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Chapter 1

Introduction

This textbook is for the CS5600 class in the Northeastern College of
Computer and Information Science, based on the design of CS5600 start-
ing in Fall of 2008. The goal of this class is not to teach you how to
write an operating system—that is an obscure skill, practiced by far fewer
people than you might think. Nor is it to learn how to use an operating
system—depending on the type of use, that would be system administra-
tion, programming, or just using a computer. Instead the goal is to teach
you how computers work, by describing the interacting parts underneath
the user and programming interfaces.

Figure 1.1: Linux text console with simple command.

For an example of what this means, consider running a simple command
such as ls on a Linux system. In Figure 1.1 we see the screen of a system
booted in text mode, using the simple character display that the BIOS uses.
In responding to the keystrokes typed by the user, we can identify not only
the basic actions being performed (“run the ls -l command with output

1



2 CHAPTER 1. INTRODUCTION

to the console”) but a large number of interacting actions and components
as well:
• the keyboard control hardware (assuming an old-fashioned PS/2

keyboard) interrupts the processor, causing it to run a portion of the
keyboard input driver.
• The driver reads data from the keyboard and calls scheduling func-
tions to wake the shell process, which was sleeping waiting for
input.
• the shell process spawns a copy of itself, by invoking a system call
which copies some of the shell process state and shares other parts of
it between the parent and child processes using the virtual memory
system.
• The new process invokes the exec system call, causing the operating
system to map the /bin/ls binary into the process address space.
• As ls starts up, the dynamic loader loads additional shared libraries

into the process address space; these as well as the ls code itself is
loaded into memory on demand as the CPU accesses them.
• ls invokes system calls to read the list of files in the current direc-
tory.
• The file system code receives requests to read files containing the

executable and libraries, as well as the directory listing request from
the ls program itself, and in turn requests data from the disk (via
the block device system) to fulfill these requests.
• Since the example was actually running in a virtual machine, not a

physical machine1 the hardware interactions described above were
actually emulated by another software system (i.e. VirtualBox)
which translated them into requests to the underlying operating
system, which in turn interacted with the real keyboard and screen.

The remainder of this book, and the corresponding class, is concerned
with the detailed analysis of the interactions involved in performing this
simple operation. The major sections of this text concern:

OS organization: Memory organization and OS interface to decouple
applications from hardware and OS details, context switching, and
system calls. This section describes and uses a simple computer,
described more fully in the appendices.

Synchronization: Beginning with practical problems arising from mul-
tiple simultaneous actions, we describe methods such as semaphores
and monitors to control simultaneous actions, as well as methods to
reason about the operation and performance of parallel operations.

1It makes screenshots far easier.
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Virtual memory: At the hardware level, how is address translation
implemented via the MMU, TLB, and page table? In the OS, how
are page faults used to implement copy-on-write, demand loading,
and paged virtual memory?

Block devices: These are devices such as disks, RAID arrays, and SSDs,
used for storing files and similar information. Topics covered include
performance and interfaces, I/O operation at a hardware level, and
methods of structuring I/O systems for reliability (RAID), manage-
ability (logical volume management) and efficiency (deduplication).

File systems: What is a file system and what are its operations? How
do we implement these, and how do we lay files out on disk?

Security: What are the goals of security mechanisms in an operating
system? How can we specify and implement policies to control
access and operations?

The objective of the class is to be able to identify the steps involved in this
and other computer operations. In learning this we will touch on hardware,
device drivers, scheduling, virtual memory, and networking. We focus
on behavior—i.e. the sequence of events which occurs in response to
an input, and results in an output. This behavior cuts across layers and
subsystems, as an event at the hardware level may trigger actions within
a device driver, then in the core of the operating system, within a user
process, etc. Rather than looking at the operating system in a structured
way we are going to follow these sequences of behavior and see where
they lead.





Chapter 2

Program and OS Organization

This chapter begins by defining a very simple computer, with assembly
language instructions, a 16-bit address space, and memory-mapped pe-
ripherals.1 We will use this computer as an example as we talk about the
simplest operating systems.

We then examine simple methods of organizing and running a program on
this computer. We extend these methods to hide hardware dependencies,
insulate against changes in operating system details, and allow for program
loading and execution—at this point we have achieved a simple single-user
OS, similar in many ways to MSDOS 1.0.

After this we examine multi-processing and context switching, allowing
multiple programs to be running simultaneously. Finally we examine
what additional features are needed to protect the operating system from
the user, and users from each other. At this point we have achieved a
simplified version of a modern operating system; we compare it to Linux
and Windows.

1In other words, CPU operations only read or write internal registers and external (to
the CPU) memory. The memory address space is partitioned between normal random-access
memory and a section devoted to I/O devices, which respond to read and write requests to
particular addresses.

5



6 CHAPTER 2. PROGRAM AND OS ORGANIZATION

Figure 2.1: Simple computer system architecture

2.1 A Simple Computer

We use a fictional 16-bit computer, shown in Figure 2.1. It has 8 general-
purpose registers, R0-R7, holding 16 bits each, as well as a stack pointer
(SP) and program counter (PC), and 64KB (216) of memory which may
be accessed as 8-bit bytes or 16-bit words.

The examples below use the following instructions:

1. LOAD.B, LOAD.W - load a byte or a word from the indicated ad-
dress, which may be an absolute address (i.e. a number) or contained
in a register.

2. LOAD.I - load a constant value into a register. (called an “immediate”
value for unknown reasons)

3. STORE.B, STORE.W - store a byte or word from a register into
memory.

4. MOV - copy the contents of one register to another.
5. ADD, SUB - add or subtract one register (or a constant value) to or

from another register. Sets the Z flag if the result is zero.
6. CMP - compare a register to another register or a constant value.

Subtracts the second value from the register, sets the Z flag appro-
priately, and then throws away the result.

7. JMP - jump to the indicated address.
8. JMP_Z, JMP_NZ - jump if the Z flag is set (Z) or not set (NZ)
9. PUSH - push the 16-bit value in the indicated register onto the stack
10. POP - pop the 16-bit value top of the stack and place in the indicated
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Figure 2.2: Frame buffer Figure 2.3: Keyboard
controller

register.
11. CALL - call a subroutine by pushing the return address (i.e. the

address of the next instruction) onto the stack and jumping to the
indicated address.

12. RET - return from subroutine by popping the return address from
the top of the stack and jumping to it.

In addition there are several input/output devices which are memory-
mapped—particular memory addresses correspond to registers in these
devices, rather than normal memory, and reads or writes to these addresses
are used to operate the device. These devices include:

1. frame buffer: A region of 1920 bytes, corresponding to 24 lines of
80 characters displayed on a video display. Writing a byte to one of
these locations causes the indicated character to be displayed at the
corresponding location on the screen, as shown in Figure 2.2.

2. keyboard controller: Two registers, one indicating whether a key
has been pressed, and the other the character corresponding to that
key, as shown in Figure 2.3.

This description is enough for our first examples; a full specification is
found in Appendix A.

Review Questions

2.1.1. I/O devices are pieces of software that are part of the operating
system: yes / no / sort of

2.1.2. I/O devices are part of memory: yes / no / sort of
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;; note - frame buffer starts at 0xF000
str: "Hello World"

begin: LOAD.I R1 ← &str
LOAD.I R2 ← 11
LOAD.I R3 ← 0xF000

loop: LOAD.B R4 ← *(R1++)
STORE.B R4 → *(R3++)
SUB R2-1 → R2
JMP_NZ loop

done: JMP done

Figure 2.4: Simple ’Hello World’ program. LOAD.I loads an immediate (i.e.
constant) value, LOAD/STORE.B operates on a single byte instead of a 16-bit

word.

;; keyboard status = 0xF800, keycode = 0xF801

begin: LOAD.I R1 ← 0xF000 ;; frame buffer

loop: LOAD.B R2 ← *(0xF800)
TEST R2
JMP_Z loop

LOAD.B R2 ← *(0xF801) ;; get keystroke
STOR.B R2 → *(R1++) ;; copy to frame buffer

JMP loop

Figure 2.5: Copy keystrokes to screen

2.2 Program Organization

Our first program is seen in Figure 2.4. It performs a very simple task,
copying bytes from a compiled-in string to the frame buffer to display (of
course) “Hello World” and then finishing in a loop which does nothing.
(Although the reader is not expected to write programs in assembly lan-
guage, we assume that given the computer definition you should be able
to decipher simple examples such as this.)

In Figure 2.5 we see another simple program, which performs input as
well as output. In the three lines starting at the label loop it polls the
keyboard status register, waiting for a key to be pressed. It then reads the
keystroke value into R4 and stores it into the frame buffer. (Well, at least
for the first 1920 keystrokes. It will advance through the frame buffer line
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by line, ignoring carriage returns, and eventually “fall off” the end and
start scribbling over the rest of the I/O space. It is a very simple program.)

These two programs illustrate the simplest sort of software organization,
consisting only of the program itself, which handles every detail including
the hardware interface—not a difficult task for such a simple case. All
there is here is a program and some hardware, with nothing that we can
identify as an operating system; this approach might be appropriate for
the smallest microcontrollers. (i.e. with a few hundred bytes of program
memory and even less data memory)

2.3 A Simple Operating System Interface

Operating system - software that isn’t the program itself,
especially that required by a user or program to interact
with (i.e. operate) the computer.

For even slightly complex programs we are going to want to factor out
the hardware interface functionality. This would e.g. allow us to use a
single function for output to the frame buffer, which could be called from
different places in the program. Our next program, in Figure 2.6, copies
keystrokes from the keyboard to the frame buffer just like our previous
one. However, in this case we have separated out the keyboard and display
interface functions. With this we start to see the beginnings of an operating
system.

One goal of an operating system is to provide an abstract interface to the
hardware, serving several purposes. First, it allows a program developed
for one computer to be used on another one without extensive modification,
even if the hardware is not exactly the same. In addition, by separating
program-specific and hardware-specific code, it makes it easier for each
to be developed by someone who is expert in the corresponding area.2

Figure 2.6 might be termed a library operating system—it consists of
a series of functions which are linked with the application, creating a
single program which is loaded onto the hardware, frequently by being
programmed into read-only-memory and thus being present when the
computer is first turned on.

2Multiple levels of such separation are seen in modern computers, where BIOS and
hardware drivers are written by different organizations, each knowledgeable about their
own hardware, and hiding the details and complications of these devices behind an abstract
interface.
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Although this approach is useful for single-purpose devices, it has a key
shortcoming for general-purpose computers, in that changing the program
requires changing the entire contents of memory, requiring a mechanism
outside of the OS and program we have described so far. In some cases, in
fact, the only way to replace the program is to buy a new device—this may
in fact be reasonable for sufficiently “dumb” devices (e.g. a microwave
oven) but is clearly not going to be a popular way to get a new program
onto a computer.

2.4 Program Loading

Figure 2.7: Simple disk controller

In order to load programs we need a
device to load them from—in this case
a disk drive, which (unlike memory)
maintains its data while powered off,
and is typically much larger than mem-
ory, allowing it to hold multiple pro-
grams. Data on a disk drive is orga-
nized in 512-byte blocks, which are identified by block number, starting
with 0. In Figure 2.7 we see an extremely simple disk controller, which
allows a single block to be read from or written to the disk3. Operation is

loop: CALL getkey ;; return value in R0
PUSH R0 ;; push argument
CALL putchar
POP R0 ;; to balance stack
JMP loop

getkey: LOAD.B R4 ← *(0xF800) ;; key ready reg.
CMP R4, 0
JMP_Z getkey
LOAD.B R0 ← *(0xF801) ;; key code reg.
RET

putchar: LOAD.B R0 ← *(SP+2) ;; fetch arg into R0
LOAD.W R1 ← *(bufptr)
STOR.B R0 → *(R1) ;; *bufptr = R0
ADD R1+1 → R1
STOR.W R1 → bufptr ;; bufptr++
RET

bufptr: word 0xF000 ;; frame buffer pointer

Figure 2.6: Copy keystrokes with factored input/output

3For more information on disk drives, see Section 5.3 in Chapter 5.
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as follows:

To write 512 bytes to block B:

1. Write 256 16-byte words (e.g. copying from a buffer), one word at
a time, to the disk controller data register (0xF824)

2. Write block address (B) to block address register (0xF822)
3. Write command byte (2=WRITE) to cmd/status register (address

0xF820)
4. Poll cmd/status register; its value will change from 2 to 0 to indicate

transfer is complete.

To read from block B:

1. Write block address (B) to block address register (0xF822)
2. Write command byte (1=READ) to cmd/status register (0xF820)
3. Poll cmd/status register; value changes from 1 to 0 to indicate data

is ready to read
4. Read 256 16-bit words from data register (0xF824), typically into a

buffer in memory.

Figure 2.8: Split OS/program mem-
ory map

Now that we have a device to load pro-
grams from, the next step is to reserve
separate portions of the address space
for the OS and program, as shown in
Figure 2.8, so that we have a place in
memory to load those programs into.
The program links against the OS as
before, but this time the OS is located
in a separate memory region, so dif-
ferent programs (each compiled and
linked against this same instance of the
OS) may be loaded and run at different
times.

In Figure 2.9 we see pseudo-code4 for a
simple and user-hostile command-line
interface for this OS. The user specifies
a disk address and length; the OS loads
a program from the specified disk loca-
tion into a standard address in memory and transfers control to that address.
When the program is finished it returns control to the OS command line
loop, which is then able to load and run a different program.

4A generic term for anything that isn’t real program code, but which you are supposed
to understand anyway.
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CMD_LOOP:
line = GET_LINE()
if line starts with "load":

blk,count = parse(line)
load_disk_sectors(_PROGRAM_BASE, blk, count)

if line starts with "go":
call _PROGRAM_BASE

jmp CMD_LOOP

Figure 2.9: Simple command line and program loader. Commands are
“load <start blk#> <count>” and “go”

There are a number of limitations to this operating system:

1. It’s not robust: if it doesn’t find the program you specified, it crashes.
2. If the program crashes, the entire system has to be reset (or power

cycled) before another program can be loaded.
3. The program may not run on another machine, or on the same

machine after an OS upgrade.

Problem 1 can be fixed fairly easily; for instance if we have a simple file
system, and specify the file by name, then if the file isn’t found the OS can
print an error message and ask for another command. Problem 2 may be
annoying, but it didn’t prevent MS-DOS from being the most widely-used
operating system for many years5. Problem 3 is an issue, though, although
first we have to describe why it is the case.

In particular, this operating system requires a certain amount of coordi-
nation between the OS and the program: (a) The OS must know at what
address the program expects to begin execution—e.g. the main() function
in a C program or its equivalent. This isn’t too much of an issue, as the
OS authors can just tell the application (and compiler) writers what to do.
(e.g. in our case execution begins at the very beginning of the program in
memory) And (b) the program, in turn, must have the correct addresses
for any of the OS functions (e.g. getkey in 2.6) which it invokes.

This is where the problem lies. The location of these entry points may
vary from machine to machine due to e.g. different memory sizes, and
will almost certainly change across versions of the OS as code is added
(or occasionally removed) from some of its functions.

To work around this we typically define a standard set of entry points
into the OS, or system calls, access these entry points via a table which

5In that case it typically wasn’t necessary to turn off the power - the low-level keyboard
driver would reset the machine when it saw CTL-ALT-DEL pressed at the same time.
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is placed in a fixed location in memory (e.g. at address 0), and give each
system call a specific place in this table.

One way of implementing this is for the program to access this table
directly; thus if getkey is entry 2, programs could invoke it via the call
syscall_table[2](args). Alternately, many CPUs define a TRAP or
INT6 instruction which may be used for this purpose. In this case, the
table will be located in a location known to the CPU (either fixed, as in
the original 8088 where the table began at address 0, or identified by a
control register) and TRAP N will cause the CPU to perform a function
call to the N th entry of this table.

We now have an interface which allows the OS to provide services to a
program via a fixed interface, allowing for binary compatibility across dif-
ferent hardware platforms and OS versions. If we use a TRAP instruction
for this interface, we have a system similar to MS-DOS, where OS and
application were each given separate parts of a single address space, and
access to generic as well as hardware-specific OS functions was performed
via the x86 INT instruction.

Review Questions

2.4.1. Does an operating system handle hardware details for a program?
yes/no/maybe

2.4.2. Does an operating system have a graphical user interface?
yes / no / maybe

2.4.3. Does an operating system allow the user to load and run programs?
yes / no / maybe

2.4.4. Does the system call table change every time a program is compiled?
yes / no

6the x86 “interrupt” instruction.
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Comparison to MS-DOS 1.0

Figure 2.10: MS-DOS layout

This simple OS is very similar to the
first version of MS-DOS. In MS-DOS
1.0, as seen in Figure 2.10, the operating
system is split into 4 parts: a hardware-
specific I/O system (BIOS), MS-DOS
itself, the resident part of the command
line interpreter, and additional “tran-
sient” parts of the command interpreter
which could be over-written by larger
programs (especially on machines with
16KB RAM) and re-loaded from floppy
disk after the program exited.

Similarities with the simple OS include:

1. separate OS and program memory regions
2. a system call table accessed via INT instruction
3. a command line which is part of the OS
4. a keyboard controller, frame buffer, and disk controller which are

much like the CPU-5600 versions

2.5 Device Virtualization

The GET_LINE and getkey operations just discussed are simple examples
of a powerful operating system concept—device virtualization. Rather
than requiring the programmer to write code specific to a particular hard-
ware implementation of a keyboard controller, the operating system pro-
vides simple “virtual devices” to the program, while the hardware details
are handled within the operating system. In particular, if these virtual
devices are sufficiently generic (e.g. supporting only read and write
operations) then the same program can read from the physical keyboard,
from a window system which sends keyboard data to the currently active
window, from a file, or from a network connection like ssh.

Implementing a generic I/O system like this is fairly straightforward, as
the set of I/O operations (open, close, read, write, etc.) is basically an
interface, while each particular device (e.g. keyboard, disk file, etc.) can
be thought of as a class implementing that interface. In practice this is
done by providing the program with a handle or descriptor which maps to
the actual I/O object within the OS, and then implementing system calls
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struct f_op {
size_t (*read) (struct file *, char *, size_t);
size_t (*write) (struct file *, char *, size_t);
...

};

/* ’current’ points to current process structure
*/
size_t sys_read(int fd, char *buf, size_t count) {

struct file *file = current->files[fd];
return file->f_op->read(file, buf, count);

}

Figure 2.11: Simplified code for read system call in Linux

such as read and write by mapping the handle to the object, and then
invoking the appropriate method.

In Linux a file descriptor is an integer, used to index into a table of files
opened by the current process; a simplified version of the read system call
is seen in the example in Listing 2.11.7 The listing is somewhat simplified—
the actual code performs a few levels of indirection, some locking, and
a bounds check while looking up the ’struct file’ corresponding to ’fd’,
and also handles the offset within the file. The actual code is not that
complex, however, as the complicated parts are all in the file system or
device-specific read methods.

2.6 Address Space and Program Loading

Typically program address space is divided into the following parts: code
or machine-language instructions (for some reason typically called “text”),
initialized data, consisting of read-only and read-write initialized data,
initialized-zero data, called “BSS” for obscure historical reasons, heap or
dynamically allocated memory, and stack.

In Figure 2.12 we see the address space organization which has evolved
for arranging these areas for CPUs on which the stack grows “down”—i.e.
more recently pushed data is stored in lower-numbered addresses. (this
is by far the most common arrangement) In this arrangement the fixed-
sized portions of the address space are at the bottom, and the heap grows
“up” from there, while the stack grows “down” from the highest available

7 Like many other operating systems, Linux is written in C, which lacks direct support for
abstract interfaces and data types; the actual implementation relies on a system of structures
of function pointers which is similar to how the compiler implements virtual methods in
C++.
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Figure 2.12: Typical process memory
map: code, data, and heap at bottom;

stack at top.

Figure 2.13: Awkward process mem-
ory map, with fixed-sized stack alloca-

tion.

address. Assuming that the memory available is contiguous, this gives
the program maximum flexibility—it can use most of the memory for
dynamically-allocated heap, or for the stack, as it chooses. In contrast, an
organization such as Figure 2.13 would require a fixed allocation of the
two regions to be made when the program is loaded by the OS, adding
complexity while reducing flexibility. (Note that since the heap is software-
managed it can grow in whatever direction we want; however on most
CPUs the direction of stack growth is fixed.)

An additional goal of an address layout is to be able to accomodate different
amounts of available memory. As an example, early microcomputers like
the first IBM PCs might have between 16KB and 64KB of memory; we
would like the same program to be able to run on machines with more or
less memory, with the additional memory on the larger machine available
for heap or stack. This was typically done by starting memory at address
0, so that a 16KB machine would have available memory address 0x0000
through 0x3FFF, while a 32K machine would be able to use 0x0000
through 0x7FFF. Code and fixed data would be located starting at a pre-
defined offset near address 0, with stack and heap located above these
sections, at addresses which might vary from machine to machine and
program to program. This would ensure that small programs would be
placed in low addresses, so that they would be guaranteed to run on low-
memory machines, while the variability of stack and heap addresses was
not a significant issue because the compiler does not need to generate
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Index Description DOS name
0 divide by zero
1 single step
2 non-maskable
3 debug break
4 debug break on overflow
5 -unused-
6 invalid instr.
7 -unused-
8 system timer IRQ0
9 keyboard input IRQ1
10 line printer 2 IRQ2, LPT2
11 serial port 2 IRQ3, COM2
12 serial port 1 IRQ4, COM1
13 hard disk IRQ5
14 floppy disk IRQ6
15 line printer 1 IRQ7, LPT1
16- software-defined
255 interrupts

Table 21: 8086/8088 interrupts as defined by the IBM PC hardware.

direct references to them.

2.7 Interrupts

So far all the code that we have looked at has been synchronous, proceeding
as a series of function calls reachable from some original point at which
execution started. This is a good model for programs, but not always for
operating systems, which may need to react to arbitrary asynchronous
events. (Consider for instance trying to stop a program with control-C, if
this only took effect when the program stopped and checked for it.)

To handle asynchronous I/O events, CPUs provide an interrupt mechanism.
In response to a signal from an I/O device the CPU executes an interrupt
handler function, returning to its current execution when the handler is
done. The CPU essentially performs a forced function call, saving the
address of the next instruction on the stack and jumping to the interrupt
handler; the difference is that instead of doing this in response to a CALL
instruction, it does it at some arbitrary time (but between two instructions)
when the interrupt signal is asserted8.

8This makes programming interrupt handlers quite tricky. Normally the compiler saves
many register values before calling a function, and restores them afterwards; however an
interrupt can occur anytime, and if it accidentally forgets to save a register and then modifies
it, it will appear to the main program as if the register value changed spontaneously. This
isn’t good.
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Most CPUs have several interrupt inputs; these correspond to an interrupt
vector table in memory, either at a fixed location or identified by a special
register, giving the addresses of the corresponding interrupt handlers.
As an example, in Table 21 we see the corresponding table for an 8088
CPU as found in the original IBM PC, which provides handler addresses
for external hardware interrupts as well as exceptions which halt normal
program execution, such as dividing by zero or attempting to execute an
illegal instruction.

The simplest interrupt-generating device is a timer, which does nothing
except generate an interrupt at a periodic interval. In Listing 2.14 we see
why it is called a timer—one of its most common uses is to keep track of
time.

extern int time_in_ticks;
timer_interrupt_handler() {

time_in_ticks++;
}

Figure 2.14: Simple timer interrupt handler

Another simple use for interrupts is for notification of keyboard input.
Besides being useful for a “cancel” command like control-C, this is also
very useful for type-ahead. On slower computers (e.g. the original IBM
PC executed less than half a million instructions per second) a fast typist
can hit multiple keys while a program is busy. A simple keyboard interface
only holds one keystroke, causing additional ones to be lost. By using the
keyboard interrupt, as shown in Figure 2.15, the operating system can read
these keystrokes and save them, making them available to the program the
next time it checks for input.

Review Questions

2.7.1. Hardware interrupts occur when particular instructions are exe-
cuted: yes / no

A question for the reader - how would you change the one-key type-
ahead buffer in Figure 2.15 to buffer a larger number of keystrokes?
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int lastkey = -1; /* invalid keystroke */
kbd_interrupt() {

lastkey = kbd_code;
}
int getkey() {

while (lastkey == -1) {
/* loop */

}
int tmp = lastkey;
lastkey = -1;
return tmp;

}

Figure 2.15: Single-key keyboard type-ahead buffer

2.7.2. A device (e.g. the keyboard controller) uses interrupts to send data
to the CPU: yes / no

2.7.3. Interrupts allow a program to do multiple things at once: yes / sort
of / no

2.8 Context Switching

Interrupt-driven type-ahead, as described above, represents a simple form
of multi-processing, or handling multiple parallel operations on the same
CPU. Full multi-processing, however, as found on modern operating sys-
tems, involves parallel execution of full programs, rather than merely
interleaving a single program with specific bits of operating system func-
tionality.

Our simple OS cannot do this, nor can MS-DOS (which it closely re-
sembles), but it is a straightforward extension to do so even on limited
hardware. To do this on a single CPU machine we need a mechanism for
saving the state of a process—a running program—and restoring it after
another process has taken its turn.

To do this we take advantage of the way in which program state is stored on
the stack. This may be seen in Figure 2.16, where we see the stack frame
generated by a call to function g() with arguments and local variables.

By holding arguments, return addresses, and local variables, the stack
essentially captures all the private state of a running computation. If we
were to save the stack of a running process, go off and do something
else—taking care to use a different stack—and then switch stacks again to
return to the first process, no one would be the wiser except for any delay
incurred.
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f() {
g(4, 5);

}
g(int n, m) {

int a = 10;
...

}
SP→

5 (m)
4 (n)

return addr
10 (a)

Figure 2.16: Subroutine call stack shown when in g(), called from f(), showing
relationship between arguments, return address, and local variables.

sleep(time_t t) {
end = now() + t;
while (now() < end)

do nothing;
}

sleep(time_t t) {
... switch() →

... return ←
}

[process A]

→
do something else
... for t seconds
← then return

[process B]

Figure 2.17: Alternate methods of implementing sleep().

In fact, in Figure 2.17 we see two implementations of the sleep() func-
tion; the first busy-waits until the specified time has passed, while the
second uses some mechanism to switch to another program for a while,
and then returns when the interval is up. The particular mechanism used
to switch from one process to another is simple but subtle: we save the
processor registers by pushing them to the stack, and then save the value
of the stack pointer into another location in memory. (This is commonly a
location in a process control block, an object which represents the state of
a process when another one is executing, and can be put on wait lists and
otherwise manipulated.) We can then switch to another process by loading
the stack pointer value for that second process (e.g. from its location in its
process control block), restoring registers from the stack, and returning.

The flow of control involved in such a context switch is difficult to get
used to, because the context switch itself looks like a simple function call,
but behaves in a radically different way. In your previous classes you will
have learned to think about functions as abstract operations, returning by
definition to the same place where they were invoked. In a context switch,
however, control enters the function from one location, and after a few
simple instructions returns to an entirely different location.

We see different representations of this in Figures 2.18 and 2.19. The
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context switch code is shown first: it saves registers to process 1’s stack
and saves the value of the stack pointer, then loads process 2’s stack pointer,
pops saved registers, and returns. Note that the second half of the function
is referring to an entirely different stack than the first half, so the registers
and return address popped from the stack are different from the ones saved
in the first half of the function.

A context switch enters a process or
thread by returning from a
function call, and leaves the process
by calling into the switch
function.

In addition we see two different
visualizations of the flow of con-
trol during context switch. In each
case control enters switch via a
call from one process (or thread of
control) but exits by returning to a
different process.

This is a curious property of con-
text switching: we can only switch to a process if we have switched from
it at some point in the past. This results in a chicken-and-egg9 sort of
problem—how do we start a process in the first place? This is done via
manipulating the stack “by hand” in the process creation code, making
it look like a previous call was made to switch, with a return address
pointing to the beginning of the code to be executed, forming what is
called a trampoline which “bounces” back to the desired location.

In Figure 2.21 we see a thread being started so that it begins execution
with the first instruction of function main(). Imagine that just before the
beginning of main() there had been a call to context_switch; when
that call returns execution will begin at address main. To start a thread

switch_1_2:
PUSH R0 # save registers
PUSH R1
...
STOR SP -> proc1_sp
LOAD SP <- proc2_sp
...
POP R1
POP R0 # restore them
RET

thread 1

switch()

thread 2

call

return

return

call

Figure 2.18: Different ways of looking at a context switch from Process 1 to
Process 2.

9An English idiom referring to the rhetorical question “Which came first, the chicken or
the egg?”

switch
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process

  1

process

2

process

3   

process

4   

call return context
switch _start() {

/* prepare argc, argv */
int val = main(argc, argv);
exit(val);
/* Not reached */

}

Figure 2.19: Another way of looking at
context switch control flow—processes
call into switch which then returns to

another process.

Figure 2.20: Simplified C run-time li-
brary (crt0.o) - invoke main, and then
call exit to terminate process, guaran-
teeing no return from the true start func-

tion.

which will begin at main, then, we just fake this call stack; when we switch
to the thread the first time, context_switch will then return to location
main, where execution will begin.

return addr

main()
{
  ….
}

saved stack 
pointer

return addr

main()
{
  ….
}

saved stack 
pointer

Figure 2.21: “Trampoline” return stack
pointing to the beginning of the function

to be executed (main)

A function is entered via CALL and
exited via RET; similarly since we
enter a process via RET, we exit it
via CALL. In particular, we define a
function (typically called exit())
which makes sure that the process
will never be switched to again.
(e.g. it is removed from any lists of
processes to be run, its resources
are freed, etc.) Note that some pro-
gramming languages (e.g. C) al-
low process execution to be termi-
nated by returning from the main
function; this is done by calling main from the “real” start function, as
shown in Figure 2.20.

Review Questions

2.8.1. Which of the following are stored on the stack?
a) Function arguments
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b) Return addresses
c) Global variables
d) Local variables

2.8.2. The RET (return) instruction: a) Returns to the instruction immedi-
ately after CALL b) Returns to the address on the top of the stack.

2.8.3. When context switching from process A to process B, what CPU
instruction actually jumps to code in B? (i.e. sets the PC to an
address that is part of B’s execution) : CALL / JMP / RET

2.9 Advanced Context Switching

Figure 2.22: Simple memory-mapped 4-
port serial interface

So far we have considered the
case where switching between
processes is initiated by an ex-
plicit call into the OS from the
currently running process. But
an interrupt is essentially a func-
tion call from the current pro-
cess into a part of the operating
system—the interrupt handler—
and we can in fact context switch
to another process from within
the interrupt handler function.10 A simple example is the case of the timer
interrupt, which can easily be used to implement time slicing between
multiple processes. If the timer device was set to interrupt every e.g.
20ms, and its interrupt handler did nothing except context switch to the
next in a circular list of processes, then these processes would share the
CPU in 20ms slices.

Scheduling

Context switching is the mechanism used by the operating system to switch
from one running process to another; scheduling refers to the decision
the operating system must make as to which process to switch to next.
Scheduling is not covered in much detail in this version of the text.
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Figure 2.23: Old (c. 1975?) multi-user
computer system with 4 serial termi-

nals.

Figure 2.24: Possible memory address
layout for 4 processes plus operating

system.

Multi-User Computer System
We now have all the software mechanisms needed to construct a multi-
user computer system.Instead of a keyboard and video display we will
use serial ports connected to external terminals; the system is shown in
Figure 2.23 and the details of the memory-mapped interface to the serial
ports are shown in Figure 2.22. When the user types a character on their
terminal it will be transmitted over the serial line and received by the serial
port, which will set the input status to 1 and put the received character in
the input register. (just like the keyboard controller)11

To output data to the user a character is written to the output register,
which is then transmitted over the serial line and displayed to the user by

10Depending on the CPU there may be a few differences in stack layout between an
interrupt and a function call, but these can be patched up in software.

11It may seem to a modern reader that such a terminal would be as complex as a computer;
however the earliest terminals (“teletypewriters”) were almost entirely mechanical.
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the terminal. It takes some amount of time to transmit a character; during
this time the output status register is set to 1, and a new character should
not be written until it returns to zero. Again similar to the keyboard con-
troller we can also perform interrupt-driven I/O; in this case one interrupt
indicates when a character has been received, while a second indicates
that a character has finished being transmitted and we may send the next
character.

Review Questions

2.9.1. Multiple copies of the same program:

1 Can share their entire memory space, since they have the same
code and variables: yes/no

2 Can share their program code, but not the data memory holding
their variables: yes/no

3 Can’t share their code memory, because the two processes would
interfere with each other as they try to execute the same instruc-
tions: yes/no

I/O-driven Context Switching

Now we know how to switch between programs, but when should we do
it? We see one possible answer in Figure 2.25—switching on user input.
Many simple programs (e.g. the shell, editors, etc.) consist of a user input
loop: the program waits for input from the user, processes it, displays any
resulting output, and then waits for user input again. Most of the time the
program is idle, waiting for input; we take advantage of this by modifying
the OS input routine to switch to another process when there is no input
ready.

The code in Figure 2.25 will not switch to another process until the current
process explicitly requests more input. For input which requires very little
processing (e.g. an editor updating the screen) this is fine. However, if the
program were to perform large amounts of computation before its next
input request, then the other users might not be able to get a response
for a long period of time. We can address this problem using interrupts:
(1) When data is received for a program which is waiting for input, we
switch to that program, allowing it to respond immediately. (2) When
the timer interrupt fires we switch from the currently running process to
another running process. (A “running” process is one that is not waiting
for input—i.e. one that was previously suspended by a timer interrupt.)
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2.10 Address Spaces for Multiple Processes

In Figure 2.24 we see a possible address space layout for our 4-user system,
with four programs—one per terminal—each receiving about a quarter of
the available memory. There is one significant problem, though: How do
we get programs to run in these different memory regions?

As mentioned earlier in this chapter, the location at which a program is
placed in memory is important, because there are many locations in a
typical program where the address of a portion of the program is needed
as part of an instruction. (e.g. for a subroutine call: on many CPUs,
a function call f() would be compiled to the instruction CALL f, with
the address of f forming part of the instruction.) If a program has been
compiled to start at a specific location in memory12 then it typically will
not work if loaded into a different location.

There are a number of different ways to handle this problem:

• fixed-address compilation: each program to be run on the system
could be compiled multiple times, once for each possible starting
point, and then the appropriate one loaded when a user runs a

terminal is {
queue unclaimed_keystrokes;
process *waiting_process;
...

};
process *current;
queue of (process*) active;

GETKEY(terminal *term):
if (term->unclaimed_input is empty)

term->waiting_process = current
switch_to(active.pop_head())

return term->unclaimed_input.pop_head()

interrupt:
term->unclaimed_input.push_tail(key)
if (term->waiting_process)

active.push_tail(term->waiting_process)
term->waiting_process = NULL

Figure 2.25: Context switching on GETKEY—while a process is waiting for input
we take it off of the list of active processes; when input is received we wake the

process waiting for it.

12E.g. 32-bit Linux programs are typically compiled to start at address 0x8048000.
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200 CALL 500
...

500 ...

(a)

200 CALL PC+300
...

500 ...

(b)

Figure 2.26: Example of absolute and PC-relative addressing, both loaded at
address 200

program. This seems like a bad idea, as it is inflexible and complex
in many different ways. (e.g. it fixes the locations of the partitions,
regardless of the total system memory size, or the size of a program,
or how many programs we might wish to run at once) The only
place I’ve seen this approach used is in certain embedded systems,
where you may have multiple separate programs running at once but
they are all compiled together as part of a single firmware version.

• position-independent code: here we ensure that programs are com-
piled in a way that makes them insensitive to their starting address,
by using what is called PC-relative addressing. This is illustrated in
Figure 2.26: rather than using an absolute address (e.g. 500 in the
figure) for a function call, we use an alternate instruction which indi-
cates an offset from the current PC. Unfortunately this is frequently
inefficient; for instance 32-bit Intel architecture CPUs are able to
efficiently perform PC-relative CALL and JMP instructions, but
require multiple instructions to perform a PC-relative data access.
(this was fixed in the 64-bit extensions)
• load-time fixup: Here we defer the final determination of addresses

until the program is actually loaded into memory. The program file,
or executable, will thus contain not only the code and data to be
loaded into memory, but a list of locations which must be modified
according to the address at which the program is placed in memory.
Thus in Figure 2.26, this list would indicate how the target of the
CALL instruction should be calculated.13

• hardware support: By far the most popular way of sharing system
memory between multiple running programs is by the use of hard-
ware address translation; such hardware support is required to run
modern general-purpose operating systems such as Linux, Mac OS
X, or Windows. The basic idea is illustrated in Figure 2.27: the
CPU uses virtual addresses for instruction fetches or data loads and
stores, which are then translated by an MMU (Memory Manage-

13This approach is used on uClinux, a modified version of Linux which runs on low-end
microcontrollers lacking virtual memory hardware.
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             CPU

R7                          

R0                         

Z

SP                         
PC                           

Virtual
Address

M
M
U

Physical
Address

Memory

Figure 2.27: Virtual-to-physical address translation. All addresses in the CPU are
virtual, and are translated to physical addresses by the MMU (Memory Manage-

ment Unit) before being used to access physical memory.

ment Unit) to physical addresses (i.e. the actual address of a byte
within a specific memory chip) for each memory operation.

2.11 Memory Protection and Translation

Hardware-supported address translation and memory protection (e.g. see
Figure 2.27) is used on all well-known general-purpose operating systems
today (e.g. Linux, OSX, Windows, and various server operating systems)
as well as many others (e.g. the OSes used on most cell phones)14. Address
translation is used for the following reasons:

• Flexible sharing of memory between processes. As seen above,
sharing a single physical address space between a set of processes
that changes over time is complicated without hardware support.
Address translation allows programs to be compiled against a stan-
dard virtual address space layout, which is then mapped to available
memory when the program is loaded into memory.

• Security. On a multi-user computer there are obvious reasons for
preventing one user from accessing another’s data; to accomplish
this it is necessary to prevent “normal” processes from directly
accessing memory used by another process or by the operating
system. (even if the system is only used by one user at at time, the
operating system must be protected if it is to be relied on to prevent
access by one user to another user’s files.)

• Robustness. If a program is allowed to write to any address in the
system, then a bug in that program may cause the entire system to

14Address translation costs both money and power to add to a CPU; thus for instance the
iPod Touch has a CPU with address translation, while the iPod Nano doesn’t.
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crash, e.g. by corrupting the operating system.15 If a process is
constrained to only modifying memory that it has been allocated,
then the same bug would cause only that process to crash, after
which it may be restarted.

It is possible to ensure this degree of protection with software mechanisms
under certain very limited circumstances, by e.g. restricting user processes
to only use Java bytecodes rather than direct program execution.16 In the
normal case however, where an application is allowed to directly execute
most CPU instructions at full speed, hardware support is needed to prevent
a process from making unauthorized memory reads and writes. This
mechanism needs to be reconfigured by the operating system on every
context switch, to apply the correct set of permissions to the running
process, yet programs themselves must be prevented from modifying the
configuration to bypass permission checking.

How can we allow the OS to modify memory protection, while preventing
user programs from doing so and subverting memory protection? This
is done by introducing a processor state: when the processor is running
in user mode it is not allowed to modify memory mapping configuration,
while when running in supervisor (also called kernel) mode it may do so.
The code of a normal application executes in user mode, while the operat-
ing system kernel17 runs in supervisor mode. We next need a mechanism
for safely entering supervisor mode when either (a) an application invokes
a system call, or (b) a hardware interrupt occurs, and then switching back
to user mode when returning.

A question for the reader - what
might happen if unprivileged
programs were able to modify the
exception table?

This is typically done via the in-
terrupt or exception mechanism,
which (as described earlier in this
chapter) causes a forced function
call in response to certain events,to
an address specified in a exception
vector or exception table. If we
use an exception for invoking system calls, and the CPU always switches
to supervisor mode when handling exceptions, then all operating system
code will run in supervisor mode, and a special instruction may be used
to return back to user mode when a system operation is complete. As
long as the exception table is protected from user-space modification, this

15This happened frequently in MS-DOS, which had no memory protection.
16For instance, this approach is used by the Inferno operating system from Bell Labs, as

well as several Java-based research operating systems.
17The core of the operating system, which does not run as a process—i.e. ignoring

system services which run as normal processes.
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Figure 2.28: Base and bounds address translation, depicting address calculation
(left) and virtual to physical memory map correspondence (right).

hardware mechanism provides the a basis on which a secure operating
system may be built.

The simplest such address translation mechanism is known as base and
bounds registers, as illustrated in Figure 2.28a. A virtual address is first
checked to ensure that it lies between 0 and a limit specified in the bounds
register; if this check fails, an exception is raised and the operating system
can terminate the process. Otherwise an offset (from the base register) is
added to the virtual address, giving the resulting physical address. In this
way a standard virtual address space (addresses 0 through the process size)
is mapped onto an arbitrary (but contiguous) range of physical memory,
as shown in Figure 2.28b.

There are a few complications in getting this to work with supervisor mode,
as it needs to be able to access OS data structures which are (a) inaccessible
to user-space code, and (b) at the same location in memory nomatter which
user-space base register value is currently being used. Although several
techniques have been used, the simplest one is to ignore base and bounds
registers in supervisor mode, so that the operating system uses physical
addresses, giving access to all of memory, while user processes execute in
separate translated address spaces18.

The switch from user to supervisor memory space (e.g. switching from
translating via the base+bounds registers to using direct addressing) is

18This also makes it easier for the OS to change base+bounds registers when switching
between processes, as it will have no effect on supervisor-mode address translation. Chang-
ing the mapping of the memory region being currently executed—something which most
operating systems have to do very early in the boot process—is a very tricky thing.
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done automatically by the hardware on any trap or interrupt. The operating
system is then free to change the values in the (user) base and bounds
registers to reflect the address space of the process it is switching to.
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2.12 Putting it all together

In the introduction we saw the example of a simple command (ls) being
executed in Linux. Many of the details of its operation were covered in
this chapter.

Hardware: In our example, the keyboard controller was for an old-
fashioned PS/2 keyboard, and the text display used was the simplest text
mode supported by PC hardware, normally only used by some BIOSes.
These are almost identical to the corresponding I/O devices in our hypo-
thetical computer—they’re located at different addresses, and support a
few extra functions (e.g. flashing letters, key-up and key-down events, and
keyboard output to e.g. turn on the caps-lock light), but otherwise are the
same.

Code: To explain the operating system code we’ll use the 64-bit Linux
kernel version 4.6.0, because that’s what I have handy. (you can browse
and search the source code at http://elixir.free-electrons.com/
linux/v4.6/source) If I use the kernel debugger to put a breakpoint
on the actual TTY read function (n_tty_read) we get the following
backtrace, which we will refer to in explaining input operation:

(gdb) backtrace
#0 n_tty_read (tty=0xffff88003a99fc00, file=0xffff880036b3e900,

buf=0x7ffcff243a77 "", nr=1) at drivers/tty/n_tty.c:2123
#1 0xffffffff814d2792 in tty_read (file=0xffff880036b3e900, buf=<optimized

out>, count=1, ppos=<optimized out>) at drivers/tty/tty_io.c:1082
#2 0xffffffff8121a197 in __vfs_read (file=0xffff88003a99fc00, buf=<optimized

out>, count=<optimized out>, pos=0xffff88003b60bf18) at fs/read_write.c:473
#3 0xffffffff8121b236 in vfs_read (file=0xffff880036b3e900, buf=0x7ffcff243a77

"", count=<optimized out>, pos=0xffff88003b60bf18) at fs/read_write.c:495
#4 0xffffffff8121c725 in SYSC_read (count=<optimized out>, buf=<optimized out>,

fd=<optimized out>) at fs/read_write.c:610
#5 SyS_read (fd=<optimized out>, buf=140724589050487, count=1) at

fs/read_write.c:603
#6 0xffffffff81798a76 in entry_SYSCALL_64 () at arch/x86/entry/entry_64.S:207
#7 0x0000000000000001 in irq_stack_union ()
#8 0x0000000000000000 in ?? ()

System calls: The Linux command line is a separate program, the shell,
running in its own process, which invokes the read system call by exe-
cuting the INT0x80 instructure with the system call number (SYS_READ
= 3) in the EAX register, the file descriptor (stdin = 0) in EBX, a buffer
pointer in ECX, and the buffer length in EDX - see ’man 2 read’ for a full
description of the system call semantics. (note that this is how it works
for 32-bit mode; it’s slightly different and more complicated for 64-bit.)

The entry_SYSCALL_64 function is the trap handler; it saves all sorts of
registers, checks that it’s a legal system call number, and then calls the

http://elixir.free-electrons.com/linux/v4.6/source
http://elixir.free-electrons.com/linux/v4.6/source
n_tty_read
INT 0x80
SYS_READ
EAX
entry_SYSCALL_64
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appropriate entry in the system call table. (since it needs to save registers
and perform other machine-level functions it is one of the few kernel
functions written in machine language)

#6 0xffffffff81798a76 in entry_SYSCALL_64 () at arch/x86/entry/entry_64.S:207
207 call *sys_call_table(, %rax, 8)

Note that the operating system
kernel is almost entirely composed
of exception handlers, which run in
response to deliberate traps from
user applications (system calls) or
accidental ones (e.g. memory
access faults), as well as interrupts
from I/O devices and timers. This
means that when a system is idle it
is not actually executing code in the
operating system kernel itself;
instead a special idle process with
lowest priority executes when no
other work is available.

I/O virtualization: Linux file de-
scriptors are small integers which
index into a per-process array of
pointers to internal kernel file
structures. File descriptor 0 is stan-
dard input, and 1 is standard out-
put. The pointer to the current
process structure is called (unsur-
prisingly) current; we can look
into its file table and see that en-
tries 0 and 1 point to the same file
structure (ending in 3e900) passed
to n_tty_read in the stack trace
above:

(gdb) p current->files.fdtab.fd[0]@2
$9 = {0xffff880036b3e900, 0xffff880036b3e900}

The SYSC_read function looks up this structure (returning an error for
bad file descriptor numbers); vfs_read does a few more checks, and
then calls __vfs_read which forwards to the "read" method from the file
operations table in the file structure:
#2 0xffffffff8121a197 in __vfs_read (file=0xffff88003a99fc00, buf=<optimized

out>, count=<optimized out>, pos=0xffff88003b60bf18) at fs/read_write.c:473
473 return file->f_op->read(file, buf, count, pos);

When the file was originally opened, this operations table was set to point
to the read and write operations for the TTY driver, which is responsible
for keyboard input and text-mode screen output:
(gdb) p file->f_op
$13 = (const struct file_operations *) 0xffffffff81872fa0 <tty_fops>
(gdb) p *file->f_op
$14 = {owner = 0x0, llseek = 0xffffffff81219ff0 <no_llseek>,
read = 0xffffffff814d2700 <tty_read>, write = 0xffffffff814d27f0 <tty_write>,
...

Context switching: In n_tty_read it adds the current process to a wait
queue, then checks to see if there is any input (or error conditions or lots
of other reasons why it might return early) and if none, it goes to sleep:

current
n_tty_read
SYSC_read
vfs_read
__vfs_read
n_tty_read
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2166 add_wait_queue(&tty->read_wait, &wait);
...

2188 if (!input_available_p(tty, 0)) {
...

2207 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE,
2208 timeout);

Here wait_woken sets a few things and then calls schedule_timeout,
which sets a timer and then calls schedule, the central context switch
function, which picks the next runnable process and switches to it.

The interrupt which wakes it up is much more convoluted, as the actual
interrupt handler schedules a “deferred work” callback which does the
real work. (why? For several reasons, one of which is that you can block
in a deferred work handler while interrupts have to return immediately.)
Here are selected lines from the interrupt backtrace:

#0 tty_schedule_flip (port=<optimized out>) at drivers/tty/tty_buffer.c:406
#1 tty_flip_buffer_push (port=0xffff88003e088000)

at drivers/tty/tty_buffer.c:558
#2 0xffffffff814dc8ae in tty_schedule_flip () at drivers/tty/tty_buffer.c:559
#3 0xffffffff814e490e in put_queue (ch=<optimized out>, vc=<optimized out>)

at drivers/tty/vt/keyboard.c:306
...
#8 0xffffffff814e5c11 in kbd_keycode (hw_raw=<optimized out>, down=<optimized

out>, keycode=<optimized out>) at drivers/tty/vt/keyboard.c:1457
#9 kbd_event (handle=<optimized out>, event_type=<optimized out>,

event_code=<optimized out>, value=2) at drivers/tty/vt/keyboard.c:1475
...
#16 atkbd_interrupt (serio=0xffff88003684e800, data=<optimized out>,

flags=<optimized out>) at drivers/input/keyboard/atkbd.c:512
#17 0xffffffff8162fdc6 in serio_interrupt (serio=0xffff88003684e800,

data=57 ’9’, dfl=0) at drivers/input/serio/serio.c:1006
#18 0xffffffff81630e72 in i8042_interrupt (irq=<optimized out>,

dev_id=<optimized out>) at drivers/input/serio/i8042.c:548
...
#23 handle_irq (desc=<optimized out>, regs=<optimized out>)

at arch/x86/kernel/irq_64.c:78
#24 0xffffffff8179b22b in do_IRQ (regs=0xffffffff81c03df8

<init_thread_union+15864>) at arch/x86/kernel/irq.c:240

which schedules the deferred work:

#1 tty_schedule_flip (port=<optimized out>) at drivers/tty/tty_buffer.c:406
400 struct tty_bufhead *buf = &port->buf;
...
406 queue_work(system_unbound_wq, &buf->work);
(gdb) p *buf->work
$41 = {data = {counter = 64}, entry = {next = 0xffff88003e088010,
prev = 0xffff88003e088010}, func = 0xffffffff814dcd00 <flush_to_ldisc>}

If we put a breakpoint on flush_to_ldisc and step through it, you
eventually get to the following lines:

wait_woken
schedule_timeout
schedule
flush_to_ldisc
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1628 if (read_cnt(ldata)) {
...

1630 wake_up_interruptible_poll(&tty->read_wait, POLLIN);

which wake up the shell process that was sleeping on tty->read_wait,
by removing it from the queue associated with read_wait and reinserting
it into the list of runnable processes.

Process creation: The shell process executes the ls command by invoking
fork, to create a subprocess, and then invoking wait to wait until the
subprocess has finished. Within the subprocess the exec system call is
used to load and execute the ls program itself; when it is done the exit
system call frees the subprocess and causes the wait in the parent process
to return. (process creation will be covered in more depth when we look
at virtual memory)

Output: The shell and the ls processes send output to the screen by
using the write system call; the text console driver is responsible for
determining where the next character should be placed on the screen,
handling end-of-line, and copying data to scroll displayed text upwards
when it reaches the end of the buffer. (this way both processes can output
to the same screen without over-writing each other)

In particular, tty_write eventually calls do_con_write in
drivers/tty/vt/vt.c, which has a bunch of convoluted logic
to handle line wrap, scrolling, cursor control commands, etc., but for
the simplest case just adds on 8 bits to set the right background and
foreground color, and writes into the screen buffer via a pointer:
#define scr_writew(val, addr) (*(addr) = (val))
...
2384 scr_writew((vc_attr << 8) + tc,

(u16 *) vc->vc_pos);

tty->read_wait
read_wait
tty_write
do_con_write
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Answers to Review Questions

2.1.1 yes/no/sort of : “no”. I/O devices are pieces of hardware separate
from the memory and the CPU, e.g., a card that plugs into the PCI
bus. Software, whether part of the operating system or a program,
consists of instructions in memory that are executed by the CPU.

2.1.2 yes/no/sort of : “sort of”. The CPU interacts with most I/O devices
as if they were normal memory locations, using load and store in-
structions to memory addresses. However, unlike normal RAM,
which just stores the value written and returns it when read, the de-
vice takes various actions when the CPU reads or writes its memory
locations.

2.4.1 “yes”. Although programs may occasionally interact directly with
specific pieces of hardware, a primary purpose of the operating
system is to provide simple and consistent interfaces to complex
and varying hardware devices.

2.4.2 “maybe”. Some systems don’t have a display. On a system with
a display, the operating system may manage that display for user
programs, as it does the keyboard (e.g., in Windows). On other
systems (e.g., Linux), a separate program may be responsible for
the interface.

2.4.3 “maybe”. The simplest operating systems support a single, pre-
loaded program, while the whole point of general-purpose operating
systems like Windows or Linux is to allow the user to load their
own programs.

2.4.4 “no”. That’s the whole point of a system call table. The addresses
of functions in a program or the operating system may change if the
code is modified and recompiled, but the system call table remains
constant.

2.7.1 No. Hardware interrupts are external asynchronous events, and can
occur at any point during program execution. (well, almost any
point. It’s possible to disable interrupts while executing code which
can’t be interrupted.)

2.7.2 No. An interrupt tells the CPU that something happened (or one of
several possible somethings, if an interrupt line is shared), but that’s
all. It’s the job of the interrupt handler to figure out what happened
and handle it (hence the name) by e.g. reading in newly available
data.

2.7.3 Sort of. Interrupts can easily be used to perform brief tasks —
examples include buffering a keystroke in response to the keyboard
interrupt, or flashing a cursor in the timer interrupt. Implementing
the equivalent of a full program in interrupt handlers would be
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horribly complicated, however.
2.8.1 The stack holds: Function arguments, return addresses : yes, they

are pushed onto the stack before calling a function. Global variables
: no, there is only one copy of each global variable, so they are
allocated fixed locations in memory. Local variables : yes, this
way there is a separate copy of each local variable each time a
function is called, even if it is called recursively, and the memory is
automatically freed when the function returns.

2.8.2 the return instruction doesn’t know anything about the correspond-
ing CALL — it just uses the address on the top of the stack. It is
the responsibility of the CALL instruction to put the return address
there, and of the code in the function to make sure that address is
not corrupted.

2.8.3 RET. Process A uses CALL to invoke the switch function, but it is the
RET at the end of switch, after B’s saved stack pointer is restored,
that actually results in resuming execution of B’s code.

2.9.1 1 (share entire memory space) No, in this case each process would
see its variables change unexpectedly as the other processes up-
dated them.

2 (share code, not data) Yes, it might be simpler to give each
process a separate copy of its program code, but it’s not necessary.
Writable data (and stack) must be separate, however.

3 (cannot share code)No, the CPU is only executing one instruction
at a time, and really doesn’t care what another process might do
sometime in the future after a context switch.





Chapter 3

Synchronization – Safety &
Sequencing

3.1 Problem Introduction

One of the key responsibilities of an operating system is that of
synchronization—handling nearly simultaneous events in a reasonable
way, and providing mechanisms for user applications to do so as well.

In Figure 3.1 we see a simplified example of a program to maintain a
bank account balance at the Bank of Lost Funds. When running on a
single CPU, the deposit function is trivially correct: after it completes
execution, the value of balance will be sum greater than it was before
the function was invoked.

In Figure 3.1, however, we see one possible result when this function is
invoked by two threads nearly simultaneously. In this case thread 1 is
interrupted after it has read the current value of balance, but before it
could store the new value back to memory. The result is that the update
performed by thread 2 is lost, being over-written by thread 1’s computation,
and after depositing a total of $150 to the account we have a final balance
of $50.

money_t balance;
function deposit(money_t sum) {

balance = balance + sum;
}

Listing 3.1: Simple bank account example

39
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Figure 3.1: Incorrect operation of banking example. An interrupt causes a thread
switch after thread 1 has loaded balance into R1 and before it writes the updated

value back into balance, so thread 2’s update is lost.

3.2 Race Conditions and Mutual Exclusion

Such errors are referred to as race conditions, because the result depends
on a “race” between threads, where it is unknown which will execute some
piece of code first.

Another example of such a race condition is shown in Figure 3.2(a) and

Figure 3.2: Linked list corruption. (a) code for push and pop, (b) starting data
structure, (c) interleaving of pop and push, (d) final state. Items 2 and 3 are no
longer on the list, and item 1 is both on the list and the return value from pop
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mutex_t n = mutex_create()
mutex_lock(n)
mutex_unlock(n)
mutex_destroy(n)

Listing 3.2: Hypothetical operating system interface to
create, use, and destroy mutexes.

(b), which shows a simple linked list, along with the code to use it as a
push-down stack by pushing and popping elements. In Figure 3.2(c) and
(d) we see what happens when a push and a pop conflict with each other,
causing the list to become disconnected; in this case the right-hand side
of the list is effectively “lost”, with potentially disastrous consequences.

The most insidious aspect of each of these race conditions is that they
occur in otherwise bug-free code; in particular, there is no amount of
testing which is guaranteed to find them.

In classic operating systems
textbooks this is referred to as the
critical section problem, defined as
the case where there is a critical
section of code which must be
guarded against simultaneous
execution. This is unfortunately a
misleading term, as it should be
obvious that it is the data that must
be protected, not the code. For
instance, in an object-oriented
program a class may have two (or
more) methods which can interfere
with each other, even though
different sections of code are being
executed; conversely no
interference will occur if any of
these methods are invoked
simultaneously on separate object
instances.

The solution to race conditions
is fairly obvious, although not al-
ways simple: we identify all the
cases where data must be protected
against simultaneous modification
or access, and prevent this from
occuring1. To do this we create
an object called a mutex (see Fig-
ure 3.2) which has the ability to
guard against simultaneous access.
This object has twomethods, lock
and unlock, and the following
properties:

• Given a mutex m, once
some thread T1 returns
from m.lock(), no other
thread T2 will return from
m.lock() until T1 enters
m.unlock().

• If thread T1 is holding mu-
tex m (i.e. it has entered and returned from m.lock and T2 is waiting
for m (it has entered but not returned from m.lock()), then when

1The simplest way to do this is to only allow single-threaded programs. This was the
case for almost all operating systems until the mid-90s; multi-threading and locking were
obscure concerns which only kernel programmers had to worry about

m
m.lock
m
m.lock()
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object account is:
mutex m
int balance

method deposit(int amount):
m.lock()
balance = balance + amount
m.unlock()

method get_balance():
return balance

Listing 3.3: Safe bank account object. Note that other actions
which modify the balance, such as withdraw(), must lock

mutex m as well.

T1 enters m.ulock(), T2 (or some other thread blocked on m) will
“promptly” return from m.lock().

(these properties are also termed mutual exclusion—hence the name
mutex—and progress, and are two of the three formal requirements for a
solution to the critical section problem.)

When thread T1 returns from m.lock(), we often say that T1 has acquired
the mutex m, or that it is holding it; when T1 invokes m.unlock() it
releases the mutex. Note that other threads are free to call the lock method
on m while m is held by T1; however none of those threads will return
from the call until the mutex is released. If T1 were to hold the mutex for
a long time, this would delay the other threads; if it fails to ever release
the mutex (e.g. due to raising an exception before the call to unlock())
it would be a serious bug, typically causing the program to freeze.

We can now write a thread-safe version of our bank account object, as seen
in Figure 3.3. It avoids the race condition described in the beginning of the
chapter by using a per-instance mutex to guard operations which modify
the balance. By doing this we have made the modification of the balance
atomic2, at least with respect to any other code which properly locks the
mutex—i.e. it appears to happen as a single operation, with any other
modification happening either before or after, but not simultaneously.

In Figure 3.3 we can (on most computers) safely read the balance without
locking the mutex, because the hardware can usually be trusted to perform
a read of a single integer atomically. Another way to state this is that the

2The name atom derives from the ancient Greek word for indivisible, and so is something
that can’t be cut or divided. (or at least couldn’t be until the physicists got to work on it) An
atomic operation cannot be divided into parts by another operation.

m.ulock()
m
m.lock()
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object account is:
mutex m
int balance_dollars
int balance_cents

method deposit(int dollars, int cents):
m.lock()
balance_cents = balance_cents + cents
if balance_cents >= 100:

balance_dollars = balance_dollars + 1
balance_cents = balance_cents - 100

balance_dollars = balance_dollars + dollars
m.unlock()

method get_balance(out &d, out &c): // d,c are outputs
m.lock()
d = balance_dollars
c = balance_cents
m.unlock()

Listing 3.4: Bank account object with more complex state. To avoid
observing invalid state (e.g. a cents value greater than 99) we must lock

the mutex when reading as well as writing.

object is in a safe state at all times—it changes atomically from one safe
state to another. In Figure 3.4 we see a bank account object with a slightly
more complex state, representing integer dollars and cents separately;
in this case reading the object state in the middle of an update could
give incorrect results, e.g. showing balance_cents > 99. (more serious
problems such as null pointer errors can occur when accessing complex
data structures such as linked lists or trees during an update) To prevent
this, the code in Figure 3.4 locks the objectwhen observing its state, so that
it only sees the consistent state found after an update has fully completed.
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Review Questions

3.2.1. Race conditions can be detected by exhaustively testing all the
possible orders in which inputs may be sent to your program:
True / False

3.2.2. You have just been asked to write the withdraw() method for our
bank account object. Which of these locking options will ensure
that it works correctly?

a) Add a second mutex (i.e., m2) to the object, and lock/unlock
this second mutex when making a withdrawal.

b) Lock mutex m at the beginning of the withdrawal method, and
unlock it at the end.

c) There’s no need to use a lock here, because the value of the
balance is being decreased instead of increased.

3.3 Implementing Mutexes

So mutexes are great, but how do they actually work? In Figure 3.2 we
saw a hypothetical system call interface which allows us to create, destroy,
lock and unlock mutexes. Internal to the OS we can assume that each
mutex has a state—locked or unlocked—and a list of threads waiting for
the mutex. If a process calls mutex_lock on an unlocked mutex, the
mutex is marked as locked and mutex_lock returns immediately. If the
mutex is locked, then the call is treated almost exactly like waiting for I/O:
the OS puts the thread on the mutex wait queue, and then switches to the
next active thread. When mutex_unlock is called, the OS takes the first
thread (if any) off the queue and puts it back on the active list.

So now that we know exactly how our mutex system calls are supposed
to behave, how do we implement them? In addition, how does the op-
erating system protect its own data structures, which (in e.g. Linux and
Windows) reside in a single address space and are accessed from not only
multiple user processes (via system calls) and kernel threads, but also
from exception handlers for e.g. page faults and hardware interrupts?

On a single-processor system this is fairly straightforward. Code runs in a
straight line unless it is interrupted by a hardware interrupt or an exception
such as a page fault, so all we need to do is to (a) disable interrupts, and
(b) ensure that the operating system code and data (or at least the code
and data needed for mutexes) is always mapped into physical memory, to
avoid page faults.

mutex_lock
mutex_lock
mutex_unlock
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structure mutex:
bool locked = False // guarded by IRQ disable
queue waitlist // waiting threads (also guarded)

mutex_lock(mutex m):
disable_interrupts()
if not m.locked

m.locked = True
enable_interrupts()

else:
pause(current_process) // remove it from active list
m.waitlist.add(current_process)
enable_interrupts()
sleep() // wake here when mutex acquired

mutex_unlock(mutex m):
disable_interrupts()
if waitlist is empty:

m.locked = False
enable_interrupts()

else
local next_thread = m.waitlist.pop_from_head()
enable_interrupts()
wake(next_thread) // add it to the active list

Listing 3.5: Simple single-CPU kernel mutex. The “locked” flag and
list of waiting processes are guarded by disabling interrupts

(Note that user-level code is not allowed to disable interrupts, as doing so
for more than a brief period is likely to crash the machine.)

In Figure 3.5 we see a mutex implementation based on this. We assume
the same context-switching structure used in Figure 2.25 in the previous
chapter, with a thread control structure containing fields such as the saved
stack pointer as well as links for creating lists:

• current points to the currently running thread
• active is a list of other threads ready to run
• sleep pops the next runnable thread from active, assigns it to
current, and switches to it3.

• wake appends a thread to the active list so that it can run again.

On a single-CPU system the fields of the mutex structure are protected
from race conditions, as no interrupts will occur during modifications. We
can see that our mutex requirements will be met, by noting that:

3As opposed to yield, which adds the current thread to the end of the active queue
before performing the same steps.

current
active
sleep
active
current
wake
yield
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typedef int spinlock_t
spin_lock(spinlock_t *lock_addr):

register r = 1
while r == 1:

SWAP r, lock_addr

spin_unlock(spinlock_t *lock_addr):
*lock_addr = 0

Listing 3.6: Spinlock implementation. If the lock contains 0, it is
unlocked; if 1, then it is locked, in which case a second thread (or
CPU) trying to acquire it will “spin” (i.e. loop) until it is released.

• the first thread to call lock(m)will set m.locked to true and return
immediately.
• if another thread calls lock(m) before the mutex is unlocked, it will
queue itself on m.waitq and sleep.
• when unlock(m) is called, if there are any threads waiting then
the first one will be woken up (and thus continue from its sleep
call and return from lock(m) the next time it is scheduled), and the
mutex will remain locked;
• if no threads are waiting the mutex will be unlocked.

An exercise for the reader - many
textbooks describe Dekker’s and
Peterson’s algorithms for mutual
exclusion, which use normal
memory load and store instructions
to provide mutual exclusion. Try
implementing Peterson’s algorithm
as described in Wikipedia, with two
threads each looping N times, each
time (a) entering the critical section,
(b) incrementing a counter, and (c)
leaving the critical section. For
large N (e.g. 107) does the counter
always get incremented 2N times?
Why not? (feel free to ask in class if
you don’t find the answer)

On a multi-core system the prob-
lem is more complicated, however,
as the CPU cores are all execut-
ing simultaneously, accessing the
same memory, whether interrupts
are enabled or not. Implement-
ing a mutex on a multi-core sys-
tem requires coordinating via the
memory system shared between all
the CPUs, using special instruc-
tions which are guaranteed to exe-
cute uninterrupted by instructions
running on any of the other CPU
cores.

There are a number of specialized
CPU instructions which are typi-
cally provided to implement mutual exclusion; we will consider one of
them, the atomic SWAP instruction4:

4Another such instruction is Compare And Swap (e.g. the Intel CMPXCHG instruction),
which only performs the swap if the value in memory matches an expected value.

lock(m)
m.locked
lock(m)
m.waitq
unlock(m)
sleep
lock(m)
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Spinlock
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Figure 3.3: Spinlock operation. Here we see CPU 1 acquire the lock, after which
CPU 2 and then CPU 0 attempt to acquire it. After CPU 1 releases the lock (by
writing 0) one of the waiting CPUs (in this case 0) is then able to acquire it.

• SWAP register, address

This instruction swaps the contents of a register with the data in a specified
memory location, and unlike normal instructions it is guaranteed to do so
atomically. In other words, no matter how many CPU cores are trying to
swap with the same memory location simultaneously, one of them will do
so first, another second, and so on, and every CPU will see the location
change values in the same order.

This is in contrast to normal load/store instructions, where different CPU
cores may see differences in the order in which changes occur. This is
not surprising when you consider that each CPU is handling multiple
instructions at once, possibly out of order, and writing into cache lines
which are only later flushed to main memory. For instance, if CPU 1 writes
to cache line A and then to cache line B, they could conceivably be flushed
to memory in the opposite order, so while CPU 1 sees A written before
B, other CPUs see B written before A. Although it’s possible to achieve
consistent ordering—that’s what atomic instructions do—it’s much slower.

The SWAP instruction allows us to implement what is called a spinlock, as
shown in Figure 3.6. An example of its operation is shown in Figure 3.3: in
effect the 0 value is treated as a token that is passed between waiting CPUs
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structure mutex:
int spinlock
bool free = True // guarded by spinlock
queue waitlist // waiting threads, guarded by spinlock

mutex_lock(mutex m):
disable_interrupts()
spin_lock(&m.spinlock)
if m.free

m.free = False
spin_unlock(&m.spinlock)
enable_interrupts()

else:
pause(current_process) // remove it from active list
m.waitlist.add(current_process)
spin_unlock(&m.spinlock)
enable_interrupts()
sleep() // wake here when mutex acquired

mutex_unlock(mutex m):
disable_interrupts()
spin_lock(&m.spinlock)
if waitlist is empty:

m.free = True
spin_unlock(&m.spinlock)
enable_interrupts()

else
local next_thread = m.waitlist.pop_from_head()
spin_unlock(&m.spinlock)
enable_interrupts()
wake(next_thread) // add it to the active list

Listing 3.7: Multi-core-safe implementation of the mutex from Fig-
ure 3.5, with spinlock for additional protection

(or threads) and the lock memory location. This lock is extremely simple,
and by making use of the hardware-provided atomic SWAP instruction, it
guarantees mutual exclusion. However as we see in the figure it can be
(a) unfair, as it does not respect the order in which CPUs begin to wait
for the lock, and (b) inefficient, as CPUs 2 and 0 are unable to perform
any work while waiting. We therefore use spinlocks to guard very short
pieces of code, and then use these pieces of code to construct efficient and
well-behaved primitives for applications to use.

A spinlock-enhanced version of the mutex in Figure 3.5 is shown in Fig-
ure 3.7; it is identical except for the addition of a spinlock, which is used in
addition to disabling interrupts to guard the locked flag and wait queue.

This implementation retains almost all the efficiency of the single-CPU

locked
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Figure 3.4: Scenario for question 3.3.1

version, as the spinlock is never held for more than a few instructions,
limiting the length of time that other CPUs are stuck busy-waiting5. Unlike
the basic spinlock, this mutex is also fair, as waiting threads will be queued
and acquire the mutex in FIFO order. (at most, any unfairness in the
underlying spinlock mechanism will effect the order in which threads go
onto the list, not how many turns they get holding the mutex.)

A question for the reader - why is it
important to unlock the spinlock
and enable interrupts before calling
sleep() in mutex_lock?

More formally, what we mean
by “fair” in this case is bounded
waiting—i.e. no thread can be
“starved” while other threads re-
peatedly acquire and release the
mutex. (this is the third require-
ment for solutions to the critical section problem)

In particular, if thread A is waiting for the mutex, bounded waiting means
that another thread B cannot acquire and then release it many times while
A is still waiting. (note that spinlocks cannot guarantee this property, as
any waiting thread can acquire the lock, regardless of how long it has been
waiting.) If multiple threads (on separate CPUs) call mutex_lock at once,
the spinlock will determine what order they will be added on the queue,
but the FIFO ordering of the queue ensures that if a thread acquires the
mutex and releases it, when it tries to lock the mutex again it will go to
the tail of the line.

Review Questions

3.3.1. In the example in Figure 3.4, two CPUs execute SWAP instructions
with the same location in memory. CPUs 1 and 2 start with the
values 1 and 2 in their registers, and the initial memory location is

5Sort of. On massively multi-core machines—e.g. 72 cores is a common number
nowadays—highly contented locks are still inefficient, as waiting for 71 other CPUs to do a
few instructions each can take a while.

mutex_lock
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zero. Which of these is a valid result after both SWAP instructions
have completed?
a) CPU 1: R1=2, CPU 2: R1=1, memory: 2
b) CPU 1: R1=2, CPU 2: R1=1, memory: 0
c) CPU 1: R1=2, CPU 2: R1=0, memory: 1

3.3.2. A mutex is: a) A type of spinlock b) An application-defined class
c) An OS-defined lock object

3.4 The Bounded Buffer Problem and Semaphores

Mutexes can be used to prevent certain orders of execution—e.g. multiple
threads executing certain operations at the same time—but what if we
want to cause a certain order of execution? (for instance, waking a thread
which is waiting for keystroke input.) We refer to this as synchronization,
and to the primitives which are used for this purpose as synchronization
primitives.

To begin we’ll examine a “classic” or pedagogical6 synchronization prob-
lem frequently used as an example of multi-threaded programming: the
Bounded Buffer Problem, which may be defined as follows:

1. An object buffer has methods put and get.
2. Successive calls to buffer.put(item) insert items into the buffer.
3. Successive calls to item = buffer.get() remove items from the

buffer in the same order as they were inserted.
4. If the buffer contains no items, buffer.get() will block until an

item is inserted.
5. If the buffer contains N items, buffer.put() will block until an

item is removed.

We can start with a single-threaded version of the bounded buffer. In this
case parts 3 and 4 of the definition must be modified, as no other thread
will arrive to insert or remove an item; instead we will return NULL if no
item is available, and ERROR if the buffer is full, as seen in Figure 3.5.

By adding a mutex we can safely handle multiple threads, as seen in
Figure 3.6.7

However we still don’t have a full solution to the bounded buffer
problem—we need to not only protect the threads from each other,

6which means “for teaching purposes only”, i.e. not necessarily practical.
7Note how locks complicate control flow—you have to make sure that all locks are

released, even in failure cases.
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list buffer

put(item):
if len(buffer) >= N

return ERROR
else

buffer.add_tail(item)

return OK

get(item):
if len(buffer) == 0

return NULL
else

return buffer.remove_head()

Figure 3.5: Simple bounded buffer

The two operations on a semaphore
were originally given Dutch
abbreviations P and V by their
inventor, Edsger Dijkstra. Since
then they have also been called
down and up, acquire and release,
wait and signal, await and notify,
etc. We will call them wait and
signal.

but to coordinate or synchronize
them, so that e.g. one thread sleeps
in get() until another thread in-
vokes put(). We haven’t seen
how to use a mutex for this pur-
pose, and in fact many real-world
mutex implementations cannot be
used to do this8.

Instead we introduce a new ob-
ject called the counting semaphore,
which is deliberately designed for synchronizing the actions of multiple
threads. Like a mutex, a semaphore is an OS-provided object; however an
initial count N is specified when it is created. It has two methods, wait()
and signal(), with the following behavior:

• For semaphore S with initial count N , if Nw is the total number of

mutex m
list buffer

put(item):
m.lock()
if len(buffer) >= N

result = ERROR
else

buffer.add_tail(item)
result = OK

m.unlock()

return result

get(item):
m.lock()
if len(buffer) == 0

result = NULL
else

result = buffer.remove_head()
m.unlock()
return result

Figure 3.6: Thread-safe bounded buffer

8In particular, for debugging purposes many implementations (such as the POSIX
threads implementation in Linux) require that a mutex be unlocked by the same thread that
locked it.
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mutex m
list buffer
semaphore space = semaphore(N)
semaphore items = semaphore(0)

put(item):
space.wait()
m.lock()
buffer.add_tail(item)
m.unlock()

items.signal()

get(item):
items.wait()
m.lock()
result = buffer.remove_head()
m.unlock()
space.signal()
return result

Figure 3.7: Semaphore-based bounded buffer

times any thread has returned from S.wait(), andNs is the number
of times any thread has entered S.signal(), then Nw −Ns ≤ N .

Intuitively a semaphore may be understood by assuming that it maintains
a count initialized to N . When wait is called it (a) waits until the count
is greater than zero, then (b) decrements the count and returns. Calling
signal increments the count, possibly waking up one of the threads waiting
for count > 0. In practice this is done by maintaining a list of waiting
threads; if there are threads waiting on this list then signal wakes the first
one rather than incrementing the count.

A question for the reader - if you
are given a function
NewSemaphore0() which creates
a new counting semaphore with its
count initialized to 0, how would
you write a function
NewSemaphore(N) which returns
a semaphore initialized to an
arbitrary positive count N?.

A binary semaphore is a
semaphore which can only take
on the values 0 and 1, and is the
same thing as a mutex. (well,
disregarding implementation
details of many mutexes, such as
ownership checks.) Note that this
behaves slightly differently from
a counting semaphore initialized
to 1, specifically in the case where
signal() is called multiple times without intervening calls to wait9.

Note that the behavior of the wait and signal methods of a counting
semaphore are almost exactly the same behaviors as those we want for the
put and get methods in our bounded buffer, keeping track of a count and
blocking when that count reaches a limit. Using one semaphore to track
the number of items in the buffer, and another to track the number of free
spaces, we have the implementation in Figure 3.7.

9Not that it really matters, as a well-behaved program probably wouldn’t do this.
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Figure 3.8: Operation of bounded buffer from Figure 3.7, limit=2

Note that we still need a mutex to protect the linked list, as although
the semaphore limits the number of threads which can be modifying the
list simultaneously, that limit is greater than 1. (alternately we could
implement a “thread-safe linked list” class which included a mutex, thus
simplifying any threaded code which used it.)

In Figure 3.8 we see this in operation. With a limit of 2 items, the first
two calls to put return immediately; however the third one blocks as the
“space” semaphore has dropped to zero. When a call to get from thread 4
increments the “space” semaphore again, thread 3 is able to return from
space.wait(), decrementing its value to zero again, and can then insert
its item into the list.

Review Questions

3.4.1. The bounded buffer solution with mutexes shown in Figure 3.6 is
not a full solution to the bounded buffer problem because:
a) It doesn’t block in put() or get() when the buffer is full or

empty.
b) It sometimes loses items.
c) It doesn’t maintain the items in order.
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(a) (b) (c)
Figure 3.9: Three possible interleavings of foo() and bar().

3.5 Deadlock

Consider the ways that the following code can execute, with thread 1
executing foo(), and thread 2 executes bar():

mutex A, B;

foo:
lock A
lock B
...
unlock B
unlock A

bar:
lock B
lock A
...
unlock A
unlock B

• If thread 1 starts early enough, we may see the result in Figure 3.9(a),
where thread 1 or alternately thread 2) finishes completely before
thread 2 starts.
• Or, if they start close enough in time, they may overlap somewhat
but still complete successfully, as in Figure 3.9(b).
• But if they start at about the same time, there is a chance of getting
the situation in Figure 3.9(c), where both threads are blocking on
their second lock operation.

This is a deadlock, where two threads are each waiting for a lock held by
the other thread. As you can see, it can halt program execution just as
completely as a program crash or infinite loop, and typically requires the
application to be killed and restarted.
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Classic Conditions for Deadlock
Intuitively a deadlock is when multiple processes (or threads) are waiting
for locks held by other processes in the group, each unable to give up the
locks it is holding before it acquires the lock that it is waiting for. More
generally, deadlocks can occur when acquiring not just locks, but other
sorts of resources: e.g. each process might be trying to allocate N buffers
out of a fixed-sized pool.

Phrased more formally, there are four classic conditions for deadlock
among multiple processes contending for resources:

1. Mutual exclusion: A deadlock requires resources (like mutexes)
that can only be held by one process

2. Hold and wait: A process holds one or more acquired resources
and then blocks waiting to acquire another resource

3. No preemption: Resources are only released when a process is
done with them and calls the release function (like unlock). One
process cannot force another to release a resource.

4. Circular wait: Given the three prior conditions, if there is a circular
wait then there is a deadlock

The processes that deadlock can be any form of concurrent activity:
threads, processes, or interrupts vs. a foreground process. There can
be any number of processes, and in some cases a process can even dead-
lock with itself. Finally, the resources being acquired can be anything
which has both the mutual exclusion and hold and wait properties. These
resources aren’t just mutexes and semaphores, but things like memory
buffers or the process of obtaining exclusive access to a file.

Finally, there is a deadlock case not quite covered by these conditions—the
one where the programmer forgot to release a lock. Try not to do that.

Avoiding Deadlock: Lock Ranking

Figure 3.10: Lock ranking

If any one of these four conditions can
be avoided, deadlock cannot occur. If
locks are always acquired in the same
order, no matter what thread is acquir-
ing them via which code path, then
there will be no circular wait and thus
no deadlock, as you can see in Fig-
ure 3.10.
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Using lock ranking requires three steps:

1. Find all locks in a program.
2. Number them in the order (“rank”) in which they should be acquired
3. Verify that no lock is acquired out of order, via e.g. the use of debug

assertions and extensive testing.

This technique is difficult to implement, and cannot be used in every case.
An example of its use is in the VMware virtualization product, where
several hundred (as of when I worked there in 2007) locks are ranked
in order, and beta builds will assert and crash if a lower-priority lock is
acquired while holding a higher-priority one.

Review Questions

3.5.1. Given a set of processes, deadlock occurs when:
a) Each process in the set is blocked waiting for a resource (i.e.

lock) held by another process in the set
b) Each process is waiting on the same resource, and that resource

is held by a process not in the set
c) One of the processes terminates

3.5.2. Deadlock can be prevented by ensuring that processes always ac-
quire locks in the same order: true / false

3.5.3. Deadlock can be prevented by ensuring that a process only holds
one lock at a time: True / False
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3.6 Monitors

Semaphores do a good job of solving simple problems like the bounded
buffer, and in theory are sufficient to solve any synchronization problem10,
but become quite complicated to use when a problem can’t be solved by
simple counting. As an example, we’ll look at what we’ll call theWeighted
Bounded Buffer Problem, which differs from the bounded buffer problem
in these ways:

1. Each item has a weight, item.weight
2. The total weight of the items in the buffer cannot exceed N. If

buffer.put() would cause this limit to be exceeded, then it will
block until enough space is available.

At first it seems like it would be sufficient for put and get to call signal
and wait W times if W is the weight of the item being added or removed;
however this could cause problems if two threads called put or get simul-
taneously, and is not possible at all if weight is a continuous (i.e. floating
point) value. Unlike the simple case, we’re going to have to write our own
code to maintain counts and make decisions about when to sleep, and if
we do this with semaphores it’s going to be quite ugly.

Instead we introduce a programming language feature for synchronization
called a monitor. Unlike mutexes and semaphores, which are operating
system-defined types, a monitor is a special type of user-defined object or
class, where the language provides support for constructing user-defined
synchronization behavior.

In particular, a monitor has (a) special instance variables called conditions,
which support the methods wait, signal, and broadcast, and (b) a
per-instance implicit mutex, which ensures that only one thread is in the
monitor (instance) at any one time, executing method code. More precisely,
what we mean by this is:

• A thread enters the monitor by entering one of its methods. Any
number of threads can try to invoke methods on the same instance
at once, but only one will get through and begin to execute method
code.

• A thread leaves the monitor when it returns from a method. This is
pretty obvious.

• A thread also leaves the monitor when it calls wait on any of the
instance condition variables. This is less obvious, but important,
as otherwise no other thread would be able to enter the monitor to
wake it up.

10Or at least any that can be solved by other techniques described in this text.
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monitor weighted_bb:
condition C_put, C_space, C_get
total = 0
space_needed = 0
buffer

method put(item):
1 while space_needed > 0
1 wait(C_put)

space_needed = item.weight
2 while item.weight + total > max
2 wait(C_space)

buffer.add_tail(item)

total = total + item.weight
4 signal(C_get)
1 space_needed = 0
1 signal(C_put)

method get():
3 while total == 0
3 wait(C_get)

item = buffer.remove_head()
total = total - item.weight

2 if total + space_needed <= max
2 signal(C_space)

return item

Figure 3.11: Monitor implementation of weighted bounded buffer

• A thread then enters the monitor again when it returns from wait.
Note that this can’t actually happen until after the thread which is
currently in the monitor—usually the one that called notify—leaves
the monitor.

When a thread calls wait(C) it goes to sleep, and must be woken by a
future call to notify or broadcast. When a thread calls signal(C), a
thread waiting on C is made eligible to return from wait(), and will do
so as soon as it gets a chance to re-enter the monitor. On most systems
threads waiting on C are picked in FIFO order, but this is not guaranteed.
Finally, when a thread calls broadcast(C), all threads waiting on C are
made eligible to return from wait(), and again will do so as soon as they
are able to. If either notify or broadcast are called on a condition with
no waiting threads, nothing will happen and no error will occur. Unlike
calling signal on a semaphore with a positive count, the call won’t be
“saved up” for future calls to wait. And unlike unlocking a free mutex, it
won’t result in an error.

Here we see a monitor implementation of the weighted bounded buffer.
Despite the increased complexity of the problem, this solution is only
slightly longer than the semaphore solution to the simpler problem. A
more detailed description of its operation:

(1) The lines marked 1 serve as “gatekeepers”: only one thread at a time
can be executing the lines in the middle, including the wait(C_space)
call. After leaving this section of code we signal the next waiting thread,
if any.

(2) Here a thread calling put() waits for space, and get() wakes it up if
it has created enough space by removing an object.

(3) Here a thread calling get() waits for an item if the buffer is empty,
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and is signalled by a thread at (4) calling put(). Note that this interaction
is simpler, because (as in the simple bounded-buffer case) there is a one-
to-one relationship between items and calls to get().

3.7 Using Conditions

Like many programming features, there are different ways to use condition
variables, and some of them are “better” than others, being easier to
understand, write correctly, and debug. In this class we teach the following
rule for using them:

• Each condition C is associated with a boolean predicate P , and
that condition is used in “guards” of the form while (not P)
wait(C), so that after the guard has been executed the invariant P
is true.

In the example above, for instance, C_space is associated with the predi-
cate item.weight+ total ≤ max, or in other words that there is enough
room for the item. If there isn’t then we wait; immediately after passing
these two lines (marked 2 in the listing) we can be sure that there is indeed
enough room.

How can we be sure? If the predicate is true, and we don’t have to wait,
the answer is trivial. In the other case, we need to make sure that every
piece of code which might make the predicate become true checks it, and
if the predicate actually has become true it signals the associated condition
variable.

Note that this association only exists in the mind of the programmer, and
is not enforced in any way by the programming language. Multithreaded
programming would be much easier if we could just wait on the boolean
predicate itself, but no one has yet invented a way to do this efficiently.
Instead the programmer is responsible for the job of identifying what other
pieces of code might make the predicate become true, with the resulting
bugs if you miss any cases.

while (condition) vs if (condition): In Figure 3.11 it would be
nice if we could just call wait(C_put) or wait(C_space) and assume
that the associated predicate is true after returning from wait. Unfortu-
nately, it’s not really possible, or at least not efficiently—even if mutexes
and condition variables preserve FIFO ordering, there’s often a window be-
tween when a thread calls signal(C) and the thread blocked in wait(C)
returns, where a third thread can call the monitor method and grab the
monitor mutex before the second thread is able to acquire it while returning
from wait(C).

wait(C_put)
wait(C_space)
signal(C)
wait(C)
wait(C)
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To handle this race condition we loop checking the predicate and waiting
on the condition variable. In the (very rare) case where another thread
entered the monitor while we were waking up, and e.g. grabbed whatever
thing or resource we were waiting for, we go back to sleep and wait for
another one.

Review Questions

3.7.1. A monitor is different from a semaphore in which of these ways:
a) It is a user-defined type, rather than OS-defined
b) It can have multiple queues of waiting threads
c) Both of the above

3.7.2. A thread “leaves” the monitor when:
a) It returns from a method
b) It calls wait()
c) It calls signal()
d) Answers 1 and 2
e) All of the above.

3.7.3. A condition variable contains a boolean predicate, and a thread
waiting on it blocks until that predicate becomes true: true / false



3.7. USING CONDITIONS 61

Implementing Monitors
So far we’ve described monitors as a language feature, but if you look
at the languages in use today you won’t find the ’monitor’ keyword any-
where. Java has very limited direct support for monitors—a synchronized
class is essentially a monitor with a single condition variable, accessed
implicitly via acquire() and release(). In general, however, you have
to implement monitors yourself, using some sort of condition variable
object supplied by the operating system or thread library.

POSIX threads11: This threading package, provided on Unix-like systems
such as Linux and OSX, provides the following types and functions we
can use:

pthread_mutex_t mutex
pthread_mutex_lock(mutex)
pthread_mutex_unlock(mutex)
pthread_cond_t cond
pthread_cond_wait(cond, mutex)
pthread_cond_signal(cond)
pthread_cond_broadcast(cond)

Since the language doesn’t provide an implicit monitor mutex, we allocate
an explicit per-object mutex, locking it on entry to each method and
unlocking before returning from the method. Condition variables are also
provided directly, e.g. by the pthread_cond_create function; however the
thread library cannot know what object instance and mutex a condition
variable is associated with, and so we have to pass the mutex explicitly
when we wait on a condition. More precisely, the translation (as shown in
Figure 3.12) is:

1. (implicit mutex) : create a per-instance mutex m which is locked
on entry to each method and unlocked on exit. (being careful with
multiple exits, or worse yet exceptions)

2. condition variables : translate each to an instance variable of type
pthread_cond_t

3. signal(C), broadcast(C) : pthread_cond_signal(C) and
pthread_cond_broadcast(C)

4. wait(C) : pthread_cond_wait(C, m) where m is the
per-instance mutex.

Note that for programming exercises in this class we may implement
singleton objects in C, in which case we can simplify our implementation
somewhat:

11The same threading model is available in C11, with slightly different names—e.g.
mutexes are of type mtx_t, with functions mtx_lock and mtx_unlock

mtx_t
mtx_lock
mtx_unlock
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monitor myclass:
condition C1, C2

method m1():
C1.wait()
C2.signal()
return

class myclass {
private:

pthread_mutex_t m;
pthread_cond_t C1, C2;

public:
void m1(void) {

pthread_mutex_lock(&m);
pthread_cond_wait(&C1, &m);
pthread_cond_signal(&C2);
pthread_mutex_unlock(&m);

}

Figure 3.12: Implementation of monitor in Posix threads.

• Methods become functions, as there is no need to specify which
object instance to apply a method to.
• Instance variables become global variables, because we only need
one copy of them, but they must be shared between methods.

pthread_mutex_t m;
pthread_cond_t C1, C2;
void m1() {

pthread_mutex_lock(&m);
pthread_cond_wait(&C1, &m);
pthread_cond_signal(&C2);
pthread_mutex_unlock(&m);

}

Listing 3.8: Singleton monitor implementation in C.

Java: In this case we use an instance of ReentrantLock (in
java.util.concurrent.locks) as our mutex, with methods lock and unlock.
Condition variables are associated with a ReentrantLock (i.e. mutex), so
given a ReentrantLock m created to be the per-object mutex, for each
condition variable C in the original monitor we create a Condition via
m.newCondition(); operations on these conditions are wait, notify, and
notifyAll.
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import ReentrantLock from java.util.concurrent.locks;
class myclass {

ReentrantLock m = new ReentrantLock();
Condition C1 = m.newCondition(), C2 = m.newCondition();

void m1() {
m.lock();
C1.wait();
C2.notify();
m.unlock();

}

Listing 3.9: Monitor implementation in Java

Python: The module threading implements two classes, Lock and
Condition, which we use as above. (note that the methods for
threading.Lock are acquire and release) Like Java, conditions are
associated with locks at the time of creation, so there is no need to remem-
ber to pass the mutex in the wait() function.

Review Questions

3.7.1. When implementing a monitor in POSIX threads, you need a sepa-
rate mutex for each condition variable: true / false

3.7.2. Race conditions can occur in monitors because:
a) Multiple threads can be executing methods at the same time
b) The order in which threads enter the monitor may differ
c) Both of the above

import threading
class myclass:

def __init__(self):
self.m = threading.Lock()
self.C1 = threading.Condition(self.m)
self.C2 = threading.Condition(self.m)

def m1(self):
self.m.acquire()
self.C1.wait()
self.C2.notify()
self.m.release()

Listing 3.10: Monitor implementation in Python
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P?
no

yes

(a) (b) (c) (d)
Figure 3.13: Elements of the graphical language: (a) method, (b) choice (if/then

statement), (c) condition, and (d) signalling a condition.

sn > 0?

w+t > M?

(a)

yes

no

yes

no

put(item)

t = 0?
yes

no

get()

(b)

(a) total = total + item.weight
    space_needed = 0
(b) total = total - item.weight

w+t ≤ M?

sn = space_needed
t = total
w = item.weight
M = max

yes

no

Figure 3.14: Graphical representation for weighted bounded buffer solution shown
in Figure 3.11

3.8 Graphical Notation

Reasoning about multi-threaded programs is harder than single-threaded
ones. For single-threaded programs most people can visualize how pro-
gram execution moves from one line of code to another; however in the
multi-threaded case you have to be aware of many possible copies of the
same code, each possibly executing a different line.

In Figure 3.13 we see the elements of a graphical representation for a
monitor, which allows us to see more directly how different threads interact
in the execution of a multi-threaded program. Each method is represented
by a path (a), which may involve decisions (b), waiting on conditions (c),
and signalling those conditions (d).
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(a)
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no
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get()
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no

yes

no
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no
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w+t ≤ M?
yes
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Figure 3.15: Multiple threads shown as black dots moving through the monitor
code.
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In Figure 3.14 we see the weighted bounded buffer solution from Fig-
ure 3.11 represented in this graphical notation, and in Figure 3.15 we see
multiple threads moving through this representation.

(Note that the figures have been simplified slightly by using if (!P)
wait(C); instead of while (!P) wait(C).)
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3.9 Putting it all together

Most of the synchronization techniques discussed in this chapter are ap-
plicable to multi-threaded application programs, rather than operating
systems themselves; however synchronization and the prevention of race
conditions are still key techniques within an OS.

Condition variables and signal(): The I/Owait mechanism is an example
of this. When the shell invokes the read system call to read characters
from the keyboard, the process is removed from the active list and placed
on a wait queue in the kernel; the keyboard interrupt handler then wakes a
process waiting on this queue when a character is received. The semantics
of this I/O wait queue and the operation to wake a process from it are
identical to those of a condition variable with wait and signal. (the
design choices are similar, too. Simple operating systems may use the
equivalent of broadcast, waking all processes waiting on any sort of
I/O and having each of them re-check the condition they are waiting on
before going to sleep, while for highest performance more complete OSes
have separate wait queues per I/O source, and when data arrives a single
waiting process will be woken.)

Mutexes: An operating system is full of potential race conditions, and
heavy use is made of locking mechanisms to prevent errors or crashes.
Asynchronous events can occur due to timer or I/O interrupts, and on a
multi-core CPU there can be OS code running on multiple cores at the
same time. In either case it is essential to protect key OS data structures,
such as the list of active processes, which is typically implemented as a
singly- or doubly-linked list.

Data structures such as this will typically be protected by a combination of
spinlocks and disabling interrupts—e.g. to modify the active process list,
OS code will (1) disable interrupts, (2) acquire a spinlock which guards
that list, (3) perform the modifications, (4) release the spinlock and (5)
re-enable interrupts. (Interrupts are typically disabled while an interrupt
handler executes, so when accessing these data structures from an interrupt
handler it is sufficient to acquire the spinlock.)

When switching to the next runnable process, it’s necessary to protect
not only the active process list, so that it doesn’t get corrupted, but to
also protect the variable identifying the current process on each CPU,
to prevent two processes from being assigned to the same CPU at the
same time. A simple way of doing this is to have a schedule() function
which is called under a lock, and which pops the next runnable process
off the active list, makes it the current process, and switches to it; e.g. an
implementation using simple round-robin scheduling might be as shown
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[e.g. yield:]
...

lock(plist_lock);
schedule();
unlock(plist_lock);

...

schedule() {
active_tail->next = current;
active_tail = current;
current = active_head;
active_head = active_head->next;
switch_to(current);

}

Figure 3.16: Simple round-robin thread scheduler

in Figure 3.16.

Note that the lock can’t be “encapsulated” within schedule and hid-
den from other code, because special handling is required when creating
processes—when a new process begins it will execute a “trampoline” func-
tion, rather than the second half of the schedule function, and must drop
the lock that was acquired when switching to it.

Finally, deadlocks are a risk when implementing an operating system. In
many cases the objects of contention are not mutexes themselves, but
resources such as pages of memory E.g. consider the case12 where a
process tries to allocate a page of memory when (almost) all pages are in
use. The OS finds a page it can “steal” from another process after writing
its contents to disk; however if that page is associated with a network file,
the OS may need to temporarily allocate another page of memory in order
to send the network message to write it back.

The solution to this is to reserve the last few blocks of memory to various
high-priority uses. This works in much the same way as lock ranking,
because the original request is made at low priority (i.e. by the process)
and thus can’t acquire and hold the resources which would be needed by
the higher-priority page-out and networking tasks.

12Yes, I know we haven’t covered some of the parts of this yet, but we’ll get to them in
the next chapter...
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Answers to Review Questions

3.2.1 (race conditions can be detected by exhaustive testing) False. The
outcome of a race condition is determined by the internal order in
which threads execute instructions within a program. This internal
ordering will be affected by the order in which inputs are received,
but it will also depend on uncontrollable events such as interrupts,
cache behavior, etc.

3.2.2 (implementing withdraw method) (2), lock mutex m. Both deposit
and withdrawal modify the same account balance, and so no combi-
nation of the two may be allowed to execute simultaneously.13

3.3.1 (3), “CPU 1: R1=2, CPU 2: R1=0, memory: 1”. In this case CPU
2 executes the SWAP instruction before CPU 1.

3.3.2 (3), an OS-defined lock object. (note that although spinlocks are a
simple kind of mutex, they are not the only kind)

3.4.1 (1) There is no coordination between one thread making room (or
adding an item to an empty buffer) and another thread waiting for
room or a new item, so the only thing it can do is return EMPTY or
FULL.

3.5.1 (1), each process is blocked waiting for a resource held by another
process in the set.

3.5.2 True. Ranking locks in order prevents the formation of a circular
wait.

3.5.3 True. If a process never acquires more than one lock, then it never
holds a lock while waiting for another one.

3.7.1 (3), both of the above. Monitors are user-defined classes, and each
condition variable in a monitor is a separate queue that threads can
wait on.

3.7.2 (4), it leaves the monitor both when returning from a method and
when calling wait. It does not leave the monitor when calling
signal.

3.7.3 False. A condition variable has no value, and a thread waiting on it
will only wake when another thread calls signal or broadcast.

3.7.1 False. A single mutex is used to guard the instance variables of the
monitor, and is passed in pthread_cond_wait when waiting on
any of the condition variables of that instance.

3.7.2 (2), the order in which threads enter the monitor may differ. (since
two threads cannot execute code in the same monitor at the same
time)

13Note that your customers may appreciate the lock-less version, as it will occasionally
forget that a withdrawal was made.





Chapter 4

Virtual Memory

In chapter 2 we discussed operating systems basics such as I/O, program
loading, and context switching primarily for a simple computer with a
single physical address space. By this we mean that the bits in an address
register—for instance the program counter—are the same bits that go out
over wires on the motherboard to DIMM sockets and select a particular
location in a memory chip, so that no matter what process is executing, the
same address (e.g. 0x1000) always refers to the same memory location.

4.1 Base and Bounds translation

Figure 4.1: Base and bounds translation

We first looked at direct phys-
ical addressing, where no
matter which process is exe-
cuting, the same address (e.g.
0x1000) refers to the same
memory location. In addition
we reviewed a very simple
form of address translation,
shown here in Figure 4.1,
where base and bounds reg-
isters are used to relocate a
section of the virtual address
space—the addresses seen by the program, corresponding to values in
the CPU registers—to somewhere else in the physical address space. By
changing these translations the operating system can create multiple virtual
address spaces, one per process; however there is still only one physical
address space, uniquely identifying each byte in each memory chip. In this
chapter we introduce paged address translation, a more complex address

71
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Start: 32 locations, all free

Step 1, 2: a = alloc(10), b = alloc(1)

Step 3, 4, 5: c = alloc(10), d = alloc(1), e = alloc(10)

Step 6, 7, 8: free(a), free(c), free(e)

Figure 4.2: Memory fragmentation example - after step 8 there are 30 free locations,
but the largest range that can be allocated is 10.

translation mechanism used by most modern CPUs, and present the 32-bit
Intel implementation as an example.

Limitations of base+bound translation: Modern hardware and oper-
ating systems provide a very similar process address space model, but
no longer use base and bounds registers for address translation1, despite
it being simple, cheap, and quite possibly faster than alternate methods.
There are a number of reasons why base and bounds translation is no
longer used, but the fundamental reason is memory fragmentation.

Base and bounds address translation requires a contiguous memory region
for each process. If memory is allocated and de-allocated in chunks of
different sizes and at different times, then it can become fragmented so
that even if large amounts of memory are free, it will be divided into
smaller fragments, separated by longer-lived small allocations, as seen in
Figure 4.2.

In the last line, you can see that only 2 units of memory (out of 32) remain
allocated, but the largest amount that can be allocated at one time is 10
units. If all allocation requests are small, this might not be a problem;
however, in an operating system it is common to have one or two very
large processes (e.g., a web browser and word processing software), and
many small, long-running processes (e.g., the on-screen battery display
or wifi signal strength indicator). In this case, large memory allocations
may fail, even when there is enough total memory free, because long-lived
small allocations fragment the available contiguous memory into smaller
pieces.

1Not even on Intel CPUs, which support base+bounds translation using segment registers.
Nearly every operating system running on these CPUs sets base=0 and bound=max as one
of the very first steps in hardware initialization.
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4.2 Paging - Avoiding Fragmentation

The fragmentation in Figure 4.2 is termed external fragmentation, because
the memory wasted is external to the regions allocated. This situation can
be avoided by compacting memory—moving existing allocations around,
thereby consolidating multiple blocks of free memory into a single large
chunk. This is a slow process, requiring processes to be paused, large
amounts of memory to be copied, and base+bounds registers modified to
point to new locations2.

Figure 4.3: Paged memory allocation

Instead, modern CPUs use
paged address translation,
which divides the physical
and virtual memory spaces
into fixed-sized pages, typ-
ically 4KB, and provides a
flexible mapping between vir-
tual and physical pages, as
shown in Figure 4.3. The op-
erating system can then main-
tain a list of free physical pages, and allocate them as needed. Because
any combination of physical pages may be used for an allocation request,
there is no external fragmentation, and a request will not fail as long as
there are enough free physical pages to fulfill it.

Internal Fragmentation
Paging solves the problem of external fragmentation, but it suffers from
another issue, internal fragmentation, because space may be wasted inside
the allocated pages. E.g. if 10KB of memory is allocated in 4KB pages,
3 pages (a total of 12KB) are allocated, and 2KB is wasted. To allocate
hundreds of KB in pages of 4KB this is a minor overhead: about 1

2 a page,
or 2KB, wasted per allocation. But internal fragmentation makes this
approach inefficient for very small allocations (e.g. the new operator in
C++), as shown in Figure 4.4. (It is also one reason why even though
most CPUs support multi-megabyte or even multi-gigabyte “huge” pages,
which are slightly more efficient than 4KB pages, they are rarely used.)

2This is similar to garbage collection in Java and other languages; however in that case
pointers to the garbage-collected memory must be changed to point to the new locations.



74 CHAPTER 4. VIRTUAL MEMORY

Allocation 1: 30 bytes Allocation 2: 200 bytes Allocation 3: 50 bytes
30 4066 200 3896 50 4046
Allocation 1: 30 bytes Allocation 2: 200 bytes Allocation 3: 50 bytes
30 4066 200 3896 50 4046

Figure 4.4: Internal fragmentation for very small allocations—total allocated
memory is 30+200+50=280 bytes, overhead is 12008 bytes.
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Figure 4.6: Page number and offset in 32-bit paged translation with 4KB pages

4.3 Paged Address Translation

We examine a single model of address translation in detail: the one used
by the original Pentium, and by any Intel-compatible CPU running in
32-bit mode. It uses 32-bit virtual addresses, 32-bit physical addresses,
and a page size of 4096 bytes. Since pages are 212 bytes each, addresses
can be divided into 20-bit page numbers and 12-bit offsets within each
page, as shown in Figure 4.6

20-bit page number 12-bit offset 

20-bit page number 12-bit offset 

map 

Figure 4.5: 32-bit paged address translation

The Memory Management
Unit (MMU) maps a 20-bit
virtual page number to a 20-
bit physical page number; the
offset can pass through un-
changed, as shown in Fig-
ure 4.5, giving the physical ad-
dress the CPU should access.

Although paged address translation is far more flexible than base and
bounds registers, it requires much more information. Base and bounds
translation only requires two values, which can easily be held in registers in
the MMU. In contrast, paged translation must be able to handle a separate
mapping value for each of over a million virtual pages. (although most
programs will only map a fraction of those pages) The only possible place
to store the amount of information required by paged address translation
is in memory itself, so the MMU uses page tables in memory to specify
virtual-to-physical mappings.
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present? physical page # 

present? physical page # 

... 1048574 more... 

CR3 
one Page Table Entry (PTE) 

Figure 4.7: Single-level 32-bit page table

PA = translate(VA):
VPN, offset = split[20 bits, 12 bits](VA)
PTE = physical_read(CR3 + VPN*sizeof(PTE), sizeof(PTE))
if not PTE.present:

fault
return PTE.PPN + offset

Listing 4.1: Address translation pseudo-code for single-level page table.

Single-level Page Table
One of the simplest ways to structure a page table for mapping 20-bit page
numbers is as a simple array with 220 entries. With this configuration, each
virtual page has an entry, and the value in that entry is the corresponding
physical page number, as seen in Figure 4.7. This single-level table is
located in physical memory, and the MMU is given a pointer to this table,
which is stored in an MMU register. (On Intel-compatible CPUs, the page
table pointer is Control Register 3, or CR3.) This is shown in Figure 4.7,
where we see the first two entries in a 220 or 1048576-entry mapping table.
In addition to the translated page number, each entry contains a P bit to
indicate whether or not the entry is “present,” i.e., valid. Unlike in C or
Java we can’t use a special null pointer, because 0 is a perfectly valid page
number3.

In Figure 4.1 we see pseudo-code for the translation algorithm imple-
mented in an MMU using a single-level table; VA and PA stand for virtual
and physical addresses, and VPN and PPN are the virtual and physical
page numbers.

Note that this means that every memory operation performed by the CPU
now requires two physical memory operations: one to translate the vir-
tual address, and a second one to perform the actual operation. If this
seems inefficient, it is, and it will get worse. However, in a page or two
we’ll discuss the translation lookaside buffer or TLB, which caches these
translations to eliminate most of the overhead.

3Besides, the hardware designers would rather check the value of a single wire than
compare a whole bunch of bits at once.
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P physical page # 

... 1021 more... 

CR3 P physical page # 

... 1022 more... 

P physical page # 

P physical page # 
... 1023 more... 

P=0 

P physical page # 

Figure 4.8: Two-level page table for 32-bit addresses and 4KB pages

The single-level page table handles the problem of encoding the virtual-to-
physical page map, but causes another: it uses 4MB of memory per map.
Years ago (e.g. in the mid-80s when the first Intel CPUs using this paging
structure were introduced) this was entirely out of the question, as a single
computer might have a total of 4MB of memory or less. Even today, it
remains problematic. As an example, when these notes were first written
(2013), the most heavily-used machine in the CCIS lab (login.ccs.neu.edu)
had 4GB of memory, and when I checked it had 640 running processes.
With 4MB page tables and one table per process, this would require 2.5GB
of memory just for page tables, or most of the machine’s memory. Worse
yet, each table would require a contiguous 4MB region of memory, run-
ning into the same problem of external fragmentation that paged address
translation was supposed to solve.

2-level Page Tables

To fix this, almost all 32-bit processors (e.g. Intel, ARM) use a 2-level
page table, structured as a tree, as seen in Figure 4.8.

The top ten bits of the virtual page number index into the top-level table
(sometimes called the page directory), which holds a pointer to a second-
level table. The bottom ten bits of the virtual page number are used as
an index into this second-level table, giving the location where the actual
physical address will be found. At first glance, it appears that this structure
takes just as much space as a single-level table. To map a full 4GB of
memory, it still requires 4MB (plus 1 additional page) for page tables.
But if a process only needs a small amount of memory, most of the entries
in the top-level directory will be empty (shown here as P=0), and only
a small number of second-level tables will be needed; small-memory
processes will thus have small page tables. And since the table is made out
of individual pages, we can use whatever set of 4KB pages are available,
instead of needing a contiguous 4MB block.

Note that this is a key characteristic of almost every page table imple-
mentation: a page table is made up of pages, allowing the same pool of
free pages to be used for both user memory allocation and for page tables
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themselves. In addition it means that each sub-table starts at the beginning
of a page and fits within that page, which simplifies array lookups when
translating a page number.

2-Level Page Table Operation
In Figure 4.9 we see a page table constructed of 3 pages: physical pages
00000 (the root directory), 00001, and 00003. Two data pages are mapped:
00002 and 00004. Any entries not shown are assumed to be null, i.e., the
present bit is set to 0. As an example we use this page table to translate a
read from virtual address 0x0040102C.

CR3 
00000 

00000: 

0 - 

... 

1 00001 

0 - 

1 00003 ... 

0 - 

1 00002 

00001: 

1 00004 

... 

Data pages: 

00002 00004 

00003: 
Second-level 

tables 

Figure 4.9: 2-level Page Table Example

The steps involved in translating this address are:

1) Split the address into page number and
offset

00401 02C 

2) Split the page number into top and bottom
10 bits, giving 0x001 and 0x001. (in the
figure the top row is hex, the middle two rows
are binary, and the bottom is hex again.)

00401

0000 0000 0100 00010000

00 0000 0001 00 0000 0001

001 001

00401

0000 0000 0100 00010000

00 0000 0001 00 0000 0001

001 001

3) Read entry [001] from the top-level page directory (physical page
00000) (note sizeof(entry) is 4 bytes):

address = start [00000000] + index [001] * sizeof(entry)
read 4 bytes from physical address 00000004 (page 00000, offset 004)
result = [p=1, pgnum = 00001]

4) Read entry [001] from the page table in physical page 00001:

address = 00001000 + 001*4 = 00001004
read 4 bytes from physical address 00001004
:result = [p=1, pgnum = 00002]
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CR3 
00000 

00000: 

0 - 

... 

1 00001 

0 - 

1 00003 ... 

0 - 

1 00002 

00001: 

1 00004 

... 

Data pages: 

00002 00004 

00003: 
Second-level 

tables 

Figure 4.10: Reference page table for review questions

This means that the translated physical page number is 00002. The offset
in the original virtual address is 02C, so combining the two we get the
final physical address, 0000202C.

Review questions

4.3.1. (all numbers are in hex) When translating the address 0x00C001C0,
the virtual page number is: a) 0x00C00 b) 0x1C0 c) 0x008

4.3.2. Referring to the image in Figure 4.10, to translate the address
00C001C0, splitting 00C00 into its top and bottom 10 bits gives
003, 000. Which page table entry is read from the top-level page
directory?

a) P=0, PPN=null
b) P=1, PPN=00001
c) P=1, PPN=00003

4.4 Translation Look-aside Buffers (TLBs)

A famous computer science quote
attributed to David Wheeler is: “All
problems in computer science can
be solved by another level of
indirection,” to which some add
“except the performance problems
caused by indirection.” A corollary
to this is that most performance
problems can be solved by adding
caching. How are these quotes
applicable to paged address
translation?

The 2-level table address trans-
lation processes you just learned
about is highly inefficient, even
more so than the single-level table.
Even if MMU accesses to memory
can be satisfied from the L1 cache,
this will still slow down the CPU
by a factor of three or more. To
reduce this inefficiency, a special-
purpose cache called the Trans-
lation Look-Aside Buffer (TLB)
is introduced. Instead of holding
memory values, like the L1 and L2
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caches, the TLB holds virtual page number to physical page number map-
pings. The TLB is typically very small: examining the machines I have
readily available, I see a TLB size ranging from 64 mappings (on certain
Intel Atom CPUs) to 640 mappings on Core i7 and Xeon E7 CPUs. One
reason for this small size is because the TLB has to be very fast—they are
needed for every memory operation before the CPU can look in its cache
for a value.

Using the TLB, the translation process now looks like this:

translate VA -> PA:
(VPN, offset) = split([20,12],VA)
if VPN is in TLB:

return TLB[VPN] + offset
(top10, bottom10) = split([10,10],VPN)
PDE = phys_read(CR3 + top10*4)
PTE = phys_read(PDE.pg<<12 + bottom10*4)
PPN = PTE.pg
add (VPN->PPN) to TLB, evicting another entry
return PPN + offset

Listing 4.2: Paged address translation with TLB

where PDE is the page directory (i.e. top-level) entry, PTE is the page
table (second-level) entry, and VPN, PPN are virtual and physical page
numbers as before.

How well does this perform? If all of the code and data fits into 640 pages
(about 2.5MB) on a high-end machine, all translations will come out of
the TLB and there will be no additional overhead for address translation.
If the working set (the memory in active use) is larger than this then some
accesses will miss in the TLB and require page-table lookup in memory;
however in most cases the translated mapping will be used many times
before being evicted from the TLB, and the overhead of accessing in-
memory page tables will be modest. (In addition, note that MMU accesses
to the page table go through the cache, further speeding up the translation
process)

4.5 TLB Consistency

Like any other cache, a TLB only functions correctly if it is consistent,
i.e. the entries in the TLB accurately reflect the in-memory values (i.e.
page tables) which they are caching. Since the values loaded into the TLB
come from a page table in memory at the address identified by CR3, the
values may become invalid if either (a) the page table values in memory



80 CHAPTER 4. VIRTUAL MEMORY

change (due to CPU writes) or (b) CR3 is modified, so that it points to a
different page table. In other words, inconsistencies can arise due to:

Individual Entry Modifications: Sometimes the OS must modify the
address space of a running program, e.g. during demand paging (covered
below), where the OS maps in new pages and un-maps others. When
changing the page table in memory, the OS must ensure that the TLB is
not caching a copy of the old entry.

Context switches: The OS provides each process with a separate virtual
address space, or set of virtual to physical mappings; the same virtual
address may be mapped to a different physical memory location in each
process. (i.e. to a memory location “owned” by that process.) When
switching between processes the OS changes CR3 to point to the address
space of the new process, and it’s clearly important for both security and
correctness to ensure that the MMU uses these mappings, not the old ones.

Preventing TLB Inconsistencies
The issue of modifications can be solved in a fairly straightforward way: the
MMU provides one instruction to flush the TLB entry for a particular page,
and another to flush the entire TLB (e.g. if a large number of mappings are
modified). When entries are flushed from the TLB, there is almost always
a performance impact, because of the extra memory accesses needed to
reload those entries the next time they are required. In this case, this
overhead is not that significant, because (a) the OS is already spending a
lot of time modifying the page table, and (b) it doesn’t do this very often,
anyway.

However, the issue with context switches is harder to solve. The easy
solution is to ignore the performance overhead and flush the entire TLB
on every context switch, as is done on most Intel-compatible CPUs.

Note that measuring the “cost” of
an OS operation is often
problematic. In a case like this, the
operation may complete quickly,
but cause other operations to slow
down.

With a 500-entry TLB and a 4-
level page table4, this results in
throwing away 2000 memory ac-
cesses worth of work on each con-
text switch. Another solution is
to tag each TLB entry with an
identifier (an Address Space ID or
ASID) identifying the context in
which it is valid, allowing entries
from multiple contexts to remain in the TLB at once. A special MMU
register specifies the ASID of the current process, and entries tagged with

4Both values typical of 64-bit desktop CPUs.
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physical page number
(20 bits)

unused
(4 bits) X1 D A X2, X3

(2 bits) U W P

The PPN is the physical page number of 
another page, either for the next level 
page table (assuming this is the Page 
Directory) or the actual data page.

Monitoring bits, which are used by the OS 
virtual memory mechanism, which is 
covered in the next module. The D bit tells 
it if a page has been modified and needs 
to be written back to disk, while the A bit 
detects pages that are not being used and 
can be put to better use.

Permission bits, which must be 
kept in the TLB along with the 
mapping, to check future access.

Ignored by MMU

Advanced functions

“Dirty.” If a write is made via 
an entry that has D = 0, D is 
set to 1 and the PTE is written 
back to the page table.

“Accessed.” If a read or write 
is made via an entry with A = 
0, A is set to 1 and the PTE is 
written back to the page table.

Advanced 
functions

“User-accessible.” In 
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to a page mapped with 
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any attempt to write to this 
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The PPN is the physical page number of 
another page, either for the next level 
page table (assuming this is the Page 
Directory) or the actual data page.

Monitoring bits, which are used by the OS 
virtual memory mechanism, which is 
covered in the next module. The D bit tells 
it if a page has been modified and needs 
to be written back to disk, while the A bit 
detects pages that are not being used and 
can be put to better use.

Permission bits, which must be 
kept in the TLB along with the 
mapping, to check future access.

Ignored by MMU

Advanced functions

“Dirty.” If a write is made via 
an entry that has D = 0, D is 
set to 1 and the PTE is written 
back to the page table.

“Accessed.” If a read or write 
is made via an entry with A = 
0, A is set to 1 and the PTE is 
written back to the page table.

Advanced 
functions

“User-accessible.” In 
user mode, an access 
to a page mapped with 
U = 0 will cause a fault

"Writable.” If set to 0, then 
any attempt to write to this 
page results in a fault.

“Present” If P = 0, then 
any access will fault.

Figure 4.11: 32-bit Intel page table entry (PTE).

other ASIDs are ignored. If a process is interrupted for a short time, most
of its TLB entries will remain cached, while the ASID field will prevent
them from being mistakenly used by another process5.

Page Table Entries
The components of a 32-bit Intel page table entry are shown in Figure 4.11;
for more information you may wish to refer to http://wiki.osdev.
org/Paging.

Page Permissions - P, W, and U bits
Page tables allow different permissions to be applied to memory at a
per-page level of granularity.

P=0/1 - If the present bit is zero, the entry is ignored entirely by the MMU,
thus preventing any form of access to the corresponding virtual page.

W = 0/1 - Write permission. If the W bit is zero, then read accesses to
this page will be allowed, but any attempt to write will cause a fault. By

5ASIDs are supported in most modern x86 processors as part of hardware virtualization
extensions, which are discussed (in not very much detail) later in this book.

http://wiki.osdev.org/Paging
http://wiki.osdev.org/Paging
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setting the W bit to zero, pages that should not be modified (i.e., program
instructions) can be protected. Since correctly-functioning programs in
most languages do not change the code generated by the compiler, any
attempt to write to such a page must be a bug, and stopping the program
earlier rather than later may reduce the amount of damage caused.

U = 0/1 - User permission. If the U bit is zero, then accesses to this page
will fail unless the CPU is running in supervisor mode. Typically the OS
kernel will “live” in a portion of the same address space as the current
process, but will hide its code and data structures from access by user
processes by setting U=0 on the OS-only mappings.

Page Sharing
What happens if a single physical memory page is mapped
into two different process address spaces? It works just fine.

A question for the reader - why
doesn’t sharing read-only pages
violate the security principle of
preventing access from one process
to another’s memory space?

Each process is able to read from
the page, and any modifications it
makes are visible to the other pro-
cess, as well. In particular, note
that the MMU only sees one page
table at a time, and doesn’t care
how a page is mapped in a page
table that might be used at some
point in the future. If the two processes are running on different CPU
cores, then each core has a separate MMU and will not know or care what
translations the other cores are using6.

Address
space 2

Address
space 1

shared 
pages

Address
space 2

Address
space 1

shared 
pages

Figure 4.12: Page sharing between two process address spaces

There are two ways in which page sharing can be used:

6Conversely, if two threads from the same process are running on different cores, then
the MMU for each core will be pointing at the same page table and thus use the same
mappings.
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Figure 4.13: 4-level page table for 64-bit mode.

Information sharing: Some databases and other large programs use
memory segments shared between processes to efficiently pass information
between those processes.

Memory saving: Most processes use the same set of libraries to commu-
nicate with the OS, the graphical interface, etc., and these libraries must be
mapped into the address space of each process. But most of the memory
used by these libraries (program code, strings and other constant data)
is read-only, and so a single copy can be safely mapped into the address
space of each process using the library.

4.6 Page Size, Address Space Size, and 64 Bits

The page size of a processor plays a large role in determining how much
address space can be addressed. In particular, assuming that the page table
tree is built out of single pages, a 2-level page table can map N2 pages,
where N is the number of page table entries that fit in a single page. Thus,
if the address space is about 32 bits, so that a page table entry (physical
page number plus some extra bits) can fit in 4 bytes, the maximum virtual
memory that can be mapped with a 2-level page table is:

2K pages: 512 (29) entries per page = virtual address space of 218 pages
of 211 bytes each = 229 bytes (0.5 GB)

4K pages: 1024 (210) entries per page = virtual address space of 220
pages of 212 bytes each = 232 bytes (4GB)

8K pages: 2048 (211) entries per page = virtual address space of 222
pages of 235 bytes each = 235 bytes (32GB)

In other words, 2K pages are too small for a 32-bit virtual address space
unless the process moves to a deeper page table, while 8K pages are bigger
than necessary. (The SPARC and Alpha CPUs, early 64-bit processors,
used 8KB pages.)

64-bit Intel-compatible CPUs use 4K pages for compatibility, and 8-byte
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char hello[] = ‘‘hello world\n’’;
void _start(void)
{

syscall(4, 1, hello, 12); /* syscall 4 = write(fd,buf,len) */
syscall(1); /* syscall 1 = exit() */

}

Listing 4.3: Simple program described in section 4.7

page table entries, because four bytes is too small to hold large physical
page numbers. This requires a 4-level page table, as shown in Figure 4.13.

Since each of the 4 levels maps 9 bits of address, for a total of 36 bits
mapped, and the offset is 12 bits, the total virtual address space is 48
bits—not the full 64 bits, but still huge (256 TB). Clearly the penalty
for TLB misses is higher in this case than for 32-bit mode, as there are
four memory accesses to the page table for a single translation instead
of two. To support virtual address spaces greater than 256 TB, it will be
necessary to go to a deeper page table, or larger pages, or perhaps another
organization entirely.

4.7 Creating a Page Table

To see how a page table is created, we start by examining the virtual
memory map of perhaps the simplest possible Linux program, shown in
Figure 4.3. This program doesn’t use any libraries, but rather uses direct
system calls to write to standard output (always file descriptor 1 in Unix)
and to exit. In Linux, _start is the point at which execution of a program
begins; normally the _start function is part of the standard library, which
performs initialization before calling main.

When this program runs and its memory map is examined (using the
pmap command) you see the following:

00110000 4K r-x-- [ anon ] <- file header - used by OS
08048000 4K r-x-- /tmp/hello <- .text segment (code)
08049000 4K rwx-- /tmp/hello <- .data segment
bffdf000 128K rwx-- [ stack ]

The address space is constructed of a series of contiguous segments, each
a multiple of the 4KB page size (although most are the minimum 4KB
here), with different permissions for each. (realistic programs will have
many more segments; as an example, the address space for the Nautilus
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VPN 00110 = 0000 0000 00 01 0001 0000
top10 = 000 bottom10 = 110

VPN 08048 = 0000 1000 00 00 0100 1000
top10 = 020 bottom10 = 048
VPN 08049 = 0000 1000 00 00 0100 1001
top10 = 020 bottom10 = 049
VPN BFFDF = 1011 1111 11 11 1101 1111
top10 = 2FF bottom10 = 3DF

Listing 4.4: Virtual page numbers from the simple 4-segment program

file manager process on my Ubuntu 15.10 system has more than 800
segments.) To create a page table for this program, the first step is splitting
the page numbers into top and bottom halves (all numbers given in hex or
binary), as shown in Figure 4.4.

The first three segments are one page long; note that the last segment is
32 pages (128KB), so it uses entries 0x3DF to 0x3FF in the second-level
page table.

The program needs four physical pages for the table; assume that pages
0000, 0001, 0002, and 0003 are used for the table, and pages 00004 and
up for data/code pages. The actual page table may be seen in Figure 4.14.
(note that the choice of physical pages is arbitrary; the page numbers
within the page directory and page table entries would of course change if
different physical pages were used.)

Review questions

4.7.1. Translating 08049448 in the page table shown in Figure 4.14 re-
quires reading the following physical addresses:
a) 00000080, 00002124
b) 00000020, 00002049
c) 00000080, 00001440
d) 00002080, 00006124

4.8 Page Faulting

In the previous section you saw how the MMU in a Pentium-like CPU
determines whether a memory access will succeed:

if the top-level entry has P=1
and is(read) or W=1
and is(supervisor) or U=1:
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CR3
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Figure 4.14: Page table corresponding to memory map for Figure 4.3, also used
for review questions.

if the 2nd-level entry has P=1
and is(read) or W=1
and is(supervisor) or U=1:

use translated address.

If translation fails at any one of the six possible points above (P, W, or U
at each level) then a page fault is generated.

Page Faults
A page fault is a special form of exception that has the following two
characteristics: first, it is generated when an address translation fails, and
second, it occurs in the middle of an instruction, not after it is done, so that
the instruction can be continued after fixing the problem which caused
the page fault. Typical information that the MMU passes to the page fault
handler is:

1. The instruction address when the page fault occurred. (this is the
return address pushed on the stack as part of the exception handling
process)

2. The address that caused the page fault
3. Whether the access attempt was a read or a write
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4. Whether the access was attempted in user or supervisor mode

After the page fault handler returns, the instruction that caused the fault
resumes, and it retries the memory access that caused the fault in the first
place.

Many of the examples in this
section are illustrated using Linux,
as the source code is readily
available, but same principles
(although not details) hold true for
other modern OSes such as
Windows, Mac OS X, or Solaris.
In addition, keep in mind that the
virtual memory map for a process is
a software concept, and will almost
certainly differ between two
unrelated operating systems. In
contrast, the page table structure is
defined by the CPU itself, and must
be used in that form by any
operating system running on that
CPU.

A single instruction can cause
multiple, different page faults, of
which there are two different types:

• Instruction fetch: A fault
can occur when the CPU
tries to fetch the instruction
at a particular address. If
the instruction "straddles"
a page boundary (i.e., a 6-
byte instruction that starts
2 bytes before the end of
a page) then you could (in
the worst case) get two page
faults while trying to fetch
an instruction.

• Memory access: Once the instruction has been fetched and de-
coded, it may require one or more memory accesses that result
in page faults. These memory accesses include those to the stack
(e.g., for CALL and RET instructions) in addition to load and store
instructions. As before, accessing memory that straddles a page
boundary will result in additional faults.

Handling Page Faults
Operating systems use two primary strategies in handling page faults:

Kill the program. If the access is in fact an error, the default action is to
kill the process, so that the page fault handler never returns.7

Resolve the fault. The OS modifies the page tables to establish a valid
mapping for the failing address, and then returns from the page fault
handler. The CPU retries the memory access, which should succeed (or at
least continue farther) this time.

In fact, a single instruction can in the worst case result in quite a large
number of page faults:

7You are no doubt familiar with this process from debugging C programs.
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• On an Intel or similar CPU, multi-byte instructions and data may
cross page boundaries; e.g. reading a 4-byte integer at address
0x1FFE (occupying bytes 0x1FFE, 1FFF, 2000, and 2001) could
trigger page faults on both page 0x1000 and 0x2000.
• Every instruction can fault on instruction fetch; memory instructions
like LOAD and STORE can also fault on data access.
• Finally, remember that the stack is in memory, too, so that CALL,

PUSH, POP, and RET can all fault if the operation causes an access
to a non-mapped stack address.

If the page fault handler updates the page table (to point to an appropriately
initialized page of memory) and then returns promptly, the whole page
fault process is invisible to the user or programmer.

The page fault handler for an operating system typically only uses the
four responses described above—crash, demand-allocate, demand-page,
and copy-on-write. More complex page fault mechanisms are used in
hardware virtualization, to support virtual machines; those mechanisms
will be described later in this book.

Review questions

4.8.1. One instruction can only result in one page fault: true / false

4.8.2. Assume a Pentium-like CPU which can (a) load 4-byte words from
unaligned (non-multiple-of-4) addresses, and (b) execute unaligned
instructions - in particular, this means that an instruction or a data
word may cross over a page boundary. In addition, assume (unlike
a Pentium) that each instruction can do only one memory load or
store in addition to the instruction fetch. What is the maximum
number of page faults that could occur for a single instruction?

4.8.3. When accessing memory, virtual addresses are translated to phys-
ical addresses (a) by the page fault handler, or (b) by the MMU
(memory management unit).

Process Address Space, Revisited
How does the OS know how to handle a page fault? By examining its
internal memory map for a process. We’ve talked briefly about process
memory maps earlier, but now we will look in more detail at a specific
one, from a fairly recent (kernel 2.6 or 3.0) 32-bit Linux system. A more
thorough description of the Linux memory layout can be found at
http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory

http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory
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Figure 4.15: Linux 32-bit user/ ker-
nel memory split

In earlier chapters we saw how simple
operating systems may use separate por-
tions of the address space for programs
and for the operating system. The same
approach is often used in dividing up
the virtual address space in more com-
plex operating systems, as seen in the 32-
bit Linux memory map in Figure 4.15.
In recent Linux versions running on 32-
bit Intel-compatible CPUs, the kernel
"owns" the top 1GB, from virtual ad-
dress 0xC0000000 to 0xFFFFFFFF, and
all kernel code, data structures, and temporary mappings go in this range.

The kernel must be part of every address space, so that when exceptions like
system calls and page faults change execution from user mode to supervisor
mode, all the kernel code and data needed to execute the system call or
page fault handler are already available in the current virtual memory
map8 This is the primary use for the U bit in the page table—by setting
the U bit to zero in any mappings for operating system code and data, user
processes are prevented from modifying the OS or viewing protected data.

Here is the memory map of a very simple process9, as reported in
/proc/<pid>/maps:

08048000-08049000 r-xp 00000000 08:03 4072226 /tmp/a.out
08049000-0804a000 rw-p 00000000 08:03 4072226 /tmp/a.out
0804a000-0804b000 rw-p 00000000 00:00 0 [anon]
bffd5000-bfff6000 rw-p 00000000 00:00 0 [stack]

The memory space has four segments:

08048000 (one page) - read-only, executable, mapped from file a.out
08049000 (one page) - read/write, mapped from file a.out
0804a000 (one page) - read/write, “anonymous”
bffd5000-bfff6000 (33 4KB pages) - read/write, “stack”

Where does this map come from? When the OS creates the new address
space in the exec() system call, it knows it needs to create a stack, but
the rest of the information comes from the executable file itself:

$ objdump -h a.out

8In fact the x86 has a way of telling the CPU to switch page tables when an exception
occurs, but it’s slow. It was used by early Linux versions, but replaced in 1997 or so.

9 Similar to the program in Figure 4.3, but not exactly the same. I’ve completely
forgotten what program it was, actually.
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a.out: file format elf32-i386

Idx Name Size VMA LMA File off Algn

0 .text 00000072 08048094 08048094 00000094 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE

1 .rodata 000006bd 08048108 08048108 00000108 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA

2 .data 00000030 080497c8 080497c8 000007c8 2**2
CONTENTS, ALLOC, LOAD, DATA

3 .bss 00001000 08049800 08049800 000007f8 2**5
ALLOC

$

Executable files on Linux are stored in the ELF format (Executable and
Linking Format), and include a header that describes the file to the OS;
the information above came from this header. Looking at the file, the
following sections can be seen:

0 ... x93 various header information
00000094 - 00000107 “.text” program code
00000108 - 000007c7 “.rodata” read/only data (mostly strings)
000007c8 - 000007e7 “.data”’ initialized writable data

(no data) “.bss”’ zero-initialized data

The BSS section10corresponds to global variables initialized to zero; since
the BSS section is initialized to all zeros, there is no need to store its initial
contents in the executable file.

Executable file and process address space

Here you can see the relationship between the structure of the executable
file and the process address space created by the kernel when it runs this
executable. One page (08048xxx) is used for read-only code and data,
while two pages (08049xxx and 0804Axxx) are used for writable data.

Review questions

4.8.1. Layout of the per-process address space in operating systems such
as Linux is:
a) Determined by the CPU hardware

10In most compiled languages (e.g. C, C++) global variables which aren’t explicitly
initialized have their values set to zero. The compiler and linker lump these values together
into a single section, called BSS for an ancient IBM assembly language command that is
an abbreviation for something that no one remembers. Since the entire section is going to
contain all zero bytes, there is no need to store its contents - just its starting address and
length.
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Figure 4.16: Relationship of executable file header to memory map structure

b) Specified in the executable file header
c) Determined by command-line arguments to the program

4.8.2. When a page fault occurs on an Intel-compatible CPU, the CPU
switches from the process address space to the kernel address space:
True / False

4.8.3. When a page fault occurs on an Intel-compatible CPU, if more than
one page fault occurs at the same instruction location the CPU will
crash: True / False

4.9 Page Fault Handling

In the Linux kernel, the memory map is represented as a list of
vm_area_struct objects, each corresponding to a separate segment,
and each containing the following information:

• Start address
• End+1 address
• Permissions: read/write/execute
• Flags: various details on how to handle this segment
• File, offset (if mapped from a file)

Unlike the page table, which is a simple structure defined by the CPU
hardware, the virtual memory map in the OS is a purely software data
structure, and can be as simple or complex as the OS writers decide.

With the map from Figure 4.16, the possibilities when the page fault
handler looks up a faulting address are:
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• No match: This is an access to an undefined address. It’s a bug, and
the OS terminates the process with a "segmentation fault" error.
• Any page in bff08000-bff29000: These are demand-allocate stack
pages. The page fault handler allocates a physical memory page,
zeros it (for safety), puts it into the page table, and returns.
• Page 08048000: This page is mapped read-only from the executable
file ’a.out,’ so the page fault handler allocates a page, reads the
first 4KB from ’a.out’ into it, inserts it into the page table (marked
read-only), and returns.
• Page 08049000: This page is mapped read/write from the executable

file. Just like page 08048000, the page fault handler allocates a page,
reads its contents from the executable, maps the page in the page
table (read/write this time) and returns.
• Page 0804a000: Like the stack, this is demand-allocated and zero-
filled, and is handled the same way.

Page Faults in the Kernel

Although common in the past,
modern Windows and Linux
systems rarely seem to crash due to
driver problems. (Although my
Mac panics every month or two.) If
you ever develop kernel drivers,
however, you will become very
familiar with them.

What happens if there is a page
fault while the CPU is running ker-
nel code in supervisor mode? It
depends.

If the error is due to a bug in kernel-
mode code, then in most operating
systems the kernel is unable to han-
dle it. In Linux the system will dis-
play an “Oops” message, as shown
in Figure 4.5, while in Windows the result is typically a “kernel panic”,
which used to be called a Blue Screen of Death. Most of the time in Linux
the process executing when this happens will be terminated, but the rest
of the system remains running with possibly reduced functionality.

But what about addresses passed by the user in a system call? For example,
what if the memory address passed to a read system call has been paged
out, or not instantiated yet? It turns out that the same page faulting logic
can be used in the kernel, as well—the first access to an unmapped page
will result in a fault, the process will be interrupted (in the kernel this time,
rather than in user-space code), and then execution will resume after the
page fault is handled.

But what if the user passes a bad address? We can’t just kill the process
partway through the system call, because that would risk leaving internal
operating system data structures in an inconsistent state. (Not only that,

read
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[ 397.864759] BUG: unable to handle kernel NULL pointer dereference at
0000000000000004

[ 397.865725] IP: [<ffffffffc01d1027>] track2lba+0x27/0x3f [dm_vguard]
[ 397.866619] PGD 0
[ 397.866929] Oops: 0000 [#1] SMP
[ 397.867395] Modules linked in: [...]
[ 397.872730] CPU: 0 PID: 1335 Comm: dmsetup Tainted: G OE 4.6.0 #3
[ 397.873419] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ...
[ 397.874487] task: ffff88003cd10e40 ti: ffff880037080000 task.ti: ffff88003708
[ 397.875375] RIP: 0010:[<ffffffffc01d1027>]
[<ffffffffc01d1027>] track2lba+0x27
[ 397.876509] RSP: 0018:ffff880037083bd0 EFLAGS: 00010282
[ 397.877193] RAX: 0000000000000001 RBX: 0000000000003520 RCX: 0000000000000000
[ 397.878085] RDX: 0000000000000000 RSI: 0000000000003520 RDI: ffff880036bd70c0
[ 397.879016] RBP: ffff880037083bd0 R08: 00000000000001b0 R09: 0000000000000000
[ 397.879912] R10: 000000000000000a R11: f000000000000000 R12: ffff880036bd70c0
[ 397.880763] R13: 00000000002e46e0 R14: ffffc900001f7040 R15: 0000000000000000
[ 397.881618] FS: 00007f5767938700(0000) GS:ffff88003fc00000(0000)
[ 397.915186] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 397.932122] CR2: 0000000000000004 CR3: 000000003d3ea000 CR4: 00000000000406f0
[ 397.949459] Stack:

... stack contents and backtrace omitted ...

Listing 4.5: Linux kernel “Oops” message due to NULL pointer dereference.

but the POSIX standard requires that system calls return the EFAULT
error in response to bad addresses, not exit.) Instead, all code in the Linux
kernel which accesses user-provided memory addresses is supposed to use
a pair of functions, copy_from_user and copy_to_user, which check
that the user-provided memory region is valid for user-mode access11.

In very early versions of Linux the kernel ran in a separate address space
where virtual addresses mapped directly to physical addresses, and so these
functions actually interpreted the page tables to translate virtual addresses
to physical (i.e. kernel virtual) addresses, which was slow but made it
easy to return an error if an address was bad. Newer Linux versions map
the kernel and its data structures into each process virtual address space,
making these functions much faster but more complicated. The speedup
is because there is no longer any need to translate page tables in software;
instead the two copy_*_user functions just perform a few checks and
then a memcpy. More complicated because if it fails we don’t find out
about it in either of these functions, but rather in the page fault handler
itself. To make this work, if the page fault (a) occurs in kernel mode, and
(b) the handler can’t find a translation for the address, it checks to see if the
fault occurred while executing the copy_from_user or copy_to_user
functions, and if so it performs some horrible stack manipulation to cause

11This is important for security reasons. The chapter on security will talk more about
the importance of double-checking user imputs to keep a system secure.

copy_from_user
copy_to_user
copy_*_user
memcpy
copy_from_user
copy_to_user
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Figure 4.17: Memory usage of three copies of the same program.

that function to return an error code12.

But what if a page fault occurs in the kernel outside of these two functions?
That should never happen, because kernel structures are allocated from
memory that’s already mapped in the kernel address space. In other words
it’s a bug, just like the bugs that cause segmentation faults in your C
programs. And just like those bugs it causes a crash, resulting in an error
message such as the one shown in Figure 4.5. If the kernel was running
in a process context (e.g. executing system call code) then the currently-
running process will be killed, while if this occurs during an interrupt the
system will crash. The equivalent in Windows is called a Blue Screen
of Death (although they changed the color several versions back); since
almost all Windows kernel code executes in interrupt context, these errors
always result in a system crash.

4.10 Shared Executables and Libraries

In addition to simplifying memory allocation, virtual memory can also al-
low memory to be used more efficiently when running multiple processes.

Consider the case of a multi-user computer, where multiple users are
running the same program (i.e., the shell, /bin/bash) at the same time.
If we just follow the rules we’ve seen above for allocating and filling
memory, the memory usage of the three programs will look something
like the left-hand side of Figure 4.17.

However since the code section of each process is identical, we can share
those pages, giving the picture on the right-hand side of Figure 4.17.13

12In recent versions it’s even more complicated than that, using a table of all the locations
in the kernel where the two functions are invoked.

13Why are the code sections for each process identical? Because (a) they are mapped

/bin/bash
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Figure 4.18: Address mismatch when lib1 and lib2 are linked with different
programs

How does the OS determine that it can share the same page between
two processes? When a page fault happens, and the page fault handler
determines that it needs to read (i.e., page 10 from the executable /bin/
bash) it first searches to see whether that page is already stored in some
existing memory page14. If so, it can increment a reference count on that
page and map it into the process page table, instead of having to allocate
a new page and read the data in from the disk. When a process exits,
instead of blindly de-allocating any memory mapped by that process, the
reference count of each page is decremented, and it is only freed when this
count goes to zero, indicating that no other address spaces are mapping
that page.

Note that the operating system also provides a way for applications to
create memory regions which are explicitly shared between processes,
and used for communication between them. This can be used for high-
performance communication between processes, and is used in at least
one program that people actually use.

Sharing memory at the program level worked well on multi-user systems,
as you just saw, where many people ran the same simple programs (e.g.,
the shell, editor, and compiler) at the same time. With the advent of
graphical interfaces and single-user workstations, it stopped working so
well. Instead, now there’s a single user running one copy each of several
different programs. Worse yet, each program is far more complicated than
in the past, as the libraries for interacting with the display, mouse, and
keyboard are inevitably larger and more complex than the simple libraries

from the same file, and so started with the same values, and (b) they are read-only, so those
values haven’t changed. Is this safe? Doesn’t it give a process access to another processes’
memory space? It’s safe because each process still sees exactly the same data as they would
without sharing, and can’t change that data for other processes.

14Most operating systems only check for the case where pages in different processes map
to exactly the same page in exactly the same file. If you have two different executable files
that happen to be exact copies of each other, the OS will have no idea that they’re the same,
and will happily load pages from both of them into memory at the same time.

/bin/bash
/bin/bash
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#include <stdio.h>
int main()
{

printf("hello world\n");
}

Listing 4.6: Traditional “hello world” program

needed to define functions like printf for terminal output.15

The problem here is that even though your browser, text editor, and email
program all use the same libraries, each program ends up being a unique
combination of code, combining the actual program code with a specific
set of libraries, as seen in Figure 4.18. So even if the operating system
tried to recognize identical regions in the two files, the differing alignment
would make it impossible to share pages between them.

lib 2 lib 2=

lib 1 lib 1=

program 1 program 2!=

lib 2 lib 2=

lib 1 lib 1=

program 1 program 2!=

Figure 4.19: Memory sharing
with shared libraries

Shared libraries eliminate this wasted
space by combining code and libraries in a
way that allows sharing in most cases. To
do this, the program and the libraries are
structured so that different programs can
share a single copy of the same library. In
simple terms, each library is made to look
like a separate program, which means that
multiple copies of the same library can be
shared, even if the different programs that
use it can’t be shared.

In Figure 4.19 we see how each shared library is given its own region of
address space, rather than packing them all into a single segment. The base
programs (program1 and program2 below) still differ, but the libraries
remain identical and can be shared between address spaces.

This approach is taken in Linux; if we compile the standard “hello world”
program shown in Figure 4.6 we can use the ldd command to list the
libraries which will be loaded at runtime, as seen in Figure 4.7, resulting
in the memory map in Figure 4.8.

15Example: xterm is the original graphical terminal emulator for Unix, and uses very
few fancy features. The program itself compiles to about 372KB of machine instructions and
some amount of data, but it also uses 26 separate external libraries which add up to 5.6MB
of additional program space. A newer program, gnome-terminal, uses only 300KB of
memory for the program itself, but links in 48 libraries, for a total of 22MB of additional
memory. Although both of these examples are taken from Linux, both Apple OS X and
Windows use similar large libraries for the graphical interface.
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pjd@pjd-fx:/tmp$ ldd a.out
linux-vdso.so.1 => (0x00007fff99d56000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f5a0bb94000)
/lib64/ld-linux-x86-64.so.2 (0x00005590e6bba000)

Listing 4.7: Libraries linked with program in Figure 4.6.

Review questions

4.10.1. Page sharing can be used to (select all that apply):
a) Reduce the amount of memory used for multiple copies of the

same program or library
b) Reduce the amount of memory used by different programs

and libraries
c) Communicate between processes

4.10.2. The OS knows it can share a page when the same page in the same
file is mapped in two different processes: True / False

More Memory Sharing: fork() and copy-on-write
In all the cases you’ve seen so far, page sharing has been used to share
read-only pages—these are intrinsically safe to share, because processes

pjd@pjd-fx:~$ pmap -p 18012
0000000000400000 4K r-x-- /tmp/a.out
0000000000600000 4K r---- /tmp/a.out
0000000000601000 4K rw--- /tmp/a.out
00007ffff7a0f000 1792K r-x-- /lib/x86_64-linux-gnu/libc-2.21.so
00007ffff7bcf000 2048K ----- /lib/x86_64-linux-gnu/libc-2.21.so
00007ffff7dcf000 16K r---- /lib/x86_64-linux-gnu/libc-2.21.so
00007ffff7dd3000 8K rw--- /lib/x86_64-linux-gnu/libc-2.21.so
00007ffff7dd5000 16K rw--- [ anon ]
00007ffff7dd9000 144K r-x-- /lib/x86_64-linux-gnu/ld-2.21.so
00007ffff7fcd000 12K rw--- [ anon ]
00007ffff7ff6000 8K rw--- [ anon ]
00007ffff7ff8000 8K r---- [ anon ]
00007ffff7ffa000 8K r-x-- [ anon ]
00007ffff7ffc000 4K r---- /lib/x86_64-linux-gnu/ld-2.21.so
00007ffff7ffd000 4K rw--- /lib/x86_64-linux-gnu/ld-2.21.so
00007ffff7ffe000 4K rw--- [ anon ]
00007ffffffde000 132K rw--- [ stack ]
ffffffffff600000 4K r-x-- [ anon ]
total 4220K

Listing 4.8: Memory map for hello world program in Figure 4.6
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are unable to modify the pages and thereby affect other processes. But,
can writable pages be shared safely? The answer is yes, but it has to be
done carefully.

First, some background on why this is important. The Unix operating
system uses two system calls to create new processes and execute programs:
fork() and exec(). fork() makes a copy of the current process16,
while exec(file) replaces the address space of the current process with
the program defined by file and begins executing that program at its
designated starting point.

UNIX uses this method because of an arbitrary choice someone made 40
years ago; there are many other ways to do it, each of them with their own
problems. However this is how UNIX works, and we’re stuck with it, so
it’s important to be able to do it quickly.

In early versions of Unix, fork() was implemented by literally copying
all the writable sections (e.g., stack, data) of the parent process address
space into the child process address space. After doing all this work, most
(but not all) of the time, the first thing the child process would do is to
call exec(), throwing away the entire contents of the address space that
were just copied. It’s bad enough when the shell does this, but even worse
when a large program (e.g. Chrome) tries to execute a small program (e.g.
/bin/ls) in a child process.

We’ve already seen how to share read-only data, but can we do anything
about writable data? In particular, data which is writable, but isn’t actually
going to be written?

A quick inspection of several Firefox and Safari instances (using pmap on
Linux and vmmap on OS X) indicates that a browser with two or three
open tabs can easily have over 300MB of writable address space17. When
fork is executed these writable pages can’t just be given writable mappings
in the child process, or changes made in one process would be visible
in the other. In certain cases (i.e., the stack) this mutual over-writing of
memory would almost certainly be disastrous.

However in practice, most of these writable pages won’t be written to
again. In fact, if the child process only executes a few lines of code and
then calls exec, it may only modify a handful of pages before its virtual
address space is destroyed and replaced with a new one.

16In fact the system call returns twice, once in the parent and once in the child
17This measurement was made in 2012; more recent versions use more memory.

exec
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Copy-on-write is in fact a
widely-used strategy in computer
systems. It is effectively a “lazy”
copy, doing only the minimal
amount of work needed and
reducing both the cost of copying
and the total space consumed.
Similar copy-on-write mechanisms
can be seen in file systems, storage
devices, and some programming
language runtime systems.

Linux uses a technique called copy-
on-write to eliminate the need to
copy most of this memory. When
a child process is created in the
fork system call, its address space
shares not only the read-only pages
from the parent process, but the
writable pages as well. To prevent
the two processes from interfering
with each other, these pages are
mapped read-only, resulting in a
page fault whenever they are ac-
cessed by either process, but flagged as copy-on-write in the kernel mem-
ory map structures. This results in a page fault when either process tries
to write to one of these pages; the page fault handler then “breaks” the
sharing for that page, by allocating a new page, copying the old one, and
mapping a separate page read-write in each of the processes.

Review questions

4.10.1. Copy-on-write allows writable data pages to be shared: True /
False

4.10.2. Copy-on-write performs copying during the fork system call: True
/ False

fork
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physical page number
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Figure 4.20: Page Table Entry with D (dirty) bit

Memory Over-Commitment and Paging

Page faults allow data to be dynamically fetched into memory when it
is needed, in the same way that the CPU dynamically fetches data from
memory into the cache. This allows the operating system to over-commit
memory: the sum of all process address spaces can add up to more memory
than is available, although the total amount of memory mapped at any
point in time must fit into RAM. This means that when a page fault occurs
and a page is allocated to a process, another page (from that or another
process) may need to be evicted from memory.

Types of Virtual Segments: There
are two types of virtual segments:
file-backed and anonymous.
File-backed segments are what the
name says; approximately 99.9% of
them are read-only mappings of
demand-paged executables.
Anonymous mappings are called
this because they don’t correspond
to a file; most of them contain
writable program data or stacks.

Evicting a read-only page mapped
from a file is simple: just forget
the mapping and free the page; if a
fault for that page occurs later, the
page can be read back from disk.
Occasionally pages are mapped
read/write from a file, when a pro-
gram explicitly requests it with
mmap—in that case the OS can
write any modified data back to the
file and then evict the page; again
it can be paged back from disk if
needed again.

Anonymous segments such as stack and heap are typically created in
memory and do not need to be swapped; however if the system runs low
on memory it may evict anonymous pages owned by idle processes, in
order to give more memory to the currently-running ones. To do this the
OS allocates a location in “swap space” on disk: typically a dedicated swap
partition in Linux, and the PAGEFILE.sys and /var/vm/swapfile files
in Windows and OSX respectively. The data must first be written out to
that location, then the OS can store the page-to-location mapping and
release the memory page.
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Figure 4.21: Memory Hierarchy

Dirty and Clean Pages

How does the operating system determine whether a page has been mod-
ified and needs to be written to disk? It uses the D bit in the page table
entry for this, as seen in Figure 4.20. When a page is mapped in the page
table, the D bit in the PTE is set to zero; when the CPU writes to a page
with D = 0, the MMU re-writes the page table entry with D = 1. When the
OS decides to evict a page, the D bit tells it whether the page is “clean,”
i.e., it hasn’t been modified, or whether it is “dirty” and has to be written
back to disk.

When the OS is paging in from a file (e.g. executable code), it is straight-
forward to find the data to read in, as there is a direct mapping between
a range of pages in a specific file and corresponding pages in the virtual
memory space. This correspondence can easily be stored in the definition
of that virtual address segment. When pages are saved to swap space this
doesn’t work, however, as the locations they are saved to are allocated
dynamically and fairly arbitrarily.

This problem is solved by using the page table itself. After evicting a page,
its page table entry is invalidated by setting P = 0; however, the other 31
bits of the entry are ignored by the MMU. These bits are used to store
the location of the page in swap space, so it can be found later later at
page fault time. Thus, the page table entry does dual duty: when the page
is present it points to the physical page itself, and is interpreted by the
MMU; otherwise, it points to a location in swap space, and is ignored by
the MMU and used by the software page fault handler.

The Memory Hierarchy

Demand paging from files and from swap provides the mechanisms to
create the traditional memory hierarchy, as shown in Figure 4.22.

To access address A:
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• If it’s not in the cache, then the old cache line is evicted, and A is
loaded into the resulting empty cache line. This is done in hardware.
• If it’s not in memory, then the old page is evicted, and the page
containing A is loaded into the resulting empty page. This is done
in software.

In general, this works because of locality: when a cache line is brought in
from memory, a page is loaded into in memory from disk, etc., it tends to
get accessed multiple times before eviction.

Decades ago this was used to run programs much bigger than physical
memory—CPUs were slow and disks were almost as fast as they are today,
so the relative overhead of paging infrequently-used data to disk was
low. Today’s CPUs are thousands of times faster, while disks are only a
few times faster, and virtual memory doesn’t seem like such a great idea
anymore. However it still gets used, even on desktop and laptop systems,
to “steal” memory from idle programs: if you leave a large program like
Chrome or Microsoft Word idle for half an hour while you use another
memory-hungry program, memory will be released from the idle process
and given to the active one; if you switch back, the original program will
run slowly for a while as it swaps these pages back in.

Review questions

4.10.1. When a value cannot be found in main memory, it must be fetched
from: a) L2 or L1 cache b) Disk or other secondary storage

4.10.2. CPU caches and caches of disk data held in RAM both perform
best when accesses are random: True / False

4.11 Page Replacement

If there’s a limited amount of memory available, then every time a page
is swapped in from disk, it will be necessary to remove, or evict, another
page from memory. The choice of which page to evict is important: the
best page to choose would be one that won’t be needed anymore, while
the worst page to evict would be one of the next to be used. (in that case,
paging it back in would force another page to be evicted, and the work of
paging it out and back in again would be wasted.) In fact, replacement
of items in a cache is a general problem in computer systems; examples
include:

• Cache line replacement in the hardware CPU cache
• Entry replacement in the TLB
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• Buffer replacement in a file system buffer pool
• Page replacement in virtual memory

The page replacement problem can be stated in abstract form:

Given the following:

1. A disk holding d (virtual) pages, with virtual addresses 0, . . . d− 1;
2. A memoryM consisting ofm (physical) pages, where each page is

either empty or holds one of the d virtual pages, and
3. An access pattern a1, a2, a3, · · · where each ai is a virtual address

in the range (0, d− 1):

a demand-paging strategy is an algorithm which for each access ai does
the following:

• If ai is already in one of the m physical pages in M (i.e. a hit): do
nothing

• Otherwise (a miss) it must:
• Select a physical page j in M (holding some virtual address Mj)
and evict it, then

• Fetch virtual page ai from disk into physical page j

In other words it only fetches page j on demand—i.e. in response to a
request for it.

4.12 Page Replacement Strategies

In this class we consider the following page replacement strategies:

• FIFO: first-in first-out. The page evicted from memory is the first
page to have been fetched into memory.

• LRU: least-recently used. Here, accesses to each page are tracked
after it has been loaded into memory, and the least-recently-used
page is evicted (unsurprisingly, given the name of the strategy).

• OPT: this is the optimal demand-paged strategy, which is simple but
impossible to implement, since it requires knowledge of the future.
It’s examined because it provides a way of telling how well a real
replacement strategy is performing—is it close to OPT, or is it far
worse?

FIFO
This strategy is very simple to implement, as it only requires keeping track
of the order in which pages were fetched into memory. Given 4 pages in
physical memory, and the following access pattern:
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Figure 4.22: FIFO cleaning

Figure 4.23: LRU cleaning

1 2 3 4 2 1 3 4 5 4 1 2 5 6 3 2 5 2 3 6

The contents of memory after each access is shown in Figure 4.22, with
hits shown in light grey and pages evicted (when misses occur) shown in
dark grey.

LRU

The idea behind LRU is that pages which have been accessed in the recent
past are likely to be accessed in the near future, and pages which haven’t,
aren’t. LRU replacement is shown in Figure 4.23.

To make the operation of the LRU algorithm more clear, on each hit, the
accessed page is moved to the top of the column. (This is how LRU is
typically implemented in software: elements are kept in a list, and on
access, an element is removed and reinserted at the front of the list. The
least-recently-used element may then be found by taking the tail of the list)
Although this is a small example, a performance improvement is noted,
with four misses compared to six for FIFO.
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OPT
The optimal algorithm picks a page to evict by looking forward in time and
finding the page which goes for the longest time without being accessed
again. Except for seeing the future, OPT plays by the same rules as other
demand-paging algorithms: in particular, it can’t fetch a page until it is
accessed. (That’s why the OPT strategy still has misses.) OPT is shown
in Figure 4.24, using the same access pattern as before. The first eviction
decision is shown graphically: pages 4, 2, and 1 are accessed 1, 3, and 2
steps in the future, respectively, while page 3 isn’t accessed for 6 steps and
is thus chosen to be evicted.

FIFO with Second Chance (CLOCK)
LRU is simple and quite effective in many caching applications, and it’s
ideal that the operating system uses it to determine which pages to evict
from memory. But there is one small problem in using it in a virtual
memory system: in this case, a “miss” corresponds to a page fault and
fetching a page from disk, while a “hit” is when the page is already mapped
in memory and the access succeeds in hardware. This means that once a
page is faulted into memory, any further use of that page is “invisible” to
the operating system. If the OS doesn’t know when a page was last used,
it can’t implement the Least-Recently-Used replacement strategy.

Despite this issue, it’s still possible to do better than FIFO by using the A
(“accessed”) bit in the page table entry, which indicates whether the page
has been accessed since the last time the bit was cleared18. In Figure 4.25
we see an algorithm called “FIFO with second chance,” where the A bit
is used to determine whether a page has been accessed while it was in

Figure 4.24: OPT (optimal) cleaning

18When the hardware reads a page table entry into the TLB it checks the A bit; if it is
clear, then the hardware re-writes the entry with the A bit set.
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Figure 4.25: FIFO with second
chance

Figure 4.26: CLOCK Algorithm

the FIFO queue. If the A bit is 1, the replacement algorithm clears it and
re-writes the page table entry, and the page is given “another chance,” i.e.,
it is cycled back to the head of the list. If the A bit is 0, then there have
been no accesses to the page during its entire trip through the list, and so
it is selected for replacement.

CLOCK
An alternate way of visualizing the FIFO with second chance algorithm
is shown in Figure 4.26. Pages are arranged in a circle, with a “hand”
advancing around the circle testing pages and determining whether to
keep or evict them. This description is the origin of the widely-used name
for this algorithm, CLOCK.

Review questions

4.12.1. Page replacement strategies are used to decide:
a) Which pages to load into memory from disk
b) Which pages to evict from memory

4.12.2. Which of these statements are true?
a) The OPT replacement strategy results in more misses (i.e.

page faults) then LRU.
b) The OPT replacement strategy is easier to implement than

LRU.
c) The CLOCK replacement strategy is easier to implement in a

virtual memory system than LRU.
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Answers to Review questions

4.3.1 (translating 0x00C001C0) 1, 0x00C00. The top 20 bits (or 5 hex
digits, at 4 bits each) form the page number. The bottom 12 bits
(or offset) are 0x1C0, and the top 10 bits (taken as a 10-bit binary
number) are 0x008.

4.3.2 (top-level page table entry) (3), (P=1, PPN=00003), as this is the
entry at index 003 in the top-level page directory.

4.7.1 (physical addresses read in page table walk) (1), (00000080,
00002124). Remember that the address of the ith 4-byte element in
a table is 4 · i bytes after the beginning, not i bytes.

4.8.1 False. Each page accessed in loading and executing an instruction
can result in a page fault.

4.8.2 4 page faults - 2 for instruction fetch (in the case where the first
bytes of an instruction are on one page, and the remainder is on the
next page) and 2 for the memory access if it crosses a page boundary
as well.

4.8.3 (b), the MMU. The page fault handler calculates virtual-to-physical
mappings and installs them in the page table, but theMMU performs
the actual translation when an address is used.

4.8.1 (2), specified in the executable file header. (or mostly so - the
stack and heap are typically determined at runtime.) The CPU
hardware puts very few restraints on the address space layout, and
the command-line arguments are not used by the operating system
but are instead passed directly to the program.

4.8.2 False. The CPU only switches address spaces when the OS explicitly
loads the address of a new page table into the page table base register
(CR3).

4.8.3 False. A single instruction can safely give rise to multiple page
faults, one fault (or two, if page boundaries are straddled) for the
instruction itself, and one or two for eachmemory address referenced
by the instruction. (Note that this is different from a “double fault,”
which occurs if there is a page fault while executing the page fault
handler.)

4.10.1 (1) and (3). Memory can’t be shared between different programs
and libraries, as shared pages will have the same contents in each
address space.

4.10.2 True. As an example, different processes can share the memory
pages used to map the code section of a particular program, so that
no matter how many copies of the same program are running, only
a single copy of the program code is needed in memory.

4.10.1 By copying pages before they are written to, COW allows sharing
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of writable pages without risk of interference or information leakage.
4.10.2 False. Shared mappings are created in fork, but actual copying is

performed in the page fault handler.
4.10.1 (2), Disk / secondary storage. Data in L1/L2 cache is a subset of

data in memory, which is a subset of data on disk.
4.10.2 False. Cache performance relies on non-randomness—i.e. that

some values (hopefully the ones in cache) are used more than others.
4.12.1 (2). That’s why it’s called a page replacement strategy.
4.12.2 (1): False: no demand-paging strategy is more efficient than OPT.

(2) False: OPT is impossible to implement. (3) True: CLOCK is
easier to implement because it does not require precise knowledge
of when pages are used.



Chapter 5

I/O, Drivers, and DMA

This chapter covers (a) the memory and I/O bus architecture of modern
computers, (b) programmed I/O and direct-memory access, (c) disk drive
components and how they influence performance, and (d) logical block
addressing and the SATA and SCSI buses.

5.1 Introduction

Input/Output (I/O) devices are crucial to the operation of a computer. The
data that a program processes — as well as the program binary itself
— must be loaded into memory from some I/O device such as a disk,
network, or keyboard. Similarly, without a way to output the results of
a computation to the user or to storage, those results would be lost. One
of the primary functions of the operating system is to manage these I/O
devices. It should control access to them, as well as providing a consistent
programming interface across a wide range of hardware devices with
similar functionality but differing details. This chapter describes how I/O
devices fit within the architecture of modern computer systems, and the
role of programmed I/O, interrupts, direct memory access (DMA), and
device drivers in interacting with them. In addition, you will examine one
device, the hard disk drive and its corresponding controller, which is the
source and destination of most I/O on typical systems.

5.2 PC architecture and buses

In Figure 5.1 you see the architecture of a typical Intel-architecture com-
puter from a few years ago. Different parts of the system are connected
by buses, or communication channels, operating at various speeds. The
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Figure 5.1: Standard Intel PC Architecture

Front-Side Bus carries all memory transactions which miss in L1 and L2
cache, and the North Bridge directs these transactions to memory (DDR2
bus) or I/O devices (PCIe bus) based on their address. The PCI Express
(PCIe) is somewhat slower than the front-side bus, but can be extended
farther; it connects all the I/O devices on the system. In some cases (like
USB and SATA), a controller connected to the PCIe bus (although typ-
ically located on the motherboard itself) may interface to a yet slower
external interface. Finally, the ISA bus is a vestige of the original IBM
PC; for some reason, they’ve never moved some crucial system functions
off of it, so it’s still needed.1

Simple I/O bus and devices
The fictional computer system described in earlier chapters included a
number of memory-mapped I/O devices, which are accessible at particular
physical memory addresses. On early computers such as the Apple II
and the original IBM PC this was done via a simple I/O bus as shown in
Figure 5.2 and Figure 5.3. Address and data lines were extended across

1The primary difference between this figure and contemporary (2016) systems is that
(a) the memory bus is DDR3 or DDR4, and (b) the north bridge is located on the CPU chip,
with no external front-side bus.
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Data

Address

CPU Memory I/O 

Figure 5.2: Simple memory/IO bus us-
ing shared address and data lines

Figure 5.3: Simple memory/IO bus
with extension cards

a series of connectors, allowing hardware on a card plugged into one of
these slots to respond to read and write requests in much the same way
as memory chips on the motherboard would. (This required each card
to respond to a different address, no matter what combination of cards
were plugged in, typically requiring the user to manually configure card
addresses with DIP switches.)

The term “bus” was taken from electrical engineering; in high-power
electric systems a bus bar is a copper bar used to distribute power to
multiple pieces of equipment. A simple bus like this one distributes
address and data signals in much the same way.

I/O vs. memory-mapped access: Certain CPUs, including Intel archi-
tecture, contain support for a secondary I/O bus, with a smaller address
width and accessed via special instructions. (e.g. “IN 0x100” to read a
byte from I/O location 0x100, which has nothing to do with reading a byte
from memory location 0x100)

Memory-mapped I/O: like in our fictional computer, devices can be
mapped in the physical memory space and accessed via standard load and
store instructions. In either case, I/O devices will have access to an inter-
rupt line, allowing interrupts to be raised for events like I/O completion.

Device selection: Depending on the system architecture, the device may
be responsible for decoding the full address and determining when it has
been selected, or a select signal may indicate when a particular slot on the
bus is being accessed. Almost all computers today use a version of the
PCI bus, which uses memory-mapped access, and at boot time, assigns
each I/O device a physical address range to which it should respond.
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(a) polled (b) interrupt-driven
Figure 5.4: Polled and interrupt-driven I/O

Polled vs. Interrupt-driven I/O

Polled (or “programmed”) I/O: As described in earlier chapters, the
simplest way to control an I/O device is for the CPU to issue commands and
then wait, polling a device status register until the operation is complete.
In Figure 5.4(a) an application requests I/O via e.g. a read system call;
the OS (step 1) then writes to the device command register to start an
operation, after which (step 2) it begins to poll the status register to detect
completion. Meanwhile (step 3) the device carries out the operation, after
which (step 4) polling by the OS detects that it is complete, and finally
(step 5) the original request (e.g. read) can return to the application.

Interrupt-driven I/O: The alternate is interrupt-driven I/O, as shown in
Figure 5.4(b). After (step 1) issuing a request to the hardware, the OS (step
2) puts the calling process to sleep and switches to another process while
(step 3) the hardware handles the request. When the I/O is complete, the
device (step 4) raises an interrupt. The interrupt handler then finishes the
request. In the illustrated example, the interrupt handler (step 5) reads data
that has become available, and then (step 6) wakes the waiting process,
which returns from the I/O call (step 7) and continues.

Latency and Programmed I/O

On our fictional computer the CPU is responsible for copying data between
I/O devices and memory, using normal memory load and store instructions.
Such an approach works well on computers such as the Apple II or the
original IBM PC which run at a few MHz, where the address and data
buses can be extended at full speed to external I/O cards. A modern CPU
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Figure 5.5: Latency between CPU and
various levels of memory/IO hierarchy

Figure 5.6: DMA access for high-speed
data transfer

runs at over 3GHz, however; during a single clock cycle light can only
travel about 4 inches, and electrical signals even less. Figure 5.5 shows
example latencies for a modern CPU (in this case an Intel i5, with L3
cache omitted) to read a data value from L1 and L2 cache, a random
location in memory (sequential access is faster), and a register on a device
on the PCIe bus. (e.g. the disk or ethernet controller) In such a system,
reading data from a device in 4-byte words would result in a throughput
of 5 words every microsecond, or 20MB/s — far slower than a modern
network adapter or disk controller.

Review questions

5.2.1. Buses which extend farther from the CPU are usually:
a) Faster than those closer to the CPU
b) Slower than those closer to the CPU

5.2.2. Memory-mapped I/O is when the CPU reads from RAM: True /
False

As CPU speeds have become faster and faster, RAM and I/O devices have only
slowly increased in speed. The strategies for coping with the high relative latency
of RAM and I/O are very different, however—caching works quite well with
RAM, which stores data generated by the CPU, while I/O (at least the input side)
involves reading new data; here latency is overcome by pipelining, instead.

The PCIe Bus and Direct Memory Access (DMA)

Almost all computers today use the PCIe bus. Transactions on the PCIe
bus require a negotiation stage, when the CPU (or a device) requests
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access to bus resources, and then is able to perform a transaction after
being granted access. In addition to basic read and write requests, the bus
also supports Direct Memory Access (DMA), where I/O devices are able
to read or write memory directly without CPU intervention. Figure 5.6
shows a single programmed-I/O read (top) compared to a DMA burst
transfer (bottom). While the read request requires a round trip to read
each and every 4-byte word, once the DMA transfer is started it is able
to transfer data at a rate limited by the maximum bus speed. (For an 8 or
16-lane PCIe card this limit is many GB/s)

DMA Descriptors

A device typically requires multiple parameters to perform an operation
and transfer the data to or from memory. In the case of a disk controller,
for instance, these parameters would include the type of access (read
or write), the disk locations to be accessed, and the memory address
where data will be stored or retrieved from. Rather than writing each
of these parameters individually to device registers, the parameters are
typically combined in memory in what is called a DMA descriptor, such
as the one shown in Figure 5.7. A single write is then used to tell the
device the address of this descriptor, and the device can read the entire
descriptor in a single DMA read burst. In addition to being more effi-
cient than multiple programmed I/O writes, this approach also allows
multiple requests to be queued for a device. (In the case of queued disk
commands, the device may even process multiple such requests simul-
taneously.) When an I/O completes, the device notifies the CPU via an
interrupt, and writes status information (such as success/failure) into a

Cache-coherent I/O: The PCIe
bus is cache-consistent; many
earlier I/O buses weren’t. Consider
what would happen if the CPU
wrote a value to location 1000 (say
that’s the command/status field of a
DMA descriptor), then the device
wrote a new value to that same
location, and finally the CPU tried
to read it back?

field in the DMA descriptor. (or
sometimes in a device register,
for simple devices which do not
allow multiple outstanding re-
quests.) The interrupt handler can
then determine which operations
have completed, free their DMA
descriptors, and notify any waiting
processes.

Device Driver Architecture

Figure 5.8 illustrates the I/O process for a typical device from user-space
application request through the driver, hardware I/O operation, interrupt,
and finally back to user space.
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Figure 5.7: List of typical DMA descriptors

Figure 5.8: Driver Architecture

In more detail:

• The user process executes a read system call, which in turn invokes
the driver read operation, found via the read method of the file
operations structure.

• The driver fills in a DMA descriptor (in motherboard RAM), writes
the physical address of the descriptor to a device register (generating
a Memory Write operation across the PCIe bus), and then goes to
sleep.

• The device issues a PCIe Memory Read Multiple command to read
the DMA descriptor from RAM.

• The device does some sort of I/O. (e.g. read from a disk, or receive
a network packet)

• A Memory Write and Invalidate operation is used to write the re-
ceived data back across the PCIe bus to the motherboard RAM, and
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to tell the CPU to invalidate any cached copies of those addresses.
• A hardware interrupt from the device causes the device driver inter-
rupt handler to run.
• The interrupt handler wakes up the original process, which is cur-

rently in kernel space in the device driver read method, in a call to
something like interruptible_sleep_on. After waking up, the
read method copies the data to the user buffer and returns.

Review questions

5.2.1. High I/O latency can be compensated for by the use of CPU caches,
so that almost all accesses complete at cache speeds instead of going
over the bus: True / False

5.2.2. Direct Memory Access (DMA) refers to a class of CPU instructions
which bypass the cache and access memory directly:
True / False

5.2.3. A device driver:
a) Is software which is part of the application
b) Is software which is part of the kernel
c) Is part of the hardware device



5.3. HARD DISK DRIVES 117

5.3 Hard Disk Drives

The most widely used storage technology today is the hard disk drive,
which records data magnetically on one or more spinning platters, in
concentric circular tracks. The performance of a hard drive is primarily
determined by physical factors: the size and geometry of its components
and the speeds at which they move:

Platter: the platter rotates at a constant speed, typically one of the follow-
ing:

Speed Rotations/sec ms/rotation
5400 RPM 90 11
7200 RPM 120 8.3
10,000 RPM 167 6
15,000 RPM 250 4

Figure 5.9: Hard Disk Drive (HDD) compo-
nents

Head and actuator arm:
these take between 1 and
10 ms to move from one
track to another on consumer
disk drives, depending on
the distance between tracks,
and between 1 and 4 ms on
high-end enterprise drives.
(at the cost of higher power
consumption and noise)

Bits and tracks: on modern
drives each track is about 3
micro-inches (75nm) wide, and bits are about 1 micro-inch (25nm) long;
with a bit of effort and knowing that the disk is 3.5 inches at its outer
diameter you could calculate the maximum speed at which bits pass under
the head.

Electronics and interface: the drive electronics are responsible for con-
trolling the actuator and transferring data to and from the host. On a
consumer drive this occurs over a SATA interface, which has a top speed
of 150, 300, or 600MB/s for SATA 1, 2, or 3.

Hard Drive Performance

Data on a drive can be identified by the platter surface it is on, the track
on that surface, and finally the position on that track. Reading data from a
disk (or writing to it) requires the following steps:
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• Switching the electronics to communicate with the appropriate head.
(we’ll ignore this, as it’s fast)
• Moving the head assembly until the head is positioned over the
target track. (seek time)
• Waiting for the platter to rotate until the first bit of the target data is
passing under the head (rotational latency)
• Reading or writing until the last bit has passed under the head.
(transfer time)

Geometric disk addressing
Unlike memory, data on a disk drive is read and written in fixed-sized
units, or sectors, of either 512 or 4096 bytes. Thus small changes (e.g. a
single byte) require what is known as a read/modify/write operation — a
full sector is read from disk into memory, modified, and then written back
to disk. These sectors are arranged in concentric tracks on each platter
surface; a sector may thus be identified by its geometric coordinates:

• Cylinder: this is the track number; for historical reasons the group
formed by the same track on all disk platters has been called a
cylinder, as shown in the figure. Early disk drives could switch
rapidly between accesses to tracks in the same cylinder; however
this is no longer the case with modern drives.
• Head: this identifies one of the platter surfaces, as there is a sepa-

rate head per surface and the drive electronics switches electrically
between them in order to access the different surfaces.
• Sector: the sector within the track.

Performance examples
The overhead of seek and rotational delay has a major effect on disk
performance. To give an example, consider randomly accessing a data

Figure 5.10: Hard disk latency
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Figure 5.11: Why a track is also called a cylin-
der — the same track on each surface forms

a “virtual” cylinder.

Figure 5.12: Disk access diagram

block on a 7200 RPM disk with the following parameters:

• Average seek time: 8ms.
• Average rotational delay: 4ms. (i.e., 1/2 rotation — after seeking to

a track, the rotational delay for sectors on that track will be uniformly
distributed between 0 and 1 rotation)

• Transfer rate: 200MB/s. (outer tracks on disks available in 2017)

On average, reading a random 4KB block (i.e. one not immediately
following the previous read) requires:

8 + 4 + 0.02 = 12ms

for an average throughput of 34 KB/s. (0.02 is 4KB / 200KB per ms)
Random access to a 5MB block, or over 1000 times more data, requires:

8 + 4 + 25 = 37ms

for an average throughput of 134MB/s. (25ms is obtained by dividing
5000KB by a rate of 200KB/ms)

In other words, although disks are random-access devices, random access
is expensive. To achieve anywhere near full bandwidth on a modern disk
drive you need to read or write data in large contiguous blocks; in our
random access example, for instance, a 2MB transfer would require 22ms,
or less than twice as long2as the smallest transfer.

2For system operations such as this where performance has a fixed and a variable
component, you can think of the point where the two costs are equal as the “knee” in the
curve, where you switch from the region where performance is dominated by the fixed cost
to where it is dominated by the variable cost. To get high throughput you want to be firmly
in the variable-cost region, where the fixed-cost effects are relatively minor.
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Disk scheduling

A number of strategies are used to avoid the full penalties of seek and
rotational delay in disks. One of these strategies is that of optimizing the
order in which requests are performed—for instance reading sectors 10
and 11 on a single track, in that order, would require a seek, followed by
a rotational delay until sector 10 was available, and then two sectors of
transfer time. However reading 11 first would require the same seek and
about the same rotational delay (waiting until sector 11 was under the
head), followed by a full rotation to get from section 12 all the way back
to sector 10.

Changing the order in which disk reads and writes are performed in order
to minimize disk rotations is known as disk scheduling, and relies on
the fact that multitasking operating systems frequently generate multiple
disk requests in parallel, which do not have to be completed in strict
order. Although a single process may wait for a read or write to complete
before continuing, when multiple processes are running they can each
issue requests and go to sleep, and then be woken in the order that requests
complete.

Primary Disk Scheduling Algorithms

The primary algorithms used for disk scheduling are:

• first-come first-served (FCFS): in other words no scheduling, with
requests handled in the order that they are received.
• Shortest seek time first (SSTF): this is the throughput-optimal

strategy; however it is prone to starvation, as a stream of requests to
nearby sections of the disk can prevent another request from being
serviced for a long time.
• SCAN: this (and variants) are what is termed the elevator algorithm
— pending requests are served from the inside to the outside of the
disk, then from the outside back in, etc., much like an elevator
goes from the first floor to the highest requested one before going
back down again. It is nearly as efficient as SSTF, while avoiding
starvation. (With SSTF one process can keep sending requests which
will require less seek time than another waiting request, “starving”
the waiting one.)

More sophisticated disk head scheduling algorithms exist, and could no
doubt be found by a scan of the patent literature; however they are mostly
of interest to hard drive designers.
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Implementing Disk Scheduling
Disk scheduling can be implemented in two ways — in the operating
system, or in the device itself. OS-level scheduling is performed by keeping
a queue of requests which can be re-ordered before they are sent to the
disk. On-disk scheduling requires the ability to send multiple commands
to the disk before the first one completes, so that the disk is given a choice
of which to complete first. This is supported as Command Queuing in
SCSI, and in SATA as Native Command Queuing (NCQ).

Note that OS-level I/O scheduling is of limited use today for improving
overall disk performance, as the OS has little or no visibility into the
internal geometry of a drive. (OS scheduling is still used to merge adjacent
requests into larger ones and to allocate performance fairly to different
processes, however.)

On-Disk Cache
In addition to scheduling, the other strategy used to improve disk perfor-
mance is caching, which takes two forms—read caching (also called track
buffering) and write buffering. Disk drives typically have a small amount
of RAM used for caching data3. Although this is very small in comparison
the the amount of RAM typically dedicated to caching on the host, if used
properly it can make a significant difference in performance.

At read time, after seeking to a track it is common practice for the disk to
store the entire track in the on-disk cache, in case the host requests this data
in the near future. Consider, for example, the case when the host requests
sector 10 on a track, then almost (but not quite) immediately requests
sector 11. Without the track buffer it would have missed the chance to
read 11, and would have to wait an entire revolution for it to come back
around; with the track buffer, small sequential requests such as this can be
handled efficiently.

Write buffering is a different matter entirely, and refers to a feature where a
disk drive may acknowledge a write request while the data is still in RAM,
before it has been written to disk. This can risk loss of data, as there is
a period of time during which the application thinks that data has been
safely written, while it would in fact be lost if power failed.

Although in theory most or all of the performance benefit of write buffering
could be achieved in a safer fashion via proper use of command queuing,
this feature was not available (or poorly implemented) in consumer drives

38-16MB two or three years ago; 128MB is common today, probably in part because
128MB chips are now cheaper than the old 16MB ones.
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until recently; as a result write buffering is enabled in SATA drives by
default. Although write buffering can be disabled on a per-drive basis,
modern file systems typically issue commands4 to flush the cache when
necessary to ensure file system data is not lost.

SATA and SCSI
Almost all disk drives today use one of two interfaces: SATA (or its pre-
cursor, IDE) or SCSI. The SATA and IDE interfaces are derived from
an ancient disk controller for the PC, the ST-506, introduced in about
1980. This controller was similar to—but even cruder than—the disk inter-
face in our fictional computer, with registers for the command to execute
(read/write/other) and address (cylinder/head/sector), and a single register
which the CPU read from or wrote to repeatedly to transfer data. What is
called the ATA (AT bus-attached) or IDE (integrated drive electronics)
disk was created by putting this controller on the drive itself, and using an
extender cable to connect it back to the bus, so that the same software could
still access the control registers. Over the years many extensions were
made, including DMA support, logical block addressing, and a high-speed
serial connection instead of a multi-wire cable; however the protocol is
still based on the idea of the CPU writing to and reading from a set of
remote, disk-resident registers.

Logical vs. CHS addressing: For CHS addressing to work the OS (and
bootloader, e.g. BIOS) has to know the geometry of the drive, so it can tell e.g.
whether the sector following (cyl=1,head=1,sector=51) is (1,1,52) or (2,1,0). For
large computers sold with a small selection of vendor-approved disks this was not
a problem, but it was a major hassle with PCs—you had to read a label on the disk
and set BIOS options. Then drive manufacturers started using “fake” geometries
because there weren’t enough bits in the cylinder and sector fields, making drives
that claimed to have 255 heads, giving the worst features of both logical and CHS
addressing.

In contrast, SCSI was developed around 1980 as a high-level, device-
independent protocol with the following features:

• Packet-based. The initiator (i.e. host) sends a command packet (e.g.
READ or WRITE) over the bus to the target; DATA packets are
then sent in the appropriate direction followed by a status indication.
SCSI specifies these packets over the bus; how the CPU interacts
with the disk controller to generate them is up to the maker of the
disk controller. (often called an HBA, or host bus adapter)

4In SATA the FLUSH command or the FUA (force unit attention) flag. Don’t ask me
what “force unit attention” means - I have no idea.
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• Logical block addressing. SCSI does not support C/H/S addressing
— instead the disk sectors are numbered starting from 0, and the disk
is responsible for translating this logical block address (LBA) into
a location on a particular platter. In recent years logical addressing
has been adopted by IDE and SATA, as well.

SCSI over everything
SCSI (like e.g. TCP/IP) is defined in a way that allows it to be carried
across many different transport layers. Thus today it is found in:

• USB drives. The USB storage protocol transports SCSI command
and data packets.

• CD and DVD drives. The first CD-ROM and CD-R drives were
SCSI drives, and when IDE CDROM drives were introduced, rather
than invent a new set of commands for CD-specific functions (e.g.
eject) the drive makers defined a way to tunnel existing SCSI com-
mands over IDE/ATA (and now SATA).

• Firewire, as used in some Apple systems.
• Fibre Channel, used in enterprise Storage Area Networks.
• iSCSI, which carries SCSI over TCP/IP, typically over Ethernet

and no doubt several other protocols as well. By using SCSI instead of
defining another block protocol, the device makers gained SCSI features
like the following:

• Standard commands (“Mode pages”) for discovering drive proper-
ties and parameters.

• Command queuing, allowing multiple requests to be processed by
the drive at once. (also offered by SATA, but not earlier IDE drives)

• Tagged command queuing, which allows a host to place constraints
on the re-ordering of outstanding requests.

Review questions

5.3.1. Since the platter spins while the head is seeking, rotational latency
and seek time happen in parallel and the time until data can be
accessed is the maximum of the two: True / False

5.3.2. Command queuing in SATA and SCSI will make which of the
following workloads run faster:
a) Very large sequential reads and writes
b) A single process performing random reads and waiting for

each read to complete before issuing the next one
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c) Multiple processes performing random reads.

5.4 RAID and other re-mappings

In the previous section you learned about:

• Disk drives: how they work, and how that determines their perfor-
mance
• SCSI and SATA buses, which carry block I/O commands between
host controllers and disk drives
• The PCI bus, DMA, and device drivers which communicate between
host controllers and the operating system

This section is about about disk-like devices, which behave like disks but
aren’t; this includes multi-disk arrays, solid-state drives (SSDs), and other
block devices.

Early disk drives used cylinder/head/sector addressing, required the op-
erating system to be aware of the exact parameters of each disk so that
it could store and retrieve data from valid locations. The development
of logical block addressing, first in SCSI, then in IDE and SATA drives,
allowed drives to be interchangeable: with logical block addressing the
operating system only needs to know how big a disk is, and can ignore its
internal details.

This model is more powerful than that, however, as there is no need for
the device on the other end of the SCSI (or SATA) bus to actually be a
disk drive. (You can do this with C/H/S addressing, as well, but it requires
creating a fake drive geometry, and then hoping that the operating system
won’t assume that it’s the real geometry when it schedules I/O requests)

Instead the device on the other end of the wire can be an array of disk drives,
a solid-state drive, or any other device which stores and retrieves blocks
of data in response to write and read commands. Such disk-like devices
are found in many of today’s computer systems, both on the desktop and
especially in enterprise and data center systems, and include:

• Partitions and logical volume management, for flexible division of
disk space
• Disk arrays, especially RAID (redundant arrays of inexpensive
disks), for performance and reliability
• Solid-state drives, which use flash memory instead of magnetic
disks
• Storage-area networks (SANs)
• De-duplication, to compress multiple copies of the same data
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Almost all of these systems look exactly like a disk to the operating system.
Their function, however, is typically (at least in the case of disk arrays)
an attempt to overcome one or more deficiencies of disk drives, which
include:

• Performance: Disk transfer speed is determined by (a) how small
bits can be made, and (b) how fast the disk can spin under the head.
Rotational latency is determined by (b again) how fast the disk spins.
Seek time is determined by (c) how fast the head assembly can move
and settle to a final position. For enough money, you can make (b)
and (c) about twice as fast as in a desktop drive, although you may
need to make the tracks wider, resulting in a lower-capacity drive.
To go any faster requires using more disks, or a different technology,
like SSDs.

• Reliability: Although disks are surprisingly reliable, they fail from
time to time. If your data is worth a lot (like the records from the
Bank of Lost Funds), you will be willing to pay for a system which
doesn’t lose data, even if one (or more) of the disks fails.

• Size: The maximum disk size is determined by the available technol-
ogy at any time—if they could build them bigger for an affordable
price, they would. If you want to store more data, you need to either
wait until they can build larger disks, or use more than one. Con-
versely, in some cases (like dual-booting) a single disk may be more
than big enough, but you may need to split it into multiple logical
parts.

In the rest of this section we will look at drive re-mappings, where a logical
volume is created which is a different size or has different properties than
the disk or disks it is built from. These mappings are not complex—inmost
cases a simple mathematical operation on a logical block address (LBA)
within the logical volume will determine which disk or disks the operation
will be directed to, and to what LBA on that disk. This translation may
be done on an external device (a RAID array), within a host bus adaptor,
transparently to the host (a RAID adapter), or within the operating system
itself (software RAID), but the translations performed are the same in each
case.

Partitioning
The first remapping strategy, partitioning, is familiar to most advanced
computer users. A desktop or laptop computer typically has a single disk
drive; however it is frequently useful to split that device into multiple
logical devices via partitioning. An example is shown in Figure 5.1, where
a single 250GB disk (named sda, SCSI disk a) has been split into three
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sections for a Linux installation. A small partition (’sda1’) is used by
the boot loader, followed by a swap partition used for virtual memory,
and then the remainder (’sda3’) is used for the root file system. Another
common use for partitioning is for dual-booting a machine, where e.g.
Windows might be installed into one partition and Linux or Apple OS
X installed in another. Note that unlike some of the other remappings
we will examine, partitioning is almost always handled in the operating
system itself, rather than in an external device.

Device Boot Start End Blocks Id System
/dev/sda1 * 63 208844 104391 83 Linux
/dev/sda2 208845 4401809 2096482+ 82 Linux swap
/dev/sda3 4401810 488392064 241995127+ 83 Linux

Listing 5.1: Example Linux partition map

There are two parts to disk partitioning: (a) amethod for recording partition
information in a partition table to be read by the operating system, and
(b) translating in-partition logical block addresses (LBAs) into absolute
LBAs (i.e. counting from the beginning of the entire disk) at runtime.

The first step is done via a partition table on the disk, which gives the
starting logical block address (LBA), length, and type of each partition.
On boot the operating system reads this table, and then creates virtual
block devices (each with an LBA range starting at 0) for each partition.
There are two partition table formats in wide use today — Master Boot
Record (MBR) boot tables based on the original IBM PC disk format,
and GUID Partition Table (GPT) tables used in new systems; for more
detail see the followingWikipedia entries: http://en.wikipedia.org/wiki/
Master_Boot_Record, http://en.wikipedia.org/wiki/GUID_Partition_Table

Address translation: Figure 5.13 shows a logical view of the translation
between logical block addresses within a partition and physical addresses
on the actual device.

Given a partition with start address S and length L and a block address A
within that partition, the actual on-disk address A0 can be determined as
follows:

if A > L:
error

else:
A0 = A + S

Figure 5.13: Partition layout and formula

http://en.wikipedia.org/wiki/Master_Boot_Record
http://en.wikipedia.org/wiki/Master_Boot_Record
http://en.wikipedia.org/wiki/GUID_Partition_Table
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Review questions

5.4.1. Which one of the following statements best describes what a disk
partition is?
a) A set of files on a disk reserved for a specific purpose
b) A portion of the disk address space (LBA or logical block

address space) which is treated as a separate virtual device
c) A type of disk drive

Concatenation
Concatenation means joining two things (like strings) end-to-end; a con-
catenated volume is the opposite of a partitioned disk, joining the LBA
spaces of each disk, one after the other, into a single logical volume which
is the sum of multiple physical disks.

Why would you do this? After all, you can just create separate file systems
on multiple disks and use the mount command to join them into a single
file system hierarchy, as shown in Figure 5.14.

Disk 

Single file  
system 

Mount point 

root 

/usr 

/home 

Figure 5.14: Multiple mounted file systems vs. single concatenated volume

This has disadvantages, though. What if you have 3 100GB disks, but
200GB of home directories? Now you’re stuck with home directories that
look like /home/disk1/joe and /home/disk2/jane, and no matter how you
assign accounts, one of the disks is likely to fill up while there is still a lot
of free space on the other one.

If you can paste all three disks together and create a single large volume,
however, with a single file system on top, then you have a single large,
flexible volume, and you don’t need to guess how much space to allocate
for different directories. (the most modern file systems — ZFS and Btrfs
— will handle this for you, but widely-used file systems like NTFS and
ext3 do not.)

In Figure 5.15 we see concatenation with three disks,D1,D2,D3, of size
S1, S2, S3. The address A in the concatenated volume is translated to a
physical disk D0 and an address on that disk A0, and (as for partitioning)
the translation is very simple:
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if A < S1 then
D0 = D1
A0 = A

else if A < S2 then
D0 = D2
A0 = A-S1

else if A < S3 then
D0 = D3
A0 = A-S1-S2

else
error

Logical volumes Physical disk 

A  

A0 

Figure 5.15: Concatenation layout and formula

Concatenation may be implemented in the OS (via the Logical Volume
Manager in Linux, or as a type of “software RAID” in Windows) or in an
external storage device. With the right tools for modifying the file system,
it can even be used to add another disk to an existing file system.

Striping — faster concatenation

Isn’t that RAID0? The term
“RAID” was coined in a 1988 paper
by Paterson, Gibson, and Katz,
titled “A case for redundant arrays
of inexpensive disks (RAID)”,
where they defined RAID levels 0
through 5—it turns out RAID0 and
RAID1 were what everyone had
been calling “striping” and
“mirroring” for years, but no one
had a name for the newer
parity-based systems. RAID2 and 3
are weird and obsolete; no one talks
about them.

Although the size of a concate-
nated volume is the sum of the indi-
vidual disk sizes, the performance
is typically not. For instance, if
you create a single large file, it will
probably be placed on contiguous
blocks on one of the disks, limit-
ing read and write throughput to
that of a single disk. If you’ve paid
for more than one disk, it would be
nice to actually get more than one
disk’s performance, if you can.

If the file was instead split into
small chunks, and each chunk placed on a different disk than the chunk
before it, it would be possible to read and write to all disks in parallel.
This is called striping, as the data is split into stripes which are spread
across the set of drives.

In Figure 5.16 we see individual strips, or chunks of data, layed out in
horizontal rows (called stripes) across three disks. In the figure, when
writing strips 0 through 5, strips 0, 1, and 2 would be written first at the
same time to the three different disks, followed by writes to strips 3, 4, and
5. Thus, writing six strips would take the same amount of time it takes to
write two strips to a single disk.

How big is a strip? It depends, as this value is typically configurable—
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Figure 5.16: Striping across three disks

the RAID algorithms work with any strip size, although for convenience
everyone uses a power of 2. If it’s too small, the large number of I/Os may
result in overhead for the host (software RAID) or for the RAID adapter;
if it’s too large, then large I/Os will read or write from individual disks
one at a time, rather than in parallel. Typical values are 16KB to 512KB.
(the last one is kind of large, but it’s the default built into the mdadm utility
for creating software RAID volumes on Linux. And the mdadm man page
calls them “chunks” instead of “strips”, which seems like a much more
reasonable name.)

Striping data across multiple drives requires translating an address within
the striped volume to an address on one of the physical disks making up
the volume, using these steps:

1. Find the stripe set that the address is located in - this will give the
stripe number within an individual disk.

2. Calculate the stripe number within that stripe set, which tells you
the physical disk the stripe is located on.

3. Calculate the address offset within the stripe.

Note that—unlike concatenation—each disk must be of the same size for
striping to work. (Well, if any disks are bigger than the smallest one, that
extra space will be wasted.)

Given 3 disks d1, d2, d3 of the same size, with a strip size of N sectors,
an address A in the striped volume is translated to a physical disk D0 and
an address on that disk A0 as follows, assuming integer arithmetic:

Review questions

5.4.1. Which one of the following statements best describes the total
storage capacity of a striped volume of equal-sized disks?
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S = A / N
- strip # in volume
O = A % N
- offset in strip
case S % 3:
- disk is n1 mod 3
0: D0= d1
1: D0= d2
2: D0= d3

Sd = S / 3
- stripe # in disk
A0 = Sd*N + O

Figure 5.17: Striping layout and formula

a) the same as one of the disks in the volume
b) the sum of the capacity of the disks in the volume

5.4.2. The disks within a striped volume (or at least the portion used of
each disk) must be the same size: True / False

Mirroring

Figure 5.18: Failure of one
disk in mirrored volume.

Disks fail, and if you don’t have a copy of
the data on that disk, it’s lost. A lot of effort
has been spent on creating multi-disk systems
which are more reliable than single-disk ones,
by adding redundancy—i.e. additional copies
of data so that even if one disk fails completely
there is still a copy of each piece of your data
stored safely somewhere. (Note that striping is
actually a step in the wrong direction - if any
one of the disks in a striped volume fail, which
is more likely than failure of a single disk, then you will almost certainly
lose all the data in that volume.)

The simplest redundant configuration is mirroring, where two identical
(“mirror image”) copies of the entire volume are kept on two identical
disks. In Figure 5.18 we see a mirrored volume comprising two physical
disks; writes are sent to both disks, and reads may be sent to either one. If
one disk fails, reads (and writes) will go to the remaining disk, and data is
not lost. After the failed disk is replaced, the mirrored volume must be
rebuilt (sometimes termed “re-silvering”) by copying its contents from
the other drive. If you wait too long to replace the failed drive, you risk
having the second drive crash, losing your data.
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Address translation in a mirrored volume is trivial: address A in the logical
volume corresponds to the same address A on each of the physical disks.
As with striping, both disks must be of the same size. (or any extra sectors
in the larger drive must be ignored.)

Mirroring and Consistency

A mirrored volume can be temporarily inconsistent during writing. Con-
sider the following case, illustrated in Figure 5.19:

1. a block in the logical volume contains the value X, and a write is
issued changing it to Y, and

2. Y is successfully written to one disk but not the other, and then
3. the power fails

Now, when the system comes back up (step 4 in the figure) the value of
this block will depend on which disk the request is sent to, and may change
if a disk fails.

High-end storage systems typically solve this problem by storing a tem-
porary copy of written data to non-volatile memory (NVRAM), either
battery-backed RAM or flash. If power fails, on startup the system

When recovering an inconsistent
mirrored volume, the value from
either disk may be used. Why is
this OK? (it helps to remember that
from the point of view of the file
system or application, a write to a
mirrored volume does not complete
until both sides have been
successfully written to.)

can check that all recent writes
completed to each disk. With-
out hardware support, the OS can
check on startup to see if it was
cleanly shut down, and if not it
may need to check both sides of the
mirror and ensure they are consis-
tent. (a lengthy process with mod-
ern disks)

X 
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Y 

X 
Y ? 
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Figure 5.19: Failure during mirror write causing inconsistency
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mirrored
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RAID 1+0
(stripe of mirrors)

mirrored
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mirrored
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RAID 1+0
(stripe of mirrors)

mirrored

striped

RAID 0+1
(mirror of stripes)

Striping + Mirroring (RAID 0+1, RAID 1+0)

Mirroring and striping can also be used to construct a logical volume out
of other logical volumes, so you can create a mirrored volume consisting
of two striped volumes, or a striped volume consisting of two mirrored
volumes. In either case, a volume holding N drives worth of data will take
2N drives to hold (in this figure, that works out to eight drives) and will
give N times the performance of a single disk.

Since striping is also known as RAID 0 and mirroring as RAID 1, these
configurations are called RAID 0+1 and RAID 1+0, respectively. RAID
0+1 is less reliable, as if one disk fails in each of the two striped volumes
the whole volume will fail. Interestingly enough, the disks contain exactly
the same data in both cases; however, in the RAID 0+1 case the controller
doesn’t try as hard to recover it.

Review questions

5.4.1. Which one of the following statements best describes the storage
capacity of a mirrored volume?

a) It is the same as that of one of the disks making up the volume
b) It is equal to the sum of the capacities of the disks making it

up
c) It is equal to the sum of the capacities of all disks, minus the

capacity of the parity drive
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RAID 4

Although mirroring and RAID 1+0 are good for constructing highly reli-
able storage systems, sometimes you don’t want reliability bad enough to
be willing to devote half of your disk space to redundant copies of data.
This is where RAID 4 (and the related RAID 5) come in.

For the 8-disk RAID 1+0 volume described previously to fail, somewhere
between 2 and 5 disks would have to fail (3.66 on average). If you plan on
replacing disks as soon as they fail, this may be more reliability than you
need or are willing to pay for. RAID 4 provides a high degree of reliability
with much less overhead than mirroring or RAID 1+0.

0 1

0 0 1

1 1 0

0+1+1+0+1=1
0+1+X+0+1=1 ?
        X         =1Parity(a,b)a

b

0 1

0 0 1

1 1 0

0+1+1+0+1=1
0+1+X+0+1=1 ?
        X         =1Parity(a,b)a

bRAID 4 takes N
drives and adds a
single parity drive,
creating an array
that can tolerate
the failure of any
single disk without
loss of data. It does this by using the parity function (also known as
exclusive-OR, or addition modulo 2), which has the truth table seen in
the figure to the right. As you can see in the equation, given the parity
calculated over a set of bits, if one bit is lost, it can be re-created given the
other bits and the parity. In the case of a disk drive, instead of computing
parity over N bits, you compute it over N disk blocks, as shown here where
the parity of two blocks is computed:

001010011101010010001 ... 001101010101 +
011010100111010100100 ... 011000101010

= 010000111010000110101 ... 010101111111

RAID 4 -Organization: RAID 4 is organized almost exactly like a striped
(RAID 0) volume, except for the parity drive. We can see this in Figure 5.20
— each data block is located in the same place as in the striped volume,
and then the corresponding parity block is located on a separate disk.

Writing to a RAID 4 Volume: How you write to a RAID 4 volume
depends on whether it is a small or large write. For large writes you can
over-write a complete stripe set at a time, letting you calculate the parity
before you write. Small writes are less efficient: you have to read back
some amount of data in order to re-calculate the parity. There are two
options: you can either read the entire stripe set and calculate its parity
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Figure 5.20: RAID 4 organization

Large write:
• Calculate parity (no
I/O needed)
• (1) Write stripe set to
disk

Small write:
• (1) read old data, parity
• Calculate new parity (no I/O)
• (2) write new data, parity

Figure 5.21: Large and small writes to RAID 4

after modifying it, or you can read the old data and parity, subtract the
old data, and add in the new data, which is more efficient for larger RAID
volumes (i.e. with more than 4 drives).

In Figure 5.21 you can see that a small write can take twice as long and
require four times as many operations as the corresponding write to a
striped volume, where no parity recalculation is needed.
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A question for the reader: why does a small write to RAID 4 take twice as long,
rather than four times as long, as a single disk write?

Reading from a RAID 4 Volume: There are two cases when reading
from a RAID 4 volume: normal mode and degraded mode. In normal
mode the data is available on the disk(s) it was written to, which is the
case when no disks have failed, and for data on the remaining disks after
one has failed. In degraded mode the data being read was written to the
failed drive, and must be reconstructed from the remaining data and parity
in the stripe set. (The actual reconstruction is quite simple, as the missing
data stripe is just the exclusive OR of all the remaining data and parity in
the stripe set.)

To write in degraded mode, parity is calculated and stripes are written
to all but the failed disk. When the disk is replaced, its contents will be
reconstructed from the other drives.

Review questions

5.4.1. A RAID 4 volume with five data drives and one parity drive can
tolerate two disk failures without data loss: True / False

5.4.2. A RAID 4 volume with five data drives and one parity drive holds
more data than three mirrored disk pairs (six disks total) assuming
the disks are the same size in the two cases: True / False

5.4.3. After a disk fails on a RAID 4 volume, which statement is more
correct?
a) It should be replaced quickly
b) It doesn’t need to be replaced immediately, as the RAID con-

troller will prevent data loss if another disk fails

5.4.4. Which one of the following statements best describes the efficiency
of small writes on RAID 4?
a) They are more efficient than large writes
b) They are less efficient than large writes

RAID 5
Small writes to RAID 4 require four operations: one read each for the old
data and parity, and one write for each of the new data and parity. Two
of these four operations go to the parity drive, no matter what LBA is
being written, creating a bottleneck. If one drive can handle 200 random
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operations per second, the entire array will be limited to a total throughput
of 100 random small writes per second, no matter how many disks are in
the array.

By distributing the parity across drives in RAID 5, the parity bottleneck
is eliminated. It still takes four operations to perform a single small write,
but those operations are distributed evenly across all the drives. (Because
of the distribution algorithm, it’s technically possible for all the writes to
go to the same drive; however it’s highly unlikely.) In the five-drive case
shown here, if a disk can complete 200 operations a second, the RAID 4
array would be limited to 100 small writes per second, while the RAID 5
array could perform 250. (5 disks = 1000 requests/second, and 4 requests
per small write)
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RAID 6 - more reliability

RAID level 1 (including 1+0 and 0+1), and levels 4 and 5 are designed
to protect against the total failure of any single disk, assuming that the
remaining disks operate perfectly. However, there is another failure mode
known as a latent sector error, in which the disk continues to operate
but one or more sectors are corrupted and cannot be read back. As disks
become larger these errors become more problematic: for instance, one
vendor specifies their current desktop drives to have no more than 1 unre-
coverable read error per 1014 bits of data read, or 12.5 TB. In other words,
there might be in the worst case a 1 in 4 chance of an unrecoverable read
error while reading the entire contents of a 3TB disk. (Luckily, actual
error rates are typically much lower, but not low enough.)

If a disk in a RAID 5 array fails and is replaced, the “rebuild” process
requires reading the entire contents of each remaining disk in order to
reconstruct the contents of the failed disk. If any block in the remaining
drives is unreadable, data will be lost. (Worse yet, some RAID adapters
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and software will abandon the whole rebuild, causing the entire volume
to be lost.)

RAID 6 refers to a number of RAID mechanisms which add additional
redundancy, using a second parity drive with a more complex error-
correcting code5. If a read failure occurs during a RAID rebuild, this
additional protection may be used to recover the contents of the lost block,
preventing data loss. Details of RAID 6 implementation will not be cov-
ered in this class, due to the complexity of the codes used.

Review questions

5.4.1. RAID 5 is less likely to lose data from disk failure than RAID 4:
True / False

5.4.2. RAID 5 is faster for very large writes than RAID 4: True / False

5.4.3. RAID 5 is faster for small writes than RAID 4: True / False

5.4.4. Which one of the following statements best describes why RAID 6
has become important recently?
a) Because total failure is more common in modern disks
b) Because modern disks are bigger

Logical Volume Management
If you have managed a Linux system (especially Fedora or Red Hat) you
may have used the Logical Volume Manager (LVM), which allows disks
on the system to be flexibly combined and split into different volumes;
similar functionality is available on other operating systems, as well as on
high-end storage arrays.

The volume types which can be created under LVM are those which have
been described in this section: partitioned, concatenated, and the various
RAID levels. In addition, however, logical volume managers typically
offer functions to migrate storage contents and to create snapshots of a
volume.

Volume snapshots rely on a copy-on-write mechanism almost identical
to that used in virtual memory:

5Commonly a Reed-Solomon code; see Wikipedia if you want to find out what that is.
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A snapshot is a “lazy copy” of a volume—it preserves the contents without
immediately consuming any additional disk space, instead consuming
space as the volume is written to. (It’s also much faster than copying all
the data) Why would you want to make a snapshot? Maybe you want
to save the state of your machine before you make major changes, like
installing new software and drivers, or upgrading the OS. If things don’t
work out, you can revert back to the snapshot and try again.

Snapshots are also frequently used for backing up a computer, because it
takes so long to copy all the data from a modern disk. If you merely copied
all the files off of the disk, the backed-up version of one file might be
hours older than another file; this can be avoided by backing up a snapshot
instead of the volume itself.

Live migration is a sort of magical
operation, allowing you to switch
from one disk drive to another
while the machine continues to run.
It works by using amap to direct in-
dividual requests to either the old
volume or the new volume, with
the dividing line moving as data is copied from one to the other. What
happens if you try to write to the small section being copied in the middle?
The write gets stalled until the copy is done, and then is directed to the
new location.

Solid State Drives

Solid-state drives (SSDs) store data on semiconductor-based flash memory
instead of magnetic disk; however by using the same block-based interface
(e.g. SATA) to connect to the host they are able to directly replace disk
drives.

SSDs rely on flash memory, which stores data electrically: a high program-
ming voltage is used to inject a charge onto a circuit element (a floating
gate—ask your EE friends if you want an explanation) that is isolated by
insulating layers, and the presence or absence of such a stored charge can
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be detected in order to read the contents of the cell. Flash memory has
several advantages over magnetic disk, including:

• Random access performance: since flash memory is addressed
electrically, instead of mechanically, random access can be very
fast.

• Throughput: by using many flash chips in parallel, a consumer SSD
(in 2018) can read speeds of 1-2GB/s, while the fastest disks are
limited to a bit more than 200MB/s.

Flash is organized in pages of 4KB to 16KB, which must be read or written
as a unit. These pages may be written only once before they are erased
in blocks of 128 to 256 pages, making it impossible to directly modify
a single page. Instead, the same copy-on-write algorithm used in LVM
snapshots is used internally in an SSD: a new write is written to a page in
one of a small number of spare blocks, and a map is updated to point to
the new location; the old page is now invalid and is not needed. When not
enough spare blocks are left, a garbage collection process finds a block
with many invalid pages, copies any remaining valid pages to another
spare block, and erases the block.

When data is written sequentially, this process will be efficient, as the
garbage collector will almost always find an entirely invalid block which
can be erased without any copying. For very random workloads, especially
on cheap drives with few spare blocks and less sophisticated garbage
collection, this process can involve huge amounts of copying (called write
amplification) and run very slowly.

SSDWear-out: Flash can only be written and erased a certain number of
times before it begins to degrade and will not hold data reliably: most flash
today is rated for 3000 write/erase operations before it becomes unreliable.
The internal SSD algorithms distribute writes evenly to all blocks in the
device, so in theory you can safely write 3000 times the capacity of a
current SSD, or the entire drive capacity every day for 8 years. (Note that
3000 refers to internal writes; random writes with high write amplification
will wear out an SSD more than the same volume of sequential writes.)

For a laptop or desktop this would be an impossibly high workload, espe-
cially since they are typically used only half the hours in a day or less. For
some server applications, however, this is a valid concern. Special-purpose
SSDs are available (using what is called Single-Level Cell, or SLC, flash)
which are much more expensive but are rated for as many as 100,000
write/erase cycles. (This capacity is the equivalent of overwriting an entire
drive every 30 minutes for 5 years. For a 128GB drive, this would require
continuously writing at over 70MB/s, 24 hours a day.)
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New Disk Technologies
The capacity of a disk drive is determined by how many bits there are on
a track (i.e. how short the bits are), how many tracks fit on each side of a
platter (how narrow the bits are), and how many platters and sssociated
heads fit into a drive enclosure. Since sometime around the late 90s most
of the increase in drive density has come from making the tracks narrower;
however this has hit a stumbling block recently. The narrower you make
the write head, the weaker its magnetic field, until eventually it becomes
too weak to magnetize bits on the platter. You can fix this for a while by
making the platter easier to magnetize (lower coercivity), but if you go
too far in that direction, the bits will flip spontaneously due to thermal
noise. (There’s a cure for that—make the bits bigger—but it obviously
won’t help.)

In the last few years disks have come perilously close to this limit. Much of
the capacity growth in the last couple of years (2018) and most in coming
years is expected to come from the following technologies:

• Helium: Filling the drive with helium6 reduces the air turbulence
around the heads and platters, allowing them to be thinner so you
can cram more of them into a disk. (The highest capacity air-filled
drives typically had 4 platters and 8 heads; the largest helium-filled
drives today have 9 platters.)

• Shingled magnetic recording (SMR): Narrow tracks can be writ-
ten with a wide (and thus high magnetic field) head by overlapping
the wide tracks, like rows of shingles7, and read back by a narrower
read head. Unfortunately, overwriting a sector on an SMR disk will
damage the neighboring sector, requiring a translation layer (much
like a flash translation layer) in order to be used by a normal file
system.

• Heat-assisted Magnetic Recording (HAMR): If you heat a mag-
netic material it becomes easier to magnetize. HAMR relies on
narrow, weak write heads that shouldn’t be able to write to the
platter, and heats the surface with a laser just before writing to it.

Although the impending death of hard disk drives has been predicted
many times—Google “bubble memory” for an example–technological
breakthroughs have come through each time to keep them in the position

6Which is harder than it sounds, since helium will leak through cast aluminum, which
is the preferred material for HDD enclosures.

7Really more like clapboards, but “clapboarded” just doesn’t have the same ring to it.
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of the most cost-effective bulk storage medium available. It remains to
be seen whether high-density SSDs based on low-performance NAND
flash are able to catch up to disk in cost per terabyte, or whether some
technological advance will keep disk ahead for yet another decade.

Storage-area Networks
In enterprise environments it is typical to separate storage systems from
the servers that use the storage. This allows tasks such as backup to
be centralized, as well as simplifying the task of replacing or servicing
hardware. (In fact, in a virtualized environment (covered in a later chapter)
external storage allows running servers to be moved from one piece of
hardware to another without interruption.)

Storage-Area Networks, or SANs, typically use the SCSI protocol and a
transport which can be routed or switched as a network. The most common
SAN technologies are Fibre Channel and iSCSI:

• Fibre Channel is a bizarre networking protocol used only in SANs;
for historic reasons it is typically used with optical fiber cabling,
which is expensive and unreliable for short connections.
• iSCSI is an encapsulation of SCSI within TCP/IP; it uses traditional
ethernet cabling, switching, and IP routing, although an iSCSI
deployment may use a separate network for storage.

“Disks” on a SAN are identified by a transport address (either an IP address
or DNS name, for iSCSI, or a 64-bit World Wide Name (WWN) for Fibre
Channel) plus a logical unit number (LUN), which identifies a specific
volume on a target. In other words, an individual block of data on a SAN
can be identified by address + LUN + LBA.

One of the key administrative features in a SAN is LUN masking, which
determines which resources (LUNs) on the network may be seen by which
hosts. This lets each server see only the LUNs which have been assigned to
it, so that a misconfigured host cannot access or corrupt storage which it is
not supposed to have access to. In addition to source-based access control,
iSCSI also offers several authentication protocols, to prevent access to
disk volumes from unauthorized hosts or applications.

De-duplication
Large enterprise storage systems typically store large amounts of similar
data. As an example, your CCIS account stores your home directory on a
central server; if you log onto a college Windows or Linux machine almost
all the files you create and edit will be located on this server.
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In a corporate environment this approach is frequently used with desk-
top machines, resulting in many copies of the same data (items like a
spreadsheet or document sent to several people will be copied into each
users’ email inbox) In addition in such environments data is backed up
frequently, creating even more copies. Very high compression ratios can
be achieved by saving only a single copy of such data, using a process
called (not surprisingly) deduplication. We see this in the figure below,
where the data to be stored is 26 long, but only contains 9 unique blocks,
giving a nearly 3:1 compression ratio if the 26 blocks of data are replaced
by pointers to unique data blocks:

Figure 5.22: De-duplication
To perform deduplication, a cryptographic hash (a form of checksum) is
calculated over each block to be written, and checked against a database.
If the hash is found, then a block containing the same bits has already
been written to storage, and we store a pointer to that block. If not—i.e.
it is the first time we saw that particular data pattern—it is written to a
new location on disk, and a pointer to that location is stored. By using
this map we can then (somewhat slowly) retrieve the data later.

De-duplication is widely used for storing backups and retaining data for
legal purposes, as it achieves very high compression (and thus lower cost)
in many such cases. However, due to the overhead and non-sequential
reads involved in retrieving data, it is typically much slower than normal
storage.

5.5 Putting it all together

In our ls example the block layer and disk drive get used extensively
by the file system. When the new process is created the kernel must
read the first page from disk, to identify the type of executable, and then
after the sections are mapped into memory, page faults will cause block
read requests to be sent through the file system to the underlying device.
Additional disk requests will come in response to the readdir system
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call, as the file system reads directory and inode data to list the files in a
directory.

We’ll ignore the file system for now, as it is described in more detail
in later chapters, and focus on the role of the Linux block layer, which
sits between file systems and the physical devices8. The block layer is
organized around the struct bio object, a typical Linux kernel object
which is fantastically complicated in order to track lots of things we don’t
really care about. We’ll ignore most of this complexity; the fields that
we’re concerned with are the command flag (indicating read or write),
data pointer (points to one or more pages), a callback function and private
data field provided by the subsystem which submitted the I/O (more on
this below), and a pointer to the device to which the I/O has been issued.
(actually a pointer to a struct block_device)

First, a note about the private data pointer and callbacks, which are a
common design pattern in C. (at least in the Linux kernel) In a proper
object-oriented language, if you want to specialize a class (e.g. a block
I/O descriptor) by adding additional fields (e.g. for details like timers
or queues needed by your device driver), you can create a derived class
with these additional fields. You can’t do that in C—you can allocate
two structures, or embed an instance of the general structure within the
specialized one, but there will be cases (like callback functions) where a
function handling the general class will in turn invoke another function
which needs to access the specialized structure.

The most straightforward way to do this is via a “private data” field in a
object; this is a generic pointer which is set to point to a separate structure
holding the specialized data. An example shown in the listing below is the
bio callback function (called bi_end_io): this is a function pointer which
is invoked when the I/O operation completes, which is given a pointer to
the bio itself as an argument.

struct my_data {
... specific data ...

};

void my_end_io(struct bio *b)
{

struct my_data *md = b->bi_private;
...

}

...
{

8For a more detailed description of the Linux block layer, see https://lwn.net/
Articles/736534/.

https://lwn.net/Articles/736534/
https://lwn.net/Articles/736534/
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struct bio *b = ...
struct my_data *priv = ...
b->bi_private = priv;
b->bi_end_io = my_end_io;
submit_bio(b);

}

Listing 5.2: Using the bi_private field to pass information to a call-
back function

Note that struct bio has no way to indicate the type of attached data;
instead we need to be sure that functions which interpret bi_private
as a pointer to struct my_data are only ever called on bios where the
attached object actually is of that type. (e.g. in this case bi_end_io will
only be set to my_end_io in cases where the attached object is of type
struct my_data)

Turning our attention back to the block layer, let’s trace the case where a file
system submits a single page read or write to a old-fashioned programmed-
IO IDE drive. If you remember the IDE drive is similar to the disk con-
troller described earlier in the text, with a few registers to indicate the
disk sector, command (read / write), and the number of sectors to transfer,
as well as a register which the CPU reads or writes to transfer the data.
For a write you push the command and data, then wait for an interrupt
to indicate that it’s done; for a read you wait until the interrupt before
transferring the data.

Here we see the path for submitting a read request in ext29:

fs/ext2/inode.c:
793 int ext2_readpage(struct file *file, struct page *page) {
795 return mpage_readpage(page, ext2_get_block);

fs/mpage.c:
398 int mpage_readpage(struct page *page, get_block_t get_block) {
408 bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
411 mpage_bio_submit(REQ_OP_READ, 0, bio);

143 struct bio *
144 do_mpage_readpage(struct bio *bio, struct page *page, ...) {
284 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),

68 struct bio *
69 mpage_alloc(struct block_device *bdev, ...) {
77 bio = bio_alloc(gfp_flags, nr_vecs);
85 bio->bi_bdev = bdev;

9Line numbers from Linux kernel 4.8.0
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59 struct bio *mpage_bio_submit(int op, int op_flags, ...
61 bio->bi_end_io = mpage_end_io;
64 submit_bio(bio);

Listing 5.3: Ext2 read bio submission

Ignoring all sorts of bookkeeping and optimizations, we have: a bio is
allocated (mpage_alloc line 77) and a pointer is stored to the destination
device (line 85), then a callback function is set (mpage_bio_submit line
61) and the I/O enters the block system via submit_bio.

From this point the block system generates a request10 to the underlying
device:

block/blk-core.c:
2067 blk_qc_t submit_bio(struct bio *bio) {
2099 return generic_make_request(bio);

1995 blk_qc_t generic_make_request(struct bio *bio) {
2036 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2039 ret = q->make_request_fn(q, bio);

Listing 5.4: Submit_bio logic

We’ll skip over the details of how I figured out what value
q->make_request_fn has here; just trust me that in our case it’s
blk_queue_bio:

block/blk-core.c:
1663 blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)

1704 el_ret = elv_merge(q, &req, bio);
1705 if (el_ret == ELEVATOR_BACK_MERGE) {
1706 if (bio_attempt_back_merge(q, req, bio)) {
1710 goto out_unlock;

1739 req = get_request(q, bio_data_dir(bio), rw_flags, bio, ...
1752 init_request_from_bio(req, bio);

1775 add_acct_request(q, req, where);
1776 __blk_run_queue(q);

Listing 5.5: block/block-core.c, blk_queue_bio

It first calls the “elevator” merge function (a reference to the classic disk
scheduling algorithm) which tries to merge it with an existing queued I/O;

10Unix block devices have always been different from normal files in that they have a
single submission function for both reads and writes.
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if it can, then we return via goto11 (lines 1704-1710). If not, we allocate a
request structure (basically a bunch of information for queueing, hashing,
accounting, sleeping, and stuff like that) and set up all its fields (lines 1739,
1752). Then we add the request to the elevator queue (line 1775, which
in turn calls __elv_add_request, which has a lot of very complicated
logic to figure out where to put the request in the queue) and then run a
request from the queue:

block/block-core.c
311 inline void __blk_run_queue_uncond(struct request_queue *q)

324 q->request_fn(q);

Listing 5.6: Running a request from the queue

For a “legacy” (i.e. really old) IDE device the request function is
do_ide_request. If you’re looking at the code yourself, note that any-
thing with _pm_ in it is power management, that while start_request
is important, blk_start_request doesn’t do anything interesting, and
that “plugging” refers to a complicated mechanism of delaying I/Os a
short time to see if they’ll be followed by additional requests that can be
merged into one big request. You can skip over those parts; I did.

drivers/ide/ide-io.c:
456 void do_ide_request(struct request_queue *q)
517 rq = blk_fetch_request(drive->queue);
551 startstop = start_request(drive, rq);

block/blk-core.c:
2506 struct request *blk_fetch_request(struct request_queue *q)
2510 rq = blk_peek_request(q);

2349 struct request *blk_peek_request(struct request_queue *q)
2354 ... rq = __elv_next_request(q) ...
2399 ret = q->prep_rq_fn(q, rq);

drivers/ide/ide-io.c
306 ide_startstop_t start_request (ide_drive_t *drive, ... *rq)

343 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
344 return execute_drive_cmd(drive, rq);

So in order of execution, we grab a request from the queue (blk-core.c
2354) and call the queue prep function (idedisk_prep_fn, which sets
rq->cmd_type to REQ_TYPE_ATA_TASKFILE and does a lot of other

11The use of gotos to jump to cleanup code is a common design pattern in kernel coding,
replacing the try/finally pattern in more civilized programming languages.
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things we ignore), and then we call start_request (ide-io.c line 551)
which calls execute_drive_cmd (line 344).

drivers/ide/ide-io.c
253 ide_startstop_t execute_drive_cmd (ide_drive_t *drive, ... *rq)
259 if (cmd->protocol == ATA_PROT_PIO) {
260 ide_init_sg_cmd(cmd, blk_rq_sectors(rq) << 9);
261 ide_map_sg(drive, cmd);
264 return do_rw_taskfile(drive, cmd);

If the drive controller is in programmed I/O mode (PIO),
ide_init_sg_cmd creates a “taskfile”, the bytes that have to be
written to the control registers of the device; ide_map_sg gets pointers
to all the memory regions to transfer. *Now* we’re finally ready to send a
command to the disk controller.

We’ll trace a write operation, since it’s easier:

drivers/ide/ide-taskfile.c:
78 ide_startstop_t do_rw_taskfile(ide_drive_t *drive, ...

118 tp_ops->tf_load(drive, &cmd->hob, cmd->valid.out.hob);
119 tp_ops->tf_load(drive, &cmd->tf,
cmd->valid.out.tf);

122 switch (cmd->protocol) {
123 case ATA_PROT_PIO:
123 if (cmd->tf_flags & IDE_TFLAG_WRITE) {
125 tp_ops->exec_command(hwif, tf->command);
126 ndelay(400); /* FIXME */
127 return pre_task_out_intr(drive, cmd);

(Fun fact: that FIXME comment was there in kernel 2.4.31 in 2005. I
don’t think it will get fixed.)

First the taskfile (and extended taskfile, known as the HOB since it’s valid
when the High Order Bit is set somewhere in the basic taskfile) to the
controller, using ide_tf_load, which uses the outb instruction to write
the bytes to the appropriate control registers; e.g. the 3 bytes of LBA in
each get written as so:

...
if (valid & IDE_VALID_LBAL)

tf_outb(tf->lbal, io_ports->lbal_addr);
if (valid & IDE_VALID_LBAM)

tf_outb(tf->lbam, io_ports->lbam_addr);
if (valid & IDE_VALID_LBAH)

tf_outb(tf->lbah, io_ports->lbah_addr);
...
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Then ide_exec_command writes the command byte to the appropriate
register, and calls pre_task_out_intr:

drivers/ide/ide-taskfile.c:
403 ide_startstop_t pre_task_out_intr(ide_drive_t *drive, ... cmd)
419 ide_set_handler(drive, &task_pio_intr, WAIT_WORSTCASE);
421 ide_pio_datablock(drive, cmd, 1);

which sets a handler (saved in hwif->handler, with a timer in case the
disk hangs) to be called when the request completes, and then actually
copies the data to the data register.

We’re almost done; bear with me. When the drive finishes writing its
data, the IDE interrupt handler is called, which invokes the handler we
just registered above, and then through a long, complicated chain of calls
invokes bio->bi_end_io, which is the mpage_end_io that we stuck in
the bio structure way back up at the top:

drivers/ide/ide-io.c:
892 irqreturn_t ide_intr (int irq, void *dev_id)
793 handler = hwif->handler;
849 startstop = handler(drive);

drivers/ide/ide-taskfile.c:
344 ide_startstop_t task_pio_intr(ide_drive_t *drive)
348 u8 stat = hwif->tp_ops->read_status(hwif);
... handle partial transfers; if done:

396 ide_complete_rq(drive, 0, blk_rq_sectors(cmd->rq) << 9);

drivers/ide/ide-io.c:
115 int ide_complete_rq(ide_drive_t *drive, int error, ...
128 rc = ide_end_rq(drive, rq, error, nr_bytes);

57 int ide_end_rq(ide_drive_t *drive, struct request *rq, ...
70 return blk_end_request(rq, error, nr_bytes);

block/blk-core.c
2796 bool blk_end_request(struct request *rq, int error, ...
2798 return blk_end_bidi_request(rq, error, nr_bytes, 0);

2740 bool blk_end_bidi_request(struct request *rq, int error,
2746 if (blk_update_bidi_request(rq, error, nr_bytes, ...

2654 bool blk_update_bidi_request(struct request *rq, int error,
2658 if (blk_update_request(rq, error, nr_bytes))

2539 bool blk_update_request(struct request *req, int error, ...
2604 req_bio_endio(req, bio, bio_bytes, error);

142 void req_bio_endio(struct request *rq, struct bio *bio, ...
155 bio_endio(bio);
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block/bio.c:
1742 void bio_endio(struct bio *bio)
1761 if (bio->bi_end_io)
1762 bio->bi_end_io(bio);

Listing 5.7: The home stretch: from IDE interrupt to invoking bio->bi_end_io

Review questions

5.5.1. SSDs wear out faster if you repeatedly write to the same file or
logical block address: True / False

5.5.2. Which one of the following statements is correct?

a) Deduplication is faster than traditional RAID arrays, but re-
quires more disk space to hold the same amount of data

b) Deduplication is slower than traditional RAID arrays, but can
hold more data with the same amount of disk space

Answers to Review Questions

5.2.1 (2) In general, connections which span longer distances and connect
more devices (such as those far from the CPU) will be slower.

5.2.2 False. RAM and I/O devices (even memory-mapped I/O devices)
are separate parts of the system.

5.2.1 False. The whole idea of an I/O (input/output) device is that the
CPU doesn’t know what value will be returned when it reads it.

5.2.2 False. DMA is when a device on the PCIe (or similar) bus accesses
memory directly, without CPU intervention.

5.2.3 (2), software in the kernel. A device driver is that part of the kernel
code which reads from, writes to, and handles interrupts from one
or more specific hardware devices.

5.3.1 False. Since the platter is constantly spinning, when the head reaches
the right track it may still have to wait as much as a full rotation for
the target block to come beneath the head.

5.3.2 (3), multiple processes performing simultaneous random reads. In
this case the OS can issuemultiple read commands which are queued
by the drive and completed in the most efficient order.

5.4.1 (2), a portion of the disk LBA space. The partition boundary is
specified in a partition table in the beginning of the disk, and the
operating system treats each partition as if it were a separate device.

5.4.1 (2), the storage capacity of a striped volume is the sum of the capacity
of the disks in the volume, since only one copy of data is stored.
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5.4.2 True. Stripes from each disk are interleaved at a fine granularity, so
when one disk comes to an end, the entire volume has to end.

5.4.1 (1), each disk holds a copy of each byte written to the volume. (and
no, there’s no parity drive in a mirrored volume.)

5.4.1 False. The RAID 4 parity code can only recover from one missing
drive, no matter how many drives are in the volume.

5.4.2 True. Three mirrored pairs hold three disks worth of data, while the
six-disk RAID volume contains five disks of data.

5.4.3 (1) Once a single disk fails in a RAID 4 (or 5) volume, the data is
unprotected and will be lost if a second disk fails. The sooner the
disk is replaced, the less likely this is to happen.

5.4.4 (2) Small writes require reading old data and parity, and then writing
data and parity, requiring four operations for a one-block write.
Writing a full stripe set allows parity to be calculated without reading
any information from disk, adding only a single operation to the
parity drive.

5.4.1 False. RAID 5 and RAID 4 can both tolerate only a single disk
failure without data loss.

5.4.2 False. If an entire stripe set is written at once, the parity can be
calculated and written with it, resulting in one write operation for
each drive in the array, regardless of whether it is RAID 4 or RAID
5.

5.4.3 True. A small write requires four operations: read (1) old data,
(2) old parity, write (3) new data, (4) new parity. In RAID 4, two
of these always go to the same (parity) drive, which becomes a
bottleneck.

5.4.4 (2) Modern disks do not seem to fail more or less frequently than
those of several years ago. Similarly, the probability of losing a
single block of data to an unrecoverable read error has stayed roughly
the same (as of 2015); however, the number of data blocks on a
single disk has grown hugely, making it far more likely that one of
the data blocks on a disk will be lost.

5.5.1 False. SSD algorithms distribute writes evenly over the internal
flash, whether writes are to the same or different block addresses.

5.5.2 (2) Writing to a de-duplicated volume is slower due to the need to
search for possible duplicates. Reading is typically much slower, as
well, because the fragments making up a file will not be sequential
on the underlying disk. For many workloads, however, it may be
possible to store 10 times as much data on the same number of
disks.



Chapter 6

File Systems

General-purpose operating systems typically provide access to block stor-
age (i.e. disks) via a file system, which provides a much more application-
and user-friendly interface to storage. From the point of view of the user,
a file system contains the following elements:

• a name space, the set of names identifying objects;
• objects such as the files themselves as well as directories and other
supporting objects;

• operations on these objects.

Hierarchical namespace: File systems have traditionally used a tree-
structured namespace1, as shown Figure 6.1. This tree is constructed via
the use of directories, or objects in the namespace which map strings to
further file system objects. A full filename thus specifies a path from the
root, through the tree, to the object (a file or directory) itself. (Hence the
use of the term “path” to mean “filename” in Unix documentation)

File: Early operating systems supported many different file types—binary
executables, text files, and record-structured files, and others. The Unix
operating system is the earliest I know of that restricted files to sequences
of 8-bit bytes; it is probably not a coincidence that Unix arrived at the
same time as computers which dealt only with multiples of 8-bit bytes (e.g.
16 and 32-bit words), replacing older systems which frequently used odd
word sizes such as 36 bits. (Note that a machine with 36-bit instructions
already needs two incompatible types of files, one for text and one for
executable code)

1Very early file systems sometimes had a single flat directory per user, or like MS-DOS
1.0, a single directory per floppy disk.
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Figure 6.1: Logical view (left) and implementation (right) of a hierarchical file
system name space.

Modern operating systems follow the UNIX model, which imposes no
structure on a file—a file is merely a sequence of bytes.2 Any structure to
the file (such as a JPEG image, an executable program, or a database) is
the responsibility of applications which read and write the file. The file
format is commonly indicated by a file extension like .jpg or .xml, but this
is just a convention followed by applications and users. You can do things
like rename file.pdf to file.jpg, which will confuse some applications and
users, but have no effect on the file contents.

Data in a byte-sequence file is identified by the combination of the file
and its offset (in bytes) within the file. Unlike in-memory objects in an
application, where a reference (pointer) to a component of an object may be
passed around independently, a portion of a file cannot be named without
identifying the file it is contained in. Data in a file can be created by a
write which appends more data to the end of a shorter file, and modified
by over-writing in the middle of a file. However, it can’t be “moved” from
one offset to another: if you use a text editor to add or delete text in the
middle of a file, the editor must re-write the entire file (or at least from
the modified part to the end).

Unix file name translation: each process has an associated current di-

2Almost. Apple OSX uses resource forks to store information associated with a file
(HFS and HFS+ file systems only), Windows NTFS provides for multiple data streams in
single file, although they were never put to use, and several file systems support file attributes,
small tags associated with a file..
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rectory, which may be changed via the chdir system call. File names
beginning in ’/’ are termed absolute names, and are interpreted relative to
the root of the naming tree, while relative names are interpreted beginning
at the current directory. (In addition, d/.. always points to the parent
directory of d, and d/. points to d itself.) Thus in the file system in Fig-
ure 6.1, if the current directory were /home, the the paths pjd/.profile
and /home/pjd/.profile refer to the same file, and ../bin/cat and
/bin/cat refer to the same file.

6.1 File System Operations:

There are several common types of file operations supported by Linux
(and with slight differences, Windows). They can be classified into three
main categories: open/close, read/write, and naming and directories.

Open/close: In order to access a file in Linux (or most operating systems)
you first need to open the file, passing the file name and other parameters
and receiving a handle (called a file descriptor in Unix) which may be
used for further operations. The corresponding system calls are:

• int desc = open(name, O_READ) - Verify that file name exists
and may be read, and then return a descriptor which may be used
to refer to that file when reading it.

• int desc = open(name, O_WRITE | flags, mode) - Verify
permissions and open name for writing, creating it (or erasing exist-
ing contents) if necessary as specified in flags. Returns a descrip-
tor which may be used for writing to that file.

• close(desc) - stop using this descriptor, and free any resources
allocated for it.

Note that application programs rarely use the system calls themselves to
access files, but instead use higher-level frameworks, ranging from Unix
Standard I/O to high-level application frameworks.

Read/Write operations: To get a file with data in it, you need to write
it; to use that data you need to read it. To allow reading and writing in
units of less than an entire file, or tedius calculations of the current file
offset, UNIX uses the concept of a current position associated with a file
descriptor. When you read 100 bytes (i.e. bytes 0 to 99) from a file this
pointer advances by 100 bytes, so that the next read will start at byte 100,
and similarly for write. When a file is opened for reading the pointer starts
at 0; when open for writing the application writer can choose to start at the
beginning (default) and overwrite old data, or start at the end (O_APPEND
flag) to append new data to the file.
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System calls for reading and writing are:

• n = read(desc, buffer, max) - Read max bytes (or fewer if
the end of the file is reached) into buffer, starting at the current
position, and returning the actual number of bytes n read; the current
position is then incremented by n.
• n = write(desc, buffer, len) - write len bytes from
buffer into the file, starting at the current position, and incre-
menting the current position by len.
• lseek(desc, offset, flag) Set an open file’s current position
to that specified by offset and flag, which specifies whether
offset is relative to the beginning, end, or current position in the
file.

Note that in the basic Unix interface (unlike e.g. Windows) there is no way
to specify a particular location in a file to read or write from3. Programs
like databases (e.g. SQLite, MySQL) which need to write to and read
from arbitrary file locations must instead move the current position by
using lseek before a read or write. However most programs either read
or write a file from the beginning to the end (especially when written for
an OS that makes it easier to do things that way), and thus don’t really
need to perform seeks. Because most Unix programs use simple “stream”
input and output, these may be re-directed so that the same program can—
without any special programming—read from or write to a terminal, a
network connection, a file, or a pipe from or to another program.

Naming and Directories: In Unix there is a difference between a name
(a directory entry) and the object (file or directory) that the name points
to. The naming and directories operations are:

• rename(path1, path2) - Rename an object (i.e. file or directory)
by either changing the name in its directory entry (if the destination
is in the same directory) or creating a new entry and deleting the
old one (if moving into a new directory).
• link(path1, path2) Add a hard link to a file4.

3On Linux the pread and pwrite system calls allow specifying an offset for the read
or write; other UNIX-derived operating systems have their own extensions for this purpose.

4A hard link is an additional directory entry pointing to the same file, giving the file two
(or more) names. Hard links are peculiar to Unix, and in modern systems have mostly been
replaced with symbolic links (covered next); however Apple’s Time Machine makes very
good use of them: multiple backups can point to the same single copy of an un-modified file
using hard links.
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• unlink(path) - Delete a file.5
• desc = opendir(path)
readdir(desc, dirent*), dirent=(name,type,length)
This interface allows a program to enumerate names in a directory,
and determine their type. (i.e. file, directory, symbolic link, or
special-purpose file)

• stat(file, statbuf)
fstat(desc, statbuf) - returns file attributes - size, owner, per-
missions, modification time, etc. In Unix these are attributes of the
file itself, residing in the i-node, and can’t be found in the directory
entry - otherwise it would be necessary to keep multiple copies
consistent.

• mkdir(path)
rmdir(path) - directory operations: create a new, empty directory,
or delete an empty directory.

Review Questions

6.1.1. Directories in most file systems only contain pointers to files, not
to other directories: True / False

6.1.2. Which one or more of the following scenarios could cause the
contents of the 1000th byte in a file to either change or cease to
exist?
a) The file is renamed
b) The file is deleted
c) Bytes 500 through 600 in the file are over-written
d) Bytes 900 through 1200 are over-written

6.1.3. For the read operation read(handle, buffer, max), the range
of bytes to be read from the file (e.g. bytes 100 through 199) is
determined by which of the following? (more than one may apply)
a) The ’buffer’ and ’max’ arguments
b) The file handle current position and file length
c) The ’max’ argument
d) bytes 0 through ’max’

5Sort of. If there are multiple hard links to a file, then this just removes one of them;
the file isn’t deleted until the last link is removed. Even then it might not be removed yet -
on Unix, if you delete an open file it won’t actually be removed until all open file handles
are closed.. In general, deleting open files is a problem: while Unix solves the problem by
deferring the actual delete, Windows solves it by protecting open files so that they cannot be
deleted
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Symbolic links
An alternative to hard links to allow multiple names for a file is a third file
system object (in addition to files and directories), a symbolic link. This
holds a text string which is interpreted as a “pointer” to another location
in the file system. When the kernel is searching for a file and encounters a
symbolic link, it substitutes this text into the current portion of the path,
and continues the translation process.

Thus if we have:
directory: /usr/program-1.0.1
file: /usr/program-1.0.1/file.txt
sym link: /usr/program-current -> "program-1.0.1"

and if the OS is looking up the file /usr/program-current/file.txt,
it will:

1. look up usr in the root directory, finding a pointer to the /usr
directory

2. look up program-current in /usr, finding the link with contents
program-1.0.1

3. look up program-1.0.1 and use this result instead of the re-
sult from looking up program-current, getting a pointer to the
/usr/program-1.0.1 directory.

4. look up file.txt in this directory, and find it.

Note that unlike hard links, a symbolic link may be “broken”—i.e. if the
file it points to does not exist. This can happen if the link was created in
error, or the file or directory it points to is deleted later. In that case path
translation will fail with an error:

pjd-1:tmp pjd$ ln -s /bad/file/name bad-link
pjd-1:tmp pjd$ ls -l bad-link
lrwxr-xr-x 1 pjd wheel 22 Aug 2 00:07 bad-link -> /bad/file/name
pjd-1:tmp pjd$ cat bad-link
cat: bad-link: No such file or directory

Finally, to prevent loops there is a limit on how many levels of symbolic
link may be traversed in a single path translation:

pjd@pjd-fx:/tmp$ ln -s loopy loopy
pjd@pjd-fx:/tmp$ ls -l loopy
lrwxrwxrwx 1 pjd pjd 5 Aug 24 04:25 loopy -> loopy
pjd@pjd-fx:/tmp$ cat loopy
cat: loopy: Too many levels of symbolic links
pjd@pjd-fx:/tmp$

In early versions of Linux (pre-2.6.18) the link translation code was recur-
sive, and this limit was set to 5 to avoid stack overflow. Current versions
use an iterative algorithm, and the limit is set to 40.
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Device Names vs. Mounting: A typical system may provide access to
several file systems at once, e.g. a local disk and an external USB drive or
network volume. In order to unambiguously specify a file we thus need
to both identify the file within possibly nested directories in a single file
system, as well as identifying the file system itself. (in Unix this name
is called an absolute pathname, providing an unambiguous “path” to the
file.) There are two common approaches to identifying file systems:

• Explicitly: each file system is given a name, so that a full path-
name looks like e.g. C:\MyDirectory\file.txt (Windows6) or
DISK1:[MYDIR]file.txt (VMS).

• Implicitly: a file system is transparently mounted onto a directory
in another file system, giving a single uniform namespace; thus on
a Linux system with a separate disk for user directories, the file
“/etc/passwd” would be on one file system (e.g. “disk1”), while
“/home/pjd/file.txt” would be on another (e.g. “disk2”).

The actual implementation of mounting in Linux and other Unix-like
systems is implemented via a mount table, a small table in the kernel
mapping directories to directories on other file systems. In the example
above, one entry would map “/home” on disk1 to (“disk2”, “/”). As the
kernel translates a pathname it checks each directory in this table; if found,
it substitutes the mapped file system and directory before searching for an
entry. Thus before searching “/home” on disk1 (which is probably empty)
for the entry “pjd”, the kernel will substitute the top-level directory on
disk2,and then search for “pjd”.

For a more thorough explanation of path translation in Linux and other
Unix systems see the path_resolution(7) man page, which may be
accessed with the command man path_resolution.

Review Questions

6.1.1. Creating, modifying, and deleting directories is performed by dif-
ferent system calls than creating and deleting files. Which of the
following are possible reasons for this?
a) When deleting a directory, the OS must check to be sure that

it is empty
b) Directories use a different kind of name from files
c) To prevent users from modifying directory data which is ac-

cessed by kernel code.

6Modern Windows systems actually use a mount-like naming convention internally; e.g.
the C: drive actually corresponds to the name \DosDevices\C: in this internal namespace.
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6.1.2. Which one of the following statements best describes the Unix
mount table?

a) Used at startup to determine how to name different filesystems
b) A table in the kernel used to recognize where one filesystem

is “attached” to another

6.2 File System Layout

To store a file system on a real disk, the high-level objects (directories,
files, symbolic links) must be translated into fixed-sized blocks identified
by logical block addresses.

Note that instead of 512-byte sectors, file systems traditionally use disk
blocks, which are some small power-of-two multiple of the sector size,
typically 1KB, 2KB, or 4KB. Reading and writing is performed in units
of complete blocks, and addresses are stored as disk block numbers rather
than LBAs, and are then multiplied by the appropriate value before being
passed to the disk. Since modern disk drives have an internal sector size
of 4KB (despite pretending to support 512-byte sectors) and the virtual
memory page size is 4KB on most systems today, that has become a very
common file system block size.

Designing on-disk data structures is complicated by the fact that for various
reasons (virtual memory, disk controller restrictions, etc.) the data in a file
needs to be stored in full disk blocks — e.g. bytes 0 through 4095 of a file
should be stored in a single 4096-byte block. (This is unlike in-memory
structures, where odd-sized allocations usually aren’t a problem.)

In this section we examine a number of different file systems; we can
categorize them by the different solutions their designers have come up
with for the following three problems:

1. How to find objects (files, directories): file identification.
2. How to find the data within a file: file organization.
3. How to allocate free space for creating new files.

CD-ROM File System

In Figure 6.2 we see an example of an extremely simple file system, similar
to early versions of the ISO-9660 file system for CD-ROM disks. Objects
on disk are either files or directories, each composed of one or more 2048-
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byte7 blocks; all pointers in the file system are in terms of block numbers,
with blocks numbered from block 0 at the beginning of the disk.

name type start len
bin d 1 2048

home d 5 2048
tmp d ... 2048
usr d ... 2048

name type start len
ls f 2 4001

cat f 4 1500

0

1

2

3

4

name type start len
pjd d 6 2048

quincy d  7 2048
ralph d 8 2048

5

ls

cat

Block
number

......
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Figure 6.2: Simplified ISO-9660 (CD-
ROM) file layout for tree in Figure 6.1,

2KB blocks

There are no links—each object
has exactly one name—and the
type of an object is indicated in
its directory entry. (The only ex-
ception is the root directory, which
has no name; however it is always
found at the beginning of the disk)
Finally, all objects are contigu-
ous, allowing them to be identified
by a starting block number and a
length.

This organization is both compact
and fairly efficient. As in almost
all file systems, an object is lo-
cated by using linear search to find
each path component in the corre-
sponding directory. Once a file is
located, access to any position is
straightforward and can be calcu-
lated from the starting block ad-
dress of the file, as all files are con-
tiguous.

Contiguous organization works fine for a read-only file system, where
all files (and their sizes) are available when the file system is created. It
works poorly for writable file systems, however, as space would quickly
fragment making it impossible to create large files. (Also the CDROM
file system has no method for tracking free space, so allocation would be
very inefficient.)

In the simple CD-ROM file system, what were the solutions to the three
design problems?

1. File identification: files are identified by their starting block number
2. File organization: blocks in a file are contiguous, so an offset in the

file can be found by adding to the starting block number.
3. Free space allocation: since it’s a read-only file system, there is no

free space to worry about.

7Why 2048? Because the designers of the CDROM file system defined it that way. Data
is stored on CD in 2048-byte blocks plus error correction, making use of smaller block sizes
difficult, and the authors evidently didn’t see any need to allow larger block sizes, either.
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Review Questions

6.2.1. On-disk structures must be constructed of disk blocks, rather than
arbitrary-sized regions: True / False

6.2.2. A file system can use large blocks for the large files in a directory
and small blocks for the small files: True / False

6.2.3. Not counting blocks used for the directory, how much space would
be required to store 20 files, each 100 bytes long, in the CD-ROM
file system described?
a) It would require 20 2048-byte blocks
b) It would require a single 2048-byte block

6.2.4. The CD-ROM file system described in this chapter tracks free space
in its directories: True / False
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MS-DOS file system

Figure 6.3: Linked list organization with in-
object pointers (typical for in-memory struc-
tures) and external pointers, as used in MS-

DOS File Allocation Table.

The next file system we con-
sider is the MS-DOS (or FAT,
File Allocation Table) file sys-
tem. Here blocks within a file
are organized in a linked list;
however implementation of this
list is somewhat restricted by
the requirement that all access
to the disk be done in multiples
of a fixed block size.8 Instead
these pointers are kept in a sep-
arate array, with an entry corre-
sponding to each disk block, in
what is called the File Alloca-
tion Table.

Entries in this table can indicate
(a) the number of the next block
in the file or directory, (b) that
the block is the last one in a file or directory, or (c) the block is free. The
FAT is thus used for free space management as well as file organization;
when a block is needed the table may be searched for a free entry which
can then be allocated.

Again, what were the solutions to the three design problems?

1. File identification - Files and directories are identified by their start-
ing block number

2. File organization - blocks within a file are linked by pointers in the
FAT

3. Free space allocation - free blocks are marked in the FAT, and linear
search is used to find free space

Directories are similar to the CD-ROM file system - each entry has a name,
the object type (file or directory), its length, and the starting address of the
file contents. Note that although the last block of a file can be identified
by a flag in the FAT, the length field is not redundant as it is still needed to
know how much of the last block is valid. (E.g. a 5-byte file will require

8The astute reader will note that the pointer could use bytes within a block, causing
each block to store slightly less than a full block of data. This would pose difficulties for
operating systems such as Linux which tightly couple the virtual memory and file systems,
and assume that each 4KB virtual memory page corresponds to one (or maybe 2 or 4) file
system blocks.
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an entire block, but will only use 5 bytes in that block.) Sequential access
to a file incurs overhead to fetch file allocation table entries, although since
these are frequently used they may be cached; random access to a file,
however, requires walking the linked list to find the corresponding entry,
which can be slow even when cached in memory. (Consider random I/O
within a 1GB virtual disk image with 4KB blocks—the linked list will
be 256K long, and on average each I/O will require searching halfway
through the list9).

Directories in the MS-DOS file system are similar to those in ISO-9660.
Each directory entry is a fixed size and has a field indicating whether it
is valid; to delete a file, this field is set to invalid and the blocks in that
file are marked as free in the file allocation table. Only a single name per
file is supported, and all file metadata (e.g. timestamps, permissions) is
stored in the directory entry along with the size and first block number.

Like most file systems, linear search is used to locate a file in a directory.
This is usually reasonably efficient (it’s used bymost Unix file systems, too)
but works poorly for very large directories. (That’s why your browser cache
has filenames that look like ab/xy/abxy123x.dat, instead of putting all
its files in the same directory.)

A note for the reader - the original MS-DOS file system only supported 8-byte
upper-case names with 3-byte extensions, with (seemingly) no way to get around
this restriction, since the size of a directory entry is fixed. A crazy mechanism
was devised that is still used today: multiple directory entries are used for each
file, with the extra entries filled with up to 13 2-character Unicode filename
characters in not only the filename field, but also the space that would have
otherwise been used for timestamp, size, starting block number, etc., and marked
in a way that would be ignored by older versions of MS-DOS.

Review Questions

6.2.1. The MS-DOS file system identifies the blocks in a file through
which of the following processes?
a) By marking them with the file ID in the file allocation table
b) By linking them with pointers at the beginning of each block
c) By linking them with pointers in the FAT

6.2.2. Which of these are differences between ext2 and the MS-DOS file
system described previously?

9A benchmark run on login.ccs.neu.edu indicates that “pointer chasing” on a high-end
Xeon takes about 200 ns when data is not in cache; each such random I/O would thus take
about 25ms of CPU time.
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a) ext2 allows multiple names for the same file, while MS-DOS
only allows one.

b) ext2 has less overhead than the MS-DOS file system.

Unix file systems (e.g. ext2)
File systems derived from the original Unix file system (e.g.
Linux ext2 and ext3) use a per-file structure called an in-
ode (“indirect node”) designed with three goals in mind:

Why not use e.g. a balanced
binary tree? The in-memory tree
structures from your algorithms
class aren’t appropriate for a file
system, for several reasons: (a) the
minimum allocation unit is a disk
block, typically 4KB, (b) disk
seeks are really expensive, and (c)
we want to avoid re-arranging
existing data on disk as the file
grows, so that we don’t lose it if the
system crashes mid-operation.

(a) low overhead for small files, in
terms of both disk seeks and allo-
cated blocks10, (b) ability to rep-
resent sufficiently large files with-
out excessive storage space or per-
formance overhead, and (c) crash
resiliency—crashing while the file
is growing should not endanger ex-
isting data.

To do this, the inode uses an asym-
metric tree, or actually a series of
trees of increasing height with the
root of each tree stored in the inode. As seen in Figure 6.4 the inode
contains N direct block pointers (12 in ext2/ext3), so that files of N blocks
or less need no indirect blocks. A single indirect pointer specifies an
indirect block, holding pointers to blocksN,N +1, ...N +N1− 1 where
N1 is the number of block numbers that fit in a file system block (1024
for ext2 with a 4KB blocksize). If necessary, the double-indirect pointer
specifies a block holding pointers toN1 indirect blocks, which in turn hold
pointers to blocks N +N1...N +N1 +N2

1 − 1—i.e. an N1-ary tree of
height 2; a triple indirect block in turn points to a tree of height 3. For ext2
with 4-byte block numbers, if we use 4K blocks this gives a maximum file
size of (4096/4)3 4KiB11 blocks, or 4.004 TiB. This organization allows
random access within a file with overhead O(logN) where N is the file
size, which is vastly better than the O(N) overhead of the MS-DOS File
Access Table system.

In addition to the block pointers, the inode holds file metadata such as
the owner, permissions, size, and timestamps. The separation of name
(i.e. directory entry) and object (the inode and the blocks it points to) also
allows files to have multiple names, which for historical reasons are called

10The median file size in a recent study was 4KB, or one block
11When we’re being really precise, we’ll use KiB, MiB, GiB etc. to mean 210, 220, 230

and KB, MB, GB to mean 103, 106 and 109.
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Figure 6.4: Inode-type file organization as found in many Unix file systems (e.g.
Linux ext2, ext3). Note that the degree of branching is far lower than in real file

systems, and the triple-indirect pointer is missing.

hard links. For the longest time hard links were a little-used capability
of Unix-style file systems; however Apple Time Machine for the HFS+
file system makes good use of them to create multiple backup snapshots
which share identical files to save space.

Since files can have multiple names, the inode also contains a reference
count; as each name is deleted (via the unlink system call) the count is
decremented, and when the count goes to zero the file is deleted. This
also allows a file to have zero names—when a file is opened the reference
count (in memory, not on disk) is incremented, and decremented when it
is closed, so if you unlink a file which is in use, it is not actually deleted
until the last open file descriptor is closed12.

Ext2 space allocation: The original Unix file system used a free list to
store a list of unused blocks; blocks were allocated from the head of this
list for new files, and returned to the head when freed. As files were created
and deleted this list became randomized, so that blocks allocated for a file
were rarely sequential and disk seeks were needed for nearly every block
read from or written to disk. This wasn’t a significant problem, because

12Deleting open files is a tricky problem, as there’s no good way to handle operations on
those open handles after the file is deleted. Unix solves it by postponing the actual deletion
until the file descriptor is closed; Windows instead locks the file against deletion until any
open file handles are closed.
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Figure 6.5: Ext2 on-disk layout

early Unix systems ran on machines with fast disks and excruciatingly
slow CPUs. As computers got faster and users started noticing that the
file system was horribly slow, the Fast File System (FFS) from Berkeley
Unix replaced the free list with a more efficient mechanism, the allocation
bitmap.

Ext2 is essentially a copy of FFS, and uses this bitmap mechanism. It
keeeps a boolean array with one bit for each disk block; if the block is
allocated the corresponding bit is set to ’1’, and cleared to ’0’ if it is freed.
To allocate a block you read a portion of this bitmap into memory and scan
for a ’0’ bit, changing it to ’1’ and writing it back. When you extend a file
you begin the search at the bit corresponding to the last block in the file; in
this way if a sequential block is available it will be allocated. This method
results in files being allocated in a mostly sequential fashion, reducing
disk seeks and greatly improving performance. (An additional bitmap
is used for allocating inodes; in this case we don’t care about sequential
allocation, but it’s a compact representation, and we can re-use some of
the code written for block allocation.)

Block groups, as shown in Figure 6.5, are an additional optimization from
FFS. Each block group is a miniature file system, with block and inode
bitmaps, inodes, and data blocks. The file system tries to keep the inode
and data blocks of a file in the same block group, as well as a directory
and its contents. In this way common operations (e.g. open and read a
file, or ’ls -l’) will typically access blocks within a single block group,
avoiding long disk seeks.

Long file names: Ext2 supports long file names using the mechanism
used in FFS. Rather than treating the directory as an array of fixed-sized
structures, it is instead organized as a sequence of length/value-encoded
entries, with free space treated as just another type of entry. Directory
search is performed using linear search.

Ext2 solutions to the three design problems?
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1. File identification - files and directories are identified by inode
number, and the location of the fixed-sized inode can be calculated
from inode number and the inode table location.

2. File organization - blocks within a file are located via pointers from
the inode

3. Free space allocation - free blocks are tracked in a free-space bitmap,
and block groups are used to keep blocks from the same file near to
each other, their inode, and their directory.

Note the difference here between the data structure (a bitmap) and strate-
gies used such as trying to allocate the block immediately after the previous
one written. The MS-DOS file system organizes its free list in an array,
as well, and most of the allocation techniques introduced in the Berkeley
Unix file system could be used with it. In practice, however, the MS-DOS
file system was typically implemented with simple allocation strategies
that resulted in significant file system fragmentation.

An additional anti-fragmentation strategy used by many modern operating
systems is the enforcement of a maximum utilization, typically 90% or
95%, as when a file system is almost full, it is likely that any free space
will be found in small fragments scattered throughout the disk. By limiting
utilization to e.g. 90%—i.e. one block out of ten is free—we significantly
increase the chance of finding multiple contiguous blocks when writing
to a file, while greatly decreasing the fraction of the bitmap we may need
to search to find a free block.

6.3 Superblock

Before a disk can be used in most systems it needs to be initialized or
formatted—the basic file system structures need to be put in place, de-
scribing a file system with a single directory and no files. A key structure
written in this process is the superblock, written at a well-known location
on the disk. (This is often block 1, allowing block 0 to be used by the boot
loader.) The superblock specifies various file system parameters, such as:

• Block size - most file systems can be formatted with different block
sizes, and the OS needs to know this size before it can interpret any
pointers given in terms of disk blocks. Historically larger blocks
were used for performance and to allow larger file systems, and
smaller blocks for space efficiency. In recent years disk drives have
transitioned to using an internal block size of 4KB, while keeping
the traditional 512-byte sector addressing, so any file system should
use a block size of at least 4KB.
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• Version - including a version number allows backwards compatibil-
ity as a file system evolves. That way you can upgrade your OS, for
instance, without reformatting your disk.

• Other parameters - in the MS-DOS file system the OS needs to know
how large the FAT table is, so that it doesn’t accidently go off the
end and start looking at the first data block. In ext2 you need to
know the sizes of the block groups, as well as the bitmap sizes, how
many inodes are in each group, etc.

• Dirty flag - when a file system is mounted, this flag is set; as part of a
clean shutdown the flag is cleared again. If the system crashes with-
out clearing the flag, at the next boot this indicates that additional
error checks are needed before mounting the file system.

6.4 Extents, NTFS, and Ext4

The ext2 and MS-DOS file systems use separate pointers to every data
block in a file, located in inodes and indirect blocks in the case of ext2,
and in the file allocation table in MS-DOS. But the values stored in these
pointers are often very predictable, because the file system attempts to
allocate blocks sequentially to avoid disk seeks—if the first block in a file
is block 100, it’s highly likely that the second will be 101, the third 102,
etc.

We can take advantage of this to greatly compress the information needed
to identify the blocks in a file - rather than having separate pointers to
blocks 100,101,. . . 120 we just need to identify the starting block (100)
and the length (21 blocks). This is shown in Figure 6.6, where five data
blocks are identified by inodes or indirect block pointers; to the right, the
same five data blocks are identified by a single extent. Why would we
want to compress the information needed to organize the blocks in a file?
Mostly for performance—although the code is more complicated, it will
require fewer disk seeks to read from disk.

This organization is the basis of extent-based file systems, where blocks
in a file are identified via one or more extents, or (start,length) pairs. The
inode (or equivalent) can contain space for a small number of extents;
if the file grows too big, then you add the equivalent of indirect blocks -
extents pointing to blocks holding more extents. Both Microsoft NTFS
and Linux ext4 use this sort of extent structure.

NTFS: Each NTFS file system has a Master File Table (MFT), which is
somewhat like the inode table in ext2—each file or directory has an entry
in this table which holds things like permissions, timestamps, and block
information. (The superblock contains a pointer to the start of the MFT;
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Figure 6.6: File structure—pointers vs. extents

the first entry in the MFT describes the MFT itself, so that it can grow as
needed.) Each entry in the MFT is structured as a set of attributes, with a
$Data attribute specifying the file contents. This attribute can be of two
types: internal, where the attribute holds file data directly (for very small
files), or external, in which case the $Data attribute holds a list of extents,
or contiguous regions identified by a starting block and length.

If the number of extents grows too large to fit into the MFT entry, an
$ATTRIBUTE_LIST field is added, holding a list of extents describing
the blocks holding the list of extents describing the file. This can continue
for one more level, which is enough to support files up to 16TB. Note that
the amount of space taken by the $Data attribute depends not only on the
size of the file, but its fragmentation; a very large file created on an empty
file system might consist of only a few extents, while a modest-sized file
created slowly (e.g. a log file) on a full file system might be composed of
hundreds of extents.

Free space is handled similarly, as a list of extents sorted by starting
block number; this allows the free space list to be easily compacted when
storage is freed. (i.e. just by checking to see if it can be combined with its
neighbors on either side) This organization makes it easy to minimize file
fragmentation, reducing the number of disk seeks required to read a file
or directory. It has the disadvantage that random file access is somewhat
more complex, and appears to require reading the entire extent list to find
which extent an offset may be found in. (A more complex organization
could in fact reduce this overhead; however in practice it does not seem
significant, as unless highly fragmented the extent lists tend to be fairly
short and easily cached.)

NTFS solutions to the three design problems?

1. file identification - Master File Table entry
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2. file organization - (possibly multi-level) extent list
3. free space management - sorted extent list.

Ext4: Ext4 supports extent-based file organization with minimal change
to the inode structure in ext2/ext3: an extent tree is used, with each node
explicitly marked as an interior or leaf node, as shown in Figure 6.7.
The inode holds a four-entry extent tree node, allowing small files to be
accessed without additional lookup steps, while for moderate-sized files
only a single level of the tree (a “leaf node” in the figure) is needed.

Figure 6.7: Ext4 on-disk structure

6.5 Smarter Directories

In the CD-ROM, MS-DOS, and ext2 file systems, a directory is just an
array of directory entries, in unsorted order. To find a file, you search
through the directory linearly; to delete a file, you mark its entry as unused;
finally, to create a new entry, you find any entry that’s free. (It’s a bit more
complicated for file systems like ext2 which have variable-length directory
entries, but not much.)

From your data structures class you should realize that linear search isn’t
an optimal data structure for searching, but it’s simple, robust, and fast
enough for small directories, where the primary cost is retrieving a block of
data from the disk. As an example, one of my Linux machines has 94944
directories that use a single 4KB block, another 957 that use 2 to 5 blocks,
and only 125 larger than 5 blocks. In other words, for the 99% of the
directories that fit within a single 4KB block, a more complex algorithm
would not reduce the amount of data read from disk, and the difference
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between O(N) and O(logN) algorithms when searching a single block
is negligible.

However the largest directories are actually quite big: the largest on this
machine, for example, has 13,748 entries; another system I measured had
a database directory containing about 64,000 files with long file names, or
roughly 4000 blocks (16MB) of directory data. Since directories tend to
grow slowly, these blocks were probably allocated a few at a time, resulting
in hundreds or thousands of disk seeks to read the entire directory into
memory. At 15ms per seek, this could require 10-30 seconds or more,
and once the data was cached in memory, linear search in a 16MB array
will probably take a millisecond or two.

To allow directories with tens of thousands of files or more, modern file
systems tend to use more advanced data structures for their directories.
NTFS (and Linux Btrfs) use B-trees, a form of a balanced tree. Other file
systems, like Sun ZFS, use hash tables for their directories, while ext4
uses a hybrid hash/tree structure. If you’re really interested, you can look
these up in Google.
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6.6 The B-tree
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Figure 6.8: B-tree growth

The B-tree is one of those widely-used data
structures that you never see in your data struc-
tures course. It’s not a file system— the B-tree
is a disk-optimized search structure, optimized
for the case where accessing a block of infor-
mation is much more expensive (e.g. requiring
a disk seek) than searching through that block
after it has been accessed. It has been used for
file systems, databases, and similar purposes
since the 1970s, along with various extensions
(e.g. B+-trees) which are not described here.

B-tries are balanced trees made up of large
blocks, with a high branching factor, in order
to reduce the number of block accesses needed
for an operation. Interior and leaf nodes are
identical; each contains a sorted list of key/-
value pairs, and (in non-leaf nodes) pointers be-
tween pairs of keys, pointing to subtrees hold-
ing keys which are between those two values.
The tree grows from the bottom up: if a block
overflows, you split it, dividing the contents
between two blocks, and add a pointer to the
new block in the correct position in the parent;
if the parent overflows it is split, and so on. If
the root node splits, a new root is allocated
with pointers to the two pieces.

If the branching factor of a B-tree is m, then each block (except for the root)
holds between m/2 and m entries. In the example shown in Figure 6.8,
m=2; in a real system each node would contain many more entries.

In Figure 6.8 we see seven values being added to the tree, which grows
“from the bottom up”:

1. The first value goes in the root
2. Since the root isn’t full, the second value goes here too
3. Now it’s full - split the block. Since the block doesn’t have a parent

(it’s the root) we add one, which becomes the new root
4. ’4’ fits into one of the leaf nodes where there’s room
5. ’5’ doesn’t fit, so we split the node. There’s room in the parent to

hold another pointer
6. ’6’ fits in the leaf node
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7. ’7’ doesn’t, so we split the leaf node, but that causes the parent node
to overflow, so we split it, and have to add a new parent node which
becomes the new root.

6.7 Consistency and Journaling

Unlike in-memory structures, data structures on disk must survive system
crashes, whether due to hardware reasons (e.g. power failure) or software
failures. This is a different problem than the consistency issues we dealt
with for in-memory structures, where data corruption could only occur due
to the action of other threads, and could be prevented by the proper use of
mutexes and similar mechanisms. Unfortunately there is no mutex which
will prevent a system from crashing before the mutex is unlocked, or file
system designers would use it liberally. The problem is compounded by
the fact that operating systems typically cache reads and writes to increase
performance, so that writes to the disk may occur in a much different order
than that in which they were issued by the file system code.

In its simplest form the problem is that file system operations of-
ten involve writing to multiple disk blocks—for example, moving a
file from one directory to another requires writing to blocks in the
source and destination directories, while creating a file writes to the
block and inode allocation bitmaps, the new inode, the directory
block, and the file data block or blocks13. If some but not all of

bitmap

directory 
entry

data 
block

inode
/a 

/a/b 1
2

Figure 6.9: File, directory, bitmap

these writes occur before a
crash, the file system may be-
come inconsistent—i.e. in a
state not achievable through any
legal sequence of file system
operations, where some opera-
tions may return improper data
or cause data loss.

For a particularly vicious exam-
ple, consider deleting the file
/a/b as shown in Figure 6.9,
which requires the following actions:

1. Clear the directory entry for /a/b. This is done by marking the entry
as unused and writing its block back to the directory.

2. Free the file data block, by clearing the corresponding entry in the
block allocation bitmap

13These steps ignore inode writes to update file or directory modification times.
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Figure 6.10: Directory block
written before crash

This results in two disk blocks being modified
and written back to disk; if the blocks are
cached and written back at a later point in
time they may be written to disk in any order.
(this doesn’t matter for running programs, as
when they access the file system the OS will
check cached data before going to disk)

If the system crashes (e.g. due to a power
failure) after one of these blocks has been
written to disk, but not the other, two case are
possible:

1. The directory block is written, but not the bitmap. The file is no
longer accessible, but the block is still marked as in use. This is a
disk space leak (like a memory leak), resulting in a small loss of
disk space but no serious problems.

2. The bitmap block is written, but not the directory. Applications are
still able to find the file, open it, and write to it, but the block is also
available to be allocated to a new file or directory. This is much
more serious.

If the same block is now re-allocated for a new file (/a/c in this case)
we now have two files sharing the same data block, which is obviously a
problem. If an application writes to /a/b it will also overwrite any data in
/a/c, and vice versa. If /a/c is a directory rather than a file things are even
worse - a write to /a/bwill wipe out directory entries, causing files pointed
to by those entries to be lost. (The files themselves won’t be erased, but

bitmap
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data 
block

inode
/a 

/a/b 

entry still points 
at inode

block marked  
as free

Figure 6.11: Bitmap block
written before crash

without directory entries pointing to them
there won’t be any way for a program to ac-
cess them.)

This can be prevented by writing blocks in a
specific order—for instance in this case the
directory entry could always be cleared before
the block is marked as free, so that in the
worst case a crash might cause a few data
blocks to become unusable. Unfortunately
this is very slow, as these writes must be done
synchronously, waiting for each write to complete before issuing the next
one.

Fsck / chkdsk: One way to prevent this is to run a disk checking routine
every time the system boots after a crash. The dirty flag in the file system
superblock was described in the section above; when a machine boots, if
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the file system is marked dirty, (fsck, or chkdsk in Windows) is run to
repair any problems.

In particular, the Unix file system checker performs the following checks
and corrections:

1. Blocks and sizes. Each allocated inode is checked to see that (a)
the number of blocks reachable through direct and indirect pointers
is consistent with the file size in the inode, (b) all block pointers
are within the valid range for the volume, and (c) no blocks are
referenced by more than one inode.

2. Pathnames. The directory tree is traversed from the root, and each
entry is checked to make sure that it points to a valid inode of the
same type (directory / file / device) as indicated in the entry.

3. Connectivity. Verifies that all directory inodes are reachable from
the root.

4. Reference counts. Each inode holds a count of how many directory
entries (hard links) are pointing to it. This step validates that count
against the count determined by traversing the directory tree, and
fixes it if necessary.

5. “Cylinder Groups” The block and inode bitmaps are checked for
consistency. In particular, are all blocks and inodes reachable from
the root marked in use, and all unreachable ones marked free?

6. “Salvage Cylinder Groups” Free inode and block bitmaps are up-
dated to fix any discrepancies.

This is a lot of work, and involves a huge number of disk seeks. On a large
volume it can take hours to run. Note that full recovery may involve a
lot of manual work; for instance, if fsck finds any files without matching
directory entries, it puts them into a lost+found directory with numeric
names, leaving a human (i.e. you) to figure out what they are and where
they belong.

Checking disks at startup worked fine when disks were small, but as they
got larger (and seek times didn’t get faster) it started taking longer and
longer to check a file system after a crash. Uninterruptible power supplies
help, but not completely, since many crashes are due to software faults
in the operating system. The corruption problem you saw was due to
inconsistency in the on-disk file system state. In this example, the free
space bitmap did not agree with the directory entry and inode. If the file
system can ensure that the on-disk data is always in a consistent state, then
it should be possible to prevent losing any data except that being written
at the exact moment of the crash.

Performing disk operations synchronously (and carefully ordering them



6.8. JOURNALING 175

in the code) will prevent inconsistency, but as described above imposes
excessive performance costs. Instead a newer generation of file systems,
termed journaling file systems, has incorporated mechanisms which add
additional information which can be used for recovery, allowing caching
and efficient use of the disk, while maintaining a consistent on-disk state.

6.8 Journaling

Most modern file systems (NTFS, ext3, ext4, and various others) use
journaling, a variant of the database technique of write-ahead logging.
The idea is to keep a log which records the changes that are going to be
made to the file system, before those changes are made. After an entry is
written to the log, the changes can be written back in any order; after they
are all written, the section of log recording those changes can be freed.

When recovering from a crash, the OS goes through the log and checks
that all the changes recorded there have been performed on the file system
itself14. Some thought should convince you that if a log entry is written,
then the modification is guaranteed to happen, either before or after a
crash; if the log entry isn’t written completely then the modification never
happened. (There are several ways to detect a half-written log entry,
including using an explicit end marker or a checksum; we’ll just assume
that it’s possible.)

Figure 6.12: Synchronous disk writes for ext2 consistency.

14Actually it doesn’t check, but rather “replays” all the changes recorded in the log.
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Log:	  
[	  …	  ]	  
[update	  entry	  in	  directory	  /a,	  
update	  bitmap	  to	  free	  block]	  
[	  …	  ]	  

bitmap

directory 
entry

data 
block

inode
/a 

/a/b 
Either first

Step 1: record action in log Step 2: write blocks in any order

Ext3 Journaling: The ext3 file system uses physical block logging: each
log entry contains a header identifying the disk blocks which are modified
(in the example you saw earlier, the bitmap and the directory entry) and a
copy of the disk blocks themselves. After a crash the log is replayed by
writing each block from the log to the location where it belongs. If a block
is written multiple times in the log, it will get overwritten multiple times
during replay, and after the last over-write it will have the correct value.

To avoid synchronous journal writes for every file operation, ext3 uses
batch commit: journal writes are deferred, and multiple writes are com-
bined into a single transaction. The log entries for the entire batch are
written to the log in a single sequential write, called a checkpoint. In
the event of a crash, any modifications since the last checkpoint will be
lost, but since checkpoints are performed at least every few seconds, this
typically isn’t a problem. (If your program needs a guarantee that data is
written to a file right now, you need to use the fsync system call to flush
data to disk.)

Ext3 supports three different journaling modes:

• Journaled: In this mode, all changes (to file data, directories, inodes
and bitmaps) are written to the log before any modifications are
made to the main file system.
• Ordered: Here, data blocks are flushed to the main file system
before a journal entry for any metadata changes (directories, free
space bitmaps, inodes) is written to the log, after which the metadata
changes may be made in the file system. This provides the same
consistency guarantees as journaled mode, but is usually faster.
• Writeback: In this mode, metadata changes are always written to
the log before being applied to the main file system, but data may
be written at any time. It is faster than the other two modes, and
will prevent the file system itself from becoming corrupted, but data
within a file may be lost.
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Figure 6.13: Ext2 vs Log-structured file system layout

6.9 Log-Structured File Systems

Log-structured file systems (like LFS in NetBSD, or NetApp WAFL) are
an extreme version of a journaled file system: the journal is the entire
file system. Data is never over-written; instead a form of copy-on-write
is used: modified data is written sequentially to new locations in the log.
This gives very high write speeds because all writes (even random ones)
are written sequentially to the disk.

Figure 6.13 compares LFS to ext2, showing a simple file system with two
directories (dir1, dir2) and two files (/dir1/file1, /dir2/file2). In ext2 the
root directory inode is found in a fixed location, and its data blocks do
not move after being allocated; in LFS both inode and data blocks move
around—as they are modified, the new blocks get written to the head of the
log rather than overwriting the old ones. The result can be seen graphically
in the figure—in the LFS image, pointers only point to the left, pointing
to data that is older than the block holding a pointer. Unlike ext2 there is
no fixed location to find the root directory; this is solved by periodically
storing its location in a small checkpoint record in a fixed location in the
superblock. (This checkpoint is not shown in the figure, and would be the
only arrow pointing to the right.)

When a data block is re-written, a new block with a new address is used.
This means that the inode (or indirect block) pointing to the data block
must be modified, which means that its address changes.

LFS uses a table mapping inodes to locations on disk, which is updated
with the new inode address to complete the process; this table is itself
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Figure 6.14: WAFL tree before and after update

stored as a file. (The astute reader may wonder why this update doesn’t
in fact trigger another update to the inode file, leading to an infinite loop.
This is solved by buffering blocks in memory before they are written, so
that multiple changes can be made.)

In WAFL these changes percolate all the way up through directory entries,
directory inodes, etc., to the root of the file system, potentially causing
a large number of writes for a small modification. (although they’ll still
be fairly fast since it’s a single sequential write) To avoid this overhead,
WAFL buffers a large number of changes before writing to disk; thus
although any single write will modify the root directory, only a single
modified copy of the root directory has to be written in each batch.

In Figure 6.14 a WAFL directory tree is shown before and after modifying
/dir1/file2, with the out-of-date blocks shown in grey. If we keep a pointer
to the old root node, then you can access a copy of the file system as it
was at that point in time. When the disk fills up these out-of-date blocks
are collected by a garbage collection process, and made available for new
writes.

One of the advantages of a log-structured file system is the ability to easily
keep snapshots of file system state—a pointer to an old version of the
inode table or root directory will give you access to a copy of the file
system at the point in time corresponding to that version. (e.g. look in
your .snapshot directory on login.ccs.neu.edu - this data is stored on
a NetApp filer using WAFL and its snapshot functionality.)

6.10 Kernel implementation

When applications access files they identify them by file and directory
names, or by file descriptors (handles), and reads and writes may be
performed in arbitrary lengths and alignments. These requests need to
be translated into operations on the on-disk file system, where data is
identified by its block number and all reads and writes must be in units of
disk blocks.
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The primary parts of this task are:

• Path translation - given a list of path components (e.g. “usr”, “local”,
“bin”, “program”) perform the directory lookups necessary to find
the file or directory named by that list.

• Read and write - translate operations on arbitrary offsets within a
file to reads, writes, and allocations of complete disk blocks.

Path translation is a straightforward tree search - starting at the root direc-
tory, search for an entry for the first path component, find the location for
that file or directory, and repeat until the last component of the list has
been found, or an error has occurred. (not counting permissions, there are
two possible errors here—either an entry of the path was not found, or a
non-final component was found but was a file rather than a directory)

Reading requires finding the blocks which must be read, reading them
in, and copying the requested data (which may not be all the data in the
blocks, if the request does not start or end on a block boundary) to the
appropriate locations in the user buffer.

Writing is similar, with added complications: if a write starts in the middle
of a block, that block must be read in, modified, and then written back so
that existing data is not lost, and if a write extends beyond the end of the
file new blocks must be allocated and added to the file.

As an example, to handle the system calls

fd = open("/home/pjd/file.txt", O_RDONLY)
read(fd, buf, 1024)

the kernel has to perform the following steps:

1. Split the string /home/pjd/file.txt into parts - home, pjd,
file.txt

2. Read the root directory inode to find the location of the root directory
data block. (let’s assume it’s a small directory, with one block)

root	  
inode	  

home	  

memory 

disk	  

root	  
inode	   inode	   pjd	   inode	   file.txt	  

inode	  
data	  
block	  

2	  

3. Read the root directory data block, search for "home", and find the
corresponding inode number

4. Read the inode for the directory "home" to get the data block pointer
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5. Read the "home" directory data block, search for "pjd" to get the
inode number

6. Read the "pjd" directory inode, get the data block pointer
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7. Read the "pjd" directory block, and find the entry for file.txt
8. Read the "file.txt" inode and get the first data block pointer
9. Read the data block into the user buffer
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data	  
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inode	  

data	  
block	  

9	  

Most of this work (steps 2 through 7) is path translation, or the process
of traversing the directory tree to find the file itself. In doing this, the OS
must handle the following possibilities:

1. The next entry in the path may not exist - the user may have typed
/hme/pjd/file.txt or /home/pjd/ffile.txt

2. An intermediate entry in the path may be a file, rather than a direc-
tory - for instance /home/pjd/file.txt/file.txt

3. The user may not have permissions to access one of the entries in
the path. On the CCIS systems, for instance, if a user other than
pjd tries to access /home/pjd/classes/file.txt, the OS will
notice that /home/pjd/classes is protected so that only user pjd
may access it.
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6.11 Caching

Disk accesses are slow, and multiple disk accesses are even slower. If
every file operation required multiple disk accesses, your computer would
run very slowly. Instead much of the information from the disk is cached
in memory in various ways so that it can be used multiple times without
going back to disk. Some of these ways are:

File descriptors: When an application opens a file the OS must translate
the path to find the file’s inode; the inode number and information from
that inode can then be saved in a data structure associated with that open
file (a file descriptor in Unix, or file handle in Windows), and freed when
the file descriptor is closed.

Translation caching: An OS will typically maintain an in-memory trans-
lation cache (the dentry cache in Linux, holding individual directory
entries) which holds frequently-used translations, such as root directory
entries.

The directory entry cache differs from e.g. a CPU cache in that it holds
both normal entries (e.g. directory+name to inode) and negative entries,
indicating that directory+name does not exist15. If no entry is found the
directory is searched, and the results added to the dentry cache.

Block caching: To accelerate reads of frequently-accessed blocks, rather
than directly reading from the disk the OS can maintain a block cache.
Before going to disk the OS checks to see whether a copy of the disk block
is already present; if so the data can be copied directly, and if not it is read
from disk and inserted into the cache before being returned. When data is
modified it can be written to this cache and written back later to the disk.

Among other things, this allows small reads (smaller than a disk block)
and small writes to be more efficient. The first small read will cause the
block to be read into cache, while following reads from the same block will
come from cache. Small writes will modify the same block in cache, and
if a block is not flushed immediately to disk, it can be modified multiple
times while only resulting in a single write.

Modern OSes like Linux use a combined buffer cache, where virtual
memory pages and the file system cache come from the same pool. It’s a
bit complicated, and is not covered in this class.

15To be a bit formal about it, a CPU cache maps a dense address space, where every key
has a value, while the translation cache maps a sparse address space.
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6.12 VFS

In order to support multiple file systems such as Ext3, CD-ROMs, and
others at the same time, Linux and other Unix variants use an interface
called VFS, or the Virtual File System interface. (Windows uses a much
different interface with the same purpose) The core of the OS does not
know how to interpret individual file systems; instead it knows how to
make requests across the VFS interface. Each file system registers an
interface with VFS, and the methods in this interface implement the file
system by talking to e.g. a disk or a network server.

VFS objects all exist in memory; any association between these structures
and data on disk is the responsibility of the file system code. The important
objects and methods in this interface are:

superblock. Not to be confused with the superblock on disk, this object
corresponds to a mounted file system; in particular, the system mount
table holds pointers to superblock structures. The important field in the
superblock object is a pointer to the root directory inode.

inode - this corresponds to a file or directory. Its methods allow attributes
(owner, timestamp, etc.) to be modified; in addition if the object corre-
sponds to a directory, other methods allow creating, deleting, and renaming
entries, as well as looking up a string to return a directory entry.

dentry - an object corresponding to a directory entry, as described earlier.
It holds a name and a pointer to the corresponding inode object, and no
interesting methods.

file - this corresponds to an open file. When it is created there is no
associated “real” file; its open method is called with a dentry pointing to
the file to open.

To open a file the OS will start with the root directory inode (from the
superblock object) and call lookup, getting back a dentry with a pointer
to the next directory, etc. When the dentry for the file is found, the OS will
create a file object and pass the dentry to the file object’s open method.

FUSE (File system in User Space) is a file system type in Linux which
does not actually implement a file system itself, but instead forwards VFS
requests to a user-space process, and then takes the responses from that
process and passes them back to the kernel. This is seen in Figure 6.15,
where a read call from the application results in kernel requests through
VFS to FUSE, which are forwarded to a user-space file system process.

You will use FUSE to implement a file system in Homework 4, storing
the file system in an image file accessed by the file system process.
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• getattr - return attributes (size,
owner, etc.) of a file or directory.

• readdir - list a directory
• mkdir, rmdir, create, unlink
- create and remove directories
and files

• read, write - note that these
identify the offset in the file, as the
kernel (not the file system) han-
dles file positions.

• rename - change a name in a di-
rectory entry

• truncate - shorten a file
• ... and others, most of which are

optional.
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File	  system	  
process	  

Kernel	  

FUSE	  
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kernel space	  
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VFS 
interface	  

FUSE 
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Figure 6.15: FUSE architecture and methods

Like VFS, the FUSE interface consists of a series of methods which
you must implement, and if you implement them correctly and return
consistent results, the kernel (and applications running on top of it) will
see a file system. Unlike VFS, FUSE includes various levels of user-
friendly support; we will use it in a mode where all objects are identified
by human-readable path strings, rather than dentries and inodes.

6.13 Network File Systems

The file systems discussed so far are local file systems, where data is stored
on local disk and is only directly accessible from the computer attached to
that disk. Network file systems are used when we want to access to data
from multiple machines - for instance, if you log in to a machine in the
CCIS lab in room 102, your home directory will be the same on every
machine, and is in fact stored on a NetApp file server in a machine room
upstairs.

The two network file systems in most common use today are Unix NFS
(Network File System) and Windows SMB (also known as CIFS). Each
protocol provides operations somewhat similar to those in VFS (quite
similar in the case of NFS, as the original VFS was designed for it),
allowing the kernel to traverse and list directories, create and delete files,
and read and write arbitrary offsets within a file.

The primary differences between the NFS (up through v3 - v4 is more
complicated) and SMB are:

• State - NFS is designed to be stateless for reliability. Once you
have obtained a file’s unique ID (from the directory entry) you can
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just read from or write to a location in it, without opening the file.
Operations are idempotent, which means they can be repeated mul-
tiple times without error. (e.g. writing page P to offset x can be
repeated, while appending page P to the end of the file can’t.) In
contrast SMB is connection-oriented, and requires files and direc-
tories to be opened before they can be operated on. NFS tolerates
server crashes and restarts more gracefully, but does not have some
of the connection-related features in SMB such as authentication,
described below.
• Identity - NFS acts like a local file system, trusting the client to
authenticate users and pass numeric user IDs to the server. SMB
handles authentication on the server side - each connection to the
server begins with a handshake that authenticates to the server with
a specific username, and all operations within that connection are
done as that user.

Answers to Review Questions

6.1.1 False - otherwise there would be no subdirectories.
6.1.2 (2) and (4). If the file is deleted (2), all bytes (including the 1000th

byte) will cease to exist; the 1000th byte is in the range being over-
written in (4). Renaming leaves the file otherwise unchanged, and
modifying bytes 500 through 600 does not affect any other locations
in the file.

6.1.3 (2) and (3). Bytes will be read starting at the current position
until ’max’ bytes have been read or the end of the file is reached,
whichever comes first. The data itself is irrelevant, as is the ’buffer’
argument. (as long as it points to enough valid memory)

6.1.1 (1) and (3). The OS will not allow non-empty directories to be
deleted, as otherwise the files would be lost and their space would
not be reclaimed. In addition it must prevent normal user writes
to a directory, as user corruption of directory contents might be a
security or crash risk.

6.1.2 (2) The mount table is internal to the kernel, and holds the current
configuration of where filesystems are mounted, so it can be used
when looking up a file. Programs external to the kernel are responsi-
ble for knowing where filesystems should be mounted, and doing so.
(Typically the startup scripts in Linux read this information from
the file /etc/fstab.)

6.2.1 True. Disks only support reading and writing in fixed-sized blocks;
to modify a smaller region the OS must read a block, modify it, and
write it back.
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6.2.2 False. In almost all file systems, all blocks must be of the same size.
6.2.3 (1) Since the start of each file is indicated by only a block number

(not by e.g. block number plus offset), each file must start at the
beginning of a block.

6.2.4 False. It doesn’t track free space at all, since being read-only it never
needs to allocate space to create new files.

6.2.1 (3) Data blocks contain only data, and are linked via external point-
ers in the file allocation table.

6.2.2 (1) In ext2 multiple directory entries can point to the same inode.
Like MS-DOS, ext2 requires (at least) one pointer per file block;
these are in the inode and indirect blocks, while in the MS-DOS file
system they are located in the FAT.





Chapter 7

Security

The term computer security covers a number of areas and goals. Most of
them fall under the following categories:

• Confidentiality of data. As a user of a computer system, this allows
you to prevent others from accessing information which you wish
to keep private, such as email or passwords.

• Confidentiality of actions. This lets you prevent others from observ-
ing what programs you run and what files or external resources you
access.

• Integrity of data. Your data will not be modified or deleted without
your permission.
• Integrity of operations. Commands should do what they are sup-
posed to do. For example, when you type ls you should get a di-
rectory listing, rather than a script that sends your passwords to a
secret website in Russia.

• Availability. A system will not stop running when you need it to be
operational.

With the rise of the Internet, security has become a much broader field,
much of it related to either networking or the behavior of applications such
as web browsers. This chapter will cover operating system features which
enable computer security, and which reduce the risks from security flaws
in application software; the field of computing security is much larger,
however1.

1E.g. see courses such as CS 5770, Software Vulnerabilities and Security, CS 6750,
Cryptography and Communication Security, CS 6740, Network Security, or CS 6760, Privacy,
Security and Usability
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7.1 Protection

Much of security involves protection: deciding whether or not to allow an
operation based on a series of rules. The purpose of protection is to ensure
the security goals described above, by applying these rules to computing
operations, allowing some operations and forbiding others. (This is not
sufficient for full security, as seen in the discussion below of software
vulnerabilities, but it helps.) These rules are typically based on a simple
model, of actors, objects, and actions:

• Actors. These perform the actions. At the lowest level these are
almost always processes, but they are typically identified by a text or
numeric user ID, which is typically associated with either an actual
person or a system service.
• Objects. These are the things which are being protected: usually
files or directories, but sometimes processes, special devices, con-
figurations, or other aspects of the system which can be modified.
• Actions. These are performed on objects. Themost common actions

are read and write, but others can include creating and deleting files,
killing a process, or rebooting the system.

The goal of the operating system’s protection or access control mech-
anisms is to express and enforce policies which determine whether a
particular combination of an actor performing an action on an object is to
be allowed or denied.

Identity and Authentication
In a Unix-like operating system, the actual actors are processes, which
perform actions by issuing system calls. However specifying rules based on
the processes themselves—e.g. process 10may access file "/home/pjd"—
will not work, because processes are created dynamically: rules could only
be made for processes in existence at that time, and not for ones created in
the future.

The solution used in almost all operating systems today is the concept of
user identity: every process is associated with a user identity (e.g. a user
name and ID in Unix) and rules are specified in terms of these identities.
In its simplest form each of these identities is a login name associated
with an individual person, and rules for that identity are used to permit
or restrict access by that person2. User identity is inherited through the

2Additional identities are typically used for system accounts, like the httpd user asso-
ciated with the webserver process on many systems. This allows the same mechanism to be
used to grant or restrict access for various system operations.
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fork system call, so that actions taken by a process either directly or
indirectly (through children of that process) are bound by the same rules.
Access rules specify actors in terms of these identities, and every process
is associated with one of these identities, allowing a fixed mapping from
identities to permissions.

These authentication mechanisms
are frequently called factors; hence
the term multi-factor authentication,
where more than one factor (e.g.
password, text message) are used.
The Wikipedia entry on
“Multi-factor authentication” is a
good introduction.

In practice this requires a login pro-
cess, or authentication, in which
an external user proves that she has
the right to take on a certain iden-
tity. Thus, the person Jane Smith
may be given the right to use the
operating system identity named
smith.j, after authenticating that
identity to the system by providing the correct password. Authentication is
an important part of operating system security, as it forms the link between
the higher-level goals of system administration (e.g. Jane is allowed to
access file.txt, but Joe isn’t) and the operating system-level features which
implement this control.

Most authentication mechanisms can be classified as one of three types,
based on the type of verification provided by the user:

1. Something you know: e.g. a password. This is the most common
form of authentication, due to ease of implementation.

2. Something you have: like a key to a lock, an RSA SecurID token, etc.
More complicated to administer, but more difficult for an adversary
to obtain.

3. Something you are: often biometric data, such as a fingerprint.

You have undoubtedly used many password-authenticated processes; in
addition you may have used other methods such as a SecureID token or
fingerprint scanner. There are advantages and disadvantages to each type
of authentication; however this class focuses on passwords as they are the
most widely used.

Checking passwords

Securely storing and checking passwords is difficult, and various methods
have been used over the years. The primary alternatives are as follows.

Unencrypted file: Passwords are stored In an unencrypted file, only ac-
cessible to the operating system or a privileged user, and a simple string
compare is used to verify a user-entered password. Although in principle
this should be secure, the result of any error or failure is catastrophic. (This
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issue is particularly problematic since people typically re-use passwords
across systems.)

Hashed password file: Passwords are put through a one-way crypto-
graphic hash function3 before being stored. User-entered passwords are
hashed by the same algorithm and compared with the stored password
hash; if the two match, then the password is correct. Early UNIX systems
used this mechanism, and made the password file publicly-readable, as
the same file held other information (e.g. mapping between numeric user
ID and text username) used by many unprivileged programs. (e.g. the ls
-l command would need this mapping to show file ownership.) This was
considered fairly secure on slow (and especially non-networked) machines,
due to the length of time required to crack an individual password by brute
force—i.e. trying all possible combinations until the correct password was
found. However the discovery of dictionary attacks changed this, however.

A dictionary attack is based on the idea that in most cases breaking into
any account is almost as good as breaking a particular account, and takes
advantage of the fact that on shared machines (e.g. login.ccs.neu.edu)
there are a large number of user accounts, increasing the chance of breaking
into one of them. The attack consists of calculating the hash for every
word in a dictionary4, and then comparing this list with the hashes in
the password file; if any of the accounts has a password in this list, the
attack succeeds. (a more sophisticated attack, using pre-computed rainbow
tables5 is able to crack individual hashed passwords very quickly, as well.)

Password “salt”: This is a variation on hashed passwords—when a pass-
word is stored, a random string S is chosen (for unknown reasons called
the salt) and appended to the password before hashing ; the stored value
is then [S, hash(S+password)]. Verifying a password is straightforward:
the salt value is read from the password file and appended to the input
password before it is hashed and compared. This protects against attacks
which require pre-computed tables (e.g. dictionary and rainbow table
attacks), as now tables would be needed for every possible salt value. (in
early usage this was 12 bits long; in modern systems it is 32 bits or more.)

As machines (especially GPUs) become faster and faster, even this method
has become less secure over time, as it is becoming feasible for attackers
to evaluate billions of possible passwords per second. Counter-measures
include making the hash function slower (e.g. running the password

3Typically, the password is used as a key to encrypt a known, constant message.
4Typically common words, plus personal names, plus variations on those words such as

appending a digit.
5see https://engineering.purdue.edu/kak/compsec/NewLectures/

Lecture24.pdf

https://engineering.purdue.edu/kak/compsec/NewLectures/ Lecture24.pdf
https://engineering.purdue.edu/kak/compsec/NewLectures/ Lecture24.pdf
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pjd@cs5600-vbox:~$ ls -l /etc/shadow /etc/passwd
-rw-r--r-- 1 root root 1061 Aug 24 2013 /etc/passwd
-rw-r----- 1 root shadow 867 Aug 24 2013 /etc/shadow
pjd@cs5600-vbox:~$ tail -2 /etc/passwd
student:x:1000:1000:A,,,:/home/student:/bin/bash
pjd:x:1001:1001:Peter Desnoyers,,,:/home/pjd:/bin/bash
pjd@cs5600-vbox:~$ sudo tail -2 /etc/shadow
student:$6$JjiTdyS2$cvbtxgVxMwMI5fL0If5Dc90JRuds9yolCKGHc/52ET1tLwksji/

SN05pksqdwACztcvhIyCDRfAt9lrK133WA/:15935:0:99999:7:::
pjd:$6$wz5.BTqz$RXkmlCnbb0aoA7C67zf2zL7FokmdKLoc51MLdn7jcDe/JMHzs7iePBC

NEy7O7ZGbVFIl4wTEbi5a8yhhQALnd1:15941:0:99999:7:::

Listing 7.1: Password and shadow password files in Linux

through the hash function 5000 times), and protecting the password file
against public access, just like was done with early plain-text password
files. (this is done in Linux— /etc/passwd contains username and
UID information, and is publicly readable, while /etc/shadow contains
password hashes and is protected.

Challenge-response: This is another variation on password checking,
although it is typically used over a network rather than for direct login. In
this case the server must keep the password in clear text; when a client
requests authentication, the server sends a challenge—a random string—
which the client adds to the password before hashing it and sending the
result back to the server. In this way an attacker with access to the network
is unable to learn the password, and (if the server never repeats challenges)
is unable to replay previous responses.

Review Questions

7.1.1. In Unix, a password is used to determine if you have permission to
access a file: True / False

7.1.2. Because the passwords in a password file are encrypted, it is safe
to make the file publicly readable: True / False

Centralized authentication - LDAP and Kerberos
Modern computer systems frequently use centralized password administra-
tion: for instance, when you log in to a CCIS workstation your password
is not checked locally, but rather against a central authentication server.
The most common used mechanisms are LDAP and Kerberos, frequently
used as part of Microsoft’s Active Directory service. LDAP (lightweight
directory access protocol) is a general-purpose directory protocol that
can store information about people, machines, and just about anything
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# pjd, people, ccs.neu.edu
dn: uid=pjd,ou=people,dc=ccs,dc=neu,dc=edu
displayName: Peter J. Desnoyers
cn: pjd
loginShell: /bin/bash
uidNumber: 11415
gidNumber: 65100
sn: Desnoyers
homeDirectory: /home/pjd
mail: pjd@ccs.neu.edu
givenName: Peter
...

Listing 7.2: Typical CCIS LDAP entry

else that a computer might want to name; an example entry is shown in
Figure 7.2.

One of the attributes an LDAP entry can have is a password: a client
can log in to the LDAP server by specifying this password, which will be
checked by the server. A Linux or other systemwill use an LDAP server for
authentication by attempting to login with the credentials supplied by the
user; if this succeeds, then the local login is successful and user information
(such as shell and home directory) is retrieved from the server6.

Kerberos is a more general-purpose authentication mechanism that allows
a server to supply unforgeable cryptographically-signed tickets. These
allow untrusted machines, like personal computers, to securely access
network services, such as a file server while only having to authenticate
once, to the Kerberos server; after this initial authentication, the Kerberos
tickets can be used for authentication without having to request additional
passwords from the user.

Review Questions

7.1.1. LDAP is used for:
a) Storing user information on a central server
b) Storing (and checking) user passwords on a central server
c) Both of the above.

6In Linux and some other systems this is handled in practice by the PAM (pluggable
authentication module) framework, developed at Sun Microsystems, which specifies one or
more authentication sources for the system to try for various events such as login.
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7.2 Unix Access Control

Basic security in an operating system is performed by access control: the
process of determining whether each OS action will be allowed, based on
the actor (determined by information like a user ID), the specific object (e.g.
a file), and object permissions. The desired operation can be described by
an access control matrix, such as this one:

file1 file2 dir1 file3
user1 - read - read/write
user2 read read read/write read
user3 read read - -
user4 read/write read/write - -

Table 71: Simple access matrix for four users, 3 files and 1 directory
To be more specific, the Unix security model has the following parts:

Actors: Users. User identity (and file ownership) is described by two IDs:

1. User id (uid)
2. Group id (gid)

In addition there are permissions for world—i.e. any user.

Objects: Files and directories.

Actions: On files: read, write, and execute (i.e. run as a program). Di-
rectories: list (as in ls), traverse - i.e. accessing the file /a/b/c requires
traversing the directories /a and /a/b, and modify - i.e. creating, deleting,
or renaming files (or directories) within that directory. (note that list,
traverse, and modify are encoded as read, execute, and write permissions)

Users may belong to more than one group: as an example, user pjd belongs
to groups faculty, cs5600 and sssl, as shown here by the id command:

pjd@login:~$ id pjd
uid=11415(pjd) gid=65100(faculty) groups=1254(cs5600),1294(sssl),65100(faculty)

Listing 7.3: Id command output

Files and directories have an owner and a group, and three sets of permis-
sions: one for the file owner, one for members of its group, and one for
world, with the permissions typically encoded in a single string, as shown
in Figure 7.1.

Finally, (a) only the owner of a file may change its permissions, and (b)
each user may belong to some number of groups. (typically up to 32)

Permissions are interpreted as follows:
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Figure 7.1: Interpreting file ownership and permissions

check(process, action, file):
if process.uid = file.uid:

if action in file.perm.owner
allow

else deny
if process.gid = file.gid:

if action in file.perm.group
allow

else deny
if action in file.perm.world:

allow
else deny

Listing 7.4: File access algorithm

As an example, the access control matrix from earlier: can be encoded in

file1 file2 dir1 file3
user1 - read - read/write
user2 read read read/write read
user3 read read - -
user4 read/write read/write - -

Table 72: Simple access matrix (again)
the set of permissions shown in Figure 7.5.
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group1 = {user2,user3,user4}
file1: owner = user4, group = group1

permissions = {owner = ’rw-’, group = ’r--’, other = ’---’}
file2: owner = user4, group = [doesn’t matter]

permissions = {owner = ’rw-’, group = ’r--’, other = ’r--’}
dir1: owner = user2, group = [doesn’t matter]

permissions = {owner = ’rw-’, group = ’---’, other = ’---’}
group2 = {user1,user2}
file3: owner = user1, group = group2

permissions = {owner = ’rw-’, group = ’r--’, other = ’---’}

Listing 7.5: Permissions for access matrix in Table 72

Limitations of Unix permissions
However if we make minor changes to this access control list:

file1 file2 dir1 file3
user1 — r– — rw-
user2 r– r– rw– r–
user3 rw- r– — rwx
user4 rw- rw- — —

Table 73: Complex access matrix (ls -l notation used for conciseness)

There are two problems here:

file1: Here two users have the highest level of privilege. If user3 and
user4 are assigned to the same group, and the file1 owner and group
permission are both set to rw-, then the only permission left is “world”. If
that is set to –- then user2 will not have the read access specified in the
access control matrix; however if it is set to r– then user1will improperly
have access7.

file3: Here there are 4 distinct combinations of permissions, while Unix
permissions for a single file can only hold 3 combinations (owner, group,
and world).

Review Questions

7.2.1. Given the following file permissions:
pjd@login: ls -l file.txt
-rwxrw-r– 13 pjd faculty 1280 2013-10-19 00:01 file.txt
(A) which users can read the file? (B) Which users can write to the
file? (C) which users can execute the file?

7 Although it’s possible to achieve this matrix with owner=[user2 r–],
group=[(user2,user3,user4) rw-], and world=[–-], it doesn’t really make sense since
the owner can gain write access just by changing permissions on the file.
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a) Only user pjd
b) Only user pjd and any other user in group faculty
c) All users

7.2.2. In the following access control matrix:
file1 file2 dir1 file3

user1 - w - - - - r - - rw -
user2 r - - r - - rw - r - -
user3 r - - r - - - - - r - -
user4 rw - rw - rwx - - -

which of the desired access for which files or directories cannot be
implemented using simple Unix permissions?
a) file1 and dir1
b) file1 and file4
c) None: the entire access matrix can be expressed in Unix per-

missions
d) dir1

Access Control Lists
Access Control Lists (ACLs) are explicit rules granting or denying access
to users, and are more powerful than simple permissions. The idea is
straightforward: an ACL is a list of rules, where each rule specifies a user
or group, an action, and whether to allow or deny permissions.

Using the same example, which could not be encoded in standard Unix
permissions:

file1 file2 dir1 file3
user1 --- r-- --- rw-
user2 r-- r-- rw- r--
user3 rw- r-- --- rwx
user4 rw- rw- --- ---

the desired access to file1 can be expressed as:
file1: owner = user4, group = {user4,user3}

owner: rw-, group: rw-, user2: r--, other: ---
file3: owner = user3, group = {user3, user1}

owner: rwx, group: rw-, user2: r--, other: ---

Access Control List Examples
This example uses OSX access control lists; however, Linux and Windows
have similar mechanisms. We start with three user IDs: pjd, guest, and
joe.
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First a file is created, made readable by all users, and an ACL rule is added
denying access to user joe (using the chmod —a command).

pjd$ echo ’file 1 contents’ > file.1
pjd$ chmod u=r,g=r,o=r file.1
pjd$ chmod +a ’joe deny read’ file.1
pjd$ ls -le file.1
-r--r--r--+ 1 pjd wheel 16 Aug 28 14:20 file.1
0: user:joe deny read

The file can now be read by both pjd and guest, but not joe:

pjd$ cat file.1
file 1 contents
joe$ cat file.1
cat: file.1: Permission denied
guest$ cat file.1
file 1 contents

Now we create a second file, set it owner read-only, and a rule is added
giving read access to joe but no other user:

pjd$ echo ’file 2 contents’ > file.2
pjd$ chmod u=r,g=,o= file.2
pjd$ ls -le file.2
-r--------+ 1 pjd wheel 16 Aug 28 14:20 file.2
0: user:joe allow read

Now the file can be read by pjd and joe but not guest:

pjd$ cat file.2
file 2 contents
joe$ cat file.2
file 2 contents
guest$ cat file.2
cat: file.2: Permission denied

Other Privileged Operations

Most Linux security checking is handled by a combination of the following
rules:

• File system permissions
• Signal permissions. A non-root process can only signal processes
with the same user ID.
• Super-user. User ID 0 (traditionally named “root”) may access any

file or signal any process; dangerous kernel operations can only be
performed if the current user id is 0.
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• Set UID. This allows users to invoke functions with elevated privi-
leges when appropriate.

Most security checking in Linux / Unix is handled by file system permis-
sions. As an example, system utilities need direct access to the disk (e.g.
to format a new file system); normal users are prevented from reformatting
the disk by the permissions on the special file representing the disk device
(e.g. /dev/sd0)

Unix signals are primarily used to kill a process, and so are only allowed
between processes with the same user ID.

User ID number 0 (traditionally given the username “root”) is allowed
to bypass all user id-based permissions. In addition, certain system calls
(e.g. mount a file system, reboot, install a kernel module) may only be
performed by the super-user.

Finally, the setuid permission flag on a file tells the kernel that when the
file is executed it should take on the identity of the file’s owner, not the
user who invoked it. This is a simple mechanism which allows programs
to make finer distinctions than the kernel does. For instance the mount
program is owned by user “root”, and marked setuid, as under certain
circumstances a normal user may be allowed to mount a filesystem (e.g.
when it is a removable drive). When the program is run by a normal user,
it checks configuration files to see whether the request is authorized; if so
it is able to invoke the mount system call as user ID root.

7.3 SELinux

An alternate security mechanism available in Linux is called SELinux, or
Security-Enhanced Linux. This is an enhancement to the normal Linux
security model, which allows for exceptions to normal Linux rules. As
an example, normal file permissions can still deny access to a file, but in
cases where permissions allow access, SELinux rules might still forbid it.

SELinux is based on rules about domains and types. A domain is an
execution environment that users run programs in; a set of rules for a
domain determine which users can run what programs within that domain.
Files have types, and rules determine which domains are able to access
which types of files. Finally, users can change domains by running cer-
tain programs; when this occurs is again determined by (unsurprisingly)
another set of rules.

Rules are loaded into the kernel by a user-space policy process, and file
types are determined by an SELinux context associated with the file, stored
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in file extended attributes in the file inode.

As an example, the password file /etc/passwd contains usernames,
groups, home directories, but not the hashed passwords themselves, which
are in the shadow file, /etc/shadow; the shadow file may be modified
when users run the /usr/bin/passwd program:

[root@localhost ~]# ls -Z /etc/passwd /etc/shadow /usr/bin/passwd
-rw-r--r-- root root system_u:object_r:etc_t /etc/passwd
-r-------- root root system_u:object_r:shadow_t /etc/shadow
-r-s--x--x root root system_u:object_r:passwd_exec_t /usr/bin/passwd

One SELinux policy rule states that a user enters the passwd_t domain
when executing a file of type passwd_exec_t; another states that pro-
cesses running in the passwd_t domain have read and write privileges
to files of type shadow_t. If SELinux is enabled, then even the supe-
ruser will only be able to modify /etc/shadow (and update your pass-
word) by executing /usr/bin/passwd or another executable marked
passwd_exec_t.

Actual SELinux policies are extremely complex, containing hundreds
of rules; if you are interested in finding out more there are a number of
tutorials on the Internet, including http://www.centos.org/docs/5/
html/Deployment_Guide-en-US/ch-selinux.html

Control of Information Flow

File access control is (somewhat) straightforward for an operating system
to provide, as it represents a simple decision. If access is allowed, then
the requested operation proceeds without interference; if it is denied, then
the request fails completely.

In many cases, however, the desired restrictions are more subtle. Perhaps
the earliest published example was a simple computer guessing game; the
program would need to access the data to be guessed, while preventing the
user from accessing it directly. Simple file permissions would not work, as
if the game program were able to access the data file, then other programs
(e.g. an editor) would be able to as well, allowing users to cheat.

In general such a problem requires interposing higher-layer software be-
tween the user and the protected information. In Unix the setuid mecha-
nism allows a user A to run a program as a different user B (e.g. root), by
having the executable file owned by user B and setting the setuid permis-
sion on the file. This can be done in a way that user B has full access to
the protected data, allowing the program to access the data on behalf of
user A, but only in ways allowed by the program logic.

/etc/passwd
/etc/shadow
/usr/bin/passwd
passwd_t
passwd_exec_t
passwd_t
shadow_t
/etc/shadow
/usr/bin/passwd
passwd_exec_t
http://www.centos.org/docs/5/html/Deployment_Guide-en-US/ch-selinux.html
http://www.centos.org/docs/5/html/Deployment_Guide-en-US/ch-selinux.html
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In modern systems it is more common for such a gatekeeper role to be
played by a server with access to the data, which accepts requests from
users via messages and makes decisions on what data to reveal. Some
examples:

MySQL: This database accepts connections over a TCP socket; users log
in and then are able to read and modify those tables they have been given
permission to access, regardless of which files the data resides in. The
MySQL process runs under a separate user ID, which is the only one able
to access the underlying data.

Blackboard: Connections to Blackboard are web sessions, controlled
directly by users, and isolation of the data itself is ensured by preventing
user access to the system that Blackboard runs on. The application logic
enforces a complex set of rules governing what information each user may
access; thus an instructor may see all grades, while a student may only see
aggregate information (e.g. averages) about other students’ grades.

Review Questions

7.3.1. Which of the following most accurately describes the effect of the
setuid attribute on a file?

a) It causes the file owner (i.e., user ID) to be updated whenever
a process accesses the file

b) It causes the file owner to be updated whenever a process
executes the file

c) It causes the user ID of the process to be updated when a
process executes the file

7.3.2. Which of the following statements are true? A server-based
database such as MySQL:

a) protects the security of its data by putting it in files owned by
a separate user ID

b) uses file permissions to prevent access to its data
c) uses application logic on a per-request basis to determine

whether to provide access to a data item.
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7.4 Attacks — Stack Overflow

Figure 7.2: Stack frame and
buffer overflow

In Figure 7.2 you can see a fragment of code
that was attacked (among others) by the first
piece of Internet malware, the 1988 Mor-
ris worm. The target program (fingerd)
was run with a network connection for its
standard input, and used the gets function
to read a line of input into a buffer on the
stack; it would normally return a simple re-
ply based on that input and then exit. Gets
reads a line from standard input, reading
as many bytes as it takes before it finds a
newline or reaches end-of-file. The buffer
used, located at a lower address on the stack
than the return address, was 512 bytes long,
but the worm sent a 537-byte single-line
message consisting of machine code, end-
ing with a carefully chosen return address
pointing at the beginning of the injected
code. Since fingerd was run as the root user, the result was that when
the function returned, the malware code had full control of the machine.
In the years since, many lessons have been learned about preventing this
sort of attack:

• (application writers) Do not use gets or other functions which can
overrun a fixed-length buffer. (e.g. fgets takes the buffer length as
an argument)

• (OS writers) Randomize the location of the stack and libraries each
time a program is run, to make it more difficult to guess where an
attack should return to.

• (OS writers) Use the NX (“no execute”) page table bit on modern
processors to prevent code on the stack from being executed.

Unfortunately buffer overflow vulnerabilities are still alive and well, as
more sophisticated attacks have been developed to counter these tech-
niques, as long as there is an initial application bug to give access to the
stack.8

8If you are interested in learning more about stack overflows, there is a good tutorial at
http://www.tenouk.com/cncplusplusbufferoverflow.html

http://www.tenouk.com/cncplusplusbufferoverflow.html
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Figure 7.3: Image by Randall Munroe, from Xkcd: http://xkcd.com/327/, licensed under
creative commons non-commercial license 2.5

Security - SQL Injection
What happened to Bobby’s school’s student database? Let’s assume they
used code like this Visual Basic fragment, adapted from an example on
an MSDN discussion board. (’&’ concatenates strings in VB):
cmd.commandText = "INSERT INTO Students (Name) VALUES (’" \& studentName \& "’);"
cmd.executeNonQuery()

So if studentName=“Joey Smith”, the following SQL command will be
executed:

‘‘INSERT INTO Students (Name) VALUES(’Joey Smith’);"

But if studentName=“Robert’); DROP TABLE Students;–”, we get:
‘‘INSERT INTO Students (Name) VALUES(’Robert’); DROP TABLE Students;--);’’

Semicolon (“;”) is the command separator in SQL, and “” is a comment
marker causing the rest of the line to be ignored; after adding ’Robert’
to the Students table, the DROP TABLE command will be executed,
removing the entire table.

SSL and Connection Security
Secure Sockets Layer (SSL) allows two systems to establish a connection
that cannot be intercepted, even by an adversary who observes every packet
sent by both systems. Most importantly, it does not require any shared
encryption key to be used by both systems9. SSL relies on a combination
of private- and public-key encryption:

• Private-key encryption uses a private key to encrypt a message,
which may then be decrypted using the same private key.

9 In most cases using a shared private key doesn’t solve the problem: before you use it,
you have to figure out how to securely communicate the private key.
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• Public-key encryption uses two keys: (a) A public key to encrypt
the message, and (b) a separate private key which must be used to
decrypt it. In one of today’s public-key systems, the public key is
the product of two large prime numbers, and the private key is the
two numbers themselves. The private key can be derived from the
public key by factoring it, but for large numbers this is believed to
be prohibitively difficult to actually do.

The simplest use of public-key encryption to provide a private connection
would be for the two systems to each have public/private key pairs, send
each other their public keys, and then encrypt traffic with the other system’s
public key. Unfortunately, public-key encryption is very computationally
expensive, so instead SSL uses the following steps, sometimes called the
SSL handshake:

1. The client connects to the server
2. The server sends its public key to the client
3. The client chooses a random number, encrypts it with the public

key, and sends it to the server, which then decrypts it.

Client and server both use this random number as the key to a private-
key code — all outgoing messages are encrypted using this key, and all
incoming messages are decrypted with it. There are additional aspects of
the SSL protocol to guard against impersonation and “man-in-the-middle”
attacks, which are somewhat more complicated and are not covered here.

Answers to Review Questions

7.1.1 False. The password authorizes you to log in as a specific user ID;
file permissions determine whether that user ID has access to a
particular file.

7.1.2 False. This used to be the case, but modern hardware can crack
encrypted passwords very quickly.

7.1.1 (3) - LDAP handles both user information and passwords.
7.2.1 Read: (3), all users. (“world” permissions are r–) Write: (2), owner

and group members. Execute: (1), owner pjd only.
7.2.2 dir1 has four separate sets of access, which cannot be encoded in

three sets of permissions.
7.3.1 (3) the process ID is set to that of the owner of the file
7.3.2 All of these statements are true.





Chapter 8

Hardware Virtualization

Topics covered in this chapter include:

• Applications of virtualization, including server consolidation
• Software emulation, full binary translation, and classical virtualiza-
tion

• Kernel binary translation, hardware virtualization, and paravirtual-
ization

• Virtual machine migration
• Hosted vs. “bare-metal” hypervisors
• Containers and Docker (even though they don’t use HW virtualiza-
tion)

Hardware virtualization is a technique that allows multiple virtual ma-
chines (VMs) to run on the same physical machine, using either pure
software or a combination of hardware and software techniques.

Previous chapters have described the differences between threads—
separate flows of control sharing (almost) all resources such as memory
and file descriptors—and processes, which are isolated from each other
by the operating system, requiring the use of files, pipes, or similar mech-
anisms to communicate between two processes. A virtual machine is
similar to a process, but is designed to run a full operating system and
its applications, rather than a single program; communication between
VMs is like that between real machines, and must take place over (possibly
emulated) networks.

A virtual machine requires a much different interface—while a process
runs in unprivileged mode, performing I/O and memory management
operations by issuing system calls to the OS kernel, an operating system
runs in supervisor mode and uses special instructions and other hardware
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Figure 8.1: Virtual machine architecture

mechanisms to perform its operations. In a virtual machine, as shown in
Figure 8.1, these mechanisms are performed by the hypervisor1 which
sits “underneath” the operating system.

Running multiple operating system instances on the same physical hard-
ware serves a number of purposes:

Running multiple operating systems: Many applications are tied to a
specific OS or even OS version; by using virtual machines it is possible to
run instances of these other operating systems and make these applications
availabe to a user without requiring extra hardware. (As an example, the
laptop I am typing on runs Apple’s OS X, but I have a virtual machine
running Ubuntu Linux for Linux development.)

Multiple Configurations: Even applications which run on the same op-
erating system may need to run on different machines, rather than just in
separate processes. This may be because they require different, incom-
patible versions of system libraries, or different configuration options. In
some cases (e.g. running an old and new version of the same application)
they may need different versions of the same configuration files.

Supporting multiple configurations is frequently called server consolida-
tion, as in the past an enterprise may have needed to use multiple physical
machines to provide these configurations. Frequently the load on each
service or configuration was much less than what could be handled by a
single machine, and many of these services can instead be deployed as
virtual machines on a single physical system.

Security: Many applications (e.g. webservers, databases) require admin-
istrative privileges (e.g. root on Unix) for configuration. In the past these
applications were typically considered infrastructure services, maintained

1Early operating systems were often called supervisors; what do you call the program
which supervises the supervisor? A hypervisor, I guess.
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and configured by system administrators at the request of users. However
in many recent cases (e.g. Amazon’s Elastic Compute Cloud) the customer
is expected to perform all configuration and management, and multiple
untrusted customers may share the same physical hardware. Instead of
being provided an unprivileged login on a shared machine, each customer
is given a virtual machine which they can configure as they wish, with full
root or administrative privileges, without posing a threat to customers on
other virtual machines.

Operating system containers, such
as those used by Docker, provide
many of the advantages of virtual
machines while using a single
operating system. Each container is
a set of processes with a namespace
of process IDs and network
connections, and a separate file
system tree, and (barring
misconfiguration or kernel bugs) is
unable to access resources
belonging to other containers or to
the host OS.

These uses for virtual machines are
artifacts of how applications and
operating systems have evolved,
and a perfectly-designed OSwould
no doubt provide the security and
manageability benefits described
above using operating system-
level protections. (This would of
course eliminate the need to use
any other less perfect operating
system.) Virtual machines hold an-
other security advantage, however:
they have a smaller attack surface than general-purpose operating systems.
Operating systems are very large, with millions of lines of code.2 A hy-
pervisor, the piece of software responsible for managing virtual machines,
is typically far smaller in comparison, and has only a small number of
external interfaces. In theory fewer lines of code (espcially the security-
critical code which validates user inputs) means fewer bugs and thus fewer
opportunities for security exploits; experience to date seems to support
this theory.

Review Questions

8.0.1. Which of these are reasons why it can be difficult to run multi-
ple network servers on the same machine with a normal operating
system?
a) Problems related to assigning separate network addresses to

different servers
b) Conflicts between the software and OS requirements for dif-

ferent software packages

2The kernel/ and mm/ directories in the Linux source add up to about a third of a
million lines of code; support for Intel CPUs in arch/x86/ is another third of a million; the
drivers/ directory is over ten million LOC.
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c) The need for administrative privileges to install software pack-
ages

d) All of the above

8.1 Implementing Hardware Virtualization

If you are used to running VirtualBox or VMware on your laptop, it
may seem like it’s just another program, maybe using more memory
and CPU than most. But it isn’t. To understand why, consider trying to
run Linux (the “guest” operating system) on top of a “host” operating
system, e.g. Windows. The linux kernel is an executable file, typically
found in /boot/vmlinux, and could be readily translated into a Windows
executable. However if you tried to do this3 it would crash immediately.
Some of the reasons an operating system kernel cannot run as a process
are:

Privileged instructions: One of the first things the kernel does on startup
is to initialize the virtual memory system, mapping virtual addresses to
physical addresses. This configuration requires privileged-mode instruc-
tions, which are inaccessible to user-mode applications, as they could be
used to bypass operating system protections. The first such instruction
executed by the guest OS would cause an exception, killing the process.

Interference: The problem isn’t just that the guest OS won’t be allowed
to modify virtual address mappings. If it actually could modify these map-
pings, then the underlying host operating system would almost certainly
crash, as it assumes that it has complete control over them. The CPU only
has a single address translation mechanism, and if two operating systems
are going to make use of it, they must either deliberately share access, or
it must be virtualized before being used by one or both OS.

Security: Secure isolation between virtual machines, including memory
protection, is at least as important as isolation between processes in a
normal operating system. But if a guest operating system has direct access
to the CPU address translation mechanisms it can easily access physical
memory allocated to another virtual machine (or to the host OS itself),
bypassing any security mechanisms.

I/O: A process running under Linux or Windows uses system calls such
as open and read to access files. In contrast, an operating system uses
drivers to access physical devices.

3or, actually, running any OS on top of any OS including itself
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char memory[EMULATED_MEM_SIZE];
int R1, R2, R3, ...;
int PC, SP, CR1, CR2, CR3, ...;
bool S; /* supervisor mode */

while (true):
instr = memory[PC]
PC += sizeof(instr)
case (instr) in:
"MOV R1 -> R2":
R2 = R1

case "JMP <arg>":
PC = <arg>

case "STORE Rx, <addr>":
<paddr> = MMU_translate[<addr>]

- on error: emulate page fault
if <paddr> is real memory:
memory[paddr] = Rx

else
simulate_IO_access(Write, paddr, Rx)

.... Etc. (for ~1000 more instructions)

Figure 8.2: Hypothetical software emulation

In the remainder of this chapter we discuss the following approaches to
supporting virtual machines, arranged (roughly) in increasing order of
both complexity and performance:

• Software emulation.
• Emulation with binary translation.
• Classical (direct execution + trap-and-emulate) virtualization
• Direct execution + binary translation
• Hardware-assisted virtualization
• Paravirtualization.

Software emulation

The most straightforward way to run a virtual machine is to emulate it
entirely in software: in other words, to write a program that behaves
exactly like the CPU, memory, and I/O devices of the real machine. The
idea is simple: given a complete description of how the CPU behaves,
create variables for the registers and a big array for memory, and write
a program that repeatedly fetches instructions from the memory array,
decodes them, and emulates their operation, much like the sample code in
Figure 8.2.
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The Java Virtual Machine (JVM)
executes bytecode instructions, and
can be considered a sort of CPU.
Almost all JVMs are based on
software emulation, typically with
additional performance
optimizations.

Full software emulation is simple
conceptually, although in practice
the list of instructions to imple-
ment can get long (over 1000 on
modern x86 CPUs) and complex.
It has one major advantage, porta-
bility: once the code to emulate a
specific CPU is written, it can be
compiled and run on almost any host. This is especially useful in embed-
ded development, where it is often necessary to develop and test software
before the CPU (or at least the system incorporating that CPU) is ready to
use.

The primary disadvantage is performance—full software emulation is
slow. It can be hundreds of times slower than native execution, making it
unsuited for all but a few applications.

Emulation plus binary translation

Other software systems which use
binary translation techniques
include:
JVMs: Almost all Java
implementations use JIT compiling
for performance.
Javascript: Recent browsers
(Safari, Firefox, and others) use
just-in-time compilation to improve
Javascript performance.
Apple Rosetta: This allowed
Intel-based Macintosh computers to
execute programs compiled for
PowerPC.

Software interpreters can be sped
up by what Java developers call
Just In Time (JIT) compilation,
and which CPU emulator develop-
ers call Binary Translation. The
idea is to translate commonly-used
fragments of code into actual ma-
chine code, which can usually run
far faster than pure emulation. (In
part, it eliminates the software-
implemented instruction fetch and
decode for each instruction, which
is a significant overhead.) An ex-
ample can be seen in Figure 8.3.

In other words, the following occurs when a section of binary-translated
code is executed:

1. The real CPU registers are loaded from the virtual (i.e., software-
emulated) registers

2. The translated instructions are executed
3. The virtual CPU state is updated with results from the real CPU

In most cases the translator will produce more than one instruction per
emulated instruction. Memory accesses are particularly tricky, as the
generated code must emulate address translation performed by the MMU,
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The following code:

ADD R1+R2 -> R2
ADD R2+R3 -> R3
MUL 2,R3 -> R3

might be translated into the following fragment:

LOAD Rx <- &emulated_R1
LOAD Ry <- &emulated_R2
LOAD Rz <- &emulated_R3
ADD Rx,Ry -> Ry
ADD Ry,Rz -> Rz
MUL 2,Rz -> Rz
STORE Ry -> &emulated_R2
STORE Rz -> &emulated_R3
RET

Figure 8.3: Example of binary translation

and then check to see whether the resulting address is I/O or RAM be-
fore performing the operation. In practice it may be possible to arrange
emulator memory (using e.g. the mmap system call) so that most memory
accesses can be performed directly; in this case the overhead for most
memory accesses can be reduced to a few instructions which check that
an access falls within this typical range.

Trap and Emulate

Even with binary translation, software emulation is still slow—even the
best binary translation systems incur a slowdown of 3x to 10x compared
to running directly on the same hardware. This is much better than unop-
timized software emulation, and may be the best that can be done when
emulating one CPU on top of a CPU running a different instruction set.
(e.g. running iPhone or Android applications on an Intel-based laptop
or desktop, or the Rosetta emulator which Apple used to allow PowerPC
applications to run seamlessly on early Intel-based Macintosh systems.)

However In many other cases—such as VirtualBox running on my laptop—
the CPU emulated by the virtual machine is the same as the real, physical
CPU. In this case we can improve performance greatly by using direct
execution when possible: executing instructions directly on the physical
CPU. The only reason we were emulating instructions in the first place
was because the host OS could not allow a virtual machine to directly
execute certain privileged instructions, so the goal here is to emulate only
these privileged instructions while directly executing all others.
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MOV EAX -> EBX

... user-mode	 


	 instructions...




LOAD CR3 <- EAX




  ... more	 	 

user-mode


	 instructions...

Load user-visible registers 

into software CPU

Emulate one instruction

Restore user-visible registers

from software CPU

exception

return to normal

execution

Figure 8.4: Trap-and-emulate virtualization

This can be done4 using a strategy that can be called trap-and-emulate. The
guest OS is executed directly in user mode; when it executes a privileged
instruction it causes an exception which is handled by a specialized OS
called a hypervisor or virtual machine monitor. The hypervisor loads the
user-visible CPU registers into the software CPU emulation, runs it for a
single instruction, and then returns back to direct execution.

It is interesting to compare a hypervisor running a guest OS (and guest
applications) with a traditional operating system running multiple pro-
cesses. A normal OS virtualizes CPU, memory, and other resources to
provide a virtual machine abstraction to each process: each process sees its
own memory space and a CPU which can execute user-mode instructions
and a special system call instruction. A hypervisor, in contrast, performs
a similar task of virtualizing memory and CPU, but provides a virtual
machine abstraction which is identical to that of the hardware itself.

Figure 8.4 shows a representation of this trap-and-emulate process. It
allows almost all instructions to run directly, at native hardware speed,
while the specific instructions which need to be executed in privileged
mode (a tiny fraction of all instructions) are emulated. This form of
virtualization was originally developed by IBM in the late 60s and early
70s for mainframes, where it continues to be used.

But how does a hypervisor handle exceptions? An operating system relies
heavily on exceptions; in fact, just about everything an OS does is part of
some exception handler, whether that exception is a system call, a page
fault, or a timer or I/O device interrupt. Since the guest OS runs in user
mode, exceptions such as system calls or page faults generated by guest
applications will be delivered to the hypervisor rather than the guest OS.
The solution is for the hypervisor to just emulate the real CPU operation:

4on the right processors, as described below
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1. Set the emulated supervisor bit to 1
2. (with the emulated CPU) Handle user/supervisor stack switch, push-

ing registers, and all the other exception-handling mechanisms that
take up so many pages in the CPU reference manuals.

3. Return to user mode, load user-visible registers from the emulated
CPU, and call the guest OS exception handler.

4. When the guest exception handler returns, set the emulated super-
visor bit to 0, restore user registers from the kernel stack, switch
to user stack, then jump back to direct execution at the instruction
where the exception occurred5.

How does it knowwhere to find that exception handler? The hardware CPU
locates exception handlers via one or more control registers which point to
interrupt descriptors which are located in memory. (e.g in Intel-compatible
CPUS the IDTR register, which points to the interrupt descriptor table)
These registers may only be accessed in supervisor mode, so the hypervisor
is able to virtualize access to these registers and maintain a separate
emulated copy for each virtual machine. The real hardware register points
to the hypervisor exception handler table, and when a hypervisor exception
handler determines that an exception should be forwarded to the guest
operating system it looks in the table pointed to by the emulated register
to find the guest OS exception handler.

Review questions

8.1.1. Which of the following statements are true?
a) Software emulation uses special-purpose CPU hardware to

run virtual machine instructions.
b) Software emulation is slower than native execution.

8.1.2. Trap-and-emulate virtualization:
a) Allows the guest OS to run in user mode, and intercepts ex-

ceptions that occur when it executes privileged instructions
b) Allows the guest OS to run in supervisor mode, and intercepts

exceptions that occur when it executes privileged instructions
c) Prevents exceptions from occurring while the guest OS is

executing

5Or the immediately following instruction in the case of traps such as system calls.
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8.2 Virtualized memory

In a full software emulation, guest virtual addresses were translated into
accesses to “fake” physical memory, e.g. the memory[ ] array in the
example code. However, with trap-and-emulate virtualization, guest ap-
plications and most OS code execute directly on the CPU, and virtual
addresses are translated to physical addresses in hardware, by the TLB and
page tables. This is a problem, because to run multiple virtual machines on
a single host, the hypervisor must be able to prevent each from accessing
physical memory assigned to the other. Further complicating things, in
many cases each guest OS expects physical memory to be in the same
place, typically starting at physical address 0. This requires two levels
of address translation to get from virtual addresses (used by the guest
applications and OS) to real physical memory:

1. Virtual address to “fake” physical address: this translation is main-
tained by the guest OS

2. “Fake” physical address to real physical address: this translation is
maintained by the hypervisor

How does this work on a CPU that only supports one level of virtual-to-
physical address translation? By having the hypervisor maintain the real
page tables (the ones pointed to by the real CR3) and making sure these
tables contain the full virtual→ fake physical→ real physical translation.
This requires two page tables: one pointed to by the emulated CR3 and used
by the guest, and one “shadow” table that the real CR3 points to. When
a page fault occurs the hypervisor page fault handler uses the following
logic:

If faulting address is in guest page table:
1. Look up virtual-to-fake-physical (guest page table) and

fake physical-to-real-physical (hypervisor) mappings
2. Install virtual → real physical mapping in

shadow page table
3. Return

else (not in guest page table):
1. invoke guest OS page fault handler

Review questions

8.2.1. Address translation for a virtual machine is handled by:
a) Allowing the guest OS to maintain control of the hardware

page tables.
b) Having the hypervisor determine the mappings which go in

the hardware page tables
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Figure 8.5: “Type 1” Hypervisor — no host OS.

c) Loading the hardware page tables with mappings which com-
bine the guest OS page tables and the hypervisor memory
maps.

8.3 Virtualized I/O Devices

Memory-mapped I/O devices are straightforward to emulate in a trap-and-
emulate system. When the guest OS maps the physical memory addresses
of emulated device registers, the hypervisor leaves the corresponding
pages unmapped in the shadow table, so that all read and write accesses
will result in a page fault. The hypervisor page fault handler handles
faults on these pages specially, calling code that emulates reading from or
writing to the emulated I/O device.

8.4 Hosted and “bare-metal” hypervisors

In Figure 8.5 you can see how this works together. Exceptions from user
applications (page faults, system calls, etc.) are handled by the hypervisor,
which in most cases passes them to the guest OS. Interrupts from I/O
devices are passed to drivers in the hypervisor, which may in turn decide
that it’s time for a virtual hardware device to send an interrupt to a guest
OS.

This image describes server systems (like VMware ESX), where the ma-
chine boots the hypervisor instead of a regular OS, and does nothing but
run virtual machines. But what about a “hosted” system like VirtualBox
or VMware Workstation? In particular, how does it run “on top of” a host
OS?

The short answer is, it doesn’t. When you install VirtualBox it installs
a set of drivers, which (like normal hardware drivers) run as part of the
kernel, in supervisor mode. When a virtual machine starts running, these
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Figure 8.6: Sensitive state in the Intel architecture EFLAGS register

drivers insert themselves under the host operating system, “stealing” ex-
ceptions such as page faults and system calls whenever a virtual machine
is executing, and forwarding them to the hypervisor. Running on the same
system as a host operating system has its advantages, though, as the host
OS has drivers for all of its hardware, a file system, display, and other
useful interfaces. A hosted hypervisor can take advantage of this, passing
I/O requests back to the host OS (via a rather complicated route) to be
handled through these standard interfaces, rather than requiring its own
drivers for any hardware it uses6.

8.5 Non-Virtualizable CPUs

There is a minor problem with the classic trap-and-emulate virtualization
mechanism as described above: it doesn’t work. Or rather, it doesn’t work
on the machines you want it to work on.

In order to perform classic virtualization to work, every “sensitive” in-
struction (in other words, one that has to be emulated, like loading CR3 to
switch page tables) must trap so that it can be emulated by the hypervisor.
Unfortunately, some CPU architectures (in particular, Intel x86 CPUs)
have instructions that fail this requirement. For example, on x86 CPUs, a
number of instructions which modify supervisor-mode state will silently
do nothing when executed in user mode, rather than causing an exception.

As an example, the EFLAGS register as shown in Figure 8.6 contains some
commonly-used flags such as carry (CF) and zero (ZF) which it inherited

6That’s how it works with binary emulation. With hardware virtualization support, the
CPU has provisions to allow the “root” environment to continue to run without virtualization,
but it’s complicated.
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from the 16-bit 8086, as well as system flags such as interrupt enable and
“IO privilege level”, the CPU user/supervisor privilege level. The POPF
instruction modifies this register, by loading it with a value popped from
the top of the stack. To prevent application code from arbitrarily disabling
interrupts or turning on supervisor mode, when POPF is executed in user
mode it silently ignores any privileged bits like IOPL and interrupt enable;
when kernel code executes POPF in supervisor mode, these bits are loaded
with new values. If we try to run the kernel in user mode this instruction
will silently do the wrong thing, rather than trapping into the hypervisor.

Instructions like this complicate the task of performing efficient virtual-
ization, but it is still possible, using one of three approaches:

• Emulation with binary translation: This is the simplest approach
to describe, although rather difficult to implement well. Whenever
the guest transitions into supervisor mode (for example, for a sys-
tem call or an interrupt) the hypervisor emulates all instructions in
software, using binary to translation speed up this process, and only
resuming direct execution when the guest returns to user mode. This
is slower for normal instructions in the kernel, but faster for privi-
leged instructions, as it can translate them once instead of incurring
the overhead of trapping and emulating each privileged instruction
every time it executes.

• Hardware virtualization: Modern x86 CPUs include virtualiza-
tion extensions, which add a third privilege level more powerful
than supervisor mode. The guest runs in normal user and super-
visor mode, but certain instructions trap into hypervisor mode for
emulation, just as in trap-and-emulate virtualization on a virtualiz-
able CPU. Which instructions? It depends: there are configuration
registers providing the hypervisor with a menu of which operations
it wants to intercept.

• Paravirtualization: rather than providing complete emulation of
the hardware platform, the hypervisor provides an OS-like interface
so that the operating system can request operations (e.g. address
space switch) which would be performed by hardware instructions
(e.g. LOAD CR3) on bare hardware. The guest operating system
must be modified to use these requests, and so while binary transla-
tion and hardware virtualization can run unmodified guest operating
systems (e.g. standard Windows installation media) paravirtual-
ization can only support guest operating systems which have been
modified for paravirtualization.
The changes required in a guest OS are actually not that extensive,
as most modern operating systems (even Windows) are structured
so that they can be (relatively) easily modified to support different
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machine types, with hardware-specific portions isolated into a small,
replaceable part of the code.

A paravirtualized hypervisor looks sort of like a regular OS: it runs in
supervisor mode, with guests running in user mode making requests via
system calls using TRAP instructions. Unlike a normal OS, however, these
system calls perform hardware-level operations like loading a page table,
allocating physical memory, or installing a page fault handler.

If you’re curious, the Linux code to
switch address spaces can be found
in the activate_mm macro in
arch/x86/include/asm/
context.h. On regular hardware
it calls switch_mm which executes
a LOAD CR3 instruction; in
paravirtualized mode it calls
paravirt_activate_mm (in
arch/x86/include/
asm/paravirt.h) which invokes
a “hypercall” to request the
hypervisor to perform the operation.

Although paravirtualization re-
quires some modifications to the
guest OS, in some cases it provides
higher performance. As an exam-
ple, the hypervisor interface can be
as efficient as a system call, while
hardware virtualization extensions
require many cycles to trap, de-
code, and emulate each instruc-
tion.

For years Amazon EC2 used a
modified version of the Xen par-
avirtualized hypervisor, although as hardware virtualization support con-
tinues to improve, this remains the case only for a small number of their
instance types.

What type of virtualization is fastest? This is actually a hard question—
putting something (like virtualization support) into hardware doesn’t au-
tomatically make it faster. State-of-the-art hardware and software-based
(binary translation) hypervisors can have equivalent performance7, so the
choice between them often comes down to features.

Review questions

8.5.1. Which of the following are correct?
a) Paravirtualization requires specialized hardware support
b) Paravirtualization provides a system call-like interface that the

guest OS uses to e.g. switch page tables
c) Paravirtualization requires modification to the guest operating

system

7citation here - Ageson

arch/x86/include/asm/context.h
arch/x86/include/asm/context.h
arch/x86/include/asm/
arch/x86/include/asm/
paravirt.h
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8.6 Paravirtualized I/O Devices

It is common for hypervisors to have optional drivers (VMware Tools,
VirtualBox Guest Additions, etc.) which can be loaded in the guest to
improve performance. These typically include paravirtualized drivers
for the disk controller and network interface: rather than catching writes
to emulated registers, the paravirtualized driver uses a system call-like
interface to make I/O requests to the hypervisor. Note that this works
because almost all operating systems provide a simple means to load
arbitrary kernel-mode drivers for third-party hardware; a paravirtualized
device is just another piece of (virtualized) hardware that you need to
install a driver for. In contrast, operating systems writers don’t typically
anticipate the need to support plugging in a different type of CPU.

8.7 Linux Containers and Docker

Running different applications within separate virtual machines provides
a number of benefits when compared to running them all on the same
unvirtualized operating system:

• Security—if one application is compromised, or is untrusted, the
only way for it to attack the other applications (other than via the
external network) is by subverting the hypervisor. This is difficult,
as they are small and have tended to be quite reliable in practice.
(i.e. with few bugs that can be exploited)
• Performance isolation—server-class virtualization systems can en-
force resource limits (memory, CPU time, disk and network I/O)
which ensure that heavy loads on one application do not negatively
impact another.

• Management isolation—each virtual machine has its own file system,
administrative (root) account, installed libraries, etc. and can be
configured without regard to the dependencies of other applications
running in other virtual machines.

• Packaging convenience—a virtual machine image is a convenient
and useful format for storing a virtual machine and all of its con-
figuration, as well as for distributing it to others. (like the CS-5600
virtual machine image you received at the beginning of this class)

Note, however, that none of these benefits actually requires hardware
virtualization8. If all of the applications are going to be running on the
same operating system, then Operating System Virtualization can be used:
rather than pretending that a single hardware machine is actually multiple

8That is, unless you need to run multiple different operating systems.
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virtual machines, we pretend that a single instance of the operating system
is actually multiple instances. This approach was first used in FreeBSD
jails and Solaris containers, but the mostly widely known example today
is Linux Containers (LXC) and Docker.

LXC allows the creation of isolated process groups: each process in such
a group (and any children of those processes) thinks that the group has
the entire operating system to itself. This is done via two mechanisms:

Namespaces - in recent Linux versions, any access to the file system,
process ID, networking, user or group IDs, or several more obscure system
parameters (e.g. hostname) is relative to a namespace. In a normal system
with no containers there will be a single namespace, visible to all processes.
(or at least those that have sufficient permission, in the case of e.g. file
system access) However you can also create new namespaces, with a
restricted view of the file system (e.g. only able to see a small subtree),
with their own process ID space and user names and IDs, and separate
network interfaces and addresses. Within a namespace you can have a
root user which can perform privileged operations within the namespace,
but which has no power or visibility outside of it.

Control groups (cgroups) - these are used to control operating system
allocation of resources such as memory, CPU time, or disk and network
bandwidth. A cgroup can be associated with a process group, and the
process group as a whole will be subject to any limits (e.g. on memory,
CPU time, etc.) placed on that cgroup.

The combination of these two features allows the creation of separate con-
tainers, each with its own file system, network interfaces, etc., and where
processes within a container are isolated from those in other containers or
in the “base” or root operating system within which these containers were
created. Processes in a container interact with the OS kernel in exactly
the same way as in a non-containerized system; the only difference is in
what they see, which is controlled via namespaces, and how their CPU
time and I/O are scheduled, which is controlled via cgroups. Containers
are thus more efficient, as there is no virtualization overhead, and can be
created almost as quickly as normal processes.

Since there is still a single operating system kernel, all containers in a
system share the same operating system version. Note, however, that
they may have entirely different file systems; thus it is quite possible
to have both a Red Hat and an Ubuntu distribution running in separate
containers on the same machine, although each will be using the kernel of
the underlying system.

Docker is based on LXC; however perhaps its main innovation is the way in
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which it manages container file systems. A Docker container uses a union
file system to join together multiple file systems—the first one of which is
writeable, and with one or more read-only ones “behind” it. To understand
the operation of a union file system, consider how the Unix shell finds an
executable: it searches each directory in the PATH variable in order, and
takes the first version of the file that it finds. Thus if the value of PATH is
/usr/bin:/sbin:/bin, and you type ls, it will search /usr/bin/ls
(not found), /sbin/ls (not found), and then /bin/ls (successful). A
union file system operates in a similar fashion: on read access to a file
(or directory) it will search through each underlying file system in order
until it is found. When writing to a file, however, it will write to the first
writable file system in the list, providing a form of copy-on-write.

This allows various environments to be stacked: e.g. a base file system
containing the files from a minimal Linux installation, with additional file
systems “on top” of it containing installed versions of various packages
one wishes to use, and a writable file system on top for per-instance
configuration parameters, application data, etc.

Answers to Review Questions

8.0.1 (4), all of the above.
8.1.1 (1) False: that’s why it’s called software emulation. (2) True: in

fact it’s much slower.
8.1.2 (1). privileged instructions will trap in user mode, and the hypervi-

sor emulates them.
8.2.1 (3). The guest cannot be allowed to manipulate hardware page

tables, and the hypervisor does not know the guest mappings, but the
hypervisor can compose the “fake” guest page tables with hypervisor
mappings to provide the correct translation.

8.5.1 (2) and (3). The hardware interface is replaced with “hypercalls”,
and the guest OS must be modified to use them instead of direct
hardware access.





Appendix A

The CSx600 Micro-Computer

A.1 Overview

The CSx600 is a fictional computer used for examples in this class. The
architecture of the system is shown in Figure A.1, below.

Figure A.1: CSx600 System Architecture
It has 64K bytes of memory, with an address width of 16 bits, and 10
16-bit registers plus two condition flags. Like most modern computers,
memory may be accessed as individual bytes or in multi-byte words, as
shown in Figure A.2; bytes within a word are stored in little-endian fashion
as in Intel processors.

Instructions are either a single 16-bit word (2 bytes) for simple instructions,
or 4 bytes for instructions which require an additional 16-bit value. They

223
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Figure A.2: Byte and 16-bit word addressing of memory. Note that ordering
of bytes in words is little-endian - the lower address contains the “little” (i.e.

least-significant) byte.

are grouped into the following 9 categories:

• Load, store - move data between registers and memory.
• Add, subtract - perform basic arithmetic.
• Push, pop - manipulate the stack.
• Call, return - subroutine invocation.
• Jump - go to another address, either unconditionally or conditionally.
• Interrupt - a subroutine-like mechanism used to implement system
calls.

A.2 Calling conventions

The CSx600 CPU uses standard calling conventions, with R7 dedicated
as the base pointer:

Arguments are promoted to 16-bit values, and pushed onto the stack
starting with the last argument; then the CALL instruction is executed.

The function prologue pushes the old base pointer onto the stack, copies
the stack pointer into the base pointer, and then subtracts nnn bytes from
the stack pointer where nnn is the size in bytes (rounded to a multiple of
2) of the local variables.

The first, second, etc. function arguments may now be addressed as *(bp-
4), *(bp-6), etc., while the local variables in turn may be addressed as
*(bp+2), *(bp+4), ... Note that these expressions do not change, even
though the stack pointer moves up and down while calling subroutines.

The function epilogue restores the original stack pointer by (a) copying
the base pointer into the stack pointer, and (b) popping the old value of
the stack pointer.

The return value is placed in R0 before returning.
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A.3 Memory-mapped I/O

As shown in Figure A.3, addresses from 0000 to EFFF (hexadecimal) are
used for normal memory, but the 4KB range from F000 to FFFF is devoted
to I/O. What this means is that when the CPU reads or writes an address
in this range, the operation will be directed to one of several input/output
devices: the frame buffer (for display), keyboard controller, disk controller,
or serial terminal controller. The memory map for this region may be seen
in Figure 2. Note that there are large undefined sections in this map; the
result of reading or writing these addresses is not defined, but is unlikely
to be good.

Figure A.3: Memory-mapped I/O devices
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Frame buffer (F000 – F77F)
The frame buffer is a con-
tiguous array of 80x24 =
1920 bytes of memory. Each
address is mapped to a loca-
tion on the screen; the byte
stored at that address will be
displayed in the correspond-
ing screen location. (the VGA screen used by the PC BIOS and e.g. Linux
running in console mode works almost identically to this)

Keyboard controller (F800, F801)
When a key is pressed, the key value is stored in the keycode register
(F801) and the status register (F800) is set to 1. After software reads the
keycode, it writes a 0 to the status register so that it can detect the next
keypress.

Serial port controllers (F820 – F82F)
In order to allow multiple
users to access the computer
at once, there are four serial
ports connected to external ter-
minals. Incoming data from
a terminal is received in the
same way as for the keyboard
controller — the data byte is placed in the data(in) register by the hard-
ware, and status(in) set to 1; the status flag is then set to 0 by software. To
send a byte to the terminal, it is written to the data(out) register, and the
cmd/status(out) register is set to 1; after the data has been transmitted, the
hardware will set the cmd/status(out) register to 0. Note that there are 4
sets of terminal control registers, one for each external terminal.

Disk controller (F820 – FAFF)
The disk controller reads or writes a
single 512-byte disk sector at a time.
It has a 16-bit register to hold the sec-
tor number, and an 8-bit command/s-
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tatus register — a command (read = 0x80, write = 0xC0) is written to
the register by software, and a status value (0 = failure, 1 = success) is
written to the register by hardware when the command is complete. To
read a sector, software sets the sector number register, writes 0x80 to the
command register, and waits until the command completes (indicated by
the value in the command/status register changing to 01 for success); 512
bytes of data may then be copied from the data register, two bytes at a time.
To write a sector, the sector number register is set, the write command
(0xC0) is written to the command register, and then 512 bytes of data are
written to the data register, after which the controller will write the sector
to the disk and set the status register to 1 to signal completion.

A.4 Detailed Instruction Definitions

Load/Store instructions:
These operate on 16-bit words and 8-bit bytes, and have the following
addressing modes (which you have no doubt learned in an architecture
course):

• absolute - the address used is given as a parameter to the instruction.
• indirect - the address is contained in a register which is identified
as a parameter to the instruction.

• indexed - the address is calculated by adding a constant value (sup-
plied as a parameter to the instruction) to an address contained in a
register.

• immediate - no address is used, and the value is supplied as a
parameter to the instruction.

Traditional assembler syntax separates the source and destination of an
operation with a comma — e.g. mov eax,ebx — and which argument is
the source and which the destination varies from machine to machine. To
eliminate this ambiguity, we will use an arrow symbol to separate source
and destination operands in CSx600 assember syntax. The encodings
of the instructions are shown in their descriptions below; since this is a
fictitious CPU there are no actual numeric values defined for any of the
opcodes.
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LOAD.W Rdst ← *addr— load word from constant address

Opcode = LOAD.W1 Rdst

Address

Retrieves 16 bits starting at addr and puts the value into Rdst.

LOAD.B Rdst ← *addr— load byte from constant address

Opcode = LOAD.B1 Rdst

Address

Retrieves 8 bits starting at addr and puts the value intoRdst. The top 8 bits
of Rdst are set to 0. (note that the remaining load/store instructions each
have byte and word variants; descriptions will be combined for brevity.)

STORE.W Rsrc → *addr— store word to constant address
STORE.B Rsrc → *addr— store byte to constant address

Opcode = STORE.W2 /
STORE.B2

Rsrc

Address

Takes 16-bit word (8-bit byte) fromRsrc and stores it into memory starting
at addr.

LOAD.W Rdst ← *(Raddr) – load word indirect
LOAD.B Rdst ← *(Raddr) – load byte indirect

Opcode = LOAD.W2 /
LOAD.B2

Rdst Raddr

Fetches a 16-bit word (8-bit byte) from memory, starting at the address
found in register Raddr and stores it in Rdst. If only one byte is loaded,
the top 8 bits of Rdst are set to zero.

STORE.W Rsrc → *(Raddr) – store word indirect
STORE.B Rsrc → *(Raddr) – store byte indirect
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Opcode = STORE.W3 /
STORE.B3

Rsrc Raddr

Takes a 16-bit word (8-bit byte) from Rsrc and stores it into memory
starting at the address found in Raddr.

LOAD.W Rdst ← *(Raddr +offset) – load word indexed
LOAD.B Rdst ← *(Raddr +offset) – load byte indexed

Opcode = LOAD.W4 /
LOAD.B4

Rdst Raddr

Offset

Loads a word (byte) into Rdst from the address found by adding offset to
the value in Raddr.

STORE.W Rsrc → *(Raddr +offset) – store word indexed
STORE.B Rsrc → *(Raddr +offset) – store byte indexed

Opcode = STORE.W5 /
STORE.B5

Rsrc Raddr

Offset

Stores a word (byte) from Rsrc into the address found by adding offset to
the value in Raddr.

LOAD.I Rdst ← value – load immediate value

Opcode = LOAD.W6 Rdst

Value

Load Value into Rdst.

A.5 Arithmetic Instructions

These instructions perform arithmetic operations on values in registers.
The instructions listed here operate on 16-bit words; for completeness
there should probably be byte versions of each, but we will not use them
in this class.
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ADD Rsrc → Rdst – add register to register

Opcode = ADD Rsrc Rdst

Adds the 16-bit value in Rsrc to the value in Rdst and places the result in
Rdst. Z flag is set iff the result is zero; S flag is set iff the sign bit (most
significant bit) of the result is 1.

ADD value → Rdst – add immediate value to register

Opcode = ADDI Rdst

Value

Adds value to the value in Rdst and places the result in Rdst. Sets Z and
S flag as above.

SUB Rsrc → Rdst – subtract register from register

Opcode = SUB Rsrc Rdst

Subtracts the 16-bit value in Rsrc from the value in Rdst and places the
result in Rdst. Sets Z and S flag as above.

SUB.I value → Rdst – subtract immediate value from register

Opcode = SUBI Rdst

Value

Subtracts value from the value in Rdst and places the result in Rdst. Sets
Z and S flag as above.

CMP Rsrc, Rdst – Compare registers

Opcode = SUB Rsrc Rdst

Subtracts the 16-bit value in Rsrc from the value in Rdst; discard result
but set Z and S flags.

CMP.I value, Rdst – compare register with immediate value

Opcode = CMPI Rdst

Value
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Subtract value from that in Rdst; discard result but set Z and S flags.

MOV Rsrc → Rdst – move (copy) register to register

Opcode = MOV Rsrc Rdst

Copies the contents of Rsrc to Rdst. Sets Z and S flag as above.

Stack and Subroutine instructions

These instructions are used for manipulating the stack and calling / return-
ing from subroutines.

PUSH Rsrc – push contents of register to stack

Opcode = PUSH Rsrc

Subtracts 2 from SP, and then stores the contents of Rsrc to the address in
SP.

POP Rdst – pop top of stack into register

Opcode = POP Rdst

Fetches the contents of the memory location indicated by the address in
SP, saves it in Rdst, and adds 2 to SP.

ADD_SP #value – add immediate to stack pointer
SUB_SP #value – subtract immediate from stack pointer

Opcode = ADD_SP / SUB_SP
Value

Adds value to SP, thus discarding value/2 elements from the top of the
stack. Alternately, subtracts value from SP, reserving value bytes of storage
for local variables.

CALL #addr – call subroutine

Opcode = CALL
Addr
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Pushes return address (the address of the next instruction after CALL)
onto the stack, and jumps to addr. I.e.: SP = SP-2, *SP = PC+4, PC =
addr.

RET – return from subroutine

Opcode = RET

Pops a return address off the stack and jumps to that address.

Branch instructions

These are unconditional and conditional GOTO instructions, used for e.g.
loops and ’if’ statements.

JMP #addr – jump unconditionally to address

Opcode = JMP
Addr

Loads the program counter (PC) with addr, causing execution to skip to
that address.

JMP_Z #addr – jump if zero flag set
JMP_NZ #addr – jump if zero flag clear

Opcode = JMP_Z / JMP_NZ
Addr

If the Z flag is set (not set), jumps to address addr, causing execution to
skip to that address. Otherwise does nothing.

JMP_NEG #addr – jump if sign flag set (negative)
JMP_POS #addr – jump if sign flag clear

Opcode = JMP_NEG / JMP_POS
Addr

If the S flag is set (not set), jumps to address addr, causing execution to
skip to that address. Otherwise does nothing.

INT #nnn – software interrupt number nnn
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Opcode = INT nnn

Reads the value of interrupt vector nnn — i.e. the 16-bit value at address
2*nnn — and performs a subroutine call to that address.





Appendix B

The CS5600 File System

This chapter provides the following background information:

• The blkdev interface over which the file system is built
• An overview of the FUSE user-space file system toolkit, used in
this assignment.

• Debugging and testing advice.

B.1 Blkdev interface

The block device abstraction we use is implemented in the following
structure:

struct blkdev {
struct blkdev_ops *ops;
void *private;

};
#define BLOCK_SIZE 512 /* 512-byte unit for all blkdev addresses */
struct blkdev_ops {

int (*num_blocks)(struct blkdev *dev);
int (*read_blk)(struct blkdev * dev, int first_blk, int num_blks, char *buf);
int (*write_blk(struct blkdev * dev, int first_blk, int num_blks, char *buf);
void (*close)(struct blkdev *dev);

};

The file system in the assignment has changed since the last time the
book was updated; the description of the old file system has been
removed. The material related to the blkdev interface and FUSE
programming has been retained for reference.

235
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This is a common style of operating system structure, which provides the
equivalent of a C++ abstract class by using a structure of function pointers
for the virtual method table and a void* pointer for any subclass-specific
data. Interfaces like this are used so that independently compiled drivers
(e.g. network and graphics drivers) to be loaded into the kernel in an OS
such as Windows or Linux and then invoked by direct function calls from
within the OS.

The methods provided in the blkdev_ops structure are:

• num_blks: the total size of this block device, in 512-byte blocks
• read: read one or more blocks into a buffer. The caller guarantees
that ’buf’ points to a buffer large enough to hold the amount of
data being requested, and that num_blks>0. Legal return values are
SUCCESS and E_BADADDR.
• write: write one or more blocks. The caller guarantees that
’buf’ points to a buffer holding the amount of data being writ-
ten, and that num_blks>0. Legal return values are SUCCESS
and E_BADADDR.
• close: the destructor method, this closes the blkdev and frees any
memory allocated.

The E_BADADDR error is returned if any address in the requested
range is illegal—i.e. less than zero or greater than blkdev->ops->num_
blks(blkdev).

We will be working with disk image files, rather than actual devices, for
ease of running and debugging your code. You may be familiar with image
files in the form of .ISO files, which are byte-for-byte copies of a CD-ROM
or DVD, and can be read by the same file system code which interacts
with a physical disk; in our case we will be writing to the files as well.

B.2 FUSE API

FUSE (File system in USEr space) is a kernel module and library which
allow you to implement Linux file systems within a user-space process.
For this homework we will use the C interface to the FUSE toolkit to
create a program which can read, write, and mount CS5600fs file systems.
When you run your working program, it should mount its file system on a
normal Linux directory, allowing you to ’cd’ into the directory, edit files
in it, and otherwise use it as any other file system.

A program which provides a FUSE file system needs to:

1. define file methods — mknod, mkdir, delete, read, write, getdir, ...

blkdev->ops->num_blks(blkdev)
blkdev->ops->num_blks(blkdev)
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2. register those methods with the FUSE library
3. call the FUSE event loop

You will be given code (misc.c) which registers your file methods and
calls the FUSE event loop; your job is to write the methods which imple-
ment the actual file system.

FUSE Data structures
The following data structures are used in the interfaces to the FUSE meth-
ods:

path: this is the name of the file or directory a method is being
applied to, relative to the mount point. Thus if I mount a FUSE
file system at /home/pjd/my-fuseFS, then an operation on the file
/home/pjd/my-fuseFS/subdir/filename.txt will pass /subdir/
filename.txt to any FUSE methods invoked.

mode: when file permissions need to be specified, they will be passed as a
mode_t variable: owner, group, and world read/write/execute permissions
encoded numerically as described in ’man 2 chmod’1.

device: several methods have a dev_t argument; this can be ignored.

struct stat: described in ’man 2 lstat’, this is used to pass information
about file attributes (size, owner, modification time, etc.) to and from
FUSE methods.

struct fuse_file_info: this gets passed to most of the FUSE methods, but
we don’t use it.

Error Codes
FUSE methods return error codes in the standard UNIX kernel fashion—
positive and zero return values indicate success, while a negative value
indicates an error, with the particular negative value used indicating the
error type. The error codes you will need to use are:

• EEXIST: a file or directory of that name already exists
• ENOENT: no such file or directory
• EISDIR, ENOTDIR: the operation is invalid because the target is
(or is not) a directory
• ENOTEMPTY: directory is not empty (returned by rmdir)

1Special files (e.g. /dev files) are also indicated by additional bits in a mode specifier,
but we don’t implement them in cs5600fs.

misc.c
/home/pjd/my-fuseFS
/home/pjd/my-fuseFS/subdir/filename.txt
/subdir/filename.txt
/subdir/filename.txt
mode_t
dev_t
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• ENOMEM, ENOSPC: operation failed due to lack of memory or
disk space
• EOPNOTSUPP: operation not supported.
• EINVAL: invalid arguments

In each case you will return the negative of the value; e.g.:

return -ENOENT; /* file not found */

The EOPNOTSUPP error code indicates that the operation implemented by
a particular method is not supported. Your code should not be returning
this error code—if a particular combination of arguments results in a
request which will not be handled (see the simplifications listed below)
then you should return EINVAL, for invalid arguments.

FUSE Methods

The methods that you will have to implement are:

• mkdir(path,mode): create a directory with the specified mode.
Returns success (0), EEXIST, ENOENT or ENOTDIR if the con-
taining directory can’t be found or is a file.
• rmdir(path): remove a directory. Returns success, ENOENT,
ENOTEMPTY, ENOTDIR.
• create(path,mode,finfo): create a file with the given mode.
Ignore the ’finfo’ argument. Return values are success, EEXIST,
ENOTDIR, or ENOENT.
• unlink(path): remove a file. Returns success, ENOENT, or EISDIR.
• readdir: read a directory, using a rather complicated interface in-
cluding a callback function. See the sample code for more details.
Returns success, ENOENT, ENOTDIR.
• getattr(path, attrs): returns file attributes. (see ’man lstat’ for more
details of the format used)
• read(path,buf,len,offset): read ’len’ bytes starting at offset
’offset’ into the buffer pointed to by ’buf’. Returns the number of
bytes read on success - this should always be the same as the number
requested unless you hit the end of the file. If ’offset’ is beyond the
end of the file, return 0—this is how UNIX file systems indicate
end-of-file. Errors — ENOENT or EISDIR if the file cannot be
found or is a directory.
• write(path,buf,len,offset): write ’len’ bytes starting at off-

set ’offset’ from the buffer pointed to by ’buf’. Returns the number
of bytes written on success - this should always be the same as the

mkdir(path, mode)
rmdir(path)
create(path,mode,finfo)
read(path, buf, len, offset)
write(path, buf, len, offset)
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number requested. If ’offset’ is greater than the current length of
the file, return EINVAL2. Errors: ENOENT or EISDIR.

• truncate(path,offset): delete all bytes of a file after ’offset’.
If ’offset’ is greater than zero, return EINVAL3; otherwise delete
all data so the file becomes zero-length.

• rename(path1,path2): rename a file or directory. If ’path2’
exists, returns EEXISTS. If the two paths are in different directories,
return EINVAL.

• chmod(path,mode): change file permissions.
• utime(path,timebuf): change file access and modification
times.

• statfs(path,statvfs): returns statistics on a particular file sys-
tem instance — block size, total/free/used block count, max name
length. Always returns success.

Note that in addition to any error codes indicted above in the method
descriptions, the ’write’, ’mkdir’, and ’create’ methods can also return
ENOSPC, if they are unable to allocate either a file system block or a
directory entry.

2UNIX file systems support “holes”, where you can write to a location beyond the end
of the file and the region in the middle is magically filled with zeros. Linux supports plenty
of file systems that don’t.

3UNIX allows truncating a file to a non-zero length, but this is rarely used so we skip it.

truncate(path, offset)
rename(path1, path2)
chmod(path, mode)
utime(path, timebuf)
statfs(path, statvfs)
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