IPV6 AND SECURITY

Yi-Hsun Lai

Outline

- Why do we need IPv6
- Introduction to IPv6
- IPv6/IPv4 Transition
 - IPv4/IPv6 Dual Stack Schemes
 - IPv4/IPv6 Tunnel Mechanism
- IPv6 Tunnel Broker
 - Using Tunnel Broker

Why need IPv6

- 5 percent of the world's population uses 60 percent of the allocable IPv4 address space
- 20 percent of the world population wants to access to the Internet
- Huge address space
 - The IPv6 address space uses a 128-bit address
 - 340,282,366,920,938,463,463,374,607,431,76
 8,211,456
 - 6.65 x 10²³ addresses in every square meter on earth

Why need IPv6

- Header format simplification.
- IPv6 has been designed to be extensible by introducing a more flexible header structure
- survive a longer time in current complex networks than IPv4
- Both cellular and wireless networks have been further developed.

IPv6 improvement (1)

• Expanded Addressing Capabilities

- IPv6 increases the IP address size from 32 bits to128 bits, to provide more levels of addressing hierarchy, a much greater number of addresses.
- Header Format Simplification
 - The simple IPv6 header makes the IPv6 packet faster at processing and more effective.

IPv6 improvement (2)

- Improved Support for Extensions and Options
 - More efficient forwarding, less stringent limits on the length of options, and greater flexibility for introducing new options in the future.

Flow Labeling Capability

 Some special traffic flows need special handling such as no-default quality of service or real-time service.

IPv6 improvement (3)

- Authentication and Privacy Capabilities
 - Extensions to support authentication, data integrity, and data confidentiality are specified for IPv6.
- Neighbor Discovery and Address Autoconfiguration
 - Address Auto configuration: One of the most useful features of IPv6
 - Plug them into your network, and each of them will automatically be assigned a valid IPv6 address.
 - Find the information of the neighbor which is connecting with the device.

IPv6 Security features

IPSec

- Option in IPv4, require in IPv6
- SEND (SEcuring Neighbour Discovery)
 - Protection against Neighbor Discovery-based denial of service (DoS) attacks by nodes
- AAAv6
 - Provide Authentication, Authorization and Accounting

Attacks against IPv6

DoS attacks

- Attacker causes congestion on victim's computer/network
- Hijack Attacks
 - Attacker gains unauthorized access to network.
- Impersonation
 - Packet forgery
- Man In the Middle
 - Snooping
 - Data Insertion/Deletion

IPv4-to-IPv6 Transition

- Today, most of the world has already been adopting IPv6
- Develop a well-planned transition mechanism to ensure IPv6 can coexist with IPv4.
 - IPv4/IPv6 Dual Stack Schemes
 - IPv4/IPv6 Tunnel Mechanism
 - Translate IPv4 headers to IPv6 headers and vice versa

IPv4/IPv6 Dual Stack Schemes

- Running IPv4 and IPv6 concurrently.
- End-hosts and network devices run both protocols.
- Dual-stack device will have to tackle the vulnerabilities of both protocols

IPv4 / IPv6 Tunnel Mechanism

- Configured Tunnel (Manual)
- 6to4 Tunnel (Automatic)
- Tunnel broker
 - Defined in RFC3053
 - Client must support Dual-stack schemes

6to4 Tunneling (1)

- RFC3056 Connection of IPv6 domains via IPv4 clouds (6to4)
- 6to4 tunneling is a method we used when an end user wants to connect to IPv6 environment using their own IPv4 connection.
- It encapsulates IPv6 packets inside IPv4 packets for transmission over an IPv4 network

	IPv4 payload		
IPv4 header	IPv6 header	IPv6 payload	

Security Issues (1)

- 6to4 routers do not check the data that is contained within the packets
- No trust mechanism exists between 6to4 routers and 6to4 relay routers.
- 6to4 architecture used to participate in DoS or reflected DoS, making another attack harder to trace

Security Issues (2)

- Address spoofing
- For example, via 6to4 tunneling spoofed traffic can be injected from IPv4 into IPv6.
- IPv4 Src: Spoofed IPv4 Address
- IPv4 Dst: 6to4 Relay Anycast (192.88.99.1)
- IPv6 Src: 2002:: Spoofed Source
- IPv6 Dst: Valid Destination

Security Issues (3)

Most IPv6 hosts will be 'dual stack'
 IPv4 systems will not have same security feature set as IPv6
 Double Handling of security policy (Mistakes easier).

Tunnel Broker Motivation

- IPv6 tunneling over the internet requires heavy manual configuration
 - Network administrators are faced with overwhelming management load
 - Getting connected to the IPv6 world is not an easy task for IPv6 beginners
- The Tunnel Broker approach is an opportunity to solve the problem
 - The basic idea is to provide tunnel broker to automatically manage tunnel requests coming from the users

Tunnel Broker

- Main difference between 6to4 and Tunnel Broker:
 - They serve a different segment of the IPv6 community
- Tunnel Broker fits well for small isolated IPv6 sites
- 6to4: well suited for extranet and VPNs

Tunnel Broker

Tunnel Broker

How it works?

- Output States with the Tunnel Broker first.
- Tunnel Broker will search for a suitable Tunnel Server to allow the user to enter the IPv6 network.
- Tunnel Broker sends information regarding Tunnel Server and the assigned IPv6 address to the User
- User establishes the Tunnel and connects to the IPv6 network

Security Considerations Tunnel Broker (1)

- Interaction between the client and TB:
 - The usage of SSL to encrypt data
 - Rely on AAA facilities (RADIUS) to enforce access control
 - Transferring tunnel configuration parameters in a MIME type over https
- Interaction between the TB and TS
 - Use IPSec to secure SNMP messages

Security Considerations Tunnel Broker (2)

- What if a user disconnects the internet without tearing down the Tunnel?
 - Implementing keep-alive mechanism on every tunnel (assign a lifetime)
 - Allowing the TB to stop IPv6 traffic forwarding toward disconnect users
- Limiting the number of tunnels that a single user is allowed to set up at the same time to prevent DoS.

Conclusion

- IPv6 will slowly and gradually penetrate into our networks and develop on the Internet
- The transition from IPv4 to IPv6 presents even more challenges, we are still facing lots of challenges in the foreseeable future.

Thank you!

Questions???