A SAT-Based Procedure for Verifying Finite State Machines in ACL2

> Warren A. Hunt, Jr. and Erik Reeber

{reeber,hunt}@cs.utexas.edu

The University of Texas

ACL2 Workshop, August 16, 2006

Introduction

- The ACL2 theorem prover is great
 - Scalable to large industrial verification problems
- But...
 - Proofs require a lot of human effort
 - Computer could do more
 - Especially when in decidable domains
- Identify a decidable subclass of ALC2 properties
 - Based on tree structures
- New ACL2 hint for proving properties in this domain
 - Available in a future version of ACL2

Presentation Overview

- Focus is on what you can do with the new hint
 - If you want to know how it works
 - Read paper
 - Look at code: <u>www.cs.utexas.edu/users/reeber</u>
- Outline
 - Demo
 - Performance Results
 - Hardware Verification Methodology
 - Application: TRIPS Processor Components
 - Future Work
 - Conclusion

Demo

Performance Results

Lines of Code

Hardware Verification Methodology

TRIPS LSQ

- TRIPS Processor
 - Designed and built at University of Texas and IBM
 - Prototype next-generation processor
 - Multi-core, speculative, pipelined processor
 - 4 memory partitions, 16 ALUs
 - 256 speculative out-of-order instructions, partitioned into eight instruction blocks
- Load Store Queue (LSQ)
 - Queue for speculative loads and stores not ready for cache
 - Four LSQ tiles, one for each memory partition
- Verified LSQ internal communication protocol

Exception Mask Protocol

- Exception can occur at each tile
- Each tile stores a mask of known exceptions
- Mask sent up each cycle
- Eventually every exception is known by Tile 0
- Global flushes remove exceptions

Verification of Exception Protocol

- Compiled Verilog design into DE2
- Compiled DE2 into ACL2 model
 - proven equivalence
- Wrote single-tile exception model
- Specification:
 - Safety. Tile 0 reports a subset of the exceptions reported by the single-tile model
 - Liveness. Eventually every exception produced by the single-tile model is reported by Tile 0.

Exception Protocol Safety Property

Tile 0 reports a subset of the exceptions reported by the single-tile model

```
(defthm specification-miss-exception-safety
(implies
  (and (integerp tao)
        (<= 0 tao)
        (Tth-valid-inputsp tao input-list))
  (submaskp
    8
    (acl2v-udt_miss_ordering_exceptions
    *t0*
    (Tth-model-state tao input-list)
    (nth tao input-list))
    (spec-miss-exceptions
    (Tth-spec-state tao input-list)
    (nth tao input-list)))))
```

Safety Invariant Properties

```
(defthm miss-order-inv-is-invariant-step
(implies
  (and (inputs-goodp proof-st ins)
        (miss-order-inv proof-st))
  (miss-order-inv (update-proof-state proof-st ins)))
  :hints (("Goal" :external (sat nil sat::$sat))))
```

```
(defthm miss-order-inv-implies-thm
  (implies
   (and (miss-order-inv proof-st)
        (inputs-goodp proof-st ins))
  (submaskp
    8
    (acl2v-udt_miss_ordering_exceptions
    *t0*
        (proof-st-dsn-state proof-st) ins)
        (update-proof-st-0th-miss-mask *t0* proof-st ins)))
  :hints (("Goal" :external (sat nil sat::$sat))))
```

Liveness Property

- Eventually every exception produced by the singletile model is reported by Tile 0
- ACL2 Specification
 - Prove theorem below
 - Use **defun-sk** definition on next slide
- Proof process same as before
 - Unable to prove invariant directly with SAT

```
(defthm specification-miss-exception-liveness
  (implies
   (and (integerp tao)
        (<= 0 tao))
   (eventually-1T-miss-subset-of-4T-P tao input-list))
```

Liveness Property Defun-sk

```
(defun-sk eventually-1T-miss-subset-of-4T-P
(tao input-list)
(exists
 (tao-prime)
 (and (integerp tao-prime)
       (<= tao tao-prime)
       (implies
        (Tth-valid-inputsp tao-prime input-list)
        (submaskp
         8
         (spec-miss-exceptions
          (Tth-spec-state tao input-list)
          (nth tao input-list))
         (bv-or 8
                (recent-flushes tao tao-prime input-list)
                (acl2v-udt miss ordering exceptions
                 *t0*
                 (Tth-model-state tao-prime input-list)
                 (nth tao-prime input-list))))))))
```

Store Mask Protocol

- Each tile produces a mask of arrived stores
- Protocol more complex than exception protocol
 - Up to 256 entries in store mask
 - Store mask sent to both neighbors
- Specification & verification methodology similar to exception protocol
- Analysis
 - Problem size: ~1500 Boolean variables
 - 130 hours of human effort
 - Multi-hour proof
- Improvement over pure theorem proving
 - Counter examples especially helpful

Future Work

- More applications
 - Full LSQ design
 - n-tile circuit generator
- Performance improvements
 - Try the new BDD system
- Expand SULFA
 - Constrained functions
 - Limited arithmetic
- Add to ACL2 "waterfall"
- Verify proof engine
 - Theoretical issues: function body, proof of termination
 - Practical issues: complex code, large clause inputs
- Counter-example guided refinement

Conclusion

- Defined decidable subclass of ACL2 formulas
 - Includes primitives if, cons, car, cdr, consp, and equal
 - Can be extended with user-defined functions
- New hint for proving properties in this subclass
 - Fully automatic
 - Generates counter-examples to invalid properties
- Applying to TRIPS processor
 - Multi-core, pipelined, out-of-order processor
 - Combining SAT-based reasoning with pure theorem proving
 - Solid improvement over pure theorem proving

Backup Slides

Single-Tile Exception Model

- Wrote a single-tile model in ACL2
- The full mask of exceptions is generated each cycle

This input has been modified: an exception is disabled if it occurs in an instruction that has already been flushed.

Single-Tile Exception Model

- Wrote a single-tile model in ACL2
- The full mask of exceptions is generated each cycle

This input has been modified: an exception is disabled if it occurs in an instruction that has already been flushed.

Store Mask Protocol

- Each tile keeps a mask of arrived stores
- Used in completion detection & deferred load awakening
- Up to three stores are sent both upward and downward at the beginning of each cycle
- Eventually all arrived stores reach every tile
- A flush or a commit removes stores

Single-Tile Store Model

• Similar to single-tile exception mask

This input has been modified: an exception is disabled if it occurs in an instruction that has already been flushed.