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Abstract. Probabilistic techniques for verification of finite-state transition sys-
tems offer huge memory savings over deterministic techniques. The two leading
probabilistic schemes are hash compaction and the bitstate method, which stores
states in a Bloom filter. Bloom filters have been criticized for being slow, inac-
curate, and memory-inefficient, but in this paper, we show how to obtain Bloom
filters that are simultaneously fast, accurate, memory-efficient, scalable, and flex-
ible. The idea is that we can introduce large dependences among the hash func-
tions of a Bloom filter with almost no observable effect on accuracy, and because
computation of independent hash functions was the dominant computational cost
of accurate Bloom filters and model checkers based on them, our savings are
tremendous. We present a mathematical analysis of Bloom filters in verification
in unprecedented detail, which enables us to give a fresh comparison between
hash compaction and Bloom filters. Finally, we validate our work and analyses
with extensive testing using 3SPIN, a model checker we developed by extending
SPIN.

1 Introduction

Despite its simplicity, explicit-state model checking has proved to be an effective ver-
ification technique and has led to numerous tools, including SPIN [14], Murϕ [18],
TLC [23], Java PathFinder [20], etc. The state explosion problem is especially acute
in explicit-state model checking because the amount of memory required depends lin-
early on the number of reachable states, which is often too large to enumerate in main
memory. Disk can be utilized intelligently [17, 23], but such algorithms will proba-
bly continue to be outperformed by algorithms that take advantage of the fast random
access time of main memory. Storing states more compactly in memory, therefore, is
very desirable, and because of the huge memory savings available, storing states in a
probabilistic data structure has become a popular approach and the topic of significant
research.

Virtually all of the proposed probabilistic verification approaches utilize one of two
data structures: a Bloom filter [14] or a compacted hash table [18]. The Bloom filter,
dating back to 1970 [1], is the data structure underlying “supertrace” [12], “multihash-
ing” [21], and “bitstate hashing” [13]. Compacted hash tables are utilized by “hashcom-
pact” [21] and the first version of “hash compaction” [18], but the technique was not
perfected until [19].
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The literature contains explanations on both sides of the Bloom filter vs. hash com-
paction debate as to why each data structure is the best. We have found that neither
is best, but that there are scenarios under which each is the best choice. More specif-
ically, we identify three probabilistic verification techniques (based on the two data
structures), each of which we believe is the best choice for some level of knowledge of
the state space size.

When the state space size is completely unknown, Holzmann’s supertrace method,
which uses a Bloom filter with two hash functions, is the best choice because of its
high expected coverage over a wide range of state space sizes (Figure 1, right graph).
Supertrace is fast but starts omitting states for state spaces much smaller than other
approaches (see Figure 1, left graph). Nevertheless, we can estimate actual state space
sizes rather accurately with supertrace (see Section 3.3).

When we know the size of the state space rather accurately—if we have an estimate
that we are reasonably certain is within about 15% of the actual size—the best choice is
a compacted hash table configured with slightly more cells than the maximum estimated
state space size. This technique gives exceptionally high accuracy within this narrow
range of state space sizes (Figure 1, left graph), and its speed is similar to supertrace’s.
If, however, the data structure overflows (right graph) or is underpopulated (left graph),
a Bloom filter configured for the same estimate would have been a better choice.

When we have a rough estimate of the state space size, a Bloom filter configured for
that estimate can tolerate much more deviation from the estimate than hash compaction
can, and is likely to be much more accurate than supertrace. Such a configuration re-
mains a respectable choice even if the estimate is off by a factor of five or more.

This last technique usually calls for a Bloom filter with many more hash functions
than supertrace’s two, but until our improvements to Bloom filters, introduced in [5],
such configurations were unreasonably slow and not considered a good choice: “In a
well-tuned model checker, the run-time requirements of the search depend linearly on
[the number of hash functions]: computing hash functions is the single most expen-
sive operation a model checker must perform” [14]. “[C]omputing 20 hash functions is
quite expensive and will substantially slow down the search. Hash compaction is also
superior in this regard, requiring only one 96-bit signature to be calculated” [22]. Our
improvements, which require only a 2-3 word signature to be computed on the state
descriptor, nullify these claims and make the configured Bloom filter technique a good
choice for the rough estimate case.

If supertrace provides an estimate of state space size sufficient for configuring hash
compaction, when do we have a only a rough estimate of the state space size? One
will have a rough estimate at many times during the development and verification of
a model. First of all, small changes to a model during development can easily modify
the size of a state space by more than 15%. Secondly, most models are parameterized
and the state space sizes of larger instances can only be predicted roughly with respect
to smaller instances. Because of its reasonable handling of a wide range of state space
sizes, the Bloom filter is preferable in these cases.

Version 2.0 of 3SPIN, our modified version of the SPIN model checker, is designed
around the three probabilistic verification modes described above. Whenever 3SPIN
finishes a verification run that revealed no errors in the model, it outputs detailed in-
formation on the expected accuracy of the run, uses this information to output an esti-
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Fig. 1. These graphs show the accuracy of three probabilistic verification tech-
niques/configurations for various state space sizes. In both graphs, lower is better. The
data points for “Hash compaction” and “Bloom filter” are obtained with data structures opti-
mized for a state space size of 108, using 400MB of memory. The graphs show the accuracy
of the data structures as the size of the state space varies. The left graph shows the probability
that even a single omission occurs, while the right graphs shows the expected percentage of
states omitted. The “Bloom filter” (k = 24) and “Supertrace” (k = 2) accuracies are computed
using the analyses in Section 3. To compute the “Hash compaction” values we need to know the
number of expected collisions in the table for the verifier run represented by each data point [18].
We determine this experimentally by counting the number of collisions in 3SPIN’s ordered,
compacted table implementation, which in this case uses 32 bits per state and has a maximum
visitable size of 104857589.

mate of the actual state space size, and recommends bitstate or hashcompact configu-
rations for future runs. We used various versions and configurations of 3SPIN for the
experimental results in this paper, but 3SPIN always seeds its hash functions based on
the current time, resulting in virtually independent functions among executions. Unless
otherwise specified, timings are taken on a 2.2Ghz non-Xeon Pentium4 (Dell Precision
340), with 512MB PC800 RDRAM running Red Hat Linux 9 with the 2.4.20 kernel.
We used version 3.1.1 of the GNU C compiler with the following arguments: -O3 -
march=pentium3 -mcpu=pentium4.

One category of related work is state space caching and the t-limited scheme of
hash compaction [19]. This approach offers more flexibility to hash-compacted tables
and might be a reasonable choice if memory is so constrained that a hash-compacted
table of the whole state space is too inaccurate, but we don’t see this scheme as a
viable replacement for the Bloom filter. Unlike state space caching, supertrace is able
to explore a huge number of states with no redundant work, allowing it to find errors
quickly. Another problem with state-space caching is that it does not give an indication
of the size of the state space. This is acceptable in cases where state-space caching is
a good choice for the problem size, but trying state-space caching is not a good way to
test whether it is a good solution, because it is difficult to distinguish a process that is
about to finish from one that will do many times more work than a Bloom filter.

Another category of related work is reductions that can play their own role in tack-
ling state explosion. Both symmetry [3, 7, 6] and partial-order reductions [9, 11] are
compatible with the probabilistic techniques discussed. 3SPIN preserves SPIN’s partial-
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order compatibility, but we have disabled it in our tests in order to more accurately
measure accuracy and to work with larger state spaces.

This paper examines Bloom filters for verification in unprecedented detail and gives
analytical and empirical validation of the speed and accuracy of our improved Bloom
filters. Section 2 introduces Bloom filters and reviews basic analyses that, until now,
have not been fully utilized by the verification community. Section 3 extends these anal-
yses by presenting two accuracy metrics for evaluating the performance of Bloom filters
as visited lists. Section 4 details the effects of sacrificing hash function independence.
Section 5 describes replacements for independent hash functions that represent various
tradeoffs in efficiency and accuracy, though all our techniques provide huge speed ben-
efits at virtually unobservable accuracy costs. Section 6 gives the results of many tests
with modified versions of the SPIN model checker. The results validate our analytical
accuracy claims. We end by concisely restating our contributions in Section 7.

2 Bloom Filters

A Bloom filter is used to represent subsets of some universe U . A Bloom filter is imple-
mented as an array of m bits, uses k index functions mapping elements in U to [0..m),
and supports two basic operations: add and query. The index functions are tradition-
ally assumed to be hash functions with the standard assumptions that they are random,
uniform, and independent, though these assumptions can be replaced with universal
hashing arguments. Initially, all bits in the Bloom filter are set to 0. To add u ∈ U to a
Bloom filter, the index functions are used to generate k indices into the array and the
corresponding bits are set to 1. A query is positive iff all k referenced bits are 1. A neg-
ative query clearly indicates that the element is not in the Bloom filter, but a positive
query may be due to a false positive, the case in which the queried element was not
added to the Bloom filter, but all k queried bits are 1 (due to other additions).

We now analyze the probability of a single query of an unadded element returning
a false positive (taken from [2]). Note that if p is the probability that a random bit of
the Bloom filter is 1, then the probability of a false positive is pk, the probability that
all k index functions map to a 1. If we let i be the number of elements that have been
added to the Bloom filter, then p = 1− (1− 1

m )ik, as ik bits were randomly selected,
with probability 1

m , in the process of adding i elements. We use f BF

m,k,i to denote the
probability that the (i+1)st addition causes a false positive.

This construction of the false positive probability is far more accurate than the anal-
yses of bitstate hashing that appear in verification literature [21, 13, 22]. These analyses
assumed that every addition to the data structure flips k 0′s to 1′s. This assumption is
far from reasonable, e.g., when the data structure contains half 1’s and half 0’s, the ex-
pected number of 0’s that are flipped by an addition is k

2 . This property is crucial to the
flexibility of Bloom filters and is necessary for accurate analysis.

The false positive probability is obviously an important metric, and with some work
one can show that it is minimized exactly when k = (i log2

m
m−1 )−1. In [2], the term (1−

1
m )ik is approximated by e−

ik
m , and the claim is made that, modulo this approximation,

the probability of false positives is minimized when k = m
i ln2, where ln is loge. One

can show that this last formula is an upper approximation.
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3 Bloom Filters in Verification

Although perfect for some applications [16, 8], the false positive rate is insufficient as a
metric for evaluating the accuracy of Bloom filters in probabilistic explicit-state model
checking. More appropriate metrics are based on the number of states that are omitted
from the search, which tells us how much uncertainty there is in the model checking
result. The first way to estimate this uncertainty is by computing the expected number of
omissions, which could be used to estimate “coverage” as in [13]. The second metric is
the probability that one or more omissions occur, as done for hash compaction in [18].

3.1 A Simplified Problem

We start with a simplified problem: given n unique states, add each one to a Bloom
filter, but before each addition, query the element against the same Bloom filter to see
if it returns a false positive. Each false positive is due to a filter collision, in which all
bits indexed were set to one by previous additions. We will designate the number of
(Bloom) filter collisions with cBF.

To compute the probability of no filter collisions at all, we start by noting that in a
Bloom filter containing i elements, the probability that adding a new element does not
lead to an omission is just 1 minus the probability of a false positive. The probability
of there not being an omission at all is approximately the product of there not being an

omission as i ranges from 0 to n−1: P(cBF = 0) = ∏n−1
i=0

(

1− f BF

m,k,i

)

.1 The probability

that there are one or more filter collisions, P(cBF > 0) = 1−P(cBF = 0).
To compute the expected number of filter collisions when querying and adding n

distinct states, we must compute how much each state is expected to contribute. At run
time, each new state contributes 1 filter collision with probability fBF

m,k,i. Adding all n of
these up, we get the expected number of filter collisions:

E(cBF) =
n−1

∑
i=0

f BF

m,k,i (1)

3.2 The General Problem

We now generalize our simplified problem to address the issues in explicit-state model
checking, and tailor our analyses accordingly. The results apply more generally to any
scenario in which a Bloom filter is used to represent the visited set in a graph search
algorithm.

If we assume that the model checker reaches every state, we can apply the analysis
given for our simplified problem2. This assumption, however, is unsafe because omis-
sions can cause other states never to be reached, and never to be queried against the
Bloom filter. We distinguish between two types of omissions:

1 To be more precise, one must assume the n additions are non-colliding. For brevity, we present
the very close approximation that ignores this assumption.

2 In [13], Holzmann points out that SPIN is written so that states are checked for errors each time
they are reached (queried against visited list). Analysis in [19] also assumes this technique is
employed. This might not be a reasonable choice in all cases, so our analysis is conservative
in assuming this technique is not employed.
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Definition 1 A hash omission is a state omitted from a search because a query of the
visited set resulted in a false positive.

Definition 2 A transitive omission is a reachable state omitted from a search because
none of its predecessors were expanded; thus, the state was never queried against the
visited set.

We use oH to represent the number of hash omissions in a verifier run. The corre-
spondence with the simplified problem tells us that E(oH) = E(cBF) 3 and P(oH = 0) =
P(cBF = 0).

We use oT to represent the number of transitive omissions in a verifier run, and o
to represent the total omissions: o = oH + oT. An obvious, but useful, lemma is that
if there are no hash omissions, then there are no transitive omissions. Consequently,
P(o = 0) = P(oH = 0).

Lemma 1. (Probability of No Omission) oH = 0 implies o = 0

In the presence of hash omissions, the number of transitive omissions can vary
wildly—even for the same model and same number of expected hash omissions (see
Section 6). Nevertheless, Holzmann has observed that the number of hash omissions
is a useful approximation of the total number of transitive omissions [13], meaning we
could estimate the total number of omissions as follows (though Holzmann’s formulas
for E(o) and E(oH) are different):

E(o) ≈ 2E(oH) (2)

This estimation is very rough and heavily dependent on the connectivity of the
model being checked, but it is consistent with our results in Figure 2. One curve shows
the computed values for E(oH) under the experimental configuration. Very close to that
curve is a curve that shows how many filter collisions (false positives) occurred when
querying and adding all reachable states to the Bloom filter, just like the simplified
problem of Section 3.1. This method gives us an empirical estimate of hash omissions.
The last curve shows average total omissions from actual verifier runs.

Another lesson to take from Figure 2 is that getting close to the right k can result in
orders of magnitude fewer omissions than using supertrace (k = 2).

Finally, the expected number of omissions can be used to estimate the percentage
of states covered by a bitstate search, as Holzmann did with less precision in [13]. Our
coverage estimate is just (n−E(o))/n ·100% (see Equation 2).

3.3 Maximizing Accuracy

So far our accuracy analyses have been summative; that is, we can evaluate the accuracy
of a search given m, n, and k. However, as discussed in the introduction, we would like
to be able to determine what configuration is the best choice given some rough estimate
of the state space size, n. The m parameter is easy to choose, however, because it should

3 To be more precise, n would have to the number of reached states, which would have to account
for transitive omissions, which are virtually impossible to predict precisely.
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Fig. 2. We show the expected and observed omissions out of a 606,211-state instance of PFTP
using 1MB for the Bloom filter, as k is varied. The theoretical optimum value for k is 11. Except
for those that are directly computed, each point represents the average of 100 iterations.

be as big as possible without the verifier spilling into swap space. Larger Bloom filters
(and compacted hash tables) are always more accurate, and thus, this section focuses
on the more interesting parameter, k.

k is a complicated factor for accuracy because too many or too few index functions
hurt accuracy. In fact, for a given m and n there is one k that is the best choice according
to our expected omission metric—a consequence of the curve always being concave up
with respect to k (see Figure 2). The best k happens to be virtually the same for our
probability of omissions metric, which we partially verified by computing virtually the
same values found in Table 1 for this other metric. For all practical purposes, optimizing
for one of these metrics gives the same result as optimizing for the other.

One approach to minimizing the expected hash omissions is to differentiate Equa-
tion 1 with respect to k and set it equal to 0 to find the global minimum. This method
gives us the non-discrete choice of k that minimizes the expected omissions, but Bloom
filters must use a discrete number of index functions. Rounding to the nearest integer is
a reasonable fix but does not always result in the best discrete k.

The large m and n values we encounter in practice mean that the best choice of k
depends only on the ratio of m to n. Below we show that if k minimizes the expected
omissions for m and n, then k minimizes the expected omissions for cm and cn, because
the expect omission curve is the same except for a constant factor of c. To see this, note
that E(oH) ≈

∫ n
0 f BF

m,k,idi. Using some calculus, we have:

E(oH

cm,k,cn) ≈
∫ cn

0

(

1− e−ki/cm
)k

di = c
∫ n

0

(

1− e−ki/m
)k

di ≈ c E(oH

m,k,n)

We can now use Equation 1 to calculate, for any given positive integer value of k,
the range of m/n values for which it is the best choice. We do this by picking a large
m and computing a barrier value b such that if m/n < b, then using k hash functions is
better than using k + 1, and if m/n > b, then using k + 1 hash functions is better than
using k. This takes O(m) time. For example, at m/n ≈ 7.73819, k = 6 and k = 7 give
the same expected number of hash omissions. k = 7 remains the best choice for m/n
values up to about 9.13545. We derive a closed-form estimate for this relationship by
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generating a formula that approximately fits the computed values:

km/n = d3.8(m
n +4.2)

−1 m
n

ln2e (3)

Table 1 compares some of the computed barriers with those obtained by our closed-form
estimate and illustrates that the difference between the two approaches is not significant.

Table 1. This table shows the m/n barriers that define the ranges for which specific values of k are
best. The table compares the values computed using Equation 1 with those taken from the inverse
of the estimation formula above (Equation 3). Computing the m/n barriers for the probability of
any omissions metric results in virtually the same values.

Barrier between 1 and 2 2 and 3 3 and 4 5 and 6 10 and 11 50 and 51 100 and 101
Computed m/n 1.1346 2.3481 3.6441 6.3529 13.370 70.849 142.95
Closed-form estimate 1.1227 2.3536 3.6513 6.3566 13.372 70.863 142.97

One of the big advantages of Bloom filters is that they can be used to estimate
the total size of the state space with high accuracy. 3SPIN uses some tricks beyond
the scope of this paper for this purpose, but here is another technique that is just as
valid. Let N be the number of states identified as unique by the Bloom filter during
the verification and let p be the proportion of 0’s in the Bloom filter after verification.
From our analysis in Section 2, p = (1− 1

m )ik, where i is the number of distinct states
we attempted to add (note that i ≥ N because of false positives). Solving for i, we have
i = 1

k log( m−1
m ) p. From equation 2, we have that E(o) ≈ 2(i−N), thus n (the size of the

state space) ≈ i+2(i−N).
Notice one last thing about Bloom filters in verification, if m is several gigabytes or

less and m/n calls for more than about 32 index functions, the accuracy is going to be
so high that there is not much reason to use more than 32—for the next several years
at least. In response to this, 3SPIN currently limits the user to k = 32. The point of this
observation is that we do not have to worry about the runtime cost of k being on the
order of 64 or 100, because those choices do not really buy us anything over 32.

4 Fingerprinting Bloom Filter

As Section 3.3 demonstrates, getting the highest accuracy for available m and estimated
n can require the use of many index functions. In this section we introduce a strategy
that can greatly reduce the cost of computing many index functions and analyze how to
make its effect on accuracy negligible.

A regular Bloom filter operation applies the state descriptor (δ) to each of k indepen-
dent hash functions to compute the bit vector indices associated with that state, yielding
a time complexity of k×|δ|. A fingerprinting Bloom filter first applies the state descrip-
tor to a hash function to compute that state’s hash fingerprint, ϕ, and then applies that
fingerprint to a set of k functions to get the indices for the state, yielding a complexity
of (|ϕ|× |δ|)+(k×|ϕ|).

Let us consider a concrete example, like that used below in Figure 3. Let k = 24;
let |ϕ| = 2 words; and let the state descriptor be |δ| = 16 words, though a complex sys-
tem could easily require 100 or more words. Thus, using independent hash functions
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requires 384 units of time for each Bloom filter operation, whereas using fingerprinting
requires about 80 units. This is a very significant difference, as hash function computa-
tion tends to dominate the time cost of probabilistic model checking [14].

In order to quantify the accuracy impact of fingerprinting, we describe how its op-
eration impacts how Bloom filters can omit states from models.

Definition 3 A fingerprint collision is a state that is falsely presumed as previously
added because a state that hashed to the same fingerprint was added previously.

Definition 4 A filter collision is a state that is not a fingerprint collision but is falsely
presumed as previously added because all of the bits indexed were set to 1 by previous
additions.

The probability of an addition resulting in a fingerprint collision depends on the size
of the fingerprint. If each fingerprint can take a value from 0 to s−1, the probability of

the (i+1)st addition causing a fingerprint collision, clearly, is fFP

s,i = 1−
(

1− 1
s

)i
.

The probability of a false positive in a fingerprinting Bloom filter is the probability
of it having a fingerprint collision or having a filter collision, which is: fFPBF

m,k,s,i = 1−

(1− f FP

s,i )(1− f BF

m,k,i). A simple overestimate for f FPBF

m,k,s,i is f FP

s,i + f BF

m,k,i.

We can use this false positive probability for a fingerprinting Bloom filter ( fFPBF

m,k,s,i) to
compute expected omissions from a search using a fingerprinting Bloom filter, and that
is as simple as replacing f BF

m,k,i in Equation 1 with f FPBF

m,k,s,i. For brevity, we have omitted
the analysis for probability of omissions in a fingerprinting Bloom filter, but when much
smaller than 1, the probability of any omissions is virtually the same as the expected
hash omissions, because 1−∏(1− x) ≈ ∑x when x � 1.

Figure 3 plots the expected hash omissions for a 384MB Bloom filter using 24 index
functions and a 64-bit fingerprint, which is about the size of two indices into the Bloom
filter. The graph also has a curve for the contribution of filter collisions and for the
contribution of fingerprint collisions. The “filter collision” curve shows what we would
expect without using fingerprinting, and the “total” curve shows what we would expect
from the fingerprinting Bloom filter. Note that the Y-axis for each graph uses a loga-
rithmic scale, and once the accuracy of a fingerprinting Bloom filter is worse than some
threshold, fingerprinting has virtually no effect on that accuracy. However, fingerprint-
ing tends to limit how accurate a Bloom filter can get when below that same threshold.
This accuracy threshold is determined mostly by the fingerprint size, accommodating
higher Bloom filter accuracies if the fingerprint is larger.

5 Implementing Index Functions

Fingerprinting is the first key to enhancing the speed of Bloom filters with more than
just a couple index functions, and the second key is to use an effective and efficient
scheme for computing indices based on the fingerprint. This section describes two tech-
niques introduced in previous work [5], points to some shortcomings in these tech-
niques, and introduces a new technique that overcomes these shortcomings (as validated
by results in Section 6).



10 P. C. Dillinger and P. Manolios

 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 100000

 0  5e+07  1e+08  1.5e+08  2e+08E
xp

ec
te

d 
ha

sh
 o

m
is

si
on

s 
(lo

g 
sc

al
e)

Size of state space

From fingerprint collisions (64 bits)
From filter collsions (384MB, k=22)

Total

Fig. 3. This graph shows the expected hash omissions contributed by different types of collisions
over a range of state space sizes (0 ≤ n ≤ 2×108). 384MBytes are allocated to the Bloom filter
(m = 3×230) and 24 index functions are used (k = 24), the optimal choice for n = 1×108. The
fingerprint size is 64 bits (s = 264).

5.1 Double and Triple Hashing

It is no coincidence that we analyzed fingerprinting Bloom filters in terms of a fin-
gerprint the size of two indices. Our double and triple hashing techniques for Bloom
filters employ two and three indices (respectively) to derive all k index values [5]. Dou-
ble hashing is a well-known method of collision resolution in open-addressed hash ta-
bles [4, 15, 10], but we were the first to apply the concept to Bloom filters.

These approaches are easy to understand simply by looking at pseudocode:

Algorithm 1 This algorithm computes index values for a Bloom filter by using double
or triple hashing, by excluding or including (respectively) the lines in boldface. The
indices for the Bloom filter to probe in its bit vector are stored into the array f. The
fingerprint can be thought of as the results of the hash functions a, b, and (optionally)
c, which operate on the state descriptor, δ, and return values from 0 to m− 1 (subject
to restrictions in text).

x, y := a(δ), b(δ)
z := c(δ)
f[0] := x
for i := 1 .. k-1

x := (x + y) MOD m
y := (y + z) MOD m
f[i] := x

The algorithm describes how the values are computed on a sequential machine, and
shows the simplicity of such computation. We can also define double and triple hashing
mathematically:

f[i]= a(δ)+ ib(δ) (mod m) (Double) (4)

f[i]= a(δ)+ ib(δ)+
(i)(i−1)

2
c(δ) (mod m) (Triple) (5)
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Not present in either description are restrictions that must be placed on b to ensure
all (or almost all) k indices are unique. In the case of double hashing, if b(δ) is zero,
all indices will be the same, which is very bad for the collision probability. Similarly,
if b(δ) divides m, the number of indices probed will be the minimum of k and m/b(δ),
which could be as small as two. To avoid these cases, b(δ) should be made non-zero
and relatively prime to m. When m is a power of 2, simply make b(δ) odd. If m is not a
power of 2, we recommend making m the largest prime not greater than the requested
m, and b(δ) must merely range from 1 to m−1.

Triple hashing is less prone to the problems described for double hashing, because
b(δ) and c(δ) must collaborate in generating redundant indices. Applying the same
restrictions on b(δ) as we do for double hashing alleviates any problems. Although this
does not guarantee all indices are unique, neither do independent hash functions, and in
both cases a significant number of redundant indices for a single state is highly unlikely.

As empirical results in our companion SPIN paper show [5], double hashing im-
poses an observable accuracy limitation on a Bloom filter. In fact, a double hashing
Bloom filter behaves much like a fingerprinting Bloom filter using a fingerprint a little
smaller than two indices; that is, the accuracy threshold at which the choice of dou-
ble hashing causes a noticeable loss of accuracy is worse than we would expect for a
two-index fingerprint. In our SPIN implementation we went straight to triple hashing
because our hash function produced enough data after a single run to support triple
hashing.

For the general case, in which computing a three-index fingerprint could be 50%
more costly than computing a two-index fingerprint, great would be a technique that
preserves the theoretical accuracy of a two-index fingerprinting Bloom filter but has a
per-k cost similar to double hashing.

5.2 Enhanced Double Hashing

A scheme we call “enhanced double hashing” comes much closer to the theoretical
accuracy of two-index fingerprinting and has a per-k cost similar to double hashing.
Here is the algorithm:

Algorithm 2 This algorithm computes index values for a Bloom filter using our en-
hanced double hashing scheme. The indices for the Bloom filter to probe in its bit vector
are stored into the array f. The two indices of the fingerprint are the results of the hash
functions a and b, which operate on the state descriptor, δ, and return values from 0 to
m−1

x, y := a(δ) MOD m, b(δ) MOD m
f[0] := x
for i := 1 .. k-1

x := (x + y) MOD m
y := (y + i) MOD m
f[i] := x

We can also define enhanced double hashing mathematically:
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f[i]= a(δ)+ ib(δ)+
i3 − i

6
(mod m) (6)

The first way this new scheme improves over double hashing is that b is no more
restricted than a; both of them can be arbitrary indices. Double hashing must make b(δ)
odd if m is a power of two, effectively reducing the fingerprint size by one bit, which
approximately doubles the probability of a fingerprint collision.

The second problem with double hashing is more subtle, because the collisions the
problem contributes to are not pure fingerprint collisions. Double hashing suffers from
what we call the “approximate fingerprint collision” problem.

Definition 5 An approximate fingerprint collision is a filter collision whose probability
is exacerbated by two or more indices colliding with those of a single previous addition
with a related fingerprint.

What constitutes a relationship between fingerprints depends on the implementation
of the index functions. The simplest example for double hashing is when b(δ) = b(δ′)
and a(δ) = a(δ′)−b(δ) (mod m). If δ has already been added, all but one of the in-
dices for δ′ are already set to 1, which does not guarantee a collision (the other index
might still be 0), but greatly increases the probability. Another example for double hash-
ing is when a(δ) = a(δ′) and b(δ) = 2b(δ′) (mod m). If δ has already been added,
every other index for δ′ will collide with the first half the indices for δ.

In fact, the set of indices can be exactly the same if a(δ) = a(δ′) + (k − 1)b(δ′)
(mod m) and b(δ) = −b(δ′) (mod m). According to this relationship, any set of in-
dices producible by double hashing can be produced by two pairs of values: one going
“forward” and the other going “backward”. This would not happen if we made sure
b(δ) did not reach or exceed m/2, effectively reducing the fingerprint size by a bit, but
the overall collision probability stays the same in either case.

Because enhanced double hashing does not suffer the drawbacks of double hashing,
it preserves the theoretically expected accuracy of a two-index fingerprinting Bloom
filter, as our empirical results show in the next section.

6 Empirical Validation

We start this section with results that demonstrate that our implementations and our
techniques generalize to arbitrary models of arbitrary size (Table 2).

Table 3 shows that the various implementations of index functions match almost
exactly the expected accuracies from our analyses. For example, double hashing per-
forms worse than enhanced double even if two bits of information are removed from
the fingerprint in the enhanced double implementation. This is consistent with the short-
comings we described for double hashing.

All of the “theoretical” values in Table 3 are computed from our fingerprinting anal-
ysis (Section 4), which assumes independent hash functions are applied to the finger-
print. In this case, the effect of a two-index fingerprint is (barely) observable and en-
hanced double hashing seems to do as well as we would expect using independent hash
functions on the fingerprint.
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Table 2. Validation of our approaches various models of various sizes. All these models are
included in the SPIN distribution.

Model Algorithm States m k % runs full Expected Iterations

Peterson4 Triple 7,308,888 32MB 25 99.11% 99.15% 336
Leader7 Triple 723,035 3MB 8 77.34% 75.69% 331
Sort9 Triple 2,509,313 8MB 20 59.88% 63.38% 329
PFTP1,3 Double 104,251,768 400MB 24 35% 30.89% 20
PFTP1,3 Triple 104,251,768 400MB 24 35% 30.89% 20

The probability of a fingerprint collision with a three-index fingerprint is so low that
we would need nine significant digits to notice its effects in the “theoretical expecta-
tion” calculations. The empirical results of using triple hashing are consistent with this
expectation.

Table 3. We show the percentage of runs with full coverage when verifying a 914,859-state
instance of PFTP using 4MB for the Bloom filter, 27 index functions, and the specified imple-
mentation of those index functions (see text). Each data point represents 100,000 iterations.

Implementation Double Enh. Double Enh. Double Enhanced Triple Independent
minus 2 bits minus 1 bit Double & no FP

Observed 99.529% 99.740% 99.826% 99.880% 99.898% 99.898%
Theoretical 99.746% 99.820% 99.857% 99.894% 99.894%

The left component of Figure 4 reminds us that the various index function algo-
rithms only have observably different accuracies when the accuracy is really high. The
same figure also shows that the various algorithms follow the same curve and, thus, the
best choice for k applies to all of them. In this case, theory says the best choice is k = 14,
which is consistent with the graph. Also notice that the graph has several outliers. These
are not due to flaws in the algorithm, but to the unpredictability of transitive omissions.

The right component of Figure 4 shows execution times for various implementations
of the index functions. The small per-k cost of our techniques make them much more
efficient when many index functions are used. For example, k = 28 for enhanced double
hashing is faster (per state explored) than k = 5 for independent hash functions, and five
times faster than k = 28 for independent hash functions.

Our last test (not graphed) estimates how much of the per-k cost of additional index
functions under enhanced double hashing is due to main memory latency. When the
Bloom filter was sized much larger than the processor cache, k = 27 was 44% slower
than k = 10. However, when the Bloom filter and the code were able to fit in cache,
k = 27 was only 26% slower. For this machine at least (Katmai Pentium III Xeon, 2MB
cache), we can conclude that main memory latency is at least 40% of the per-k cost,
which suggests the per-k overhead of our Bloom filters is about is small as possible.
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Fig. 4. The left graph shows the number of omissions for various algorithms and choices of k
using a 2MB Bloom filter (no consistent difference intended; see text). Each point is an average of
1000 iterations. The graph on the right shows the time per state visited for various index function
implementations and choices of k. 8MB was allocated for the Bloom filter, and each data point is
the average time per state over 5 verifier runs. Both experiments used a 914,859-state instance of
PFTP with 192-byte (48-word) descriptors.

7 Conclusions

We have shown how to obtain Bloom filters that are simultaneously fast, accurate,
memory-efficient, scalable, and flexible. As a result, Bloom filters tuned for particular
state space size estimates run at speeds approaching a supertrace Bloom filter (two hash
functions). When only a rough estimate of the state space size is available, e.g., after a
model has been modified, such properly-tuned Bloom filters have a sizable advantage
over both supertrace and hash compaction. Supertrace does not take into account any
information about estimated state space sizes and, thus, incurs a significant accuracy
cost; at the other extreme, hash compaction can offer the highest accuracy of the ap-
proaches we have considered, but easily becomes a bad choice if our estimate is off by
about 15%. For these reasons, our Bloom filters have an important role to play in the
modern practice of model checking and verification.
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