
Caching in the Multiverse

Mania Abdi?, Amin Mosayyebzadeh�, Mohammad Hossein Hajkazemi?

Ata Turk‡, Orran Krieger�, Peter Desnoyers?
?Northeastern University, �Boston University, ‡State Street

Abstract
To get good performance for data stored in Object storage
services like S3, data analysis clusters need to cache data
locally. Recently these caches have started taking into ac-
count higher-level information from analysis framework, al-
lowing prefetching based on predictions of future data ac-
cesses. There is, however, a broader opportunity; rather than
using this information to predict one future, we can use it to
select a future that is best for caching. This paper provides
preliminary evidence that we can exploit the directed acyclic
graph (DAG) of inter-task dependencies used by data-parallel
frameworks such as Spark, PIG and Hive to improve applica-
tion performance, by optimizing caching for the critical path
through the DAG for the application. We present experimental
results for PIG running TPC-H queries, showing completion
time improvements of up to 23% vs our implementation of
MRD, a state-of-the-art DAG-based prefetching system, and
improvements of up to 2.5x vs LRU caching. We then discuss
the broader opportunity for building a system based on this
opportunity.

1 Introduction

Modern data analytics platforms (e.g. Spark [37], PIG [20],
or Hive [27]) are often coupled with external data storage
on services such as Amazon S3 [3] and Azure Data Lake
Store [17], resulting in storage bottlenecks [4, 15, 18, 23].

Multiple caching solutions have been developed to address
this storage bottleneck, e.g. Solutions such as Pacman [5],
Tachyon/Alluxio [2, 16] and Apache:Ignite [6] allow datasets
to be cached within the local cluster. However given finite
cache, and often even more limited bandwidth for fetching
data into the cache, the performance of this cache depends
on its caching policy, and recent studies show that traditional
caching policies (e.g. LRU) for this workload perform poorly
relative to task-specific ones [5, 9, 15, 21].

Higher-level analysis frameworks such as PIG [20],
Hive [27] and SPARK [37] compile user programs into an

execution plan consisting of multiple, for example, MapRe-
duce [11], or Tez [24] jobs, and a directed acyclic graph (DAG)
of dependencies between these jobs. Jobs are then scheduled
in parallel, within the constraints set by these dependencies.
Jobs can take minutes to even hours [9], resulting in execu-
tion plans which identify data accesses far into the future.
Exploiting this knowledge of future access patterns results in
significant improvements in caching performance vs. LRU
and other history-based algorithms, as shown by works such
as MemTune [33], LRC [36] and [15].

These existing efforts use application DAG information
to predict future data accesses, and then prefetch data into
the cache and manage the cache contents based on those
predictions. In doing so, they are not taking advantage of a
fundamental opportunity. Rather than caching data given a
prediction of task execution, can we exploit the information
provided by the DAG to influence the order of task execution
to enable more effective caching? That is, rather than man-
aging/prefetching the cache based on one prediction of the
future universe, can we select a universe for which caching
will be more effective?

This paper provides preliminary evidence that the answer is
yes. In a simple, semi automated experiment, we show that by
caching can be used to optimize the critical path through the
DAG, and present experimental results showing completion
time improvements for TPC-H queries of as much as 2.5x
over LRU and 23% over MRD [22], the state-of-the-art DAG-
based approach (and in all cases no worse than MRD).

We next provide more background on the opportunity,
present our initial evidence, and then discuss the research
challenges and effort to exploit this opportunity in a system-
atic way.

2 Background and Motivation

To explain DAG-guided caching, we consider the PIG work-
flow management framework, which compiles the user’s
query into a directed acyclic graph (DAG) of MapReduce [11],
Spark [37] or Tez [24] jobs. In Figure 1a, we see TPC-H

region	=		load	
O1	=	filter	region

nation	=	load	
O2	=	filter	nation

lineitem	=	load	
part	=	load	
fpart	=	filter	part
O3	=	join	fpart,	lineitem

O4	=	join	O1	and	O2

n	=	load	
s	=	load	
O5	=	join	s	and	n

customer	=	load	
supply	=	load	
s1	=	join	supply,	O2	and	O3
O6	=	join	customer	and	s1

gr	=	groupby	O5	and	O6		
store	gr

J1

J2

J3

J4

J7

J6

J5

I1

I2

I3-1
I3-2

I5-1

I5-2

I6-1

I6-2

(a) PIG Latin script

J1 J2 J3

J4

J6

J5

I1 I2 I31 I32

I52

I61 I62

J7
O6

Store

O4 O5

O1 O2 O3

Ii

Ji

Oi

Input

MRJob

Output

I51

(b) DAG of MapReduce jobs

J3

J1

J2

J4

J5

J6

J7

Stage 1

Stage 2

Stage 3
Stage 4

Time
t1 t2 t3 t8t7t6t5t4 t9 t10

(c) Scheduled jobs

Figure 1: Execution of Query #8 from TPC-H benchmark using Pig framework. In (a) we see the query script with jobs and
inputs identified in purple circles and grey squares, respectively. (b) shows the directed acyclic graph (DAG) produced by the Pig
compiler, with the corresponding jobs and inputs; (c) is the Pig schedule of the DAG to the MapReduce framework, with jobs
executed in breadth-first stages.

Query 8 in PIG Latin [25], which is compiled by PIG into the
execution plan DAG in Figure 1b. Tasks are then sorted by
dependency into stages, and submitted for execution resulting
in a timeline such as is seen in Figure 1c.

In this environment, caching policy can use not only in-
formation from previous requests, but knowledge of future
requests derived from this execution plan1, including i) the
dependency graph, ii) job type, and iii) job input datasets and
sizes. In addition, to predict the execution timeline, we need
to iv) predict individual job execution times, which may be
done with data from past executions of the same job type
(sort/join/etc. in PIG; application executable in some sys-
tems), and v) network and storage system bandwidth, which
may be known or can be measured.

In Table 1 we see the jobs created by the PIG compiler
(J1,J2, ..,J7) as well as the inputs to each job (I1, I2,, I6−2)
with their respective sizes. Runtime for each job (in arbitrary
units) is predicted without cached input (“baseline runtime”)
as well as for the case where each input dataset is cached
(expressed as runtime improvement over baseline). For this
example we assume that speedups are additive, and that they
are all-or-nothing; i.e. if one block of input for J2 is fetched
(I2 is 2 units in size), there is no speedup, while it completes
in 1 time unit if both units of I2 are fetched. (We take this
simplifying assumption from Pacman [5])

Figure 2(a) shows the execution plan without prefetching

1We restrict our discussion to PIG; however the same approach may be
used with Spark and other systems which expose internal dependencies.

and with LRU cache management; completion time is 9 units
as there is no input data re-use, and thus all inputs are read
from remote storage (purple); at the bottom of the figure we
see a timeline of jobs running at each unit of time.

MRD uses prior runtime information to predict the order
and timing of data requests, prefetching data (green blocks)
and evicting other data (orange) to improve performance.
Prefetching allows job J6 to run faster, resulting in a comple-
tion time of 8 units rather than 9.

At each point in time, MRD fetches the dataset which will
be requested the soonest in the future; ties are broken arbi-
trarily. Stage 1 requires 10 units of input, but we have 6 units
of cache; we show inputs for J1 and J2 being prefetched, but
only part of the two inputs to J3, I3−1, so stage 1 ends at t4
as before. Prefetching of inputs to J5 begins at t3, when the
inputs become more valuable than data already in the cache;
however input I5−2 cannot be completely loaded as inputs to
J3, which is still running, are occupying 3 units of cache, and
prefetching I5−1 gives a speedup of 0 to J5. Finally at t6 we
prefetch I6−1 but not I6−2, giving a speedup of 1 to job J6 and
completing the entire workflow one unit sooner.

By taking speedup information into account, we can do
much better as shown in Figure 2c(c). For each stage of job
execution, we prefetch the set of inputs (subject to available
cache space) which will result in the largest decrease in overall
execution time, or nothing if no decrease is possible. Thus
inputs to J1 and J2 are ignored, as they cannot cause stage 1
to complete in less than 2 time units. However the inputs to

2 2 3_1 3_1 5_2 5_2 6_2 6_2 6_2

2 2 3_1 3_1 5_2 5_2 6_2 6_2 6_2

1 1 3_2 3_2 5_1 5_1 6_1 6_1 6_1

1 1 3_1 3_1 5_1 5_1 6_1 6_1 6_1

3_2 3_2 3_2 3_2 3_2 3_2 5_2 5_2 5_2

3_1 3_1 3_1 3_1 3_1 3_1 5_2 5_2 5_2

MRU

LRU

Time

J3

J2

J1 J5

J4 J6

J7

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

(a) LRU

3_2 3_2 3_2 3_2 3_2 5_2 5_2 5_2

2 2 2 5_2 5_2 5_2 5_2 5_2

1 1 1 5_2 5_1 5_1 5_1 6_2 6_2

1 1 1 5_1 5_1 5_1 5_1 6_1 6_1

3_1 3_1 3_1 3_1 3_1 3_1 6_2 6_2 6_2

3_1 3_1 3_1 3_1 3_1 3_1 6_1 6_1 6_1

Time

J3

J2

J1 J5

J4 J6

J7

t0 t1 t2 t3 t4 t5 t6 t7 t8

(b) MRD

3_2 3_2 3_2 6_2 6_2 6_2 6_2 6_2

3_1 3_1 3_1 6_2 6_2 6_2 6_2 6_2

3_1 3_1 3_1 6_1 6_1 6_1 6_1 6_1

3_1 3_1 3_1 6_1 6_1 6_1 6_1 6_1

3_2 3_2 3_2 3_2

3_2 3_2 3_2 3_2

Time

J3

J2

J1

J5

J4

J6

J7

t0 t1 t2 t3 t4 t5 t6 t7

X X X LRU	demand	cacheEviction	candidate	blockPrefetched	Block

(c) NOC

Figure 2: Different cache managements decisions over Query #8 from TPC-H benchmark. Job Ji takes input datasets j (or i_ j,
where j is the jth input for job i). LRU completes in t9, MRD completes in t8, Near Optimum Cache (NOC) completes in t6

Job Start Baseline
Runtime Inputs Size

Runtime
Im-

prove-
ment

J1 1 2 I1 2 1

J2 1 2 I2 2 1

J3 1 4 I3−1
I3−2

3
3

1
1

J4 5 1 {}

J5 5 2 I5−1
I5−2

2
2

0
1

J6 7 2 I6−1
I6−2

2
2

1
0

J7 9 1 {}

Table 1: Job characteristics and predicted runtime im-
provement Query #8.

job J3 are fetched in their entirety, giving a 2-unit speedup
and finishing the job (and thus the stage) by t2. There is not
enough cache space to prefetch for J5, so none of its inputs
are prefetched; as a result there is sufficient room to fetch all
inputs to J6 at the beginning of stage 2 (t3), giving a 1-unit
speedup and completing the workflow in 6 units of time.

Given the above information and assumptions, we can (a)
determine the feasibility of any prefetching/eviction sched-
ule (e.g. does it fit in cache) and (b) estimate its completion
time. From this, in turn, we can (in theory) determine the
optimal prefetching schedule. In theory this problem is no
doubt NP-complete; however for practical job schedules (es-
pecially with PIG stage-based scheduling) it is likely that
good approximations may be found.

This approach leads to our suggested caching/pre-fetching

strategy, which we call Near-Optimal Caching (NOC). NOC
pulls DAG information along with job type (e.g. filter, sort,
etc.) and input data sets for each job with the DAG and ex-
tracts their size from the storage. In addition, we estimate the
job performance under two scenario: (1) when data is in the
cache, (2) when data is not in the cache. We assume a staged
execution model such as used by PIG, where all jobs complete
before a stage ends. We use the scheduling information of
the Pig execution framework and for each stage, we select the
input datasets that could decrease the stage runtime the most
by being in cache.

Based on prior measurements of external storage through-
put, for each to-be-prefetched dataset, we calculate its read
latency from backend. This allows us to begin prefetching a
dataset in time to have it in the cache when it is required.

3 Evaluation

We put together a simple experimental testbed to get a feeling
for the performance gains that could be obtained with NOC.
The experimental environment included a four node compute
cluster and a four node storage cluster. The compute cluster
nodes have 2x Intel Xeon CPU E5-2660 2.20GHz (16 total
cores, 32 threads), 128GB RAM and 2x 10GbE NICs and the
storage cluster nodes have 2x Intel Xeon E5-2660 CPU (28
total cores, 56 threads), 256GB RAM, 12 x 2 TB 7.2K SATA
Seagate HDDs and 2x10GbE NICs. On the storage cluster
we deployed CEPH [32] 12.2.7. On the compute nodes we
deployed PIG [20] 0.17.0 on top of Hadoop [11] 2.8.4 and
Alluxio [2] 1.8.0 as an in-memory cache layer. We dedicated
6GB of memory on each node to Alluxio for a total of 24GB
of cache. We restricted Hadoop to 50GB of memory on each
node.

For evaluation, we used a subset of the TPC-H [28] bench-
mark transformed into PIG Latin and run on a dataset of 32GB.
We ran queries sequentially based on their order and before
each query we clear the cache. Before the experiment, we

Figure 3: Effect of NOC data prefetching on query execution
end-to-end latency.

executed all queries with and without caching and recorded
the time of execution for each job within the query. In other
words, we ran query and gather statistics when query’s input
is in the cache and when it is out of the cache.

Also, we modified Pig to output the execution plan (DAG
of MapReduce jobs) before launching the query. Following
the procedure explained in section 2, we created a I/O plan
for which dataset should be prefetched/cached and when the
prefetching request should be scheduled. We also modified
Pig to provide timing and staging information as the query is
executed by the framework2.

We processed the execution plan to create scripts that would
run in parallel to the execution of the query. These scripts
issue load requests to Alluxio to prefetch data and free re-
quests to evict data from the cache. A separate script was
generated that emulated the NOC and MRD algorithms. We
compare the performance of these algorithms to LRU, imple-
mented natively by Alluxio. The results of this experiment
are shown in Figure 3. With this simple experiment, we see
that NOC has substantial gains over LRU, achieves at least as
good performance as our emulation of MRD and in the best
case (i.e., Q19) NOC outperforms MRD by 22.8%. In the
queries where NOC and MRD have identical performance,
they choose the same datasets to evict and prefetch, while in
other cases NOC chooses datasets based on future stages as
shown in Figure 2 for query 9.

This experiment suggests that a NOC implementation may
well offer significant performance advantages. These results
are, we believe, quite pessimistic. NOC will offer significantly
more advantages in an environment where the bandwidth to
storage is limited. The scheduling by Pig into stages, where
jobs whose dependencies are met are not scheduled until all
jobs in the previous stage have completed, greatly limits our

2This required a 300 line patch to the PIG framework.

opportunity to optimize in the current experimental environ-
ment. We also believe the degrees of freedom available with
NOC will be more valuable when caching intermediate data
sets (in these experiments we only cached input data sets) and
when multiple tasks are being executed concurrently on the
cluster and the cache resources are being shared.

4 Challenges and Future Work

What are the challenges in applying near-optimal caching to
realistic systems, and what are the longer-term questions in
pursuing this approach?

Runtime and speedup estimation: how can we estimate
the speedup due to prefetching an input data set? In-
ferring speedup is a straightforward extension of the
methods (e.g. regression) already in use to estimate job
runtime based on job type and input data sets. More infor-
mation may in fact be available from this data than can
be used by current algorithms: e.g. if jobs were found
to have partial speedups with partial data (instead of all-
or-nothing), or if speedups for multiple inputs were not
additive. It is an open research question as to whether we
can actually schedule based on these more realistic mod-
els, however. Estimating job runtime with different levels
of accuracy has been studied extensively [10,14,30]. Fu-
ture work will compute the confidence interval to limit
the consequences of inaccurate prediction. If insufficient
information is available to predict the runtime accurately,
the confidence interval will be wide, the strategy de-
grades to be the same as MRD.

Data Locality: Execution engines favor data locality when
allocating resources for job execution; cache manage-
ment decisions (i.e. where to cache a prefetched data
item) thus impact scheduler job placement. Is this in-
teraction a problem, and if so how can the execution
scheduler and cache manager cooperate?

Running Concurrent Queries: Workflow management
frameworks run multiple queries to reach higher
resource utilization. Considering one query at a time
does not necessarily lead to an optimum decision or
even might degrade the performance of the other queries.
A cache management needs to take into account other
jobs from other queries and decide which datasets
should be fetched to improve overall performance of the
system (even though some queries’ performance may
deteriorate). Since query runtimes can be predicted by
NOC, we propose using this information to perform
shortest-job-first (SJF) scheduling across multiple
queries [31].

Query priorities: Many analysis systems handle both in-
teractive and batch queries. Prefetching for interac-
tive queries is difficult, yet even interactive use often

has many repeated patterns, leading to the question of
whether we can predict and prefetch for future queries,
thus improving interactive performance.

Writing to Cache: In the discussion above, all data sets
have been assumed to be inputs. Writeback caching vi-
olates this assumption: intermediate results are kept in
cache [2, 16] before being written back to external stor-
age. The size of these results is not known, but must be
estimated based on job parameters, and write data must
be prioritized in the cache until it can be written back.

Other platforms: It should be possible to apply this strategy
to other DAG-based frameworks, such as HIVE, Spark,
etc.

Other job types: Some fraction of jobs (20% in the Al-
ibaba [1] traces) will not use frameworks with DAG
information that can be used for prefetching. How can
we handle those jobs and the cache they use, without
either starving them or the DAG-based jobs? Can we
infer dependencies and cache size utilizations for them?

5 Related work

Cache management policies and prefetching has been studied
extensively in different areas of computer system design [7,12,
13, 19, 26, 29]. Cache management policies for data analytics
have been studied extensively. Traditionally, such work [15,
34] exploits job execution history to speculate dataset future
access pattern. However, there is also a small number of recent
work that attempts to use future information extracted from
higher level framework [8, 22, 35, 36] for dataset caching and
prefetching.

Mithril [34] proposes a prefetching layer that applies data
mining algorithms on block access history to speculate what
to prefetch at time. Netco [15] takes advantage of dataset ac-
cess history to prefetch the best candidate based on available
cache size and network bandwidth to meet deadline SLOs
such as maximizing the number of finished jobs. Our approach
is different from the enumerated methods as it relies on the
future information.

Among work relying on future information, both SADP [8]
and MRD [22] rely on information from higher-level frame-
work to find and prefetch the nearest dataset used in future.
LRC [36] prioritizes datasets to cache which has the most
number of dependent jobs and evict datasets with least num-
ber of dependencies. Although all of them take advantage
of the future information, they only consider a single dimen-
sion i.e., job dependency; however we take into account other
dimensions e.g., dataset contribution in total runtime.

6 Conclusion

Locally caching data sets is critical for compute clusters that
use storage from object storage services. Researchers have
started using scheduling information (i.e. job DAGs) from
existing analytic environments to manage these caches. The
fundamental insight of this work is that, rather than prefetch-
ing based on a prediction of job execution based on this infor-
mation, we can use this information to influence the execution
order in order to enable more effective caching. We developed
a simple experimental environment that used DAGs extracted
from PIG to prefetch data along the critical path of execu-
tion through the DAG, and evicted cached data that was no
longer required. Even with this very simple experimental en-
vironment we obtained up to 22.8% improved performance,
providing strong preliminary evidence of the power of this
approach.

7 Discussion Topics

• What are the other analytic systems that we can use?
What changes we need to apply to popular systems such
as SPARK to take advantage of NOC?

• How feasbile is it to apply the same idea to the frame-
works such as Hive?

• What are the other workflow management frameworks
that this idea can be applied to?

• Whe consider the network bandwidth to the backend
storage is unlimited, however, in practice the network
bandwidth resource is limited. What changes we need to
make to deal with this limitation?

• How can we generate a more realistic workloads (e.g.,
with concurrent queries) to emphasize the propose idea?

Acknowledgment

We would like to acknowledge the feedback of the anonymous
reviewers and our shepherd, Yu Hua, as well as contributions
by Larry Rudolph. This work was supported in part by the
Mass Open Cloud (massopen.cloud) and its industrial part-
ners.

References

[1] Alibaba Cloud Traces". https://github.
com/alibaba/clusterdata/tree/master/
cluster-trace-v2018.

[2] Alluxio - Open Source Memory Speed Virtual Dis-
tributed Storage. https://www.alluxio.org.

https://github.com/alibaba/clusterdata/tree/master/cluster-trace-v2018
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-v2018
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-v2018
https://www.alluxio.org

[3] Inc. Amazon Web Services. Amazon Simple Storage
Service (S3) — Cloud Storage — AWS. available at
aws.amazon.com/s3/.

[4] Amazon EMR. https://aws.amazon.com/emr/.

[5] Ganesh Ananthanarayanan, Ali Ghodsi, Andrew
Warfield, Dhruba Borthakur, Srikanth Kandula, Scott
Shenker, and Ion Stoica. PACMan: Coordinated
Memory Caching for Parallel Jobs. In Presented as part
of the 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 12), pages 267–280,
San Jose, CA, 2012. USENIX.

[6] Apache Ignite. https://ignite.apache.org/.

[7] Daniel S. Berger, Ramesh K. Sitaraman, and Mor
Harchol-Balter. AdaptSize: Orchestrating the Hot Ob-
ject Memory Cache in a Content Delivery Network. In
14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 483–498, Boston,
MA, 2017. USENIX Association.

[8] C. Chen, T. Hsia, Y. Huang, and S. Kuo. Scheduling-
Aware Data Prefetching for Data Processing Services
in Cloud. In 2017 IEEE 31st International Conference
on Advanced Information Networking and Applications
(AINA), pages 835–842, March 2017.

[9] Yanpei Chen, Sara Alspaugh, and Randy Katz. Inter-
active Analytical Processing in Big Data Systems: A
Cross-industry Study of MapReduce Workloads. Proc.
VLDB Endow., 5(12):1802–1813, August 2012.

[10] Yue Cheng, M. Safdar Iqbal, Aayush Gupta, and Ali R.
Butt. CAST: Tiering Storage for Data Analytics in the
Cloud. In Proceedings of the 24th International Sym-
posium on High-Performance Parallel and Distributed
Computing, HPDC ’15, pages 45–56, New York, NY,
USA, 2015. ACM.

[11] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Sim-
plified Data Processing on Large Clusters. Commun.
ACM, 51(1):107–113, January 2008.

[12] H. Falahati, M. Abdi, A. Baniasadi, and S. Hessabi. ISP:
Using idle SMs in hardware-based prefetching. In The
17th CSI International Symposium on Computer Archi-
tecture Digital Systems (CADS 2013), pages 3–8, Oct
2013.

[13] Falahati H., Hessabi S., Abdi M., and Baniasadi A.
Power-efficient prefetching on GPGPUs. The Journal
of Supercomputing, 71(8):2808–2829, Aug 2015.

[14] Virajith Jalaparti, Hitesh Ballani, Paolo Costa, Thomas
Karagiannis, and Ant Rowstron. Bridging the Tenant-
provider Gap in Cloud Services. In Proceedings of the

Third ACM Symposium on Cloud Computing, SoCC ’12,
pages 10:1–10:14, New York, NY, USA, 2012. ACM.

[15] Virajith Jalaparti, Chris Douglas, Mainak Ghosh, Ashvin
Agrawal, Avrilia Floratou, Srikanth Kandula, Ishai Men-
ache, Joseph Seffi Naor, and Sriram Rao. Netco: Cache
and I/O Management for Analytics over Disaggregated
Stores. In Proceedings of the ACM Symposium on Cloud
Computing, SoCC ’18, pages 186–198, New York, NY,
USA, 2018. ACM.

[16] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker,
and Ion Stoica. Tachyon: Reliable, Memory Speed Stor-
age for Cluster Computing Frameworks. In Proceedings
of the ACM Symposium on Cloud Computing, SOCC
’14, pages 6:1–6:15, New York, NY, USA, 2014. ACM.

[17] Microsoft Datalake. http://azure.microsoft.com/
en-us/solutions/data-lake.

[18] Microsoft Azure HDInsight. https://azure.
microsoft.com/en-us/services/hdinsight/.

[19] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scal-
ing Memcache at Facebook. In Proceedings of the 10th
USENIX Conference on Networked Systems Design and
Implementation, nsdi’13, pages 385–398, Berkeley, CA,
USA, 2013. USENIX Association.

[20] Christopher Olston, Benjamin Reed, Utkarsh Srivastava,
Ravi Kumar, and Andrew Tomkins. Pig Latin: A Not-so-
foreign Language for Data Processing. In Proceedings
of the 2008 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’08, pages 1099–1110,
New York, NY, USA, 2008. ACM.

[21] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott
Shenker, and Byung-Gon Chun. Making Sense of Perfor-
mance in Data Analytics Frameworks. In Proceedings
of the 12th USENIX Conference on Networked Systems
Design and Implementation, NSDI’15, pages 293–307,
Berkeley, CA, USA, 2015. USENIX Association.

[22] Tiago B. G. Perez, Xiaobo Zhou, and Dazhao Cheng.
Reference-distance Eviction and Prefetching for Cache
Management in Spark. In Proceedings of the 47th Inter-
national Conference on Parallel Processing, ICPP 2018,
pages 88:1–88:10, New York, NY, USA, 2018. ACM.

[23] Raghu Ramakrishnan, Baskar Sridharan, John R.
Douceur, Pavan Kasturi, Balaji Krishnamachari-
Sampath, Karthick Krishnamoorthy, Peng Li, Mitica
Manu, Spiro Michaylov, Rogério Ramos, Neil Sharman,
Zee Xu, Youssef Barakat, Chris Douglas, Richard

aws.amazon.com/s3/
https://aws.amazon.com/emr/
https://ignite.apache.org/
http://azure.microsoft.com/en-us/solutions/data-lake
http://azure.microsoft.com/en-us/solutions/data-lake
https://azure.microsoft.com/en-us/services/hdinsight/
https://azure.microsoft.com/en-us/services/hdinsight/

Draves, Shrikant S. Naidu, Shankar Shastry, Atul
Sikaria, Simon Sun, and Ramarathnam Venkatesan.
Azure Data Lake Store: A Hyperscale Distributed File
Service for Big Data Analytics. In Proceedings of the
2017 ACM International Conference on Management
of Data, SIGMOD ’17, pages 51–63, New York, NY,
USA, 2017. ACM.

[24] Bikas Saha, Hitesh Shah, Siddharth Seth, Gopal Vija-
yaraghavan, Arun Murthy, and Carlo Curino. Apache
Tez: A Unifying Framework for Modeling and Build-
ing Data Processing Applications. In Proceedings of
the 2015 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’15, pages 1357–1369,
New York, NY, USA, 2015. ACM.

[25] Savvas Savvides. TPCH-PIG. https://github.com/
ssavvides/tpch-pig.

[26] Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev Kumar,
and Kai Li. RIPQ: Advanced Photo Caching on Flash
for Facebook. In Proceedings of the 13th USENIX Con-
ference on File and Storage Technologies, FAST’15,
pages 373–386, Berkeley, CA, USA, 2015. USENIX
Association.

[27] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Zhang, S. Antony, H. Liu, and R. Murthy. Hive - a
petabyte scale data warehouse using Hadoop. In 2010
IEEE 26th International Conference on Data Engineer-
ing (ICDE 2010), pages 996–1005, March 2010.

[28] TPCH benchmark. http://www.tpc.org/tpch/.

[29] Steven P. Vanderwiel and David J. Lilja. Data Prefetch
Mechanisms. ACM Comput. Surv., 32(2):174–199, June
2000.

[30] Shivaram Venkataraman, Zongheng Yang, Michael
Franklin, Benjamin Recht, and Ion Stoica. Ernest: Effi-
cient Performance Prediction for Large-Scale Advanced
Analytics. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pages
363–378, Santa Clara, CA, 2016. USENIX Association.

[31] Raajay Viswanathan, Ganesh Ananthanarayanan, and
Aditya Akella. CLARINET: WAN-Aware Optimization
for Analytics Queries. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
16), pages 435–450, Savannah, GA, 2016. USENIX As-
sociation.

[32] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell
D. E. Long, and Carlos Maltzahn. Ceph: A Scalable,
High-performance Distributed File System. In Proceed-
ings of the 7th Symposium on Operating Systems Design
and Implementation, OSDI ’06, pages 307–320, Berke-
ley, CA, USA, 2006. USENIX Association.

[33] L. Xu, M. Li, L. Zhang, A. R. Butt, Y. Wang, and Z. Z.
Hu. MEMTUNE: Dynamic Memory Management for
In-Memory Data Analytic Platforms. In 2016 IEEE
International Parallel and Distributed Processing Sym-
posium (IPDPS), pages 383–392, May 2016.

[34] Juncheng Yang, Reza Karimi, Trausti Sæmundsson,
Avani Wildani, and Ymir Vigfusson. Mithril: Mining
Sporadic Associations for Cache Prefetching. In Pro-
ceedings of the 2017 Symposium on Cloud Computing,
SoCC ’17, pages 66–79, New York, NY, USA, 2017.
ACM.

[35] Y. Yu, W. Wang, J. Zhang, and K. B. Letaief. LERC: Co-
ordinated Cache Management for Data-Parallel Systems.
In GLOBECOM 2017 - 2017 IEEE Global Communica-
tions Conference, pages 1–6, Dec 2017.

[36] Y. Yu, W. Wang, J. Zhang, and K. Ben Letaief. LRC:
Dependency-aware cache management for data analyt-
ics clusters. In IEEE INFOCOM 2017 - IEEE Confer-
ence on Computer Communications, pages 1–9, May
2017.

[37] Matei Zaharia, Mosharaf Chowdhury, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Spark: Clus-
ter Computing with Working Sets. In Proceedings of
the 2Nd USENIX Conference on Hot Topics in Cloud

Computing, HotCloud’10, pages 10–10, 2010.

https://github.com/ssavvides/tpch-pig
https://github.com/ssavvides/tpch-pig
http://www.tpc.org/tpch/

	Introduction
	Background and Motivation
	Evaluation
	Challenges and Future Work
	Related work
	Conclusion
	Discussion Topics

