
μCache: a mutable cache for SMR translation layer

Mohammad Hossein Hajkazemi⋆, Mania Abdi†, Peter Desnoyers†

Department of Electrical and Computer Engineering⋆, Khoury College of Computer Sciences†

Northeastern University

hajkazemi@ece.neu.edu,abdi.ma@husky.neu.edu,pjd@ccs.neu.edu

Abstract—Shingled Magnetic Recording (SMR) may be com-
bined with conventional (re-writable) recording on the same
drive; in host-managed drives shipping today this capability is
used to provide a small number of re-writable zones, typically
totaling a few tens of GB. Although these re-writable zones are
widely used by SMR-aware applications, the literature to date
has ignored them and focused on fully-shingled devices.

We describe μCache, an SMR translation layer (STL) using
re-writable (mutable) zones to take advantage of both workload
spatial and temporal locality to reduce the garbage collection
overhead resulted from out-of-place writes. In μCache the volume
LBA space is divided into fixed-sized buckets and, on write access,
the corresponding bucket is copied (promoted) to the re-writable
zones, allowing subsequent writes to the same bucket be served
in-place resulting in fewer garbage collection cycles.

We evaluate μCache in simulation against real-world traces
and show that with appropriate parameters it is able to hold
the entire write working set of most workloads in re-writable
storage, virtually eliminating garbage collection overhead. We
also emulate μCache by replaying its translated traces against
actual drive and show that 1) it outperforms its examined
counterpart, an E-region based translation approach on average
by 2x and up to 5.1x, and 2) it incurs additional latency only for
a small fraction of write operations, (up to 10%) when compared
with conventional non-shingled disks.

Index Terms—shingled magnetic recording, translation layer

I. INTRODUCTION

Shingled Magnetic Recording (SMR) is a modern technol-

ogy that offers higher storage density compared to conven-

tional magnetic recording (CMR) with the same head and

platter technology. It achieves this by overlapping tracks as

they are written, for an effective track width narrower than

the write head. However, this density improvement comes at a

cost: individual disk sectors cannot be over-written, as adjacent

downstream tracks will be corrupted [1].

If all tracks on an SMR disk were shingled it would

be a purely “write-once” media: once the last track was

written, no re-use would be possible without damage to non-

overwritten sectors. Instead, the disk is divided into zones,

separated by “guard tracks” wide enough to prevent adjacent

track corruption; each zone may be sequentially written (and

rewritten) from the beginning without damage to data in other

zones. This approach has been formalized in the SATA and

SCSI extensions [2], [3] for zoned block devices, a storage

model much like NAND flash: large regions (256 MiB for

SMR) must be written sequentially, and the operation to allow

a region to be rewritten—“reset zone pointer” for SMR, erase

for flash—discards all data in that region.

The SMR restrictions may be addressed in the application

or file system [4], using host-managed devices which expose

SMR write restrictions and provide commands to clear zones

for re-write. Alternately, existing file systems may be used

over a block translation layer [5], implemented either in the

host of a host-managed or in the firmware of a drive-managed

SMR device. (a third standardized device type, host-aware [6],

is a hybrid with features of both host-managed and drive-

managed.) We focus on block translation layers in this work,

exploring algorithms which may be implemented in either the

host, via host-managed extensions, or the firmware of drive-

managed devices.

Most SMR translation layers (STLs) [1], [7], [8]) are “E-

Region-based” [9] translation layers, using a 1:1 mapping from

logical block addresses to “data zone” locations, and a small

region (the E-region or “on-media cache”) to cache exceptions

caused by writes, which are written in log-structured fashion

to the cache “write frontier”. If this cache is shingled the

resulting algorithm is similar to the FAST flash translation

layer (FTL) [10], with fixed locations for data zones as no

wear-leveling is needed. As in the FAST FTL, when the

on-media cache fills, the expensive garbage collection (GC)

operation is performed to make room; space must be reclaimed

a zone at a time, merging valid pages from that zone with

unmodified pages from the corresponding data zone, and then

writing the result back to a data zone.

A fully-shingled host-managed drive presents practical com-

plications. For example, the first sectors of a disk (i.e. LBA

0) are typically used to store partition and file system meta-

data [11], [12], however, they cannot be updated safely if they

are in a shingled zone, but must be “erased” and then re-

written. Yet tracks on an SMR drive do not all necessarily need

to be shingled, as modern drives are able to vary the track pitch

at formatting time [13], and it is possible to format a drive

with a combination of shingled tracks and wider re-writable

tracks.Thus host-managed drives available today provide a

number of re-writable (mutable) zones, starting at LBA zero

and totaling 16 to 30 GiB in the drives we have examined.

These data zones are used for hot data storage in both

open-source translation layers (i.e. dm-zoned [14]) for host-

managed SMR and (according to anecdotal statements) in

proprietary translation layers in recent drive-managed devices.

Yet to date SMR translation layers reported in the literature

have either assumed a single fully-shingled disk [1], [5], [7],

[15]–[17], or a costly hybrid system comprising e.g. SSD and

SMR [8], [18] with no seek overhead for accessing re-writable

storage.

In this paper, we introduce and analyze μCache, a translation

layer for SMR disk that relies on both shingled and re-writable

Authorized licensed use limited to: Northeastern University. Downloaded on October 20,2021 at 15:54:21 UTC from IEEE Xplore. Restrictions apply.

zones to operate. Similar to E-region based approaches offered

in [5], [16], [17], μCache divides the disk into a large data

zone and a small on-media cache to address random writes.

However, the on-media cache is formed by re-writable zones.

Relying on workload spatial and temporal locality, μCache

accommodates the largest possible write working set in the on-

media cache. This results in improved performance compared

to translation layers using only shingled zones as the cached

data may be overwritten. To achieve this, on write access,

μCache copies a chunk of data (typically larger than the

original I/O size) to the on-media cache (if it is already not

residing in the cache). Therefore, subsequent write accesses

to the same chunk will overwrite this location in cache, rather

than consuming new on-media cache space, and thus resulting

in fewer multi-second garbage collection cycles.

In summary, the main contributions of this work are as

follows:

• We describe μCache, an SMR translation layer using re-

writable zones for the on-media cache;

• We show that by exploiting both temporal and spatial

locality, μCache is capable of accommodating large write

working sets in re-writable cache and therefore minimizes

the garbage collection overhead;

• We simulate μCache with real-world traces [19], demon-

strating the reduction in garbage collection overhead;

• We emulate μCache by replaying its translated traces

against actual drive and show that for many of the

workloads it makes an SMR drive nearly as performant

as a conventional drive, imposing a modest burden of

additional seeks and copies. We further show an average

2x performance improvement of μCache compared to its

counterpart E-region based translation layer.

II. MOTIVATION

In both E-region-based translation layers and their alterna-

tive (dm-zoned), as soon as the cache fills, data is evicted

from cache region via expensive garbage collection (GC)

cycles. Thus, the performance of these translation layers are

strongly affected by the size of the write working set—i.e. the

number of unique locations written during some prior window

—and whether it fits in that cache. If the write working

set is larger than the cache, a large fraction of writes will

result in evictions, each incurring multi-second penalties due

to the need for multiple reads and writes of 256 MiB zones.

Conversely, if the working set is significantly smaller than

the effective cache capacity, the cache would be utilized more

highly and thus few or no GC cycles will be needed.

With a shingled on-media cache, however, the effective

cache capacity may be significantly smaller than the space

it occupies, with space used by outdated (invalid) data. In

Figure 1 we see effective cache utilization for several work-

loads1 running on a simulation of an E-region STL from [9]

with a 16 GiB shingled on-media cache, equivalent to that of

a Seagate ST8000AS022 8TB 5900 RPM host-aware drive.

1The three shown traces are representative of the range of behaviors seen
in the entire 106-trace corpus.

Fig. 1: Fraction of live data in shingled on-media cache vs.

time for three representative traces.

Fig. 2: CDF of 4 MiB-granularity stack distance (number of

unique 4 MiB buckets between accesses to the same bucket)

[20] for w87, w78 and w37.

As seen, only a small fraction of the cache is used at any

time, greatly restricting the write working set which can be

held in cache. We see that the high effective cache capacity

reaches 50% (for w87), with a mean utilization of 37%, while

mean utilization is much lower for the other two: 9% (w78)

and 12% (w37). The traces are taken from the CloudPhysics

corpus [19] of virtual machine block traces, and are described

in more detail later in Section IV.

Workload temporal and spatial localities are two parameters

that determine the working set size and therefore caching

performance. Temporal locality refers to the tendency of

accesses to the same address to cluster in time. In other words,

immediately after seeing a reference to address A, the expected

time until the next reference to A is lower than the expected

time until the next reference to an arbitrarily address. We see

this behavior for write operations in Figure 2, showing CDFs

of 4 MiB-granularity stack distance [20], i.e. the number of

unique 4 MiB zones touched between accesses to the same

zone, for the same three workloads. As can be seen, among all

pair of 4 MiB consecutive write accesses, about 47%, 52% and

78% of the following accesses are to the same 4 MiB region

in workloads w37, w78, and w87 showing a high temporal

locality for write operations among these traces.

Spatial locality refers to the tendency of references to cluster

within the address space; i.e. address A±ǫ is much more likely

to be accessed soon after A than some address far from A. Our

analysis shows high write spatial locality in most of the traces.

For example, for w87 and w78 more than 75% and 33% of

the second write accesses are within the range of less than 256

KiB of the preceding write, showing high spatial locality.

These two measures affect different aspects of cache design.

Temporal locality determines LRU cache performance, as

Authorized licensed use limited to: Northeastern University. Downloaded on October 20,2021 at 15:54:21 UTC from IEEE Xplore. Restrictions apply.

accesses of stack distance D or less will hit in a cache holding

D entries. Spatial locality motivates the use of cache lines

larger than a single access, on average satisfying requests to

more than a single location while needing only one operation

to backing storage. For cache line sizes small enough that

the fixed cost access dominates, increasing line sizes will (all

other things being equal) result in higher performance. Other

things are not always equal, however, a larger line sizes result

in lower effective cache utilization, with space being used for

data that is never accessed.

III. μCACHE

We describe μCache, an SMR translation layer relying on

re-writable zones to more efficiently utilize the on-media

cache and thus improve the performance. Taking advantage

of on-media cache re-write-ability, μCache exploits both high

temporal and spatial locality to perform writes in-place and

therefore minimize expensive GC cycles.

A. μCache algorithm

In Figure 3, we see the high-level μCache data layout: the

re-writable region is used for checkpoints and on-media cache,

while the shingled region holds a temporary zone and the

permanent data zones (checkpointing and temporary copies

are described more fully in Section III-B). The LBA space

of the volume is divided into fixed-sized buckets, and on

write access a bucket is promoted and copied to the on-media

cache, reading any necessary data (i.e. that not contained in

the triggering write operation) from the data zone. Subsequent

writes to that bucket will be performed in-place in the on-

media cache until it is evicted by GC. The GC process selects

a data zone, reads the data zone and corresponding cached

data, merges them, and writes them back.

Details of the μCache translation strategy are described as

below. Given a disk with N shingled and M re-writable zones

of size Z (M < N), and buckets of size b:

• we divide the LBA space into N · Z/b logical buckets

• we divide the N shingled zones into the same number of

buckets, the home locations for each logical bucket

Given a write access to address A, we:

• determine its logical bucket number Lbn = ⌊A

b
⌋

• if Lbn is cached in some physical cache bucket Pcb,
perform the write to offset A mod b in bucket Pcb;
otherwise:

• allocate a physical cache bucket Pcb, promote the bucket

to cache location Pcb, and again perform the write at the

appropriate offset.

Data

zones

Cache

zones

Checkpoint

zone

Temp

zone

Re-writable region Shingled region

Fig. 3: μCache On-disk data structure: checkpoint zone, re-

writable cache zones, temporary zone and data zones.

There are two options for bucket promotion on new writes:

copying and mapping. Copying reads the contents of the

bucket from the data zone, merging it with the new write, and

writes the entire bucket in cache. Mapping allocates a bucket in

cache but does not read from the data zone; a bitmap is instead

used to track which portions of the logical bucket are in cache

and which in the data zone. Mapping eliminates a seek and

two bucket transfers during promotion, but incurs overhead to

persist mapping information for every write, as well as read

seeks due to fragmentation between cache and data regions.

We argue below that copying is the better approach, due to

its exploitation of spatial locality and potential to eliminate

map persistence overhead, and focus on this option in our

evaluation.

Given a read access, we:

• determine its Lbn
• if Lbn is cached in some physical cache bucket Pcb,

perform the read to offset A mod b in bucket Pcb;
otherwise:

• perform the read to address A from its home location

A garbage collection cycle is used to make room in cache

for new writes:

• select a data zone D and read its contents

• read all buckets from cache holding data from zone D
• merge contents of data zone and data from cache

• save a copy (to prevent data loss in next step)

• write back to the data zone

We note that μCache is in fact a generalization of several

existing translation approaches. With minimum-sized buckets,

only incoming writes are sent to cache and the two promotion

behaviors are equivalent; the behavior is that of an E-region

translation layer with re-writable on-media cache, allowing full

cache utilization and more efficient GC. At the other end of

the range, dm-zoned [14] is equivalent to μCache with a

bucket size of one zone and bucket promotion by mapping.

Can promotion-by-copy with a modest bucket size out-

perform both extremes, avoiding low utilization and wasted

cache space due to promoting entire zones, while taking

advantage of spatial locality? The answer is yes; with a modest

bucket size, almost the entire working set could fit in the on-

media cache resulting in high cache utilization (see Table III).

Support for this approach maybe seen in Figure 4, showing

the write footprint 2of several workloads when accesses are

rounded up to varying bucket sizes.

As seen, footprint increases with bucket size for all work-

loads; however the increase is gradual for some, and rapid for

others. Moreover, with a reasonable cache size (e.g. 32 GiB)

combined with a modest bucket size (e.g. 256 KiB) the entire

working set of many of the workloads fits in the cache.

B. Implementation factors

A number of implementation factors that are important

to the value of μCache are listed below, but some are not

addressed in our evaluation:

2Alternately this can be described as the cache size needed to hold the
entire workload without GC, when promoting buckets of the specified size.

Authorized licensed use limited to: Northeastern University. Downloaded on October 20,2021 at 15:54:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Write footprint of several workloads vs. bucket size.

Bucket allocation: μCache uses a simple arbitrary bucket

allocation policy: it keeps a pool of free physical cache buckets

(Pcbs), and assigns them arbitrarily to Lbn on promotion

operations.

Memory usage: Memory usage is a significant issue for

drive-resident translation layers, and even host-resident ones

are limited in the resources they may demand. (e.g. when

deployed on specialized storage servers housing as many as 60

or more drives) μCache only needs to map as many buckets as

are held in the on-media cache, keeping its memory demands

modest. (e.g. with a very small bucket size of 128 KiB, a

16 GiB on-media cache would require a map of 128 K entries,

taking less than 10 MiB of memory if implemented with one

of several sparse map data structures.)

Map persistence and checkpointing: Translation layers

using out-of-place writes must reliably record map updates,

as a write is not truly durable until the information needed

to locate the new data has been persisted safely in a way

which will survive e.g. power failure. In our evaluation we do

not implement map persistence; however we note that copy-

based promotion eliminates map updates for overwrites, and at

bucket promotion they may be logged (as is done in FSTL [5])

in a bucket header, eliminating additional seeks to persist them

at a fixed location. Figure 5 shows an example where μCache

performs logging when Pcbn+2, Pcbn+4, Pcbn and Pcbn+3

are allocated to Lbn 1 to 4.

As shown, besides the Lbn to which a bucket is allocated,

a header contains a sequence number and a CRC to iden-

tify whether a particular bucket write completed before a

crash. It also comprises a pointer to the next available Pcb
header. Pointers are used to reconstruct the map in case of a

crash. Depending on where μCache is implemented (either

in the firmware or on the host side), a header size will

be a sector (512 B) or 4 KiB (to preserve 4 KB alignment)

adding a negligible 2.5-5µs or 20-40µs of transfer time to

each promotion (bucket write). The resulting space overhead

Lbn

CRC

Next Pcb

Pcb
n-1 Pcb

n+1
Pcb

n+2 Pcb
n+3

Pcb
n+4

Pcb
n

Lbn “3”

H
e

a
d

e
r

Lbn “1”

H
e

a
d

e
r

Lbn “4”

H
e

a
d

e
r

Lbn “2”

H
e

a
d

e
r

Fig. 5: μCache logging mechanism: buckets may be written

in arbitrary order, but are linked through their headers in the

order they are written to allow log recovery on failure.

is also negligible: assuming a small bucket size of 256 KiB,

the header overhead will be around 0.2% or 0.8% which we

consider quite acceptable.

Techniques such as periodic checkpointing may also be used

to make the recovery process faster in case of any failure. To

do so, the most recent map along with a latest Pcb number is

stored at the checkpoint zone. On recovery, first, the most

recent map is retrieved. Second, by traversing the header

pointers starting at the latest checkpointed Pcb number, map

reconstruction is completed.

Compared to copy-based promotion, map-based promotion

requires map information to be persisted (at the cost of a seek)

for each write to the bucket after promotion. This overhead

may be mitigated by deferring writes until the receipt of a write

cache FLUSH operation, as is done in dm-zoned; however

these are very frequent in some workloads.

Garbage collection: The garbage collection process itself

in μCache is almost identical to E-region translation layer

cleaning (GC) described in Skylight [1] requiring at least 3 full

zone transfers: select a data zone to clean, read all data from

that zone residing in cache, read the zone itself, merge them

and write a backup copy to the temporary zone, and overwrite

the original data zone. Selection of the zone to clean is more

complex, however, as e.g. maximizing the space freed might

in fact evict hot data. In this work we omit discussion of zone

selection for GC, and focus on sizing buckets to eliminate the

need for GC.

While the cleaning process could affect the throughput

significantly, it may not impact the I/O latency necessarily. A

garbage collection cycle takes roughly 5 seconds on average,

or even more at inner-track LBAs or if reading many extents

from cache. The worst-case I/O latency, in turn, depends

greatly on how well host I/Os can be interleaved with the

operations making up these cycles. We believe that this is

primarily an engineering issue, not an attribute of a particular

translation layer, and thus in our evaluation we focus on the

number of GC cycles incurred and resulting loss in throughput,

ignoring the effect on latency.

IV. TRACE-DRIVEN EVALUATION

We evaluate μCache using real-world traces, using simu-

lators implementing the μCache algorithm and the E-region

approach, a comparison translation layer. We measure μCache

performance by replaying its translated trace (generated by

μCache simulator) against a physical drive and compare it with

that of the E-region approach as well as a conventional drive;

each experiment is run at least five times. This workflow is

seen in Figure 6.

Workloads: μCache was evaluated using the CloudPhysics

block trace corpus [19], 106 large block traces from a virtu-

alized environment running Windows and Linux with modern

file systems. As shown by Hajkazemi et al. [21] these traces

are more representative of modern workloads than older traces

such as the well-known MSR corpus [22]. A subset of the

106 traces were selected, choosing ones which (1) were long

enough to trigger garbage collection, and (2) represented

Authorized licensed use limited to: Northeastern University. Downloaded on October 20,2021 at 15:54:21 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Statistical summary of selected workloads.

workload w09 w10 w14 w21 w26 w28 w29 w37 w46 w48 w69 w75 w78 w87 w91

I/O count (M) 49.62 48.34 34.81 29.41 26.53 19.73 19.08 18.84 11.54 14.09 7.87 6.15 5.49 3.78 4.31

write ratio 0.55 0.39 0.68 0.1 0.58 0.33 0.14 0.21 0.62 0.42 0.3 0.79 0.55 0.8 0.27

write mean size (KB) 33.4 26.7 32 21.9 19.1 45.2 14.6 7.1 212 6 17.4 28.5 20.4 18.6 15.4

read mean size (KB) 154 153.7 203.1 99.7 26.6 15.6 10.1 6.1 121.1 153.8 23 20.6 30.3 56.4 17.7

peak IOPS (every 10 sec) 941 2002 681 1321 1063 4489 2327 1414 2560 4520 760 521 1841 3378 3223

Original trace

μCache

simulator

μCache translated

trace

μCache statistics

Physical disk

E-region STL statistics

μCache I/O log
CMR I/O log

E-region STL I/O log

E-region STL

simulator

E-region translated

trace

Fig. 6: Methodology overview.

different levels of read/write intensity. The selected workloads

vary in size from about 4 to 50 million I/Os, and range from

read-heavy (w21, 10% writes) to very write-heavy (w87, 80%

writes); details are shown in Table I.

Trace-driven experiment: Trace-driven simulation and em-

ulation of both μCache and the E-region STL [9] were used

to measure behavioral statistics as well as performance such

as I/O amplification, on-media cache hit ratio, additional

seeks incurred, garbage collection cycles, promotion operation

latency and throughput.

As shown in Figure 6, μCache was emulated by replaying

its translated traces (generated by μCache simulator) against

the actual device to measure latency and throughput. These

traces combined remapped host I/Os, bucket promotion reads

and writes for μCache, and garbage collection operations for

both μCache and E-region STL. Promotion and GC I/Os were

split into 512 KiB operations, a common limit for SCSI reads

and writes. Trace replay was performed by fio, an I/O testing

tool [23], using libaio I/O engine with iodepth of 31. A

summary of experimental parameters may be seen in Table II.

A. μCache performance

As described in section III, the μCache goal is to hold

the largest possible write working set in the on-media cache

to maximize the number of in-place writes, and thus reduce

garbage collection cycles. To measure its success, we report 1)

TABLE II: Experimental parameters and drive specification.

μCache and baseline E-region STL simulation parameters

on-media cache size &zone size 16 GiB & 256 MiB

max and min I/O size 512 KiB, 4 KiB

μCache & E-region eviction policy LRU & FIFO

Physical drive specification

drive model ST4000DM000-1F2168

drive capacity & rpm 4 TB & 5900

Wcache & read-ahead & look-ahead off & on & on

the μCache throughput with bucket size of 256 KiB compared

to that of both E-region STL and a conventional drive (CMR)

in Figure 7 and, 2) the cache hit ratio for write accesses with

different bucket sizes ranging from 0.125 MiB to 4 MiB in

Table III.

As seen in Figure 7, μCache performance is on average

twice as high as that of the E-region STL, and in the best

case (w75) μCache outperforms E-region STL by 5x. For two

of the workloads (i.e. w69 and w48) μCache performance is

marginally lower, however, we note that by selecting a slightly

larger bucket size, (e.g, 512 KiB for w69) μCache is able to

beat the E-region STL in these traces.

As seen, CMR performance is higher than that of μCache

for all workloads, however, this performance gap is marginal

for several workloads (e.g., w91, w87) indicating the low

overhead and high performance of μCache. Note that the large

performance gap between both translation approaches and the

CMR for w46 is due to the large footprint of this trace (see

Figure 4). This large footprint results in a working set larger

than the cache size, and therefore leads to more cache write

misses (see Table III), more GC cycles (see Table IV), and

consequently lower performance.

As seen in Table III, all but two traces (w10 and w46)

show hit ratios over 85% at all bucket sizes, and nine out of

ten traces reach a hit ratio of 99% with the proper bucket

size. Even the cache-unfriendly w46 trace (54% hit ratio at

128 KiB) improves to 93% when the bucket size is increased

to 4 MiB.

We see three different patterns in hit ratio vs bucket size:

1) for the majority of traces (w21, w26, w28, w46, w48,

w69, w87, w91) the hit ratio increases monotonically as

bucket size is increased;

2) for three of the traces, w09, w10, and w14 the hit ratio

first goes up and then starts decreasing at a certain bucket

size (2 MiB, 0.5 MiB, and 0.5 MiB for w09, w10 and w14

respectively);

3) for a single trace, w37, the hit ratio decreases with

increasing bucket size.

We note that by increasing the bucket size we exploit the

spatial locality of the traces more effectively resulting in a

higher on-media cache hit ratio for the traces in case 1.

However, if a workload has poor spatial locality, this increase

in bucket size reduces the effective cache capacity (by caching

unneeded data), in turn resulting in more capacity misses and

an overall lower on-media cache hit ratio in cases 2 and 3.

B. μCache garbage collection

Garbage collection (GC) is the primary factor reducing

throughput for shingled drives [7], as it is a multi-second

Authorized licensed use limited to: Northeastern University. Downloaded on October 20,2021 at 15:54:21 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Write access hit ratio in μCache with different bucket sizes captured in simulations.

workload

bucket size w09 w10 w14 w21 w26 w28 w29 w37 w46 w48 w69 w75 w78 w87 w91

128 KiB 0.88 0.74 0.86 0.95 0.98 0.91 0.86 0.96 0.54 0.97 0.98 0.99 0.95 0.96 0.98

256 KiB 0.91 0.76 0.9 0.97 0.99 0.95 0.89 0.96 0.65 0.99 0.99 0.99 0.98 0.98 0.99

512 KiB 0.92 0.77 0.91 0.98 0.99 0.97 0.91 0.95 0.76 0.99 0.99 1 0.99 0.99 0.99

1 MiB 0.92 0.75 0.91 0.99 0.99 0.98 0.92 0.94 0.84 0.99 0.99 1 0.99 0.99 1

2 MiB 0.90 0.73 0.90 0.98 1 0.99 0.92 0.92 0.90 1 1 1 0.99 1 1

4 MiB 0.88 0.70 0.87 0.98 1 1 0.91 0.92 0.93 1 1 1 0.99 1 1

TABLE IV: GC cycles for μCache (bucket sizes 128 KiB to 4 MiB) and E-region shingled cache captured in simulations.

workload

bucket size w09 w10 w14 w21 w26 w28 w29 w37 w46 w48 w69 w75 w78 w87 w91

128 KiB 30462 29753 30293 10 337 573 5238 46 16828 0 0 0 0 0 0

256 KiB 43942 51798 43531 96 377 570 8585 323 17592 41 0 0 0 0 0

512 KiB 76670 96607 71034 463 441 567 15517 1259 18813 102 0 0 0 1 0

1 MiB 144459 189933 137555 954 625 577 24335 3693 21059 261 0 0 57 53 0

2 MiB 328535 377267 300922 2412 843 592 37921 9206 25674 482 0 0 189 110 0

4 MiB 763952 724891 664792 6670 1483 715 59216 18466 32687 1035 0 0 401 224 0

E-region STL 94597 30183 78849 2310 3459 1917 6967 637 29596 724 208 760 630 538 44

Fig. 7: Throughput of μCache (with bucket size of 256 KiB)

compared to E-region STL and CMR captured in emulations.

operation (roughly 5 seconds at 160 MB/s). Thus we use the

number of GC cycles as a proxy to show the impact on

throughput.

In table IV we report the number of GC cycles for trace

execution with two translation layers: μCache with bucket

sizes from 0.25 MiB to 4 MiB, and the E-region STL [9]. These

experiments use a 16 GiB (64-zone) cache, equal to size of re-

writable zones in the Seagate ST8000AS022 8TB 5900 RPM

host-aware drive3.

In a few cases, no GC cycles were seen for all or many

bucket sizes (e.g., w91, w75 and w69); in all other cases

smaller bucket sizes resulted in fewer GC cycles. In 10 and

11 out of 15 cases, μCache with 1 MiB and 256 KiB bucket

sizes outperformed E-region cache. Based on the trend we

observe for w09, w10, and w14 where baseline E-region STL

outperforms μCache, we expect decreasing the bucket size will

result in fewer GC cycles in μCache over baseline E-region

STL.

To examine the impact of cache size on performance, we

repeated the simulation with 32 GiB of cache size for both

E-region and μCache (with bucket size of 256 KiB). Our

experiments show an average reduction of 2x in number of

GC cycles in both approaches if not eliminated completely.

3More recent drives have been observed to have slightly larger conventional
regions, e.g. 31 GiB in devices available to the authors, and 1% of total
capacity in other drives.

Fig. 8: Buckets gathered per GC cycle vs. bucket size. (no GC

cycles observed for 0.25 MiB and 0.5 MiB in w87)

w91 is the only new case with zero GC cycles for E-region

STL, whereas w37, w28, and w21 are the ones for μCache.

The actual duration of a GC cycle includes time to read

data from the cache, which can be high if gathering large

numbers of small fragments. To quantify this possible increase

in GC cycle, we measure the number of buckets retrieved from

cache in each cycle; results for two representative workloads

are seen in Figure 8. In the worst case (w48, 256 KiB bucket

size) the mean number of buckets evicted per GC cycle was

roughly 200; assuming 5 ms each this would add an additional

1 s to the average GC cycle. We note that the use of buckets

bounds this overhead, as well, as the maximum number of

256 KiB fragments in a 256 MiB zone is 1024; under worst-

case workloads, simple E-region STL may gather far greater

numbers of independent extents in a single GC cycle.

C. μCache bucket promotion

Copying an entire bucket for promotion results in an addi-

tional seek and bucket transfer, amplifying both I/O operations

and bytes transferred4. This may be seen in Figures 9a and

9b, which show I/O amplification in operations and bytes,

respectively.

We note that although the I/O amplification in bytes is

considerable, reaching a factor of 2 and 9 in two (w46 and

4Unlike flash, disk has symmetric read and write performance, thus perfor-
mance impact is better quantified by I/O amplification than write amplification.

Authorized licensed use limited to: Northeastern University. Downloaded on October 20,2021 at 15:54:21 UTC from IEEE Xplore. Restrictions apply.

(a) I/O operations (b) bytes

Fig. 9: Background promotion I/O amplification in: a) I/O operations and, b) bytes, captured in simulations.

Fig. 10: Promotion mean latency captured in emulations.

w29, 4 MiB bucket size), the total increase in I/O count is

modest in almost all cases. The average byte amplification of

all cases with the smallest bucket size is 30%. For capacity

drives the overhead of a single seek is roughly the same as for a

2 MB transfer, so the overall impact on performance should be

modest, especially for bucket sizes of 1 MiB or less. Although

I/O volume amplification increases strictly with bucket size,

I/O operation amplification varies by trace; in large part due to

increased GC (and thus promotion) with larger bucket sizes.

In addition to transfer time, promotion-by-copy results in

an additional disk seek to read the associated bucket from

data zones for each promotion. Promotion-by-mapping incurs

no promotion seeks, but fragments the bucket between the

data zone and the cache, causing extra read seeks. Table V

compares the read seek overhead of these two approaches, for

bucket sizes of 0.5 MiB and 4 MiB. When promotion-by-copy

is used, for a majority of the traces the read seek overhead is

seen to be lower than that of promotion-by-mapping for both

examined bucket sizes.

In addition to the read seek incurred to promote a bucket,

promotion-by-copy introduces fragmentation at bucket bound-

aries as well; however the number of additional seeks incurred

varies depending on the bucket size. Among the traces, w87

and w21 shows the highest and the lowest fragmentation

at boundaries (20% and 1% respectively) with the smallest

examined bucket size (0.125 MiB) . However, increasing the

bucket size to 4 MiB reduces the fragmentation ratios to 0.8%

and 0.1% for the two workloads.

Bucket promotion is a synchronous operation, i.e. the write

operation causing the promotion is not completed till the end

of promotion process; this latency varies with bucket size.

Figure 10 shows mean latency measured by replaying the

μCache translated trace on actual device) incurred by bucket

promotion for varying bucket sizes for three representative

traces. Not surprisingly, interruption time goes up with bucket

size; however the interruptions are modest and of bounded

duration; mean interruption time ranges from 30 ms (w75

with bucket size of 128 KiB) to 240 ms (w48, bucket size

of 2 MiB). However, these interruptions occur only for cache

misses, which as we saw in Table III represent between 1

and 10% of writes in almost all cases. This overhead will be

small in comparison to the latency already incurred by writes;

Our trace analysis results show that depending on workload

between 25% and 70% of writes involve seeks of greater than

256 MiB, incurring significant seek and rotational delays.

V. RELATED WORK

Host-managed SMR drives have shipped with both shingled

and re-writable regions for several product generations [6],

with a fixed number of re-writable zones starting at LBA zero.

Recently announced plans extend this by allowing the size

of these regions to be adjusted dynamically [24]; however no

guidance is given for use of these regions. ZoneAlloy is among

the very first research that proposes approaches to manage

such a technology [25].

Re-writable regions for caching are proposed in recent work

on track translation layers for interlaced magnetic recording

(IMR) [26], where writes to “bottom” tracks may damage ad-

jacent “top” tracks, while top tracks may be modified without

such risk. In that work, however, the re-writable zone is used

very differently than in our work: only writes to selected hot

bottom tracks are forwarded to the cache. Furthermore, in

μCache read-modify-write (RMW) operations are performed

infrequently, at a zone granularity, whereas in the IMR work

[26] RMW operations are performed at a track granularity and

more frequently.

In publicly-disclosed SMR algorithms to date, only

dm-zoned [14] makes use of re-writable zones; other work

either assumes a fully-shingled drive [5], [15]–[17], [27], [28]

or a costly hybrid system including SSD [8], [18]. Although

dm-zoned represents a step in the direction of this work, we

demonstrate the clear advantage offered by (a) smaller bucket

sizes, allowing more effective use of the re-writable cache,

and (b) promotion by copying, reducing fragmentation and

additional read seeks incurred.

Cassuto et. al propose a translation layer using a set-

associative cache as well as an additional circular buffer cache.

FSTL [5] introduces a framework to design new translation

Authorized licensed use limited to: Northeastern University. Downloaded on October 20,2021 at 15:54:21 UTC from IEEE Xplore. Restrictions apply.

TABLE V: Additional seeks due to promotion (promotion-by-copy) and fragmentation (promotion-by-map).

workload

bkt size seek ovrhd w09 w10 w14 w21 w26 w28 w29 w37 w46 w48 w69 w75 w78 w87 w91

0.5MB

copy (×10
6) 2.02 4.13 2.02 0.05 0.11 0.2 0.22 0.17 2.24 0.05 0.02 0.02 0.03 0.03 0.01

map (×10
6) 1.89 6.32 1.2 0.71 0.72 0.15 4.05 0.24 0.06 10.41 0.98 0 0.06 0.02 0

4MB

copy (×10
6) 3.02 5.15 2.7 0.06 0.04 0.03 0.21 0.31 0.5 0.02 0 0 0.02 0.01 0

map (×10
6) 0.3 0.83 0.18 0.26 0.43 0.12 3.87 0.14 0.03 4.88 0.9 0 0.04 0.02 0

layers, and use it to explores different garbage collection

algorithms for SMR translation layer. Both VGuard [16] and

SMaRT [17] propose track-based STL solutions. Tancheff et.

al [28] introduce ZDM, a fully page-mapped translation layer

implemented as a host-side device mapper for SMR disks,

similar to DFTL [29] for NAND flash. In each case μCache

differs by taking advantage of conventional regions on the

disk, allowing many (and often nearly all) writes to be handled

without the overhead of out-of-place writes. Furthermore, with

the exception of the track-based SMaRT [17] none of these

cases exploit the spatial and temporal locality of workloads,

while SMaRT differs in that its caching granularity is fixed to

the (location-varying) track size.

Both FC [8] and SMRC [18] use NAND flash for the on-

media cache, and thus may outperform μCache, at the cost of

adding higher-priced storage to the device or system. μCache

relies only on a single magnetic recording device, and thus is

simpler and lower-cost.

VI. CONCLUSION

Although a combination of shingled and conventional mag-

netic recording has been already implemented in host-managed

SMR drives, its characteristics when used by a translation layer

have not been addressed in the literature yet.

In this work, we introduce μCache, a translation layer that

takes advantage of both shingled and re-writable zones on the

same device, exploiting both spatial and temporal locality of

workloads to reduce the overhead of out-of-place writes.

Simulating μCache against real-world traces, we find that

with appropriate bucket sizes the entire write working set of

many of workloads can fit in the re-writable cache, resulting

in the total elimination of garbage collection overhead. We

further, emulate μCache and evaluate its performance by

replaying translated traces against actual device and show that

it outperforms its counterpart E-region translation layer on

average by 2x and up to 5.1x.

ACKNOWLEDGMENT

This material is based upon work supported by the National

Science Foundation under Grant No. CNS-1910327 and by a

NetApp Faculty Fellowship.

REFERENCES

[1] A. Aghayev, M. Shafaei, and P. Desnoyers, “Skylight—a window on
shingled disk operation,” ACM Transactions on Storage (TOS), vol. 11,
no. 4, p. 16, 2015.

[2] I. T. T. Committee, “Information technology - Zoned Block Commands
(ZBC),” ANSI, Inc., Draft Standard T10/BSR INCITS 536, Sep. 2014.

[3] ——, “Information technology - Zoned-device ATA Command Set
(ZAC),” ANSI, Inc., Working Draft American National Standard
T13/BSR INCITS 537 Revision 04b, Sep. 2015.

[4] M. Rosenblum and J. K. Ousterhout, “The design and implementation
of a log-structured file system,” in 13th SOSP, 1991, pp. 1–15.

[5] M. H. Hajkazemi, M. Abdi, M. Shafaei, and P. Desnoyers, “FSTL: A
framework to design and explore shingled magnetic recording translation
layers,” in MASCOTS ’18, Oct. 2018.

[6] T. Feldman and G. Gibson, “Shingled magnetic recording: Areal density
increase requires new data management,” USENIX; login: Magazine,
vol. 38, no. 3, pp. 22–30, 2013.

[7] M. Shafaei, M. H. Hajkazemi, P. Desnoyers, and A. Aghayev, “Modeling
drive-managed smr performance,” ACM Transactions on Storage (TOS),
vol. 13, no. 4, p. 38, 2017.

[8] C. Ma, Z. Shen, L. Han, R. Chen, and Z. Shao, “FC: Built-in flash
cache with fast cleaning for SMR storage systems,” Journal of Systems

Architecture, vol. 98, pp. 214–220, Sep. 2019.
[9] D. R. Hall, “Shingle-written magnetic recording (SMR) device with

hybrid e-region,” Apr. 1 2014, uS Patent 8,687,303.
[10] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J. Song,

“A log buffer-based flash translation layer using fully-associative sector
translation,” ACM Trans. Embed. Comput. Syst., vol. 6, no. 3, Jul.
2007. [Online]. Available: http://doi.acm.org/10.1145/1275986.1275990

[11] B. J. Nikkel, “Forensic analysis of GPT disks and GUID partition
tables,” Digital Investigation, vol. 6, no. 1-2, pp. 39–47, Sep. 2009.

[12] P. Technologies, System BIOS for IBM PC/XT/AT computers and com-

patibles: The complete guide to ROM-based system software, 2nd ed.
Reading, Mass: Addison-Wesley Pub. Co, 1989.

[13] E. Krevat, J. Tucek, and G. R. Ganger, “Disks are like snowflakes: No
two are alike,” in Proceedings of the 13th HotOS, 2011, pp. 14–14.

[14] “dm-zoned,” https://www.kernel.org/doc/Documentation/device-mapper/
dm-zoned.txt.

[15] Y. Cassuto, M. A. A. Sanvido, C. Guyot, D. R. Hall, and Z. Z. Bandic,
“Indirection systems for shingled-recording disk drives,” in Proceedings

of the 26th MSST, Washington, DC, USA, 2010, pp. 1–14.
[16] M. Shafaei and P. Desnoyers, “Virtual guard: A track-based translation

layer for shingled disks,” in HotStorage 17, Santa Clara, CA, 2017.
[17] W. He and D. H. Du, “SMaRT: An approach to shingled magnetic

recording translation.” in 15th FAST, 2017, pp. 121–134.
[18] X. Xie, L. Xiao, X. Ge, and Q. Li, “SMRC: An endurable ssd cache for

host-aware shingled magnetic recording drives,” IEEE Access, vol. 6,
pp. 20 916–20 928, 2018.

[19] C. A. Waldspurger, N. Park, A. Garthwaite, and I. Ahmad, “Efficient
mrc construction with shards,” in 13th FAST, 2015, pp. 95–110.

[20] R. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation
techniques for storage hierarchies,” IBM Systems Journal, vol. 9, no. 2,
pp. 78–117, 1970.

[21] M. H. Hajkazemi, M. Abdi, and P. Desnoyers, “Minimizing read seeks
for smr disk,” in IISWC. IEEE, 2018, pp. 146–155.

[22] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:
practical power management for enterprise storage,” in Proceedings of

the 6th FAST, San Jose, California, 2008, pp. 1–15.
[23] J. Axboe, “fio,” https://github.com/axboe/fio.
[24] T. Feldman, “Flex dynamic recording,” ; login:, vol. 43, no. 1, 2018.
[25] F. Wu, B. Li, zhichao Cao, B. Zhang, M.-H. Yang, H. Wen, and D. H.

Du, “Zonealloy: Elastic data and space management for hybrid SMR
drives,” in HotStorage 19, Renton, WA, Jul. 2019.

[26] M. H. Hajkazemi, A. N. Kulkarni, P. Desnoyers, and T. R. Feldman,
“Track-based translation layers for interlaced magnetic recording,” in
USENIX ATC 19, Renton, WA, Jul. 2019, pp. 821–832.

[27] W. He and D. H. Du, “Novel address mappings for shingled write disks,”
in HotStorage 14, 2014.

[28] S. Tancheff, “Seagate zdm device mapper,” https://github.com/Seagate/
ZDM-Device-Mapper.

[29] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a flash translation
layer employing demand-based selective caching of page-level address
mappings,” Acm SIGPLAN Not., vol. 44, no. 3, pp. 229–240, 2009.

Authorized licensed use limited to: Northeastern University. Downloaded on October 20,2021 at 15:54:21 UTC from IEEE Xplore. Restrictions apply.

