
A SAT-Based Procedure for Verifying
Finite State Machines in ACL2

Warren A. Hunt, Jr. and
Erik Reeber

{reeber,hunt}@cs.utexas.edu

ACL2 Workshop, August 16, 2006

The University of Texas

August 16, 2006 ACL2 2006 2

Introduction

• The ACL2 theorem prover is great
– Scalable to large industrial verification problems

• But…
– Proofs require a lot of human effort
– Computer could do more

• Especially when in decidable domains

• Identify a decidable subclass of ALC2 properties
– Based on tree structures

• New ACL2 hint for proving properties in this domain
– Available in a future version of ACL2

August 16, 2006 ACL2 2006 3

Presentation Overview

• Focus is on what you can do with the new hint
– If you want to know how it works

• Read paper
• Look at code: www.cs.utexas.edu/users/reeber

• Outline
– Demo
– Performance Results
– Hardware Verification Methodology
– Application: TRIPS Processor Components
– Future Work
– Conclusion

August 16, 2006 ACL2 2006 4

Demo

August 16, 2006 ACL2 2006 5

Performance Results

-25

25

75

125

175

225

275

4-bit Add Assoc 32-bit Add
Assoc

200-bit Add
Assoc

32x6 Shif t-0 64x7 Shif t-0 32x4 Add-Shift 64x6 Add-Shift 100 Digit Dec
Inv

T
im

e(
s)

ACL2 Clausifier BDD Engine SAT Engine

August 16, 2006 ACL2 2006 6

Lines of Code

0

50

100

150

200

250

300

350

4-bit Add Assoc 32-bit Add
Assoc

200-bit Add
Assoc

32x6 Shift-0 64x7 Shift-0 32x4 Add-Shift 64x6 Add-Shift 100 Digit Dec
Inv

L

in
es

ACL2 Clausifier BDD Engine SAT Engine

August 16, 2006 ACL2 2006 7

Hardware Verification Methodology

SULFA
Properties

ACL2 Model

ACL2 Spec
DE2
Design

Verilog
Design

English Spec, C Model and
Test Suite

SAT-Based
Decision
Procedure

Guided
ProofVerifying

Compiler

Manual
Translation

Compiler

Testing &
Inspection

August 16, 2006 ACL2 2006 8

TRIPS LSQ
• TRIPS Processor

– Designed and built at University of Texas and IBM
• Prototype next-generation processor

– Multi-core, speculative, pipelined processor
• 4 memory partitions, 16 ALUs
• 256 speculative out-of-order instructions,

partitioned into eight instruction blocks

• Load Store Queue (LSQ)
– Queue for speculative loads and stores not ready for

cache
– Four LSQ tiles, one for each memory partition

• Verified LSQ internal communication protocol

August 16, 2006 ACL2 2006 9

Exception Mask Protocol
• Exception can

occur at each tile
• Each tile stores a

mask of known
exceptions

• Mask sent up
each cycle

• Eventually every
exception is
known by Tile 0

• Global flushes
remove
exceptions

Tile 0
Flush_mask
Local_Except

UDT_EX_Mask

DDT_EX_Mask

Tile 1
Flush_mask
Local_Except

UDT_EX_Mask

DDT_EX_Mask

Tile 2
Flush_mask
Local_Except

UDT_EX_Mask

DDT_EX_Mask

Tile 3
Flush_mask
Local_Except

UDT_EX_Mask

DDT_EX_Mask

REG

REG

REG

T0_Except

T1_Except

T2_Except

T3_Except

Flush_mask Exception_mask

August 16, 2006 ACL2 2006 10

Verification of Exception Protocol

• Compiled Verilog design into DE2

• Compiled DE2 into ACL2 model
– proven equivalence

• Wrote single-tile exception model
• Specification:

– Safety. Tile 0 reports a subset of the exceptions
reported by the single-tile model

– Liveness. Eventually every exception produced by
the single-tile model is reported by Tile 0.

August 16, 2006 ACL2 2006 11

Exception Protocol Safety Property

(defthm specification-miss-exception-safety
(implies
(and (integerp tao)

(<= 0 tao)
(Tth-valid-inputsp tao input-list))

(submaskp
8
(acl2v-udt_miss_ordering_exceptions
t0
(Tth-model-state tao input-list)
(nth tao input-list))

(spec-miss-exceptions
(Tth-spec-state tao input-list)
(nth tao input-list)))))

• Tile 0 reports a subset of the exceptions reported by the single-tile
model

August 16, 2006 ACL2 2006 12

Safety Invariant Properties

(defthm miss-order-inv-implies-thm
(implies
(and (miss-order-inv proof-st)

(inputs-goodp proof-st ins))
(submaskp
8
(acl2v-udt_miss_ordering_exceptions
t0
(proof-st-dsn-state proof-st) ins)
(update-proof-st-0th-miss-mask *t0* proof-st ins)))

:hints (("Goal" :external (sat nil sat::$sat))))

(defthm miss-order-inv-is-invariant-step
(implies
(and (inputs-goodp proof-st ins)

(miss-order-inv proof-st))
(miss-order-inv (update-proof-state proof-st ins)))
:hints (("Goal" :external (sat nil sat::$sat))))

August 16, 2006 ACL2 2006 13

Liveness Property
• Eventually every exception produced by the single-

tile model is reported by Tile 0
• ACL2 Specification

– Prove theorem below
– Use defun-sk definition on next slide

• Proof process same as before
– Unable to prove invariant directly with SAT

(defthm specification-miss-exception-liveness
(implies
(and (integerp tao)

(<= 0 tao))
(eventually-1T-miss-subset-of-4T-P tao input-list))

August 16, 2006 ACL2 2006 14

Liveness Property Defun-sk
(defun-sk eventually-1T-miss-subset-of-4T-P
(tao input-list)
(exists
(tao-prime)
(and (integerp tao-prime)

(<= tao tao-prime)
(implies
(Tth-valid-inputsp tao-prime input-list)
(submaskp
8
(spec-miss-exceptions
(Tth-spec-state tao input-list)
(nth tao input-list))

(bv-or 8
(recent-flushes tao tao-prime input-list)
(acl2v-udt_miss_ordering_exceptions
t0
(Tth-model-state tao-prime input-list)
(nth tao-prime input-list))))))))

August 16, 2006 ACL2 2006 15

Store Mask Protocol
• Each tile produces a mask of arrived stores
• Protocol more complex than exception protocol

– Up to 256 entries in store mask
– Store mask sent to both neighbors

• Specification & verification methodology similar to
exception protocol

• Analysis
– Problem size: ~1500 Boolean variables
– 130 hours of human effort
– Multi-hour proof

• Improvement over pure theorem proving
– Counter examples especially helpful

August 16, 2006 ACL2 2006 16

Future Work
• More applications

– Full LSQ design
– n-tile circuit generator

• Performance improvements
– Try the new BDD system

• Expand SULFA
– Constrained functions
– Limited arithmetic

• Add to ACL2 “waterfall”
• Verify proof engine

– Theoretical issues: function body, proof of termination
– Practical issues: complex code, large clause inputs

• Counter-example guided refinement

August 16, 2006 ACL2 2006 17

Conclusion

• Defined decidable subclass of ACL2 formulas
– Includes primitives if, cons, car, cdr, consp, and equal
– Can be extended with user-defined functions

• New hint for proving properties in this subclass
– Fully automatic
– Generates counter-examples to invalid properties

• Applying to TRIPS processor
– Multi-core, pipelined, out-of-order processor
– Combining SAT-based reasoning with pure theorem

proving
– Solid improvement over pure theorem proving

August 16, 2006 ACL2 2006 18

Backup Slides

August 16, 2006 ACL2 2006 19

Single-Tile Exception Model
• Wrote a single-tile model in ACL2
• The full mask of exceptions is generated each cycle

NOT

EN-DECODE

* This input has been modified: an exception is disabled if it occurs
in an instruction that has already been flushed.

EN-DECODE

EN-DECODE

EN-DECODE

O
R

A
N
D

R
E
G

Flush_mask

T0_Except

T1_Except*

T2_Except*

T3_Except*

Spec_EX_mask

4

8

4

4

4

8

8

8

8

8

August 16, 2006 ACL2 2006 20

Single-Tile Exception Model
• Wrote a single-tile model in ACL2
• The full mask of exceptions is generated each cycle

NOT

EN-DECODE

* This input has been modified: an exception is disabled if it occurs
in an instruction that has already been flushed.

EN-DECODE

EN-DECODE

EN-DECODE

O
R

A
N
D

R
E
G

Flush_mask

T0_Except

T1_Except*

T2_Except*

T3_Except*

Spec_EX_mask

4

8

4

4

4

8

8

8

8

8

August 16, 2006 ACL2 2006 21

Store Mask Protocol

• Each tile keeps a mask
of arrived stores

• Used in completion
detection & deferred load
awakening

• Up to three stores are
sent both upward and
downward at the
beginning of each cycle

• Eventually all arrived
stores reach every tile

• A flush or a commit
removes stores

U
D

T
0_out

U
D

T
1_out

U
D

T
2_out

U
D

T
0_in

U
D

T
1_in

U
D

T
2_in

D
D

T
0_out

D
D

T
1_out

D
D

T
2_out

D
D

T
0_in

D
D

T
1_in

D
D

T
2_in

Store_mask

Tile 1

Flush_mask

Commit_mask

Local_store

Tile 0…

Tile 2…

REG

REG

Commit_maskFlush_mask

August 16, 2006 ACL2 2006 22

Single-Tile Store Model

• Similar to single-tile exception mask

NOR

EN-DECODE

* This input has been modified: an exception is disabled if it occurs
in an instruction that has already been flushed.

EN-DECODE

EN-DECODE

EN-DECODE

O
R

A
N
D

R
E
G

Flush_mask

T0_Store

T1_Store*

T2_Store*

T3_Store*

Store_mask

9

9

9

9

256

8

Commit_mask Expand Mask
256

256

