Phylogenetic Trees in ACL2

Warren A. Hunt Jr. and Serita M. Nelesen

The University of Texas at Austin

Phylogenetic Trees

Representation of the evolutionary relationship between species

From Organisms to Trees

Lots and lots of trees

Number of possible trees grows exponentially with the number of leaves in the tree

Two main methods used to determine the correct tree

- A heuristic search through tree space
- A Bayesian estimation of phylogeny using Markov chain Monte Carlo

Both of these methods may produce hundreds, or thousands of trees which are then the input to further processing

Lots and lots of trees

Number of possible trees grows exponentially with the number of leaves in the tree

Two main methods used to determine the correct tree

- A heuristic search through tree space
- A Bayesian estimation of phylogeny using Markov chain Monte Carlo
- Both of these methods may produce hundreds, or thousands of trees which are then the input to further processing

Need a system to store these trees efficiently, and perform post-tree analysis.

Why Use ACL2?

Standard answer: Accuracy

- Explicit specification of input and output for all functions together with proof that the specification is met within the code (guards)
- Two representations of trees, with proof that we can accurately move from one representation to the other and back
- Additional answers: Storage space and performance speed
 - Hash-consing gives greatly reduced storage space
 - Memoization gives improved performance speed
- Overall: Medical systems of the future

Representation

ĖFĠ BCDE ΕF G В ĊĎ B CDEF F G B CD ĒĒ BCD Α G А

TASPI High-Level Representation: (((A B) C) ((D E) (F G))) (((A B) C) ((D E) F G)) (((A B) C) (D (E (F G)))) ((A (B C)) ((D E F) G)) ((A (B C)) ((D E) (F G)))

Representation

ĖFĠ À B C D E F ĚĚ BCD ΕF Ġ В ĊĎ A B CDEF G Ġ À B C D

TASPI Low-Level Representation: ((#1=((A B) C) #5=(#6=(D E) #9=(F G))) (#1#(#6# F G)) (#1#(D (E #9#))) (#12=(A (B C)) ((D E F) G)) (#12##5#))

Reduced Storage Space

Parenthetical Notation: (A B (C ((D E) F))) (A (B ((D E) F)) C) (A B ((C (D E)) F))

Parenthetical Notation: (A B (C ((D E) F))) (A (B ((D E) F)) C) (A B ((C (D E)) F))

Bipartition Representation:

AB	CDEF	AC	BDEF	AB	CDEF
ABC	DEF	ABC	DEF	ABF	CDE
ABCF	DE	ABCF	DE	ABCF	DE

Parenthetical Notation: (A B (C ((D E) F))) (A (B ((D E) F)) C) (A B ((C (D E)) F))

Bipartition Representation:

AB C	CDEF	AC	BDEF	AB	CDEF
ABC	DEF	ABC	DEF	ABF	CDE
ABCF	DE	ABCF	DE	ABCF	DE

Our Bipartitions: (A B C D E F) (C D E F) (D E F) (D E)

(A B C D E F) (B D E F) (D E F) (D E) (A B C D E F)(C D E F)(C D E)(D E)

Relationship of Representations

(defthm paren-partition-paren (implies (and <properties of input tree> <properties of ordering> <properties of tree and ordering>) (equal (tree-from-fringes (get-fringes tree ordering) ordering)

tree)))

Strict and Majority Consensus

- Strict consensus : Any branch that appears in every input tree is in the consensus tree
- Majority consensus : Any branch that appears in more than half of the input trees is in the consensus tree

Example

Example

Improved Consensus Performance

Conclusion and Future Work

- TASPI provides accuracy guarantees, while providing state of the art performance in terms of size and speed
- TASPI is being extended to perform further post-tree analyses, as well as database operations

Questions?