future Work

Thank You!

