
Secret Sharing

CS 6750 Lecture 7

October 29, 2009

Riccardo Pucella

The Treasure Map Problem

• Suppose you and a “friend” find a map that leads to
a treasure

• You each want to go home and prepare

• Who keeps the map?

• What if you don’t trust each other?

A Real Life Solution

• Split the map in two

• Such that you need both pieces to find the island

• You and your friend each take a piece

• This is the basic idea of secret splitting

• A special case of secret sharing

Secret Splitting

• Definition: given a secret S, we would like N
parties to share the secret so that the following
properties hold:

1) All N parties can recover S

2) Less than N parties cannot recover S

• In general, we split the secret into N pieces
(shares) S1, ..., SN and give one share to each party.

Does This Work?
• Without loss of generality, we consider the secret

to be a bit string or an integer

• We know everything can be encoded as such

• Concrete example: suppose you want to keep your
salary secret, but share it between two parties. If
your salary is $150,000, you could always split it as
150 and 000, and give each a piece.

• Is this a good way to split such a secret?

Partial Information Disclosure
• In the above scheme, we are leaking partial

information about the secret

• E.g., the most significants digits of the salary

• Problem for some applications (not always)

• E.g., secret is a password

• In general, hard to characterize what kind of
information should not be leaked, and which is okay
to leak.

• So we want to forbid any kind of partial
information disclosure

Revised Definition

• Revised definition: given a secret S, we would like
N parties to share the secret so that the following
properties hold:

1) All N parties can recover S

2) Less than N parties cannot recover S or obtain
any partial information about S

• This is surprisingly easy to achieve

A Two-Party Scheme

• Suppose S is a bitstring in {0,1}m

• Choose m bits at random (coin tosses)

• Let S1 be those m random bits

• Let S2 = S ⊕ S1

• Easy: Given S1 and S2, reconstruct S = S1 ⊕ S2

No Partial Information Disclosure

• Given S1 (or S2), we do not get any partial
information about S

• How can we formalize that?

• Show that given S1, you do not restrict what S
could have been. Information == restricted
possibilities

• Given S1, for any T there exists ST such that
 S1 ⊕ ST = T

• A share can be a share for any secret!

Generalization to N parties
• Suppose S is a bit string in {0,1}m

• Choose m bits at random (coin tosses)

• Let S1 be those m random bits

• Do the same for S2, ..., SN-1 (all random)

• Let SN = S ⊕ S1 ⊕ ... ⊕ SN-1

• Argument for no partial information disclosure
similar to above

The Generals Problem
• You have been put in charge of designing a control

mechanism for your country’s nuclear arsenal. You
choose a keyed secret code mechanism:

• To launch missiles, you need the right secret code

• You don’t want to give every general the code

• A rogue general might just launch an attack!

• You decide to split the code among the generals

• What’s your new problem?

Availability
• Secret splitting ensures that the partial

information about the secret is not recoverable
unless you have all the shares

• But it does not guarantee availability, that you can
recover the secret even if some of the shares are
unavailable

• E.g. 2 or more generals can launch missiles

• but less than 2 generals cannot

(N,T) Secret Sharing
• Definition: Given a secret S, we would like N

parties to share the secret so that the following
properties hold:

• Greater than or equal to T parties can recover S

• Less than T parties cannot recover S or obtain
any partial information about S

• Generals problem == (3,2) secret sharing

• Secret splitting == (N,N) secret sharing

Shamir’s Threshold Scheme
• To motivate the general solution, consider first an

(N,2) secret sharing scheme

• Secret S is an integer

Shamir’s Threshold Scheme
• To motivate the general solution, consider first an

(N,2) secret sharing scheme

• Secret S is an integer

(0,S)

Shamir’s Threshold Scheme
• To motivate the general solution, consider first an

(N,2) secret sharing scheme

• Secret S is an integer

(0,S)

Shamir’s Threshold Scheme
• To motivate the general solution, consider first an

(N,2) secret sharing scheme

• Secret S is an integer

(0,S)

N=5

S1

S5
S4

S3
S2

Shamir’s Threshold Scheme
• To motivate the general solution, consider first an

(N,2) secret sharing scheme

• Secret S is an integer

(0,S)

N=5

S1

S5
S4

S3
S2

Easy to check: any two points
can be used to recover the line

and hence (0,S)

A single point is not enough

Generalizing to (N,T)
• A line intersecting the y axis = degree 1 polynomial [y = a1x+a0]

• Line uniquely characterized by two points

• Once you know the line, you can compute where it crosses the
y axis.

• Generalize to (N,T) threshold schemes

• Use a degree T-1 polynomial [y= aT-1xT-1+...+a1x+a0]

• Curve uniquely characterized by T points

• Once you know the curve, you can compute where it crosses
the y axis

Resharing the Secret

• This can be useful when the secret needs to be
kept for a long time

• The longer a secret needs to be kept, the more
likely the adversary is to get enough shares

• The Shamir threshold scheme admits resharing the
secret without computing that secret

Generating New Shares
• Again, let’s consider the (N,2) case

• Secret S is an integer

(0,S)

Generating New Shares
• Again, let’s consider the (N,2) case

• Secret S is an integer

(0,S)
initial sharing

Generating New Shares
• Again, let’s consider the (N,2) case

• Secret S is an integer

(0,S)
initial sharing

resharing line

Generating New Shares
• Again, let’s consider the (N,2) case

• Secret S is an integer

(0,S)
initial sharing

resharing line

new sharing

Generating New Shares
• Again, let’s consider the (N,2) case

• Secret S is an integer

(0,S)

initial sharing

resharing line

new sharing

h

f+h

f

Generating New Shares
• Again, let’s consider the (N,2) case

• Secret S is an integer

(0,S)

initial sharing

resharing line

new sharing

h

f+h

f

A central server wanting to
reshare the secret would send h(x1)

to party 1, ..., h(xn) to party n

Each party would compute their new
share (xi,f(xi)+h(xi))

Generating New Shares
• Again, let’s consider the (N,2) case

• Secret S is an integer

(0,S)

initial sharing

resharing line

new sharing

h

f+h

f

Generalizes
trivially to (N,T) sharing

Pick a degree T polynomial
through (0,0)

General Secret Sharing

• Suppose you want an even more general way of
sharing secrets

• N parties, and you specify exactly what subsets
of parties can get the secret

• E.g. Bob and Alice can get together and
reconstruct the secret, Bob and Charlie can get
together and reconstruct the secrete, but no one
else

Access Structure
• An access structure for a set P of parties is a set

AS of subsets of P

• B ∈ AS is called an authorized subset

• Access control structures are monotone:

• If B ∈ AS and B ⊆ C ⊆ P, then C ∈ AS

• We often only list the “minimal” elements: the sets
B ∈ AS such that there is no C ∈ AS with C ⊂ B

Perfect Secret Sharing Scheme for AS

• Definition: A perfect secret sharing scheme
realizing the access structure AS is a method of
sharing a secret S among a set P of parties such
that:

1) Any authorized subset of AS can recover S

2) No unauthorized subset can recover S or obtain
any partial information about S

Threshold Access Structures

• Let P be a set of N parties

• Take AS = { B ⊆ P : |B| ≥ T}

• This is called a threshold access structure

• A (N,T) secret sharing scheme == a perfect secret
sharing scheme realizing a threshold access
structure

Secret Sharing Scheme for AS

• Given an access structure AS, we want a perfect
secret sharing scheme realizing AS

• We use a Boolean circuit corresponding to AS

• And a secret-splitting scheme

• e.g., the ⊕-based scheme

Boolean Circuit for AS

• Inputs to the circuit:

• a wire for every element of P

• Output of the circuit:

• whether the set of elements that are given a 1
on input is a member of AS

• Can be constructed from the “minimal elements” of
AS

Example Circuit
• P = {P1, P2, P3, P4}

• AS with min elts { {P1,P2,P4}, {P1,P3,P4}, {P2,P3} }

⋁

⋀⋀⋀

P4P2 P3P1

The Scheme
• Given a secret S as a bitstring in {0,1}m

• First set output wire of circuit to be S

⋁

⋀⋀⋀

P4P2 P3P1

S

The Scheme
• Then duplicate secret back through a ⋁ node

⋁

⋀⋀⋀

P4P2 P3P1

S

S SS

The Scheme
• For every ⋀ node, do a (T,T) secret-splitting of the

output of the node among the inputs of the node

⋁

⋀⋀⋀

P4P2 P3P1

S

S SS

The Scheme
• For every ⋀ node, do a (T,T) secret-splitting of the

output of the node among the inputs of the node

⋁

⋀⋀⋀

P4P2 P3P1

S

S SS

S⊕a1⊕a2a2a1

The Scheme
• For every ⋀ node, do a (T,T) secret-splitting of the

output of the node among the inputs of the node

⋁

⋀⋀⋀

P4P2 P3P1

S

S SS

S⊕a1⊕a2a2a1

S⊕b1b1

The Scheme
• For every ⋀ node, do a (T,T) secret-splitting of the

output of the node among the inputs of the node

⋁

⋀⋀⋀

P4P2 P3P1

S

S SS

S⊕a1⊕a2a2a1

S⊕b1b1 S⊕c1⊕c2
c2

c1

The Scheme
• Give the appropriate shares to each party

by looking at the wires out of that party

⋁

⋀⋀⋀

P4P2 P3P1

S

S SS

S⊕a1⊕a2a2a1

S⊕b1b1 S⊕c1⊕c2
c2

c1

The Scheme
• Give the appropriate shares to each party

by looking at the wires out of that party

P1 gets { a1, c1 } P2 gets { a2, b1 }
P3 gets { S⊕b1, c2} P4 gets { S⊕a1⊕a2, S⊕c1⊕c2 }

P4P2 P3P1

S⊕a1⊕a2a2a1

S⊕b1b1 S⊕c1⊕c2
c2

c1

The Scheme
• Give the appropriate shares to each party

by looking at the wires out of that party

P1 gets { a1, c1 } P2 gets { a2, b1 }
P3 gets { S⊕b1, c2} P4 gets { S⊕a1⊕a2, S⊕c1⊕c2 }

CHECK: This is a perfect secret sharing scheme

P4P2 P3P1

S⊕a1⊕a2a2a1

S⊕b1b1 S⊕c1⊕c2
c2

c1

The Scheme
• Give the appropriate shares to each party

by looking at the wires out of that party

P1 gets { a1, c1 } P2 gets { a2, b1 }
P3 gets { S⊕b1, c2} P4 gets { S⊕a1⊕a2, S⊕c1⊕c2 }

CHECK: This is a perfect secret sharing scheme

P4P2 P3P1

S⊕a1⊕a2a2a1

S⊕b1b1 S⊕c1⊕c2
c2

c1

The Scheme
• Give the appropriate shares to each party

by looking at the wires out of that party

P1 gets { a1, c1 } P2 gets { a2, b1 }
P3 gets { S⊕b1, c2} P4 gets { S⊕a1⊕a2, S⊕c1⊕c2 }

CHECK: This is a perfect secret sharing scheme

P4P2 P3P1

S⊕a1⊕a2a2a1

S⊕b1b1 S⊕c1⊕c2
c2

c1

