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The Treasure Map Problem

• Suppose you and a “friend” find a map that leads to 
a treasure

• You each want to go home and prepare

• Who keeps the map?

• What if you don’t trust each other?



A Real Life Solution

• Split the map in two

• Such that you need both pieces to find the island

• You and your friend each take a piece

• This is the basic idea of secret splitting 

• A special case of secret sharing



Secret Splitting

• Definition: given a secret S, we would like N 
parties to share the secret so that the following 
properties hold:

1) All N parties can recover S

2) Less than N parties cannot recover S

• In general, we split the secret into N pieces 
(shares) S1, ..., SN and give one share to each party.



Does This Work?
• Without loss of generality, we consider the secret 

to be a bit string or an integer

• We know everything can be encoded as such

• Concrete example: suppose you want to keep your 
salary secret, but share it between two parties. If 
your salary is $150,000, you could always split it as 
150 and 000, and give each a piece.

• Is this a good way to split such a secret?



Partial Information Disclosure
• In the above scheme, we are leaking partial 

information about the secret

• E.g., the most significants digits of the salary

• Problem for some applications (not always)

• E.g., secret is a password

• In general, hard to characterize what kind of 
information should not be leaked, and which is okay 
to leak.

• So we want to forbid any kind of partial 
information disclosure



Revised Definition

• Revised definition: given a secret S, we would like 
N parties to share the secret so that the following 
properties hold:

1) All N parties can recover S

2) Less than N parties cannot recover S or obtain 
any partial information about S

• This is surprisingly easy to achieve



A Two-Party Scheme

• Suppose S is a bitstring in {0,1}m

• Choose m bits at random (coin tosses)

• Let S1 be those m random bits

• Let S2 = S ⊕ S1

• Easy: Given S1 and S2, reconstruct S = S1 ⊕ S2



No Partial Information Disclosure

• Given S1 (or S2), we do not get any partial 
information about S

• How can we formalize that?

• Show that given S1, you do not restrict what S 
could have been. Information == restricted 
possibilities

• Given S1, for any T there exists ST such that 
                                           S1 ⊕ ST = T

• A share can be a share for any secret!



Generalization to N parties
• Suppose S is a bit string in {0,1}m

• Choose m bits at random (coin tosses)

• Let S1 be those m random bits

• Do the same for S2, ..., SN-1 (all random)

• Let SN = S ⊕ S1 ⊕ ... ⊕ SN-1

• Argument for no partial information disclosure 
similar to above



The Generals Problem
• You have been put in charge of designing a control 

mechanism for your country’s nuclear arsenal. You 
choose a keyed secret code mechanism:

• To launch missiles, you need the right secret code

• You don’t want to give every general the code

• A rogue general might just launch an attack!

• You decide to split the code among the generals

• What’s your new problem?



Availability
• Secret splitting ensures that the partial 

information about the secret is not recoverable 
unless you have all the shares

• But it does not guarantee availability, that you can 
recover the secret even if some of the shares are 
unavailable

• E.g. 2 or more generals can launch missiles

• but less than 2 generals cannot



(N,T) Secret Sharing
• Definition: Given a secret S, we would like N 

parties to share the secret so that the following 
properties hold:

• Greater than or equal to T parties can recover S

• Less than T parties cannot recover S or obtain 
any partial information about S

• Generals problem == (3,2) secret sharing

• Secret splitting == (N,N) secret sharing



Shamir’s Threshold Scheme
• To motivate the general solution, consider first an 

(N,2) secret sharing scheme

• Secret S is an integer
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Shamir’s Threshold Scheme
• To motivate the general solution, consider first an 

(N,2) secret sharing scheme

• Secret S is an integer

(0,S)

N=5

S1

S5
S4

S3
S2

Easy to check: any two points 
can be used to recover the line 

and hence (0,S)

A single point is not enough



Generalizing to (N,T)
• A line intersecting the y axis = degree 1 polynomial [y = a1x+a0]

• Line uniquely characterized by two points

• Once you know the line, you can compute where it crosses the 
y axis.

• Generalize to (N,T) threshold schemes

• Use a degree T-1 polynomial [y= aT-1xT-1+...+a1x+a0]

• Curve uniquely characterized by T points

• Once you know the curve, you can compute where it crosses 
the y axis



Resharing the Secret

• This can be useful when the secret needs to be 
kept for a long time

• The longer a secret needs to be kept, the more 
likely the adversary is to get enough shares

• The Shamir threshold scheme admits resharing the 
secret without computing that secret
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Generating New Shares
• Again, let’s consider the (N,2) case

• Secret S is an integer

(0,S)

initial sharing

resharing line

new sharing

h

f+h

f

A central server wanting to 
reshare the secret would send h(x1) 

to party 1, ..., h(xn) to party n

Each party would compute their new 
share (xi,f(xi)+h(xi))



Generating New Shares
• Again, let’s consider the (N,2) case

• Secret S is an integer

(0,S)

initial sharing

resharing line

new sharing

h

f+h

f

Generalizes 
trivially to (N,T) sharing

Pick a degree T polynomial 
through (0,0)



General Secret Sharing

• Suppose you want an even more general way of 
sharing secrets

• N parties, and you specify exactly what subsets 
of parties can get the secret

• E.g. Bob and Alice can get together and 
reconstruct the secret, Bob and Charlie can get 
together and reconstruct the secrete, but no one 
else



Access Structure
• An access structure for a set P of parties is a set 

AS of subsets of P

• B ∈ AS is called an authorized subset

• Access control structures are monotone:

• If B ∈ AS and B ⊆ C ⊆ P, then C ∈ AS

• We often only list the “minimal” elements: the sets 
B ∈ AS such that there is no C ∈ AS with C ⊂ B



Perfect Secret Sharing Scheme for AS

• Definition: A perfect secret sharing scheme 
realizing the access structure AS is a method of 
sharing a secret S among a set P of parties such 
that:

1) Any authorized subset of AS can recover S

2) No unauthorized subset can recover S or obtain 
any partial information about S



Threshold Access Structures

• Let P be a set of N parties

• Take AS = { B ⊆ P : |B| ≥ T}

• This is called a threshold access structure

• A (N,T) secret sharing scheme == a perfect secret 
sharing scheme realizing a threshold access 
structure



Secret Sharing Scheme for AS

• Given an access structure AS, we want a perfect 
secret sharing scheme realizing AS

• We use a Boolean circuit corresponding to AS

• And a secret-splitting scheme 

• e.g., the ⊕-based scheme



Boolean Circuit for AS

• Inputs to the circuit: 

• a wire for every element of P

• Output of the circuit: 

• whether the set of elements that are given a 1 
on input is a member of AS

• Can be constructed from the “minimal elements” of 
AS



Example Circuit
• P = {P1, P2, P3, P4}

• AS with min elts { {P1,P2,P4}, {P1,P3,P4}, {P2,P3} }

⋁

⋀⋀⋀

P4P2 P3P1



The Scheme
• Given a secret S as a bitstring in {0,1}m

• First set output wire of circuit to be S

⋁

⋀⋀⋀

P4P2 P3P1

S



The Scheme
• Then duplicate secret back through a ⋁ node

⋁

⋀⋀⋀

P4P2 P3P1

S

S SS
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