
A Verifying Core for a Cryptographic Language
Compiler

Lee Pike (presenting)
Mark Shields1 John Matthews

Galois Connections

August 15, 2006

1Presently at Microsoft.

Thanks

I Rockwell Collins Advanced Technology Center, especially David
Hardin, Eric Smith, and Tom Johnson

I Konrad Slind, Bill Young, and our anonymous ACL2 Workshop
reviewers

I Matt Kaufmann and the other folks on the ACL2-Help list

I And of course, Pete Manolios and Matt Wilding for a heckuva
workshop!

Compiler Assurance: The Landscape

I Compilers are complex software systems.
I Critical bugs are possible.
I Compilers are targets for backdoors and Trojan horses.

I How do we get assurance for correctness?
I Testing.
I Long-term and widespread use (e.g., gcc).
I Certification (e.g., Common Criteria, DO-178B).
I Mathematical proof.

Proofs and Compilers: Two Approaches

1. A verified compiler is one associated with a mathematical proof.

I One monolithic proof of correctness for all time.
I Deep and difficult requiring parameterized proofs about the

language semantics and the compiler transformations.

2. A verifying compiler2 is one that emits both object code and a
proof that the object code implements the source code.

I Requires a proof for each compilation
(the proof process must be automated).

I But the proofs are only about concrete programs.

If you have a highly-automated theorem-prover (hmmm. . . where can I
find one of those?), a verifying compiler is easier.

We take the verifying compiler approach.

2Unrelated to Tony Hoare’s concept by the same name.

µCryptol in One Slide

fac : B^32 -> B^8;
fac i = facs @@ i
where {

rec
index : B^8^inf;
index = [0] ## [x + 1 | x <- index];

and
facs : B^8^inf;
facs = [1] ## [x * y | x <- facs

| y <- drops{1} index];
};

index = 0, 1, 2, 3, 4, . . . , 255, 0, 1, . . .
facs = 1, 1, 2, 6, 24, 120, 208, 176, . . .
fac 3 = facs @@ 3 = 6

Overall Infrastructure

source µCryptol

indexed µCryptol

canonical µCryptol

Common Lisp

higher-order logic

binary AAMP7

Isabelle

ACL2

ACL2

compilation

automated
equivalence
proof

equivalence
proof
(cutpoint
reasoning)

equivalence
proof

shallow embedding

compilation

compilation

shallow embedding

shallow embedding

deep embedding binary AAMP7
on lisp simulator

higher-order logic

front-end

core

compiler verifier

back-end

Common Lisp

What We’ve Done: Snapshot

I A “semi-decision procedure” in ACL2 for proving correspondence
between µCryptol programs in “indexed form” and in “canonical
form”.

I A semi-decision procedure for proving termination in ACL2 of
µCryptol programs (including mutually-recursive cliques of
streams).

I A simple translator for shallowly embedding µCryptol into ACL2.

I An ACL2 book of executable primitive operations for specifying
encryption protocols (including modular arithmetic, arithmetic in
Galois Fields, bitvector operations, and vector operations).

These results are germane to

I Verifying compilers for other functional languages

I The verification of cryptographic protocols in ACL2

I Industrial-scale automated theorem-proving

Applications and Informal Metrics

Framework for automated translations, correspondence proofs, and
termination proofs for, e.g.,

I Fibonacci, factorial, etc.

I TEA, RC6, AES

Caveat: mcc doesn’t output the correspondence proof itself yet.

ACL2 “Condition of Nontriviality”: for AES, ACL2 automatically
generates

I About 350 definitions

I 200 proofs

I 47,000 lines of proof output

Termination is decidable! (Thanks, Mark)

Let S be the set of stream names for a mutually-recursive clique of
stream definitions. Then we say the clique is well defined if there exists
a measure function

f : (N× S) → N

such that for each occurrence of a stream y in the body of the
definition of stream x with delay d , we have

∀k ∈ N. k ≥ d ⇒ f (k − d , y) < f (k, x)

The mcc compiler type system ensures well-definedness

I The compiler constructs a minimum delay graph for the clique of
streams.

I N.B.: Only linearly-recursive programs can be written in µCryptol.

This appears to be all you need for encryption protocols.

. . .But can we trust the compiler’s type system?

Termination is verifiable!

rec
index : B^8^inf;
index = [0] ## [x + 1 | x <- index];

and
facs : B^8^inf;
facs = [1] ## [x * y | x <- facs

| y <- drops{1} index];

(defun fac-measure (i s)
(acl2-count

(+ (* (+ i (cond ((eq s ’facs) 0)
((eq s ’index) 0))) 2)

(cond ((eq s ’facs) 1)
((eq s ’index) 0)))))

All termination proofs are automatic in ACL2.

Contributed ACL2 Book: Cryptographic Primitives

I Arithmetic in Z2n (arithmetic modulo 2n): addition, negation, subtraction,
multiplication, division, remainder after division, greatest common divisor,
exponentiation, base-two logarithm, minimum, maximum, and negation.

I Bitvector operations: shift left, shift right, rotate left, rotate right, append of
arbitrary width bitvectors, extraction of n bitvectors from a bitvector, append
of fixed-width bitvectors, split into fixed-width bitvectors, bitvector segment
extraction, bitvector transposition, reversal, and parity.

I Arithmetic in GF2n (the Galois Field over 2n): polynomial addition,
multiplication, division, remainder after division, greatest common divisor,
irreducibility, and inverse with respect to an irreducible polynomial.

I Pointwise extension of logical operations to bitvectors: bitwise
conjunction, bitwise disjunction, bitwise exclusive-or, and negation bitwise
complementation.

I Vector operations: shift left, shift right, rotate left, rotate right, vector
append for an arbitrary number of vectors, extraction of n subvectors
extraction from a vector, flattening a vector vectors, building a vector of
vectors from a vector, taking an arbitrary segment from a vector, vector
transposition, and vector reverse.

Correspondence Proof

I We prove that for a well-formed indexed µCryptol program, its
canonical representation is observationally equivalent.

I Example: Factorial Proof

(make-thm :name |inv-facs-thm|
:thm-type invariant
:ind-name |idx_2_facs_2|
:itr-name |iter_idx_facs_3|
:init-hist ((0) (0))
:hist-widths (0 0)
:branches (|idx_2| |facs_2|))

This top-level macro call, with the appropriate keys, generates the
necessary lemmas and correspondence theorem.

Two Problems for Automated Proof Generation

Two problems:

I The proof infrastructure must be general enough to automatically
prove correspondence for arbitrary programs.

I The proof infrastructure must not fall over on real programs
(getting factorial to work took a day; AES took a couple of
months).

I Type declarations hundreds of lines long (e.g., B^8^4^4^11).
I Programs easily reaching more than a thousand lines (AES) in

ACL2.

Some Mitigations: why ACL2 was the right tool

The two difficulties are mitigated by ACL2 (and its community):
I Generality:

I ACL2 user-books: Use powerful ACL2 books, particularly Rockwell
Collins’ super-ihs book for reasoning about arithmetic over
bit-arrays (slated for public release).

I Macro language: For any other “hard” lemmas, use macros.
Instantiate macros with concrete values (usually making their
proofs trivial) and prove them at “run-time” – these are usually
bitvector theorems where we want to fix the width of the bitvectors.

I Scaling:
I Disabling: Package up large conjunctions in recursive definitions to

prevent gratuitous expensive rewrites. Disable expensive formulas.
I Hints: “Cascading” computed hints that iteratively enable

definitions after successive occurrences of being stable under
simplification.

What could have helped even more?

I A better way to find/search books (e.g., priorities on hints).

I Better integration with decision procedures/SMT (solvers)?

I Heuristics for searching for inconsistent hypotheses
(e.g., induction step showing that the hyp. of the induction
conclusion implies the hyp. of the induction hyp.). E.g.,

(implies (true-listp a)
(equal (rev (rev a)) a))

Subgoal *1/2
(implies (and (not (endp A))

(not (true-listp (cdr A)))
(true-listp A))

(equal (rev (rev A)) A))

Don’t rewrite (equal (rev (rev A)) A)!

Dirty (Clean?) Laundry

How hard was all this? Regarding the first author,
I Experience:

I Some Common Lisp experience.
I Little compiler experience.
I Little ACL2 experience.
I No µCryptol experience.
I No AAMP7 experience.

I Effort:
I Approx. 3 months to complete the core verifier.
I About 2 months investigating back-end verification.

DSL verifying compilers are feasible!

What’s Left?

I Front end: in Isabelle (because of higher-order language
constructs); just a few transformations and pattern-matching.

I Back-end: more substantial: Galois helped do an initial
cutpoint-proof of factorial on the AAMP7.

Without the AAMP7 model, the back-end verification is infeasible:
stay tuned for the next talk!

Additional Resources

Example µCryptol & ACL2 specs and cryptographic primitives

http://www.galois.com/files/core verifier/

µCryptol design and compiler overview (solely authored by M. Shields)

http://www.cartesianclosed.com/pub/mcryptol/

µCryptol Reference Manual (solely authored by M. Shields)

http://galois.com/files/mCryptol refman-0.9.pdf

http://www.galois.com/files/core_verifier/
http://www.cartesianclosed.com/pub/mcryptol/
http://galois.com/files/mCryptol_refman-0.9.pdf

Appendix.

Transformations: Source to Canonical

Front-End Transformations
1. Introduce safety checks
2. Simplify vector comprehensions
3. Eliminate patterns
4. Convert to indexed form

Indexed Form Generated

Begin Core Transformations
5. Push stream applications
6. Collapse arms
7. Align arms
8. Takes/segments to indexes
9. Convert to iterator form

10. Eliminate simple primitives
11. Eliminate zero-sized values
12. Inline and simplify
13. Introduce temporaries
14. Eliminate nested definitions
15. Share top-level value definitions
16. Box top-level definitions
17. Eliminate shadowing
Canonical Form Generated

What Made ACL2 the Right Tool

Or. . . “How an ACL2 novice can quickly do something useful.”

I Powerful and easy macros:
I Avoid (hard) general proofs by simple instantiation of parameters.
I Simplifies creating a “proof framework” that is essential for an

automated verifying compiler.

I “Industrial strength prover” – able to handle models as large as
the AAMP7 model and easily generate proofs tens of thousands of
lines long.

I “First-order” language forces the user to consider specifications
that have more automated proofs from the get-go.

I A large number of active expert users.

I Good documentation.

I Powerful user-defined books (e.g., ihs books).

Correspondence Proof

We prove the following property for the core transformations: for
index-form program S and compiled canonical program C ,

“If S has well-defined semantics (does not go wrong), then S and C
are observationally equivalent.”

– Xavier Leroy
Formal Certification of a Compiler Back-end

POPL 2006

Well-Definedness

The “stream delay from stream x to occurrence of stream y is d”
means, for sufficiently large index k ∈ N, that the k’th element of
stream x depends on the value of the (k − d)’th element of stream y .

Let S be the set of stream names defined by a mutually-recursive
clique of stream definitions. Then we say the clique is well defined if
there exists a measure function

f : (N× S) → N

such that for each occurrence of a stream y in the body of the
definition of stream x with delay d , we have

∀k ∈ N. k ≥ d ⇒ f (k − d , y) < f (k, x)

Shallow Embedding

mcc contains a small (1.2klocs, excluding libraries) translator from
µCryptol to Common Lisp (the translator is unverified). Some
highlights:

I µCryptol types as ACL2 predicates: B^32^2,

(defund |$ind_0_typep| (x)
(and (true-listp x)

(natp (nth 0 x))
(< (nth 0 x) 4294967296)
(natp (nth 1 x))
(< (nth 1 x) 4294967296)))

defunded because AES has types like B^8^4^4^11.

I µCryptol primitives: . . .

Proof Macros

Correspondence proofs are generated from a few macros:

I Function correspondence theorems of non-recursive definitions.

I Type correspondence theorems of type declarations.

I Vector comprehension correspondence theorems.

I Stream-clique correspondence theorems of recursive cliques of
stream comprehensions.

I Vector-splitting correspondence theorems of type
correspondence for vectors that have been split into a vector of
subvectors.

I Inlined segments/takes correspondence theorems for inlined
segments and takes operators over streams.

Factorial Correspondence Theorem

(defthm factorial-invariant
(implies
(and (natp i) (natp lim)

(true-listp hist) (<= i (+ lim 1))
(equal (nth (loghead 0 i) (nth 0 hist))

(ind-facs i ’idx))
(equal (nth (loghead 1 i) (nth 1 hist))

(ind-facs i ’facs)))
(and (equal (nth (loghead 0 lim)

(itr-facs i lim hist)
(ind-facs lim ’idx))

(equal (nth (loghead 1 lim)
(itr-facs i lim hist)
(ind-facs lim ’facs)))))

Linear Recursion

Informally, a sequence
a0, a1, . . .

is linear recursive3 if

an+k = −ck−1

ck
an+k−1 − · · · −

c1

ck
an+1 −

c0

ck
an.

for constants c0, c1, . . . , ck , where ck 6= 0.

3Obtained at http://mathcircle.berkeley.edu/BMC3/Bjorn1/node3.html.

http://mathcircle.berkeley.edu/BMC3/Bjorn1/node3.html

