
M2: Malleable Metal as a Service
Apoorve Mohan∗, Ata Turk†, Ravi S. Gudimetla‡, Sahil Tikale†, Jason Hennesey‡,

Ugur Kaynar†, Gene Cooperman∗, Peter Desnoyers∗, and Orran Krieger†

∗Northeastern University, †Boston University, ‡Red Hat Inc.

Abstract—Existing bare-metal cloud services that provide users
with physical servers have a number of serious disadvantages
over their virtual alternatives, including slow provisioning times,
difficulty for users to release servers (physical machines) and then
reuse them to handle changes in demand, and poor tolerance to
failures. We introduce M2, a bare-metal cloud service that uses
network-mounted boot drives to overcome these disadvantages.
We describe the architecture and implementation of M2 and
compare its agility, scalability and performance to existing
systems. We show that M2 can reduce provisioning time by
over 50% while offering richer functionality, and comparable
run time performance with respect to tools that provision
images into local disks. M2 is open source and available at
https://github.com/CCI-MOC/ims.

I. INTRODUCTION

Although virtualized cloud services can satisfy the require-
ments of many applications, some applications still require
physical (i.e., bare-metal) servers. Examples include perfor-
mance or security sensitive applications that cannot tolerate the
overhead, unpredictability, and large trusted computing base of
complex virtualized cloud services [?], [?], [?], or applications
that need direct and exclusive access to hardware components
that are difficult to virtualize (e.g., InfiniBand [?], RAID [?],
FPGAs [?], GPUs [?], etc.).

Cloud vendors have developed application-specific solutions
dedicated to some of these use cases (e.g., Amazon HPC
cloud [?], Amazon GPU servers [?], Cirrascale deep learning
cloud [?], etc.). However, these compartmentalized solutions
lead to cloud silos, reducing the flexibility of the cloud to
move resources between different users as demand warrants.
Moreover, it is impossible to cover all bare-metal use cases
with dedicated solutions; consider, for example, researchers
that want to develop their own bare-metal operating system [?],
or cloud developers that need to test software on environ-
ments identical to the eventual production environments, or
applications that are adversely effected by Simultaneous Multi-
Threading (SMT)1.

The demand for bare-metal clouds has resulted in an in-
creasing number of offerings such as IBM [?], Rackspace [?],
Chameleon [?] and Internap [?]. These bare-metal cloud solu-
tions install the tenant’s operating system and application into
the server’s local disks. This installation process incurs long
startup delays (tens of minutes to hours) and high networking
costs to copy large disk images. Moreover, because user state

1Cloud providers tend to enable SMT to achieve higher throughput, but
not all applications are SMT-friendly when sharing infrastructure [?] – users
running such applications may want to control SMT per their requirements.

is local to the server, these solutions lack rich functionality of
virtual solutions including checkpointing/cloning of images,
releasing and re-aquiring servers to match demand, and fast
recovery from server failures.

A number of industry and research projects have attacked
the performance and functionality challenges of provisioning
bare-metal servers [?], [?], [?], [?], [?], [?], [?]; automating
the bare-metal provisioning process, reducing the management
overhead of the cloud provider, and improving the perfor-
mance of copying the image to the server’s disk. For example,
Omote et al. [?] proposed a lazy copy approach that copies
the OS image in the background after the operating system is
booted using a remote disk. While sophisticated techniques
like this can reduce some of the user visible provisioning
time, all these approaches end up eventually transferring the
boot image to the local disk, and hence still incur overhead to
copy the image and have the functionality problems discussed
above. Also, the solutions are not designed to service multi-
tenant environments where tenants are mutually non-trusting
users or organizations sharing a common provisioning service.

We present M2, a multi-tenant provisioning system for
bare-metal clouds that addresses the challenges described
above. Similar to virtualized cloud services, M2 serves user
images that contain the operating system (OS) and applications
from remote-mounted boot drives. M2 relies on a fast and
reliable distributed storage system (CEPH [?], [?] in our
implementation) for hosting images of provisioned bare-metal
instances and a network isolation service (HIL [?] in our
implementation) for isolating tenants in the cloud.

Key contributions of this work include:

1) The definition of M2 a general purpose architecture
of a bare-metal cloud provisioning system that exploits
remote storage2 and allows tenants to:

• rapidly release and then acquire servers to handle
fluctuation in demand,

• rapidly recover from failed servers by booting an-
other server with the disk,

• snapshot and clone disk images,
2) An implementation and analysis that demonstrates that:

• it is possible to provision and deploy bare-metal
systems with overheads similar to deploying virtual
machines,

2Previous provisioning systems exploited remote storage in special purpose
environments, like HPC clusters, where all servers boot the same kernel.

https://github.com/CCI-MOC/ims


• performance of the M2-provisioned servers is sim-
ilar to those provisioned to local disks.3

The remainder of this paper is organized as follows. We
provide related work in Section II. The design and architecture
of M2 are presented in Section III and Section IV, respectively.
We evaluate performance, scalability, and usability of M2 in
Section V. We discuss future directions for M2 in Section VI
and conclude in Section VII.

II. RELATED WORK

In this section we review existing bare-metal provisioning
approaches considering their fitness to support on-demand
bare-metal IaaS offerings. We can broadly classify provi-
sioning approaches into two cases, as diskful and diskless
provisioning systems, based on where the image is hosted once
a bare-metal instance is provisioned.

Diskful Provisioning Systems: These systems persist the
provisioning image to the local disks of the bare-metal sys-
tems. The standard provisioning tools used in many bare-
metal deployments are diskful. A rich set of open source
and commercial provisioning products such as Emulab [?],
OpenStack Ironic [?], Crowbar [?], Cannonical Metal-as-a-
Service (MaaS) [?], Razor [?], and Cobbler [?] are available
for automated diskful provisioning of bare-metal systems.
Chandrasekar and Gibson [?] provide a comparative analysis
of commonly used diskful provisioning systems.

Diskful provisioning systems can be further divided into
two types. The first type of solution automates the manual
installation process of the OS and desired applications on the
local disks (e.g., Foreman [?]). As they follow a step by step
installation process, these solutions generally take the longest
to provision. The second type of solution copies a pre-installed
image, containing the operating system and applications, onto
the local disk over the network (e.g., OpenStack Ironic [?]).
The size of such pre-installed images can be tens of gigabytes.
Transferring them can overwhelm the network and persisting
them to local disks still requires hundreds of seconds assuming
standard HDDs are used. Both solutions have a lower bound
on the time before a server is ready to use, due to the need to
reboot twice4, once via PXE to enter the installer, and another
to boot into the freshly installed system.

When using diskful systems, repurposing a bare metal
system requires formatting the local disks and then in-
stalling/copying the new system. If saving the existing disk
state is desirable, the contents of the disk have to be copied
away, which again requires hundreds of seconds and further
increases the re-provisioning cost.

In general, diskful systems and the automation tools that
employ these provisioning systems (e.g., Ironic, MaaS, Fore-
man) are designed for setting up long-running bare-metal sys-
tems. They consider the high startup delays tolerable assuming
that the servers they provision will have long operational

3As the focus of this work is to improve the provisioning time M2 only
network-mounts boot drives that hosts the OS and applications. Data drives
are still hosted on the local disks.

4Rebooting modern datacenter servers can take as long as 5 minutes [?].

lifetimes. To support fast provisioning and reducing boot time
of diskful systems Omote et al. [?] propose BMCast, an OS
deployment system with a special purpose de-virtualizable
Virtual Machine Manager that supports OS-transparent quick
startup of bare-metal instances.

Beyond the cost of transferring images to the local disk, a
fundamental problem with all diskful provisioning systems is
that any modifications to the image are stored on the disks
attached to the physical note allocated to a user. This means,
for example, that a user cannot easily release and re-acquire
servers to match their needs, since any state on the local disk
is lost when the user releases the servers. Some of the rich
functionality users take for granted in virtualized clouds is
also not available in these environments. For example, a user
cannot snapshot the disk of a physical server and then clone
it to boot additional servers. Perhaps most importantly, if a
physical server fails, the user cannot easily start up another
server from the same disk image or use the disk to diagnose
the failure; any state stored on the local disk of the server
is inaccessible as long as the server is down. Moroever, in
diskful systems the local disk hosted boot drives become a
single point of failure. If the disk containing the boot drives
fails, the bare-metal server becomes unusable until the disk is
fixed or replaced and data recovery can be daunting in such
cases.

Diskless Provisioning Systems: These systems keep the
provisioning image resident on a network-accessible remote
logical disk that appears as a local disk to bare-metal systems.
This method of provisioning historically has been used with
diskless workstations [?], [?], [?] and HPC systems [?], [?],
[?] to boot multiple servers from a single image. The Linux
BIOS [?] proposes using Linux as a boot loader to network-
boot other OSes, but that approach requires making changes
to the Linux kernel used as a BIOS. M2 can work with any
boot loader without demanding any changes.

Furthermore, diskless provisioning is heavily used in virtu-
alized systems [?], [?], [?]. Interestingly, diskless provisioning
is not being used in cloud deployments shared by mutually
non-trusting tenants for bare metal provisioning and there are
no tools or studies that combine diskless provisioning with
image management capabilities to support bare-metal provi-
sioning and servicing of multiple images owned by multiple
users. To our knowledge, M2 is the first effort in this direction.

III. M2 DESIGN

When designing M2 we first listed the set of features we
wanted to have in order to support an on-demand bare-metal
cloud service. These features are:

• Rapid provisioning: A bare-metal cloud service has to of-
fer on-demand bare-metal servers with minimum startup
overhead so that even short-lived deployments with life-
spans of a few hours can use bare-metal servers effi-
ciently. If servers take tens of minutes to deploy, the
“effective” utilization of the cloud will decrease.

• Rapid snapshotting, re-purposing, reprovisioning: Abil-
ities for quickly snapshotting the OS and applications,



Fig. 1: M2 conceptual design.

releasing a server when unused, and being able to quickly
provision a server using a previous snapshot are critical
for time-multiplexing bare-metal servers across many
users. These features also enable the service to offer
“elasticity” to the applications it hosts.

• Rapid cloning: The ability to rapidly stand up a large
number of servers concurrently using the same saved
image is a common request in Infrastructure-as-a-Service
clouds. This feature enables easy deployment of paral-
lel/distributed applications and scalability.

• Support for multi-tenancy: Existing provisioning tools
assume that they are available to just the administrator
of the hardware and all of the hardware available in the
system is managed by the same entity. However, in a
bare-metal cloud service, the provisioning system has to
ensure performance isolation and security across its users
even during provisioning.

Given the above list of desirable features, we made a set of
design decisions for M2. In order to offer rapid provisioning,
we opted to use diskless provisioning mechanisms. Using these
mechanisms M2 does not need to copy the entire image to the
bare-metal server and it can save the overhead to install images
and applications to local disks once a cloud image is prepared.
M2 can rapidly start running applications by only fetching
the necessary OS and application libraries before start-up and
further required packages will be fetched on-demand as they
are used. Note that the standardization of technologies such as
iSCSI [?] has allowed diskless provisioning to be used with
commodity servers and clients over any layer-3 network.

We also decided to network-boot the servers from im-
ages residing on a distributed storage. M2 can service the
images from centralized high performance storage systems
using multiple disks to improve boot time. Furthermore, many
modern distributed storage systems support capabilities such as
copy-on-write (COW), de-duplication and linked-cloning [?],
which are beneficial for capabilities such as rapid cloning and
snapshotting.

We note that in diskless provisioning clients are always
dependent on uninterrupted access to the centralized storage,
and as the number of clients increase, the storage infrastructure
has to be adequately scaled to support the increasing load.
Network connectivity and availability also plays a critical role
in the performance of diskless provisioning systems. However,
with the advancements in faster, cheaper and redundant net-

Fig. 2: M2 components and architecture.

working (e.g., Clos networks [?]) and storage solutions (e.g.,
Solid State Drives), datacenter applications increasingly lean
towards disaggregating storage services to make full use of
the capacity of their infrastructures [?]. Diskless provisioning
approaches are very much aligned with this trend.

Figure 1 presents the conceptual design for M2 and some
of the functionalities it offers. As seen in the figure, M2 stores
images (user or M2provided) in an image repository. When a
provisioning API call is made for a bare-metal server with a
given image, a linked-clone of that image is created, followed
by network isolation of the requested bare-metal server and
mounting of the clone on the bare-metal server. When the
server network-boots, it only fetches the parts of the image
it uses, which significantly reduces the provisioning time. M2
also supports provisioning multiple servers in parallel from a
single image by simply performing parallel provisioning calls.

As seen in Figure 1, API call of M2 for creating disk
snapshots enables users to create checkpoints/restore-points
by saving the current state of the image to the repository and
tagging the saved image with a unique identifier. Using linked-
cloning and COW, M2 can offer rapid snapshotting.

IV. M2 ARCHITECTURE

In this section we discuss our implementation for M2. There
are five major components in M2: (i) API Server, (ii) Storage
Service (Ceph), (iii) iSCSI Service (TGT Server), (iv) Diskless
Provisioning Service (PXE Server), and (v) Network Isolation
Service. Figure 2 displays these five components. M2 follows
a driver-based approach and provides an abstraction for each
component. This allows system administrators to replace the
solution used for any of these components. For example, in
the current implementation Ceph [?] is used as the storage
service, but it is possible to replace it with any other storage
service that supports COW like the network-based Lustre [?]
or even local systems like ZFS [?], BTRFS [?], [?] or Linux’s
LVM [?].

Storage Service: Storage Service provides a data store for
the cloud images and exposes APIs in order to to rapidly
clone and snapshot existing images. In our implementation
we use Ceph as our storage solution. Ceph is an open source
storage platform that implements a highly reliable and scalable
object storage on a distributed cluster [?]. It exposes various
interfaces for object, block and file level storage [?]. We used
the block storage interface provided by Ceph also known as



the Reliable Autonomic Distributed Object Store Block Device
(RADOS Block Device, or RBD) to store the cloud images
using the librados API. librados also exposes functionalities
such as cloning and snapshotting to manage the RBD-based
cloud images. Ceph provides data store and image manage-
ment capabilities like snapshotting and cloning and offers good
read performance [?], which helps in achieving lower latency
when M2 tries to fetch the disk blocks on-demand [?].

iSCSI and Diskless Provisioning Services: Our implemen-
tation of diskless provisioning is based on network booting
bare-metal servers from RBD-based cloud images (stored in
CEPH) that are exposed as iSCSI targets. We used the Linux
SCSI Target Framework (TGT) [?] to expose the RBD-based
cloud images as iSCSI targets. As TGT is a user-space imple-
mentation, no extra kernel code is required which improves its
compatibility with modified Linux kernels. Being a user-space
server also supports multi-tenancy within M2 and defense in
depth by enabling the iSCSI server to be run in a Linux
container [?], which can permit a single physical server to
serve different tenants on different networks without exposing
all the iSCSI endpoints to all tenants. TGT also provides native
support for RBD-based images, freeing M2 from managing
additional mapping state. The current implementation of M2
does not have support for iSCSI multipathing or special
iSCSI hardware. However, in the upcoming release of M2
we are working to provide support for both scenarios (see
subsection VI-A).

Preboot eXecution Environment (PXE) specification pro-
vides a standardization for a client-server model for booting
servers over the network using Dynamic Host Configuration
Protocol (DHCP) and Trivial File Transfer Protocol (TFTP).
Although, PXE provides specifications to network boot a
server from various targets (HTTP, iSCSI, AOE etc.), it is
up to the NIC manufacturer to implement the support to
network boot from a particular target into the NIC firmware.
As mentioned earlier, M2 uses an iSCSI-based approach
to network boot the bare-metal servers. To ensure that M2
can provision any bare-metal server irrespective of the NIC
firmware capabilities of that server, M2 first chainloads [?]
into iPXE, which eventually network-boots the bare-metal
servers from the exposed iSCSI target. iPXE is an open-source
implementation of network booting firmware that provides all
the features mentioned in the PXE specifications [?].

The iSCSI Boot Firmware Table (iBFT) [?] gives PXE
servers the ability to specify an iSCSI target to which the
tenant OS should connect. iBFT makes M2 OS-agnostic, since
it eliminates the need for OS-specific parsing and modification
of images to configure the identity of the iSCSI server for a
given server.

M2 API Server: API Server is a Python-based RESTful
web service that controls the flow between different com-
ponents of M2. Exposed APIs enable users to (de)provision
servers, clone provisioned servers, create snapshots of provi-
sioned servers, (de)register users, perform various operations
pertaining to images (upload, download, rename, share, list,
etc.), list various resources, etc. The API server also maintains

a database for various bookkeeping purposes such as maintain-
ing the mapping between bare-metal servers and cloud images,
user-cloud image mappings, etc.

While most of the API calls are trivial and trigger various
M2 database operations, some of them amounts to interacting
with different M2 components — in particular the APIs
pertaining to (re/de)-provisioning, snapshoting and cloning
servers, and image manipulation. APIs that require interacting
with the storage service rely heavily on the performance of
the exposed block storage management capabilities.

The provision API enables users to spawn bare-metal in-
stances from existing cloud images hosted in the storage
service5. It accepts the ID defining the server to be provi-
sioned (e.g. MAC address, NIC Number) and the ID of the
cloud image to be used for provisioning as arguments. Upon
receiving a provision request, the API server interacts with the
Storage Service and creates a linked-clone of the cloud image
(passed as the argument to the provision call) and exposes it
as an iSCSI target. This is followed by the preparation of the
PXE and iPXE configuration files by the Diskless Provisioning
Service that will be served to the bare-metal server upon its
network boot request. This is similar to how virtual machines
are provisioned in different IaaS cloud offerings.

M2 exposes a snapshot API that allows users to create
checkpoints/tags by saving a deep copy of the existing server
state. Users can use these snapshots to revert back to any pre-
vious state in case of a failure6. This feature also enables users
to manage different configurations of their servers/clusters. M2
does not expose an explicit API for cloning. Instead users can
clone an existing server by creating a snapshot of the current
server state and provision one or more new server(s) from that
snapshot.

Multi-tenancy and Allocations: For multi-tenancy it is
important to segregate each M2 server based on ownership
and physically using some network isolation mechanism.
M2 uses Hardware Isolation Layer (HIL) [?] for allocations
and to achieve multi-tenancy. HIL is a lightweight Python-
based layer-2 bare-metal isolation framework that orchestrates
allocation of data center compute resources by controlling
the networking infrastructure. It exposes an API that enables
users to create isolated groups of compute resources from
a hardware resource-pool. HIL is a network-switch agnostic
framework that follows a driver-based model7. HIL is agnostic
to the provisioning system running on top of it and is thus
our choice for achieving network isolation (multi-tenancy) and
allocations.

V. EXPERIMENTAL EVALUATION

5Cloud images need to be registered and uploaded to M2 before the
provision API is invoked.

6The current implementation of M2 is limited to disk snapshots.
7Currently HIL can manage network isolation for Cisco, Juniper, Dell and

Brocade switches.
8Bare-metal servers were provisioned with RHEL 7.1 for all the provision-

ing systems. The virtual disk size of the image used for both Ironic and M2
was 10 GB. The actual disk size in the case of Ironic was 407 MB whereas
for M2 it was 10 GB.



Foreman
(ISO)

(3.7 GB)

Ironic
(QCOW2 Image)

(407MB)

M2
(Raw Image)

(10GB)

0

100

200

300

400

500

600

700

800

S
in

g
le

 N
o
d
e 

Pr
o
vi

si
o
n
in

g
 T

im
e 

(S
ec

o
n
d
s)

Power-On-Self-Test (POST)
PXE Request
OS installation (Foreman)

Cloud Image copy to
local disk (Ironic)
OS chainbooting (M2)
OS boot from local disk

Fig. 3: Single server provisioning time comparison between
M2, Foreman, and OpenStack/Ironic.8

In this section we evaluate M2’s speed, scalability and
performance. We start by presenting our experimental setup.
Then we compare the provisioning time of M2 with that
of existing provisioning solutions, present the time taken by
different M2 API calls, and analyze the scalability of M2.
Network overheads associated with using a diskless solutions
are also provided and M2’s impact on the performance of
frameworks and applications is analyzed. We note that in
the following experiments, only the boot drives are mounted
remotely by M2 since currently M2 focuses on improving boot
performance. Whenever data drives are used by applications,
those drives are hosted on local disks.

A. Experimental Setup

In our experiments we used two different environments. In
the first environment, each bare-metal server has two 6-core
Intel Xeon E5-2630L CPUs (24 cores with hyperthreading
enabled), 300 GB 10K SAS HDDs (two servers had 1 TB
7.2K SATA HDDs), 128 GB RAM and two Intel 82599ES
10 Gbit NICs. A four-server Fujitsu CD10000 Ceph storage
cluster with four 10 Gbit external NICs and an internal 40
Gbit InfiniBand interconnect is used as the storage server of
M2 in this environment.

In the second environment each bare-metal server has a
single Intel 8-core Xeon E5-2650 CPU (2.30GHz, 16 cores
with hyperthreading enabled), 64 GB RAM, two 1.8 TB
HDDs, and one 10Gbit Ethernet adapter. A ten-server Ceph
cluster with a total of 90 spindles and 10GbE internal 40GbE
external NICs are used as the storage server of M2 in this
second environment.

For both environments, M2’s iSCSI and API servers were
deployed on a virtual machine with 4 VCPUs and 4 GB RAM.
The RHEL 7.1 (or, Centos 6.7) operating system (OS) is
installed in cases where an OS installation is performed. By
using two different experimentation environments we demon-
strate that M2 is hardware-vendor agnostic.

Foreman
(Re)-Provision

(OS Install
+

Hadoop Install)

Ironic
(Re)-Provision

(OS Copy
+

Hadoop Install)

M2
Provision
(Net-Boot

+
Hadoop Install)

M2
Re-Provision

(Provision From
Snapshot or

Node Recovery)

0

200

400

600

800

1000

1200

1400

S
in

g
le

 H
ad

o
o
p
 N

o
d
e

(R
e)

-P
ro

vi
si

o
n
in

g
 T

im
es

 (
S
ec

o
n
d
s)

Power-On-Self-Test (POST)
PXE request
OS installation (Foreman)
Cloud image copy to
local disk (Ironic)

OS boot from local disk
OS chainbooting (M2)
Hadoop package
installation
Hadoop config. changes

Fig. 4: Single Hadoop compute server (re)-provisioning time
comparison between M2 Ironic and Foreman.

B. Provisioning Time Comparison

Figure 3 presents the time comparison of M2 with Foreman,
and OpenStack/Ironic, two widely used provisioning systems,
when we provision a single bare-metal server in our first
environment with a bare RHEL 7.1 operating system. As
seen in the figure, the M2 provisioning time is around five
minutes. Note that firmware initialization of these bare-metal
servers requires more than three minutes; hence half of the
M2 provisioning time is spent in firmware initialization. Both
Foreman, and OpenStack/Ironic have to go through firmware
initialization phase twice. Furthermore, they have to install or
network-transfer the OS to a local disk, whereas M2 simply
provisions the server out of a remote disk containing the
operating system. Due to these advantages, M2 provisions
servers around three times faster than both Foreman and
OpenStack/Ironic9.

C. Provisioning Complex Frameworks

Provisioning a server for any framework such as Hadoop or
SLURM is a complex and time consuming process handled in
many-steps. First, the operating system is installed, and then
the relevant packages for the framework are installed, which
is followed by making configuration changes to the server.
The first three bars of Figure 4 show the total provisioning
time for a single Hadoop compute server when using Foreman,
Ironic and M2. As seen in the figure, M2 can only offer ∼40%
improvement during this process as it is dominated by the
application installation and configuration.

Even though installing and configuring frameworks such as
Hadoop is a time-consuming process, once a single example
setup is made, M2 can leverage its snapshotting and cloning
mechanism to safekeep that example and use it for provision-
ing other framework servers. As shown in the fourth bar in
Figure 4, with M2, provisioning cloned images that contain
desired applications and then doing a final reconfiguration is
significantly faster than provisioning servers from scratch.

9In Figure 3, we do not include the time taken to prepare the provisioning
target for the provisioning systems since this is a manual process for Foreman.



TABLE I: Time required by other M2 operations.

M2 API Call Time (secs)
De-Provision 6.69
Snapshot 11.65
Clone Image 1.10

D. Using M2 for Failure Recovery

In large datacenter deployments, server failure is a common
phenomenon [?], [?], [?], [?]. Recovering from a server failure
involves tedious manual operations. If the server is provisioned
from the local disk (using Foreman or Ironic), the server
becomes unavailable until it is fixed. In addition, if the cause of
server failure was disk failure, there is a good chance that all of
the user data is lost. In order to re-provision another bare-metal
server using Foreman or Ironic as the same Hadoop server,
it is required to re-install (or re-copy in the case of Ironic)
the operating system and Hadoop packages on the server —
leading to a re-provisioning time similar to the provisioning
time. As shown in Figure 4, the total time to re-provision a
single Hadoop compute server is the same as its provisioning
time for Foreman and Ironic.

On the other hand, if this server was provisioned using M2,
upon failure a new server can be re-provisioned (rebooted)
using the image of the failed server that resides in Ceph. The
time to re-provision the new server is significantly reduced as
there is no requirement to re-install the operating system or
any Hadoop packages. As shown in the last bar of Figure 4,
M2 reduces the re-provisioning time of the servers by up to 5
times as compared to Foreman or Ironic.

E. Operation Times of Other M2 Calls

Table I presents the time it takes to perform some of the
other M2 API calls10 that require interaction with the storage
service. The time taken by the De-Provision operation consti-
tutes the time for those operations pertaining to HIL (detaching
the provisioning network from the server), the iSCSI service
(disabling the iSCSI target), the storage service (deleting the
image associated with the server to be de-provisioned) and
the API server orchestration. The time taken by the Snapshot
and Clone Image operations are dominated by the storage
operations, which include the time taken to flatten a linked
clone in the case of the Snapshot operation and the time taken
to create a deep copy of a cloud image in the case of the Clone
Image operation.

F. Scalability

In Figure 5, we show the time M2 requires for provisioning
multiple servers in parallel from our second environment.
We increase the number of concurrently provisioned servers
from one to 24 and report the time it takes to provision that
many servers (upper blue circle line). As seen in the figure,
provisioning 24 servers takes only around 20 seconds longer
than provisioning a single server, indicating that even with
modest resource usage, M2 is scalable. We observe a slight

10List of all exposed API’s can be found at https://github.com/CCI-MOC/
ims/blob/master/docs/rest api.md.

1 2 4 6 8 12 16 24
Number of bare-metal nodes provisioned concurrently

0

50

100

150

200

250

T
im

e 
(S

ec
o
n
d
s)

Total Provisioning Time M2 API Overhead

Fig. 5: M2 scalability analysis.

increase in the M2 overhead (lower line with triangles) since
the iSCSI server VM, which has four vCPUs, has to context
switch when the number of servers increase above four.

We note here that the current M2 implementation is totally
unoptimized and runs multiple M2 services on a single wimpy
VM. We expected to see a significant performance degradation
in our scalability analysis as requests on M2 increased but
observed that not to be the case. As will be shown in the
following sections, this is due to the fact that only a tiny
fraction of the provisioning image is accessed during booting
and application runs and the load on the M2 services is
comparatively low.

G. M2 Network Traffic Analysis

Figure 6 shows the per-server cumulative read and write
traffic passing through the M2 iSCSI Service during initial
provisioning of a bare-metal Hadoop server and then over five
consecutive “data generation and sort” jobs performed over
the same server. “Data generation and sort” jobs of 128 GB
and 256 GB are performed. Bare-metal servers from the first
environment are used during these experiments. The size of
the image containing the operating system and the Hadoop
packages was 8 GB. Only the boot drive of the server is
mounted remotely and the data drives are hosted on the local
disk of the server in these experiments.

Figure 6a shows that approximately 170 MB of the 8 GB
image is read over the network during initial provisioning.
Furthermore, both read and write curves flatten after repeated
runs, demonstrating that (even with the 256 GB case where
the total data handled is substantially larger than the system
memory) the file cache is effective at caching the boot drive.
After initial boot and application start-up, the sustained read
bandwidth incurred is around 3 KB/s; effectively negligible.

Figure 6b shows the writes to the network-mounted storage;
in contrast to the read case, log writes continue throughout the
experiment, at an average rate of approximately 14 KB/s. On
further examination, these write target paths such as /var/log,
/hadoop/log, and /var/run. (Note that in our deployments, /tmp
and /swap are configured to reside on the local disk of servers.)
Most of these writes are log file updates made by Hadoop.
Although they could be directed to local storage, we did not

https://github.com/CCI-MOC/ims/blob/master/docs/rest_api.md
https://github.com/CCI-MOC/ims/blob/master/docs/rest_api.md


In
itia

l
Pr

ov
isi

on
in

g
Da

ta
G

en
er

at
io

n 
1

So
rt 

1

Da
ta

G
en

er
at

io
n 

2

So
rt 

2

Da
ta

G
en

er
at

io
n 

3

So
rt 

3

Da
ta

G
en

er
at

io
n 

4

So
rt 

4

Da
ta

G
en

er
at

io
n 

5

So
rt 

50

100

200

300

Cu
m

ul
at

ive
 iS

CS
I r

ea
ds

 p
er

 n
od

e 
(M

B)
iSCSI Reads: Runs with 256GB Data
iSCSI Reads: Runs with 128GB Data

(a) Read Traffic

In
itia

l
Pr

ov
isi

on
in

g
Da

ta
G

en
er

at
io

n 
1

So
rt 

1

Da
ta

G
en

er
at

io
n 

2

So
rt 

2

Da
ta

G
en

er
at

io
n 

3

So
rt 

3

Da
ta

G
en

er
at

io
n 

4

So
rt 

4

Da
ta

G
en

er
at

io
n 

5

So
rt 

50

100

200

300

400

500

600

700

Cu
m

ul
at

ive
 iS

CS
I w

rit
es

 p
er

 n
od

e 
(M

B)

iSCSI Writes - Runs with 256GB Data
iSCSI Writes - Runs with 128GB Data

(b) Write Traffic

Fig. 6: Amount of read and write traffic passing through the
M2 iSCSI Service hosting the boot drive during provisioning
of a Hadoop server and consecutive Hadoop application runs.

do so due to their utility for debugging and negligible impact
on the data rate.

H. Performance of M2 Provisioned Systems

In this section we examine the impact of M2 on the
performance of applications and frameworks that generally
run on bare-metal servers. To this end, we compared the
performance of these applications and frameworks when they
run on top of M2-provisioned systems (network-mounted) and
systems provisioned via Foreman (installed from a local disk).

1) HPC Applications Runtime Performance: In Figure 7,
we compare the runtime of HPC applications (FT, CG, IS)
from the NAS Parallel Benchmarks (NPB) [?] running on
Foreman-provisioned (installed from local disk) and M2 provi-
sioned (network-mounted) clusters. We ran these benchmarks
in our second environment. NPB is a set of programs designed
to evaluate the performance of parallel supercomputers. Three
benchmarks (i.e., FT, IS and CG) with distinct behaviors were
used to evaluate the system. IS performs random memory ac-
cess, CG has an irregular memory access and communication
pattern, and FT does frequent all-to-all communications. We
used class B of the MPI version of NPB. Each benchmark

111

50.6

26

13.1
8.47

13.5 16.1

1 2 4 8 16 32 64
number of MPI processes

0
10
20
30
40
50
60
70
80
90

100
110

ru
nt

im
e 

(s
ec

on
ds

) CG on Local Disk
CG on M2
FT on Local Disk
FT on M2
IS on Local Disk
IS on M2

Fig. 7: M2 and local-disk runtime performance comparison of
HPC applications (Conjugate-Gradient (CG), Fourier Trans-
form (FT), and Integer Sort (IS) benchmarks from the NAS
suite [?]).

17
1 31

9

61
6

11
87

23
14

17
1 31

8

61
7

11
76

22
81

64 11
5 30

0

54
2

10
73

69 12
0 23

8

55
5

13
61

60 75 76 11
8 19

9

52 63 86 12
5 20

1

Data Size (GB)
0

400

800

1200

1600

2000

2400

2800

E
la

ps
ed

 T
im

e 
(s

ec
s)

WordCount - Local Disk
WordCount - M2
Sort - Local Disk
Sort - M2
Grep - Local Disk
Grep - M2

8GB 16GB 32GB 64GB 128GB

Fig. 8: M2 and local-disk runtime performance comparison of
standard Hadoop benchmarks (WordCount, Sort, Grep).

was compiled to run with 2n processes where n ∈ {1, . . . , 8}.
Each build was executed using Open MPI on local and remote
installations.

As shown in Figure 7, almost equal execution times were
noted in the case of both M2 and Foreman, resulting in
similar height bars. The results indicate that M2 and diskless
provisioning have no additional overhead when executing
CPU- or memory-intensive HPC jobs. Note that HPC applica-
tions already perform well with remote boot drives as such
solutions are frequently employed in Beowulf clusters and
supercomputers. Hence good performance of M2 is expected
in this scenario.

2) Hadoop Runtime Performance: To measure M2’s per-
formance under high network and disk I/O usage we tested its
performance when it runs Hadoop jobs. We performed a series
of experiments on an 8-server Hadoop cluster as we varied
the data set size between 8 GB, 16 GB, 32 GB, 64 GB and
128 GB. We used the first environment for these experiments.
Figure 8 compares the runtime of standard Hadoop bench-
marks (Sort, Grep, WordCount) running on clusters installed
from local disks and from network-mounted clusters. In both
cases, data disks hosting the Hadoop Distributed File System
reside on local disks of the servers. Reported numbers are the
average of five runs. We observe that deviations among runs
on the same configuration are negligible.

As shown in Figure 8, the difference in runtime perfor-



1 2 4 8 12
Number of VMs

0

10

20

30

40
O

p
er

at
io

n
 C

o
m

p
le

ti
o
n
 T

im
e 

(s
ec

o
n
d
s) Foreman Provisioned Node

(Local Disk) -- VM Create
M2 Provisioned Node
(iSCSI Target) - VM Create
Foreman Provisioned Node
(Local Disk) -- VM Delete
M2 Provisioned Node
(iSCSI Target) - VM Delete

Fig. 9: OpenStack operation performance comparison between
Foremen and M2-provisioned servers.

mances of local-disk-installed and M2-provisioned systems
are negligible, with the exception of the Sort experiments
for 32 GB data and 128 GB data. We hypothesize that this
exception may be caused by the non-deterministic behavior
of random sorting benchmarks. The “good” performance of
M2 justifies our hypothesis that even for applications that
create a significant amount of network traffic and disk I/O,
the performance of the application is not adversely impacted
by remote mounting the boot drive.

3) OpenStack Operations Performance: Cloud manage-
ment systems such as OpenStack that offer virtualized services
are also generally deployed on bare-metal servers. In this
experiment, we set up OpenStack-based clouds to run on top
of M2-provisioned and Foreman-provisioned systems in our
second environment. We measured the performance of the
two virtual machine operations, namely VM create and VM
delete, in these two setups. We used the Rally benchmarking
tool [?] for these experiments, varying the number of parallel
operation requests issued between 1 and 12. As shown in
Figure 9, negligible performance degradation was observed
for both creation and deletion operations between Foreman-
and M2-provisioned servers.

4) Latency and Throughput of Database Operations: Due
to their stringent performance requirements database systems
are commonly deployed over bare-metal servers. To test if
M2-provisioned servers can provide satisfactory performance
while running database applications, we compared the latency
and throughput of various database operations when running
commonly used databases on servers provisioned via M2
versus Foreman. Note that, the data disks holding the actual
database data is hosted on local disks in both cases.

Figure 10 compares the latency of database operations when
running the popular MariaDB database on a server provisioned
via M2 versus Foreman. This experiment was performed
using the Sysbench benchmarking tool [?] in our second
environment. Multi-threaded Online Transaction Processing
(OLTP) tests for Select, Update, Insert and Delete operations
were performed on the default “sbtest” [?] table generated by
Sysbench with one million rows with InnoDB as the storage

Select Update
(Key)

Update
(No-Key)

Insert Delete

Number of VMs

0

20

40

60

80

100

T
im

e 
to

 c
o
m

p
le

te
 1

0
0
0
0
0
 o

p
er

at
io

n
s 

(s
ec

s)

Foreman Provisioned Node
(Local Disk)
M2 Provisioned Node
(iSCSI Target)

Fig. 10: MariaDB operation latency comparison between Fore-
men and M2-provisioned servers.

engine for MariaDB. The number of select operations executed
during the test was 100,000, whereas 10,000 operations were
executed for each of the update, insert and delete operations.
The update operation test had two versions — updating an
indexed column (Key) and updating a non-indexed column
(No-key). For each test, the number of threads was fixed at 4.

As seen in Figure 10, there is a negligible impact on the
latency of the select operation for MariaDB when running on
an M2 provisioned system. In contrast, in the case of update,
insert and delete operations, we observe about 4% degradation
in the case of M2 provisioned servers.

Figure 11 compares the MariaDB read and write throughput
when it runs on a server provisioned via M2 and Foreman.
This experiment was also performed using Sysbench. In this
experiment, we measured the total number of random reads
and random writes performed in 300 seconds — varying the
number of threads. The throughput of both random reads and
random writes in the case of M2-provisioned servers was either
at par with their Foreman-provisioned counterparts or saw a
degradation of less than 5%. These experiments were also
executed in our second environment.

The results in Figure 10 and Figure 11 indicate that the
impact on database performance of remote-mounting the boot
drive is less than 5%. This is potentially due to the excessive
system memory use by the database, which potentially leads
to a competition between the OS and the application for
memory pages. Considering the additional benefits M2 offers
such as easy fault recovery and easy backup, we believe many
deployments will find this additional impact tolerable.

VI. FUTURE WORK

A. Potential Optimizations

We argue that the evaluation shows the performance of M2
to be sufficient at moderate scales and that the boot disk is
not even necessarily a major factor for ongoing application
performance. When M2 does need to scale up, at least three
strategies can be mixed and matched to do so.

iSCSI multipath: One of the advantages of selecting iSCSI
as the gateway protocol is that many iSCSI clients support



1 2 4 8 16
Number of Threads

0

1000

2000

3000

4000

5000

6000

T
h
ro

u
g
h
p
u
t 

(O
p
er

at
io

n
s 

p
er

 s
ec

o
n
d
) Foreman Provisioned Node

(Local Disk) -- DB Reads
M2 Provisioned Node
(iSCSI Target) - DB Reads
Foreman Provisioned Node
(Local Disk) -- DB Writes
M2 Provisioned Node
(iSCSI Target) - DB Writes

Fig. 11: MySQL read/write throughput comparison between
Foremen and M2-provisioned servers.

multipathing support. This means that clients can distribute
queries across a number of iSCSI endpoints for both perfor-
mance and redundancy. When paired with a highy-scalable
backend filesystem like Ceph or Lustre, this would mean that
M2 implementations could separately scale the iSCSI Service
and the backend Storage Service.

Caching: Without breaking the consistency model, where
the iSCSI Service is just a gateway and the backend filesystem
is the coherence point, disks could be segmented into read-only
and read-write components. For example, the /usr filesystem
could be a read-only disk that is updated infrequently and
/var could be on a read-write partition. Segmenting the disk
this way would allow iSCSI Service to cache the read-only
partitions locally, reducing load on the Storage Service overall
and especially offloading the Storage Service in case of read-
only hotspots.

Custom hardware components: Several vendors, like
EMC, Dell and NetApp, sell high performance storage in-
frastructures that manage scaling and redundancy, and which
expose that storage via an iSCSI endpoint. Due to the modular
design of M2 these commercial solutions could be employed
as the storage service to improve scalability.

B. Improved security

Threats against M2 can come from: the publicly-facing
API service, the M2-provider itself or within an M2-serviced
network; the cloud provider is trusted. For threats against the
API, M2 relies on pluggable authentication modules. In the
case where tenants do not trust the cloud provider, they can
maintain some confidentiality and integrity using encryption
such as Linux LUKS [?] or Windows Bitlocker [?], though
additional protections might be needed to prevent side channel
attacks [?] or block-level replay attacks.

In the current implementation, hostile servers active on the
network being managed by M2 can pose a threat due to the
potential for accessing the boot disks of other servers on the
same network. This is in part due to the lack of strong identity
inherent in several of the protocols M2 uses. For example, one
server could pretend to be another server booting, by spoofing

its MAC address; a server could intercept the active iSCSI
connection of another, since modern iSCSI implementations
do not authenticate or encrypt every packet. Transport Layer
Security (TLS) [?] or IPsec [?] could be applied to reduce this
risk, but there still exists the bootstrapping problem: how does
M2 differentiate between a real server, and a compromised
server that is faking its MAC or IP address?

To address this issue we are working on a solution that relies
on Trusted Platform Modules [?], which are tamper-resistant,
discrete chips contained in some bare-metal servers that give
the server a cryptographic identity via a local public/private
keypair. A security-sensitive tenant could use the TPM as part
of a protocol to grant cryptographically guarded access to M2
resources using attestation systems like [?], [?]. Such systems
could also provide a defense against corrupted firmware. We
are working on this at present [?], though details of this work
is out of scope for this paper.

C. Transition between physical and virtual

One interesting thought we had was: if M2’s goal is provid-
ing VM-like management capabilities for bare-metal images,
would it be possible to transition servers between physical and
virtual servers? This could be especially helpful for using the
right amount of resources in HPC, development/test or staging,
where a lighter VM could be used for development and then
a physical server for performance or predictability. Such a
system could function by taking a Ceph RBD instance in use
by a VM (a common choice in OpenStack clusters), then using
M2 to export that to a physical server via PXE and iSCSI. A
preliminary test within our M2 environment was able to do
just this using a standard Linux distribution as the image. We
are working to generalize this solution as a standard feature
in the next M2 release.

VII. CONCLUSION

In this work we proposed M2, a system that brings the at-
tractive image management capabilities (such as fast snapshot-
ting, cloning, rapid provisioning, etc.) of virtualized solutions
to bare-metal systems. M2 makes use of remote-mounted boot
drives to host user images containing the operating system
and applications, and exploits advancements in disaggregated
storage and networking technologies to offer high perfor-
mance. Our analysis show that M2-provisioned systems and
frameworks perform as well as local-disk-based systems. We
also show that rapid provisioning and snapshotting capabili-
ties of M2 unleash additional features and capabilities such
as elasticity and support for fast transition among different
frameworks for datacenter administrators.

VIII. ACKNOWLEDGMENT

We gratefully acknowledge Sourabh Bollapragada, Naved
Ansari, Daniel Finn, Sirushti Murugesan and Paul Grosu for
their significant contributions in development and documenta-
tion of M2. Also, Piyanai Saowarattitada, Chris Hill, Radoslav
Nikiforov Milanov, Laura Kamfonik, Rahul Sharma, Rajul



Kumar, and Sourabh Bollapragada for their assistance in the
evaluations.

Partial support for this work was provided by the MassTech
Collaborative Research Matching Grant Program, National
Science Foundation awards ACI-1440788, 1347525, 1149232
and 1414119 as well as the several commercial partners of
the Mass Open Cloud, which include Brocade, Cisco, Intel,
Lenovo, Red Hat, and Two Sigma.

REFERENCES

[1] ZDNet, “Facebook: Virtualisation does not scale,”
2011. [Online]. Available: http://www.zdnet.com/article/
facebook-virtualisation-does-not-scale/

[2] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “Performance analysis of cloud computing services for many-
tasks scientific computing,” IEEE Trans. Parallel Distrib. Syst., vol. 22,
no. 6, pp. 931–945, 2011.

[3] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: Exploring information leakage in third-party compute
clouds,” in Proceedings of the 16th ACM Conference on Computer and
Communications Security, ser. CCS ’09. USA: ACM, 2009, pp. 199–
212.

[4] Softlayer, “SoftLayer to outflank rivals with bare metal, InfiniBand, and
Power8,” 2014. [Online]. Available: https://www.enterprisetech.com/
2014/07/30/softlayer-outflank-rivals-bare-metal-infiniband-power8/

[5] S. K. Barker and P. Shenoy, “Empirical evaluation of latency-sensitive
application performance in the cloud,” in Proceedings of the First Annual
ACM SIGMM Conference on Multimedia Systems. USA: ACM, 2010,
pp. 35–46.

[6] S. M. Trimberger and J. J. Moore, “FPGA security: Motivations,
features, and applications,” Proceedings of the IEEE, vol. 102, no. 8,
pp. 1248–1265, 2014.

[7] C. Maurice, C. Neumann, O. Heen, and A. Francillon, Confidentiality
Issues on a GPU in a Virtualized Environment. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2014, pp. 119–135.

[8] AWS, 2017. [Online]. Available: https://aws.amazon.com/hpc/
[9] ——, “Amazon EC2 elastic GPUs,” 2017. [Online]. Available:

https://aws.amazon.com/hpc/
[10] Cirrascale, “Cloud services for deep learning,” 2017. [Online].

Available: http://www.cirrascale.com/cloud/
[11] D. Schatzberg, J. Cadden, H. Dong, O. Krieger, and J. Appavoo, “Ebbrt:

A framework for building per-application library operating systems.” in
Proceedings of the 7th Symposium on Operating Systems Design and
Implementation (OSDI), 2016, pp. 671–688.

[12] Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang, “Smite: Precise
qos prediction on real-system smt processors to improve utilization
in warehouse scale computers,” in Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture, 2014, pp.
406–418.

[13] Softlayer, “Big data solutions,” 2015. [Online]. Available: http:
//www.softlayer.com/big-data

[14] Rackspace, “Rackspace cloud big data OnMetal,” 2015. [Online].
Available: http://go.rackspace.com/baremetalbigdata/

[15] ChameleonCloud, “Chameleon cloud: Bare metal user guide,”
2015. [Online]. Available: https://www.chameleoncloud.org/docs/
bare-metal-user-guide-old/

[16] Internap, “Bare-Metal AgileSERVER,” 2015. [Online]. Available:
http://www.internap.com/bare-metal/

[17] Openstack, “Ironic.” [Online]. Available: http://docs.openstack.org/
developer/ironic/deploy/user-guide.html

[18] Canonical, “Metal as a service (MAAS),” 2015. [Online]. Available:
http://maas.ubuntu.com/docs/

[19] D. Anderson, M. Hibler, L. Stoller, T. Stack, and J. Lepreau, “Automatic
online validation of network configuration in the Emulab network
testbed,” in IEEE International Conference on Autonomic Computing,
USA, 2006, pp. 134–142.

[20] OpenCrowbar, “The Crowbar project,” 2015. [Online]. Available:
https://opencrowbar.github.io

[21] Puppetlabs, “Provisioning with Razor.” [Online]. Available: https:
//docs.puppetlabs.com/pe/latest/razor intro.html

[22] Y. Omote, T. Shinagawa, and K. Kato, “Improving agility and elasticity
in bare-metal clouds,” in Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages and
Operating Systemsi, ASPLOS. Turkey: ACM, 2015, pp. 145–159.

[23] (2018) OpenQRM: http://www.openqrm.org/. [Online]. Available:
http://www.openqrm.org/index-1.html

[24] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in
Proceedings of the 7th Symposium on Operating Systems Design and
Implementation (OSDI). USA: USENIX, 2006, pp. 307–320. [Online].
Available: http://dl.acm.org/citation.cfm?id=1298455.1298485

[25] ——, “Ceph storage,” 2017. [Online]. Available: http://ceph.com/
ceph-storage/

[26] J. Hennessey, S. Tikale, A. Turk, E. U. Kaynar, C. Hill, P. Desnoyers,
and O. Krieger, “HIL: Designing an exokernel for the data center,”
in Proceedings of the Seventh ACM Symposium on Cloud Computing,
(SOCC). USA: ACM, 2016, pp. 155–168. [Online]. Available:
https://doi.acm.org/10.1145/2987550.2987588

[27] Cobbler, “Cobbler.” [Online]. Available: https://cobbler.github.io
[28] A. Chandrasekar and G. Gibson, “A comparative study of baremetal

provisioning frameworks,” Parallel Data Laboratory, Carnegie Mellon
University, Tech. Rep. CMU-PDL-14-109, 2014.

[29] Foreman, “Foreman provisioning and configuration system.” [Online].
Available: http://theforeman.org

[30] D. Van der Veen et al., “Openstack Ironic Wiki.” [Online]. Available:
https://wiki.openstack.org/wiki/Ironic

[31] vmware, “Hidden benefits of virtualisation reboot time and
the impact on server availability and regular operations,”
[Online]. Available: https://blogsz.vmware.com/tam/2013/05/hidden-
benefits-of-virtualisation-reboot-time-and-the-impact-
on-server-availability-and-regular-operations.html;
https://blogsz.vmware.com/tam/2013/05/hidden-benefits-of-
virtualisation-reboot-time-and-the-impact-on-server-availability-and-
regular-operations.html, 2017.

[32] Y. Klimenko, “Technique for reliable network booting of an operating
system to a client computer,” Oct. 26 1999, uS Patent 5,974,547.
[Online]. Available: https://www.google.com/patents/US5974547

[33] D. Sposato, “Method and apparatus for remotely booting a client
computer from a network by emulating remote boot chips,”
Oct. 8 2002, uS Patent 6,463,530. [Online]. Available: https:
//www.google.com/patents/US6463530

[34] C. Haun, C. Prouse, J. Sokol, and P. Resch, “Providing a
reliable operating system for clients of a net-booted environment,”
Jun. 15 2004, uS Patent 6,751,658. [Online]. Available: https:
//www.google.com/patents/US6751658

[35] K. Salah, R. Al-Shaikh, and M. Sindi, “Towards green computing
using diskless high performance clusters,” in Network and Service
Management (CNSM), 2011 7th International Conference on. IEEE,
2011, pp. 1–4.

[36] B. Guler, M. Hussain, T. Leng, and V. Mashayekhi, “The advantages of
diskless hpc clusters using nas,” Technical Report Dell Power Solutions,
2002.

[37] D. Daly, J. H. Choi, J. E. Moreira, and A. Waterland, “Base operating
system provisioning and bringup for a commercial supercomputer,” in
Parallel and Distributed Processing Symposium, (IPDPS). IEEE, 2007,
pp. 1–7.

[38] R. Minnich, J. Hendricks, and D. Webster, “The linux bios,” in Pro-
ceedings of the 4th Annual Linux Showcase and Conference. USENIX,
2000.

[39] R. Lewis, “Virtual disk image system with local cache disk for
iscsi communications,” Aug. 2 2005, uS Patent 6,925,533. [Online].
Available: https://www.google.com/patents/US6925533

[40] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield, “Remus: High availability via asynchronous virtual ma-
chine replication,” in Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation, USA, 2008, pp. 161–
174.

[41] M. Nelson, B.-H. Lim, G. Hutchins et al., “Fast transparent migration
for virtual machines.” in USENIX Annual technical conference, general
track, USA, 2005, pp. 391–394.

[42] M. Chadalapaka, J. Satran, K. Meth, and D. Black, “Internet Small
Computer System Interface (iSCSI) Protocol (Consolidated),” RFC
7143 (Proposed Standard), RFC Editor, USA, pp. 1–295, 2014.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc7143.txt

http://www.zdnet.com/article/facebook-virtualisation-does-not-scale/
http://www.zdnet.com/article/facebook-virtualisation-does-not-scale/
https://www.enterprisetech.com/2014/07/30/softlayer-outflank-rivals-bare-metal-infiniband-power8/
https://www.enterprisetech.com/2014/07/30/softlayer-outflank-rivals-bare-metal-infiniband-power8/
https://aws.amazon.com/hpc/
https://aws.amazon.com/hpc/
http://www.cirrascale.com/cloud/
http://www.softlayer.com/big-data
http://www.softlayer.com/big-data
http://go.rackspace.com/baremetalbigdata/
https://www.chameleoncloud.org/docs/bare-metal-user-guide-old/
https://www.chameleoncloud.org/docs/bare-metal-user-guide-old/
http://www.internap.com/bare-metal/
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://maas.ubuntu.com/docs/
https://opencrowbar.github.io
https://docs.puppetlabs.com/pe/latest/razor_intro.html
https://docs.puppetlabs.com/pe/latest/razor_intro.html
http://www.openqrm.org/index-1.html
http://dl.acm.org/citation.cfm?id=1298455.1298485
http://ceph.com/ceph-storage/
http://ceph.com/ceph-storage/
https://doi.acm.org/10.1145/2987550.2987588
https://cobbler.github.io
http://theforeman.org
https://wiki.openstack.org/wiki/Ironic
https://www.google.com/patents/US5974547
https://www.google.com/patents/US6463530
https://www.google.com/patents/US6463530
https://www.google.com/patents/US6751658
https://www.google.com/patents/US6751658
https://www.google.com/patents/US6925533
https://www.rfc-editor.org/rfc/rfc7143.txt


[43] WMware.com, “VMware Workstation 5.0 Understanding Clones.”
[Online]. Available: https://www.vmware.com/support/ws5/doc/ws
clone overview.html

[44] S. Hogg, “Clos networks: What’s old is new again,” Jan 2014. [Online].
Available: https://www.networkworld.com/article/2226122/cisco-subnet/
clos-networks--what-s-old-is-new-again.html

[45] A. Klimovic, C. Kozyrakis, E. Thereska, B. John, and S. Kumar,
“Flash storage disaggregation,” in Proceedings of the Eleventh European
Conference on Computer Systems. ACM, 2016, p. 29.

[46] S. A. Weil, Ceph: reliable, scalable, and high-performance distributed
storage, 2007, vol. 68, no. 11.

[47] “About the lustre file system.” [Online]. Available: http://lustre.org/
about/

[48] J. Bonwick and B. Moore, “ZFS: The last word in file
systems,” 2007. [Online]. Available: https://wiki.illumos.org/download/
attachments/1146951/zfs last.pdf

[49] (2018) Btrfs: https://btrfs.wiki.kernel.org. [Online]. Available: https:
//btrfs.wiki.kernel.org/index.php/Main Page

[50] O. Rodeh, J. Bacik, and C. Mason, “BTRFS: The linux b-tree
filesystem,” Trans. Storage, vol. 9, no. 3, pp. 9:1–9:32, Aug. 2013.
[Online]. Available: http://doi.acm.org/10.1145/2501620.2501623

[51] D. Teigland and H. Mauelshagen, “Volume managers in Linux.”
in USENIX Annual Technical Conference, FREENIX Track, 2001,
pp. 185–197. [Online]. Available: http://static.usenix.org/legacy/events/
usenix01/freenix01/full papers/teigland/teigland html/

[52] OpenStack, “Ceph IO Performance.” [Online]. Avail-
able: https://docs.openstack.org/performance-docs/latest/test results/
ceph testing/index.html#ceph-rbd-performance-results-50-osd

[53] V. Inc, “iSCSI Performance Depends on Storage
Performance.” [Online]. Available: https://docs.vmware.
com/en/VMware-vSphere/6.0/com.vmware.vsphere.storage.doc/
GUID-548C8064-23DB-44EB-8FFC-BFEF5D39DA3A.html

[54] F. Tomonori and M. Christie, “tgt: Framework for storage target drivers,”
in Linux Symposium, 2006.

[55] D. Merkel, “Docker: Lightweight Linux containers for consistent
development and deployment,” Linux J., vol. 2014, no.
239, 2014. [Online]. Available: https://www.linuxjournal.com/content/
docker-lightweight-linux-containers-consistent-development-and-deployment

[56] mcb30, “iPXE: Open Source Boot Firmware,” 2015. [Online]. Available:
http://ipxe.org

[57] Microsoft, “About iSCSI Boot,” 2009. [Online]. Available: https:
//technet.microsoft.com/en-us/library/ee619722(v=ws.10).aspx

[58] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “A large-scale study of
flash memory failures in the field,” in ACM SIGMETRICS Performance
Evaluation Review, vol. 43, no. 1. ACM, 2015, pp. 177–190.

[59] ——, “Revisiting memory errors in large-scale production data centers:

Analysis and modeling of new trends from the field,” in Dependable Sys-
tems and Networks (DSN), 2015 45th Annual IEEE/IFIP International
Conference on. IEEE, 2015, pp. 415–426.

[60] L. A. Barroso, J. Clidaras, and U. Hölzle, “The datacenter as a computer:
An introduction to the design of warehouse-scale machines,” Synthesis
lectures on computer architecture, vol. 8, no. 3, pp. 1–154, 2013.

[61] B. Schroeder and G. Gibson, “A large-scale study of failures in high-
performance computing systems,” IEEE Transactions on Dependable
and Secure Computing, vol. 7, no. 4, pp. 337–350, 2010.

[62] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber et al., “The nas parallel benchmarks,” The International
Journal of Supercomputing Applications, vol. 5, no. 3, pp. 63–73, 1991.

[63] “Rally Benchmarking Tool for OpenStack.” [Online]. Available:
https://wiki.openstack.org/wiki/Rally

[64] A. Kopytov, “Sysbench: a system performance benchmark,” 2004.
[Online]. Available: http://sysbench.sourceforge.net

[65] ——, “Sysbench manual,” MySQL AB, 2012.
[66] C. Fruhwirth, “New methods in hard disk encryption,” 07 2005. [Online].

Available: http://clemens.endorphin.org/nmihde/nmihde-A4-ds.pdf
[67] “Bitlocker drive encryption overview.” [Online]. Available: https:

//technet.microsoft.com/en-us/library/cc732774(v=ws.11).aspx
[68] E. Stefanov and E. Shi, “Oblivistore: High performance oblivious cloud

storage,” in Symposium on Security and Privacy. IEEE, 2013, pp.
253–267.

[69] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS)
Protocol Version 1.2,” RFC 5246 (Proposed Standard), RFC Editor,
Fremont, CA, USA, pp. 1–104, Aug. 2008, updated by RFCs 5746,
5878, 6176, 7465, 7507, 7568, 7627, 7685, 7905, 7919. [Online].
Available: https://www.rfc-editor.org/rfc/rfc5246.txt

[70] S. Kent and K. Seo, “Security Architecture for the Internet Protocol,”
RFC 4301 (Proposed Standard), RFC Editor, Fremont, CA, USA, pp.
1–101, Dec. 2005, updated by RFCs 6040, 7619. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc4301.txt

[71] T. C. Group, “Trusted Platform Module (TPM).”
[Online]. Available: https://trustedcomputinggroup.org/work-groups/
trusted-platform-module/

[72] N. Schear, P. T. Cable, II, T. M. Moyer, B. Richard, and R. Rudd,
“Bootstrapping and maintaining trust in the cloud,” in Proceedings of the
32nd Annual Conference on Computer Security Applications, (SCSAC).
USA: ACM, 2016, pp. 65–77.

[73] N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu, “Policy-sealed
data: A new abstraction for building trusted cloud services,” in In
USENIX Security, 2012.

[74] M. O. Cloud, “Secure cloud.” [Online]. Available: https://massopen.
cloud/blog/secure-cloud/

https://www.vmware.com/support/ws5/doc/ws_clone_overview.html
https://www.vmware.com/support/ws5/doc/ws_clone_overview.html
https://www.networkworld.com/article/2226122/cisco-subnet/clos-networks--what-s-old-is-new-again.html
https://www.networkworld.com/article/2226122/cisco-subnet/clos-networks--what-s-old-is-new-again.html
http://lustre.org/about/
http://lustre.org/about/
https://wiki.illumos.org/download/attachments/1146951/zfs_last.pdf
https://wiki.illumos.org/download/attachments/1146951/zfs_last.pdf
https://btrfs.wiki.kernel.org/index.php/Main_Page
https://btrfs.wiki.kernel.org/index.php/Main_Page
http://doi.acm.org/10.1145/2501620.2501623
http://static.usenix.org/legacy/events/usenix01/freenix01/full_papers/teigland/teigland_html/
http://static.usenix.org/legacy/events/usenix01/freenix01/full_papers/teigland/teigland_html/
https://docs.openstack.org/performance-docs/latest/test_results/ceph_testing/index.html#ceph-rbd-performance-results-50-osd
https://docs.openstack.org/performance-docs/latest/test_results/ceph_testing/index.html#ceph-rbd-performance-results-50-osd
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.storage.doc/GUID-548C8064-23DB-44EB-8FFC-BFEF5D39DA3A.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.storage.doc/GUID-548C8064-23DB-44EB-8FFC-BFEF5D39DA3A.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.storage.doc/GUID-548C8064-23DB-44EB-8FFC-BFEF5D39DA3A.html
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
http://ipxe.org
https://technet.microsoft.com/en-us/library/ee619722(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/ee619722(v=ws.10).aspx
https://wiki.openstack.org/wiki/Rally
http://sysbench.sourceforge.net
http://clemens.endorphin.org/nmihde/nmihde-A4-ds.pdf
https://technet.microsoft.com/en-us/library/cc732774(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/cc732774(v=ws.11).aspx
https://www.rfc-editor.org/rfc/rfc5246.txt
https://www.rfc-editor.org/rfc/rfc4301.txt
https://trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://massopen.cloud/blog/secure-cloud/
https://massopen.cloud/blog/secure-cloud/

	Introduction
	Related Work
	M2 Design
	M2 Architecture
	Experimental Evaluation
	Experimental Setup
	Provisioning Time Comparison
	Provisioning Complex Frameworks
	Using M2 for Failure Recovery
	Operation Times of Other M2 Calls
	Scalability
	M2 Network Traffic Analysis
	Performance of M2 Provisioned Systems
	HPC Applications Runtime Performance
	Hadoop Runtime Performance
	OpenStack Operations Performance
	Latency and Throughput of Database Operations


	Future Work
	Potential Optimizations
	Improved security
	Transition between physical and virtual

	Conclusion
	Acknowledgment

