
ACL2 in DrScheme

Dale Vaillancourt
Northeastern University

Boston, MA 02115
dalev@ccs.neu.edu

Rex Page
School of Computer Science

University of Oklahoma
200 Felgar St, Room 119
Norman, OK 73019-6151

page@ou.edu

Matthias Felleisen
Northeastern University

Boston, MA 02115
matthias@ccs.neu.edu

ABSTRACT
Teaching undergraduates to develop software in a formal
framework such as ACL2 poses two immediate challenges.
First, students typically do not know applicative program-
ming and are often unfamiliar with ACL2’s syntax. Second,
for motivational reasons, students prefer to work on projects
that involve designing interactive, graphical applications.

In this paper, we present DRACULA, a pedagogic pro-
gramming environment that partially solves these problems.
The environment adds a subset of Applicative Common Lisp
to DRSCHEME, an integrated programming environment for
Scheme. DRACULA thus inherits DRSCHEME’s pedagogic
capabilities, especially its treatment of syntax and run-time
errors. Further, DRACULA also comes with a library for
programming interactive, graphical games. The library in-
terface forces students to think of a graphical user interface
in terms of state-transition functions, enabling them later to
prove theorems about their games in ACL2. DRACULA pro-
vides a graphical front-end to the ACL2 theorem prover for
this purpose. In short, DRACULA allows the formulation
of student projects that represent an important intermediate
point between data structure exercises in theorem proving
and industrial applications.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifica-
tion; D.2.6 [Software Engineering]: Integrated Programming
Environments; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs;
K.3.2 [Computers and Education]: Computer and Informa-
tion Science Education

General Terms
DRSCHEME, ACL2, formal methods, pedagogy

Keywords
DRSCHEME, ACL2, TeachScheme!

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACL2 ’06 Seattle, Washington USA
Copyright 2006 ACL2 Steering Committee 0-9788493-0-2/06/08.

1. TEACHING FORMAL METHODS
Over the past four years, the second author has designed

and implemented a senior-level course sequence on the con-
struction of sound software at Oklahoma University [16]. The
courses employ ACL2 as a programming language and the-
orem prover. The first semester course teaches applicative
programming and the basics of theorem proving. The second
course focuses on a single project, continuing the training in
formal methods in this larger context and also developing
software management skills.

Both students and external industry observers consider the
course a success. Students give the course high scores in
evaluations, and industrial observers praise how much stu-
dents learn about managing a large project and producing
reliable software.

Unfortunately, two problems recur every year. First, stu-
dents have little or no background in applicative program-
ming. Although the syntax of Applicative Common Lisp is
relatively simple compared to conventional languages, stu-
dents have serious difficulties writing well-designed applica-
tive programs and tracking down errors in their programs.

Second, due to ACL2’s nature, the homework assignments
and projects in this course are small or old-fashioned. Exist-
ing case studies [15] are either too complex for undergrad-
uate courses or require domain knowledge that is beyond
a typical computer science undergraduate. What students
want is a language rich enough to build programs with in-
teractive, graphical user interfaces, such as computer games.
The result is that even though the undergraduate students
like the course, they remain deeply skeptical about formal
methods in the software development process. The students
are left with the impression that formal methods are inap-
plicable for the kind of software development they have en-
countered before and that the applicative style of program-
ming does not scale to modern software development.

In this paper, we present a software tool for correcting this
impression, and we report on teaching experiences with the
tool. In a sense, the problems of teaching Applicative Com-
mon Lisp are exactly the same as the problems of teaching
Scheme or functional programming in a first semester course.
The PLT research team under the direction of the third au-
thor has responded to this challenge with the development of
DRSCHEME, a pedagogic and graphical programming envi-
ronment, and TeachScheme!, a design-oriented curriculum.
Based on the positive experience with DRSCHEME and Teach-
Scheme!, we have developed DRACULA, an embedding of
Applicative Common Lisp into DRSCHEME, with a connec-
tion to its theorem-prover companion, ACL2.



Figure 1: DRSCHEME

DRACULA consists of two components: (1) an implemen-
tation of Applicative Common Lisp inside DRSCHEME for
running programs, and (2) a graphical interface between DR-
SCHEME and a conventional ACL2 implementation for rea-
soning about programs. The language implementation pro-
vides a novice-oriented fragment of Applicative Common
Lisp, and the graphical interface to ACL2 obviates the need
for students to interact with the ACL2 REPL for theorem
proving activities.

Because DRACULA is inspired by DRSCHEME’s support
for teaching programming, the next section reviews the de-
sign of DRSCHEME. Section 3 describes DRACULA, and sec-
tion 4 reports on our first classroom experiences with this
new environment. The remaining sections sketch implemen-
tation techniques and discuss related work.

2. A TOUR OF DRSCHEME
DRSCHEME is a graphical and pedagogic programming en-

vironment for PLT1 Scheme [12, 13], originally intended for
college freshmen courses and high school courses on pro-
gram design. PLT constructed the environment in response
to two observations. First, high school students are already
used to applications with graphical user interfaces; they only
reluctantly accept Emacs, the preferred programming envi-
ronment in academia. Second, most available programming
environments are too complex and confuse students. They
represent a steep obstacle rather than a gentle slope to the
novice programmer. Putting them in front of those is compa-
rable to putting novice pilots into a Boeing 747 or Airbus 380
simulator rather than in a small twin-engine plane simulator.

This section provides a high-level overview of DRSCHEME.
Readers who are familiar with the software and its role in
teaching [5, 9] may safely skip it.

Figure 1 shows a screenshot of DRSCHEME, with a student
program running a simple version of the well-known worm
(or snake) game. The screenshot demonstrates how simple

1PLT is a loosely coupled research group, founded by the
third author during his time at Rice University.

DRSCHEME looks to a novice student of applicative, paren-
thesized programming. There are three panels. The bottom
panel is called an Interactions Window, roughly the famil-
iar read-eval-print (REPL) loop from interactive Lisps, ACL2,
and Scheme. The middle panel is a Definitions Window; we
encourage students to define their functions and variables
there instead of the REPL. The top panel is a “control” panel,
with four carefully selected buttons:

Run evaluates the definitions in the editor and makes them
available in the Interactions Window. There students
can explore the workings of a function through experi-
ments in the familiar Lisp manner.

Stop enables students to stop a run-away evaluation.

Check Syntax analyzes the syntax and the scope of the pro-
gram in the editor. After a syntax check, the student can
inspect the binding structure of the program. When the
cursor moves over an identifier, DRSCHEME draws an
arrow from the binding occurrence to the bound occur-
rence. As figure 1 shows, students can also tack these
arrows as they explore the program. Finally, with a
right click students can perform α-renamings of bound
variables.

Step allows students to step through the algebraic evalua-
tion of an expression. In contrast to conventional step-
pers, DRSCHEME’s stepper explains an execution via
a reduction sequence in the spirit of Plotkin’s call-by-
value λ-calculus [18]. Of course, to novices, this form of
semantics looks just like their eighth-grade pre-algebra
homework, though enriched with algebraic datatypes.
Figure 2 displays one such reduction step. The redex
on the left is green, and the contractum on the right is
purple.

A fifth button (Save) shows up when the program in the Def-
initions Window is modified and hasn’t been saved yet.

Figure 2: Algebraic Stepping with DRSCHEME



Figure 3: Safety check violation in DRACULA

In addition to being a graphical programming environ-
ment, DRSCHEME supports graphical programming in two
senses. First, it supports images as first-class values; that
is, images have roughly the same status as numbers, strings,
and other first-order (“flat”) values. In the screen shot of fig-
ure 1, the variable FOOD is just bound to an image value.
In this case, the image is an imported GIF file. Programs can
also build images from primitive image-generating functions
and composition operators such as overlay. Second, DR-
SCHEME supports event-based GUI programming in a func-
tional style. This makes it easy to design interactive games
such as the worm program.

Unlike commercial and other traditional programming en-
vironments, DRSCHEME is pedagogic2 by design. Here is a
list of the key attributes that make DRSCHEME well suited
for an introduction of novices to applicative programming:

1. Novices make mistakes. Therefore the primary task
of the environment is to help them recover from mis-
takes. The pedagogic problem is that students must
know the entire language to understand messages con-
cerning syntax and run-time errors. This is equally true
for Algol and C style languages as for syntactically sim-
plistic languages such as Lisp and Scheme.
While many first-semester approaches to programming
use, and even define, a subset of a conventional lan-
guage, nobody enforces them systematically, except for
DRSCHEME. More precisely, DRSCHEME supports a se-
ries of five Scheme-like languages, each more power-
ful than the previous one. Each represents a cognitive
stage in the learning process of novice programmers.
Because the implementations are tailored to these sub-
sets, they can issue error messages that are formulated
at the given level of language and understanding.
For a detailed explanation of the problems with using
full language implementations and of the teaching lan-
guages, see the early papers on DRSCHEME [5, 9].

2. Both syntax errors and run-time errors are pin-pointed
graphically.

2Commercial software producers (and others) sell so-called
pedagogic IDEs but these are often just IDEs for professional
programmers without a few of the advanced features.

3. Those portions of a program that students’ test suites
do not evaluate are highlighted in red. Instructors are
encouraged to label such red portions as “errors.”

4. The Interactions Window is transparent. Every click on
Run re-initializes it so that students don’t get confused
about the state of the REPL.

5. Lastly the environment also supports a one-click Help
Desk facility. A single key press brings up the help
page for the function or variable on which the cursor
currently rests, and the documentation produced is tai-
lored to the current language level.

The enforcement of language levels for pedagogic purposes
rules out the support of library or module constructs. Other-
wise, students could use the module system and imports to
circumvent curricular constraints. Still, instructors or book
authors often wish to supply code infrastructure that cannot
be expressed in the teaching language. To assist such clients,
DRSCHEME implements the teachpack mechanism. Roughly
speaking a teachpack is a module that the environment links
into the student’s program before running it. It is usually
implemented in the full-fledged, graphical version of PLT
Scheme. The interface language even allows the designers
of teachpacks to inject higher-order functions and macros.
Thus, teachpacks empower students to develop applicative
graphics and applicative graphical user interface programs
without syntactic distractions from the pedagogical goals.

Note: The DRSCHEME environment comes with a design-
oriented approach to teaching applicative programming to
novices. This is known as the TeachScheme! curriculum. We
omit an explanation of this pedagogy and the symbiotic rela-
tionship between the pedagogy and the environment [6, 7].

3. DRACULA
The core of DRACULA consists of a subset of Applicative

Common Lisp in PLT Scheme and a programming environ-
ment within DRSCHEME. It resembles the existing Scheme
subsets for teaching novices. The implementation takes ad-
vantage of the aforementioned DRSCHEME features: it high-
lights source locations when guard checks fail; it uses Check-
Syntax to display scope information; it allows α-renaming; it
makes the original ACL2 documentation searchable via Help



Desk; it shows code coverage for test suites; and it provides
libraries to enable development of interactive graphical pro-
grams in Applicative Common Lisp.

DRACULA supports reasoning about the GUI by includ-
ing an ACL2 book that formalizes the provided functions.
The structure of the interactive programs takes the form of a
state transition function. Thus, students learn to use ACL2 in
a manner that is consistent with successful industrial appli-
cations.

DRACULA also includes a mechanism for reasoning about
code within the ACL2 theorem prover. Students can send
portions of their program to ACL2, and DRACULA high-
lights the program in green or red to indicate admission or
rejection.

3.1 The Language
DRACULA implements a modest subset of the Applica-

tive Common Lisp special forms; it includes all of the doc-
umented library procedures. The set of implemented forms
corresponds roughly to the Intermediate Student Scheme di-
alect:

• Definitions: defconst, defun

• Conditionals / Boolean operations: cond, if, case, case-
match, and, or

• Local binding: let, let∗, mv-let, mv

• Structured data: defstructure

• Shortcut for constant lists: quote

In addition, DRACULA supports deflist because it automati-
cally proves many lemmas that students might otherwise get
stuck on.

For pedagogical reasons, the language always performs
guard checks, even though ACL2 functions are total from the
perspective of the logic. When a primitive is misapplied dur-
ing program execution, it raises a run-time exception, and
DRACULA highlights the origin in the source program. In
addition, DRACULA draws an arrow that shows the remain-
ing call chain.

We have chosen to use the “guarded semantics” because
the goal of our effort is to teach software design with for-
mal methods and not logic and theorem proving per se. In
this context, students test software expecting it to fail on oc-
casion. Put differently, students need constructive feedback
when testing reveals erroneous or undefined behavior. Ren-
dering the program total by producing arbitrarily selected
values is unhelpful.

DRACULA extends Applicative Common Lisp by provid-
ing a teachpack that enables students to design interactive
graphical programs in the same fashion as is supported by
the pedagogical Scheme dialects. This teachpack supplies a
framework that expects the student to develop one datatype
and three event handling callbacks:

1. the datatype is the set of values that represents the (vi-
sual) “world”;

2. a world transition function that is called for each clock
tick;

3. a world transition function that responds to keyboard
events; and

(include-book "world" :dir :teachpacks)

;; World = Natural Number
(defconst ∗world0∗ 0)
(defconst ∗width∗ 100)
(defconst ∗height∗ 20)
(defconst ∗clock-period∗ 1/2) ;; half a second

;; respond-to-key : World Key → World
;; Produce a new world given the current one
;; and a key event
(defun respond-to-key (w key)

(cond ((equal key ’UP) (1+ w))
((equal key ’DOWN) (nfix (1− w)))
(t w)))

;; tick : World → World
;; Produce a new world on each clock tick
(defun tick (w) (1+ w))

;; nat→string : Natural → String
;; Convert a natural number to a string
(defun nat→string (n)

(coerce (explode-nonnegative-integer n 10 nil)
’string))

;; render-world : World → Image
;; Produce an image of the given world
(defun render-world (w)

(text (nat→string w) 12 ’blue))

;; Set up the framework and run the program:
(big-bang ∗width∗ ∗height∗ ∗clock-period∗ ∗world0∗)
(on-tick-event tick)
(on-key-event respond-to-key)
(on-redraw render-world)

Figure 4: A complete counter program

4. a rendering function for redraw events that produces
an image from a given representation of a world.

Because the representation and transformation of the world
is central, we call our teachpack the World teachpack.

Figure 4 shows a small interactive DRACULA program
based on the World teachpack. The application opens a small
window—like the one in the upper-right corner of figure 4—
and displays the initial world (just a 0). At each clock tick,
tick produces a new world by adding 1 to the current world.
The up and down arrow keys increment and decrement the
world, respectively. When a keypress is detected, the teach-
pack computes a new world by applying respond-to-key to the
current world and the key event. The screen image is pro-
duced by render-world, which consumes the world and pro-
duces the image to be displayed. The (big-bang . . . ) form
initializes the teachpack by specifying the width and height
of the canvas, how often the clock ticks, and the initial world.
The last three forms specify the callbacks that the teachpack
should use to evolve and draw the world.



Figure 6: Interacting with ACL2 via DRACULA

Figure 5: Worm in DRACULA

The Worm game has exactly the same structure, though
the datatypes are more interesting than for our first example.
For Worm, the World consists of a worm, a piece of food,
and a bounding box for the play field. At each clock tick,
the worm moves one step in the direction it is facing. If it is
near food, it eats the food and grows by one segment at the
end. The arrow keys change the worm’s direction, and the
game stops when the worm runs into itself or hits the wall of
the bounding box. Figure 5 displays a screen shot from the
DRACULA worm game with some of the actual code in the
background.

The addition of graphical primitives necessitates a specifi-
cation of both the callback functions and the datatype of im-
ages within ACL2. Our current specification is fairly weak:
the theorems that we provide are essentially “types” for the
operations. We can get quite far with this limited informa-
tion, however, because most interesting theorems concern-
ing interactive programs in our framework do not directly
involve reasoning about images.

The World teachpack forces students to organize the pro-
gram in the style of a state transition function. As the ACL2
community is well aware [2], this style facilitates the state-
ment and proof of safety properties. For example, one may
prove that the initial state satisfies some invariant and that
the state transition functions preserve the invariant. For the
example program in figure 4, it is easy to show that the world
is always a natural number:

(defthm natp-initial (natp ∗initial-world∗) :rule-classes nil)
(defthm tick-preserves-natp

(implies (natp w) (natp (tick w))))
(defthm respond-to-key-preserves-natp

(implies (natp w) (natp (respond-to-key w key))))

This simple property is not very interesting, but the pattern
applies even when the world is more complex. For the worm
game, it is possible to state and prove the preservation of
well-formedness for the worm, and fewer than ten lemmas
are required before ACL2 can complete the proof. 3

The World teachpack allows us to bridge the gap between
toy exercises on algebraic datatypes and case studies because
we can write programs whose complexity falls anywhere in
between these two extremes. Programs can be as simple as
that shown in figure 4 or as complex as the Worm game, and
we do not demand any specialized domain knowledge. A
student who is comfortable reasoning about programs based
on the World teachpack is prepared to tackle case studies in
the context of more advanced courses.

3.2 Interacting with the Theorem Prover
After students have developed and tested a piece of code,

they can then interact with the theorem prover. For this pur-
pose, DRACULA adds a START ACL2 button to the control
panel. Clicking this button starts an ACL2 process and opens
up a console window that shows ACL2’s output in style sim-
ilar to ACL2’s Emacs mode4 with proof trees enabled. In ad-
dition, a second row of buttons appears in the DRSCHEME
control panel.

Figure 6 is a snapshot of an interaction with the theorem
prover. The window on the left shows the program text,
which is highlighted to indicate that it has been admitted
into ACL2. Above the program text are the buttons that me-
diate between DRACULA and ACL2. Their functionality is
described below. On the right, there is a second window,
called the console window, that contains two panes and two
more buttons. The top pane shows proof trees, and the lower
pane shows the proof transcript produced by ACL2. The two
buttons allow students to navigate the checkpoints identified
by the proof tree when the theorem prover fails.

The console window of DRACULA is read-only, and so
students cannot interact with the ACL2 REPL directly. In-

3Three of these lemmas simply prevent ACL2 from using
accumulator-style definitions to reason about reverse and
firstn, and another is a simple fact about firstn.
4See acl2-sources/emacs/emacs-acl2.el.



stead, they use a set of buttons in the DRSCHEME window
just above the program text:

Admit Next Sends the next unprocessed expression in the
definitions window to ACL2. If ACL2 rejects the ex-
pression for any reason, DRSCHEME highlights it red.
If ACL2 accepts the expression, DRSCHEME highlights
it green. Green expressions cannot be edited. The GUI
state must always reflect the state of the ACL2 theorem
prover.

Admit All Send the unprocessed expressions to ACL2 one
at a time. If one expression causes an error, no further
expressions are sent to ACL2.

Undo Last Removes the last event from ACL2 and removes
the green highlighting from the corresponding text in
the editor. This is equivalent to “:u” at the ACL2 REPL.

Reset ACL2 Put ACL2 into its initial state and unhighlights
everything in the definitions window. This is equiva-
lent to “:ubt! 1” at the ACL2 REPL.

Stop Prover Shuts down the ACL2 theorem prover, high-
lights the program text, and hides these five buttons.
This is equivalent to “(good-bye)” at the ACL2 REPL.

Proof trees are enabled by default in the interface. When
ACL2 fails to prove a conjecture, DRSCHEME displays the
most recent proof tree and presents two buttons in the con-
sole window for navigating the proof checkpoints. The but-
tons refocus the proof text on the checkpointed goals.

This minimal interface may constrain an expert, but expe-
rience suggests that it suffices for novices in the context of a
software engineering course.

4. TEACHING WITH DRACULA
During the past two academic years, students in the sec-

ond author’s software engineering courses used Applicative
Common Lisp as the implementation language for their soft-
ware projects. For the first semester course, students work
on six individual projects and two team projects:

Project 0. Introductory programming exercises: list re-
verse, set operations, Newton’s Method, and towers of
Hanoi. No theorem proving is required.

Project 1. Implement statistical functions over lists of
numbers. Prove that the frequency of numbers in a list
is invariant under permutation.

Project 2. Define three functions to generate Fibbonaci
numbers: structurally recursive, accumulator-passing
style, and Kepler’s formula. Students prove the equiv-
alence of the first two. There is an accompanying writ-
ing assignment that asks students to describe why they
believe the approximation to

√
5 that they computed

with Newton’s Method from Project 1 is sufficiently ac-
curate for Kepler’s formula.

Project 3. Parse a text file and sort contents using an
O(n log n) sorting algorithm. Prove that the sorting al-
gorithm is correct.

Project 4. Parse a text file and produce two word fre-
quency tables (the first sorted alphabetically, the sec-
ond by word frequency). Write a function that com-
putes run frequency. This function produces lists that
sum to 1, and students are required to prove this fact.

Project 5. Compare the size of an Lisp program with
the size of the program obtained by inlining some func-
tion applications. Students use a supplied implemen-
tation of AVL trees to represent programs. Students
are required to formulate and prove two “interesting”
properties of their choice.

Team Project 1. Emphasizes standard software devel-
opment processes, building on Project 3 above. Stu-
dents produce various design artifacts and participate
in code reviews.

Team Project 2. Stock market analysis software. Stu-
dents choose two properties of their software and hand-
write proof outlines. They formally prove one of them
in ACL2. Student submissions contained between 1000
and 2000 lines of code.

DRACULA was released in time for the Spring 2006 course,
and the primary course project took advantage of the graph-
ical and audio libraries. The project called for the develop-
ment of a variation on a Pachinko game in which two players
compete to collect balls falling down through a maze of de-
flectors. A player attempts to direct balls to a designated col-
lection bin by moving deflectors and adjusting their angles.
Details of deflector layout, graphics, audio feedback, relative
speeds of ball and player movements, and so on were left to
the students, and there was a lot of variety in the games they
delivered. Some focused on the physics of ball movement,
and others focused on entertaining graphics or realistic ar-
cade sounds.

Students were required to formulate and prove at least one
theorem for each state transition function. They were re-
quired to follow a theme of their own selection in designing
the theorems. The most common theorem style was of the
form (implies (well-formed-input X) (well-formed-output (f X))).
Student projects contained between 1800 and 6600 lines of
code with an average of approximately 3600 lines of code (in-
cluding documentation). Each project contained 62 theorems
and lemmas, on average.

During the first semester of the sequence (Fall 2005), a few
students used Emacs to interact with ACL2, but most re-
lied on their favorite editors. In the second semester, the in-
structor introduced DRACULA and then allowed students to
evaluate and choose. 5

4.1 Students’ Perspective
About midway through the spring semester, the instruc-

tor sent a questionnaire consisting of six questions to his stu-
dents, asking them to describe their experiences with ACL2
and DRACULA. All 32 students responded in writing. They
were asked what aspects of the DRSCHEME environment for
ACL2 they preferred over plain ACL2 and vice versa. The
5The experience report that follows does not constitute a sci-
entific comparison between DRACULA and other modes of
ACL2 interaction. Nevertheless, this feedback is an impor-
tant source that will help drive the design of the next revision
of DRACULA.



questionnaire also gave the students an opportunity to de-
scribe improvements they would like to see in both products.

The students were impressed by the development environ-
ment provided by DRACULA. During the first semester, all
of the students had used ACL2 via its read-eval-print loop
(REPL). Most of them did not use an Emacs-based environ-
ment. They chose instead to use their preferred editor and
to paste definitions and theorems from their editor windows
into an ACL2 REPL. In responses to the questionnaire, the
DRSCHEME editor got high marks as an integrated develop-
ment environment, compared to the mode in which students
were accustomed to using ACL2.

Students were particularly pleased with two features of
DRACULA. In particular, students liked DRSCHEME’s run-
time error reporting because it graphically links the error
to the source expressions in their code. Additionally, they
strongly preferred interacting with the theorem prover via
DRACULA’s graphical interface over a textual REPL-based
interface.

Finally, students appreciated DRSCHEME’s support for de-
signing graphical programs in DRACULA. One student went
so far as to criticize as “primitive” and “low-level” those en-
vironments where programs cannot communicate with the
outside world except through file I/O and character-based
displays. Students apparently value coursework that allows
and encourages them to produce software with a modern
look and feel while learning and applying theorem proving
techniques.

Graphical output versus file-based I/O may seem to be a
trivial distinction when computational logic is the topic of
study, but such capabilities of a development environment
enable instructors to plan extended projects that interest and
engage the students. Students are simply more familiar with
GUI-oriented software than with text-based software. They
enjoy developing software that supports this type of inter-
action, and they expect to be able to do so in a software en-
gineering course, where design and project management, in
addition to computational logic, comprise the bulk of the ma-
terial. So, the ability to include graphical output in their soft-
ware is a big advantage for software development projects,
even when using a computational logic to verify properties
of that software is an important component of the develop-
ment process. Freeing the students from programming text-
based software removes a source of distraction from the ma-
terial.

About half of the students learned how to glean useful
information from ACL2’s proof trees, and they found the
checkpoint navigation buttons of DRACULA useful. This
is not surprising because their primary tool for navigating
proof trees before DRACULA became available was to dump
the proof to a file and view the file through an ordinary text
editor. None of the students learned how to display and
navigate proof trees via Emacs. DRACULA lowers the bar-
rier to entry here because proof trees are enabled by default,
and the buttons obviate the need to look up and memorize
keystrokes.

In commenting on the advantages of using the standard
ACL2 environment, students cited a weakness in DRACULA.
Because it is an early prototype, DRACULA evaluates Ap-
plicative Common Lisp programs that contain Scheme frag-
ments, or it occasionally uses Scheme’s semantics instead of
Lisp’s. For details, see section 5. Naturally, ACL2 strictly
enforces the syntax and semantics of Lisp. While some stu-

dents were initially happy to escape through these loopholes,
they later found that using non-ACL2 features wasted time,
because they eventually had to bring their software back in
complicance with ACL2’s syntax in order to prove theorems
about their programs.

Two students found the convenience and speed of their
accustomed editors, along with the copy-and-paste model
of editing in a familiar environment, more attractive than
DRACULA. These students decided to stay mostly within
that model, even when running their software in DRACULA.
More generally, because the copy-and-paste usage model and
DRACULA’s mode of interacting with ACL2 match the needs
of students in the courses well, students don’t have sufficient
motivation to learn to use the proof navigation facilities pro-
vided by the standard ACL2 environment.

Students commonly cited another advantage of the stan-
dard ACL2 environment: include-book. This facility is only
partially available in DRACULA. Students can include books
prepared as teachpacks by instructors, but they cannot im-
plement software as a collection of files specifying separate
modules, and then use include-book to integrate the mod-
ules. Furthermore, they cannot use the certify-book facil-
ity, since it has not yet been incorporated either. The abil-
ity to organize software into separate modules, certify those
modules, and make use of them in other components are
important techniques to teach students proper software en-
gineering techniques. These facilities, along with the DR-
SCHEME Stepper, were the most often requested improve-
ments to DRACULA.

By far the most often requested improvement to the stan-
dard ACL2 environment was an integrated development en-
vironment. Most of the students are clearly thinking along
the lines of the DRSCHEME environment, but two students
said they would like to see an Eclipse-based environment for
ACL2. Dillinger, Manolios, and Vroon have developed such
an environment, known as ACL2s [3]. So, future students
in software engineering courses at OU will have the ACL2s
option, as well as DRACULA. They will need the latter for
projects that involve graphical output, but they can, if they
choose, stay within ACL2s for textual projects. We expect to
report on such a head-to-head comparison in the future.

4.2 Instructor’s Perspective
The software engineering courses include the use of ACL2

primarily as a way to expose students to powerful means for
reducing the number of defects in software. In other words,
the course intends to introduce students to the idea that the
use of theorem provers can contribute positively to the soft-
ware development enterprise, as one of many ways to im-
prove software quality. This theorem proving portion com-
prises about one third of the course materials. In this time
and at the given level of effort, students cannot be expected
to become proficient users of ACL2. Because of these lim-
its on scope, a smaller ACL2 environment that helps us focus
on these goals is more beneficial for the software engineering
courses than a comprehensive and fully-featured one.

For this goal, DRACULA plays its role well. The experi-
ences of students in the course puts them in a good posi-
tion to become adept in the use of theorem provers (ACL2 or
other products) at some point in the future, should the need
arise. Thus, students clearly gain knowledge and skills that
will make it possible for them to assess potential benefits of
computational logic in software engineering projects.



In general, the introduction of theorem provers into soft-
ware engineering courses relies on a number of attributes
of theorem proving systems and may neglect others. Most
importantly, a course like ours demands the full strength of
ACL2 as an automated theorem prover. Students cannot be-
come experts at automated theorem proving in one or two
semesters, especially in a course like software engineering
where there are many other topics to be addressed. A power-
ful theorem prover, one that can verify many properties with-
out the need for hints or advanced methods, and without
even the need for lemmas in many cases, allows students to
experience some success without becoming theorem-proving
experts. Without this success, it seems likely that students
would form a negative assessment of the potential of theo-
rem provers as a support technology for software engineer-
ing. Fortunately, the automated theorem-proving effective-
ness of ACL2 is sufficient to give most students a positive
experience.

Last but not least, the ability to factor software into mod-
ules is imperative for a software engineering course. Mod-
ules provide namespace management and can be reasoned
about independently. Adherence to programming patterns
involving books and packages can help mitigate the lack of
modules [15], but DRACULA needs proper language mecha-
nisms to adequately support software engineering courses.

5. IMPLEMENTATION
DRACULA is implemented in PLT Scheme; it is embedded

into DRSCHEME as an environment tool [8]. This means that
DRACULA automatically benefits from several DRSCHEME
capabilities.

The translator from Applicative Common Lisp (Lisp, for
short) into Scheme consists of a collection of PLT Scheme
macros [11]. PLT Scheme’s behavioral contract system [10]
checks guards on Lisp primitives. Procedures are implement-
ed using PLT Scheme macros. The expansion process checks
that Lisp functions are used only in operator position, and
DRACULA generates a helpful error message when a vio-
lation is detected. The procedures into which these macros
expand manipulate Scheme representations of Lisp values.
They perform conversions back and forth as necessary, but,
for most values, the conversion is the identity function. The
representation of booleans is complex because Lisp conflates
the empty list and “false”, whereas Scheme separates them.

In contrast to Lisp’s macro system, PLT Scheme’s macro
system is quite sophisticated. These macros don’t just ma-
nipulate raw S-expressions, but syntax objects that carry ad-
ditional information. The macro expander automatically6

propagates this information. Most importantly, this infor-
mation includes source locations and lexical scope. Further-
more, names that are introduced into the expanded code take
their bindings from the macro definition context rather than
from the context of the expanded code. In short, macros act
like an abstract API for the compiler. Due to these differ-
ences, DRACULA does not support Lisp macros.

For example, consider the definition of Lisp’s if in figure 5,
a distillation of the actual code. This form defines a macro
named acl2-if and a helper function null?, which checks if
its argument is the empty list. Here, the use of null? in the

6The macro system includes constructs for forcing informa-
tion propagation where the flow is not obvious. We had no
use for these constructs thus far.

;; null? : any -> boolean
;; produces true iff the argument is Scheme’s empty list
(define (null? x)

(eq? x ’()))

;; (acl2-if <acl2-exp> <acl2-exp> <acl2-exp>)
;; expands to a Scheme if plus value conversions
(define-syntax acl2-if

(syntax-rules ()
[(_ test consequent alternative)
(if (not (null? test))

consequent
alternative)]))

Figure 7: Implementation of Applicative Common Lisp’s if

macro body refers to the definition that precedes it. When-
ever the expression (acl2-if X Y Z) occurs in a program, the
program behaves as though (if (not (null? X)) Y Z) had been
written instead. In addition, it ensures that the meaning of
null? is the procedure defined in the same (module) scope as
the macro itself. In Lisp macro systems, the meanings would
be taken from the context of the use of the macro. Thus, the
expression

(let ([null? (lambda (x) (equal? x 3))])
(acl2-if ’() 1 2))

would not evaluate to 2 as the macro writer had intended.
With the powerful macro system, it becomes straightfor-

ward to adapt the available tools of DRSCHEME to a new
language embedding. For example, the CheckSyntax tool
extracts lexical information and source locations from pro-
grams. The lexical information—the point where the vari-
able is introduced—allows it to find the source of binding ar-
rows; the source location of identifiers determines the sink.
Thus, DRSCHEME can draw lexical scope information in the
form of binding arrows for Lisp programs without any addi-
tional help from the DRACULA implementor. See figure 8 for
an example. This also applies to refactoring tools, such as α-
renaming, that require nothing but static information. For
dynamic tools, such as the stepper, additional work is re-
quired.7

PLT Scheme has an implementation of software contracts
that allows developers to express constraints on the uses of
values. In the case of a first-order language such as Ap-
plicative Common Lisp, these specialize to pre- and post-
conditions on functions. To implement Lisp guard checks,
we simply translate guards into contracts that specify pre-
conditions. When a contract is violated, the contract check-
ing system automatically assigns blame to the guilty party
and annotates the code to show the programmer where the
error originated. Because macros preserve source informa-
tion, these errors are of course reported in terms of the source
language (Lisp in our case) and not the code into which the
macros expand.

The first alpha version took about five man-weeks worth
of effort to develop, test, debug, optimize, and deploy. We
invested another two weeks to build detailed examples and
7We have not yet completed the adaptation of the stepper to
DRACULA.



Figure 8: Check Syntax in DRACULA

documentation. Making the ACL2 documentation search-
able via Help Desk necessitated writing a small script to gen-
erate a keyword index from the existing documentation.

The current version of DRACULA still has a few limita-
tions. In particular, it does not support all of Applicative
Common Lisp. Programmers cannot use include-book to
import functions into DRACULA, but they may use it to im-
port theorems into ACL2 as usual. The exception is for teach-
packs provided with DRACULA; code is imported from them
via include-book. Due to the semantic differences between
Common Lisp (the source language) and Scheme (the target
language), DRACULA currently uses a single environment
for function bindings and local variable bindings. Finally,
DRACULA implements the “guarded semantics” of ACL2
only, and so the primitive procedures raise errors when ap-
plied to the arguments outside of their intended domain.

6. RELATED WORK
To our knowledge, nobody else has attempted to use ACL2

to teach undergraduate software engineering courses, but the
ACL2 developers routinely use ACL2 in many courses such
as hardware verification, processor design, logic, and formal
methods. The tool support that we have constructed for this
course is informed by the PLT group’s techniques for teach-
ing program design [5, 6].

Our interface to ACL2 is modeled on both the ACL2 Emacs
mode8 and other theorem prover IDEs such as ProofGen-
eral and CoqIDE [1, 19]. The latter two environments fea-
ture highlighting of code upon admission or rejection and a
graphical interface for issuing commands to the underlying
8See acl2-sources/emacs/emacs-acl2.el

theorem prover. Because our needs are focused on teaching
undergraduates, our interface provides a strict subset of the
features available in other environments.

DRACULA’s closest competitor is Dillinger, Manolios, and
Vroon’s ACL2s [3]. ACL2s allows developers to design ACL2
models in Eclipse [4]. Rather than reimplement a portion of
the language, they connect the user to a full version of ACL2
for both running and reasoning about code. ACL2s offers
several modes that control the database of rules available to
the theorem prover and whether or not to postpone termina-
tion proofs. Functions that have not yet been proved total
may be evaluated at the REPL for testing purposes, and this
is similar to the behavior of DRACULA. They do not attempt
to provide a novice-oriented fragment of the language, and
they do not attempt to provide a framework like our World
teachpack for building graphical, interactive programs.

In contrast, we do not provide a comprehensive environ-
ment for expert ACL2 developers. Our environment is best
viewed as a pedagogical stepping stone to more advanced
environments. It is not our goal to produce a fully-featured
ACL2 implementation, but rather we aim to provide soft-
ware support for bridging the gap between toy examples and
complex case studies for teaching software engineering with
a formal methods component. This requires more than just
small to medium sized examples because students must have
proper environment support while learning how to design
ACL2 models.

7. CONCLUSION
This paper introduces DRACULA, a programming envi-

ronment for ACL2 in DRSCHEME. The environment pro-
vides a pedagagic framework for students, in which they
can learn to design programs in an applicative manner and
prove theorems about them. Due to its connection to DR-
SCHEME, DRACULA supports some GUI-oriented program-
ming, which helps motivate students.

Despite the limitations mentioned in section 5 and despite
the fact that DRACULA is alpha software (developed over
a five-week period before the spring semester), students at
Oklahoma University obviously enjoyed working with the
environment, especially in comparison to plain ACL2. We
therefore believe that DRACULA is on the right track.

Following the TeachScheme! precedent, we intend to use
the feedback from instructors and from monitoring student
usage to improve the system. One near-term goal is to pro-
vide a module-like facility, like those found in modern ap-
plicative languages [11, 14, 17], so that students can develop
software in a modular manner and learn to prove theorems
whose antecedents abstract over the deployment context. We
conjecture that PLT Scheme modules with behavioral soft-
ware contracts [10] are particularly suitable for this purpose.

Distribution: The software and a tutorial are available at

http://www.ccs.neu.edu/~dalev/acl2/

Page’s software engineering course materials are available at

http://www.cs.ou.edu/~rlpage/SEcollab/

Acknowledgments: We thank Matthew Flatt for his sugges-
tions on making DRACULA reasonably fast and his helpful
modifications of PLT Scheme’s JIT compiler for the same pur-
pose. Also, we acknowledge John Clements’s efforts with the



adaptation of the DRSCHEME stepper to DRACULA. Finally,
we wish to express our gratitude to the anonymous referees
for their helpful feedback.

8. REFERENCES
[1] Aspinall, D. Proof General: A generic tool for proof

development. In Tools and Algorithms for the Construction
and Analysis of Systems, volume 1785 of LNCS, 2000.
http://proofgeneral.inf.ed.ac.uk/.

[2] Boyer, R. S. and J. S. Moore. Mechanized reasoning
about programs and computing machines. In Veroff, R.,
editor, Automated Reasoning and Its Applications: Essays
in Honor of Larry Wos, pages 146–176. The MIT Press,
Cambridge, Massachusetts, 1996.

[3] Dillinger, P., P. Manolios and D. Vroon. ACL2s: The
ACL2 Sedan.
http://naxos.cc.gt.atl.ga.us/acl2s/, 2006.

[4] Eclipse Consortium. Eclipse, 2000.
http://www.eclipse.org.

[5] Felleisen, M., R. B. Findler, M. Flatt and
S. Krishnamurthi. The DrScheme project: An overview.
ACM SIGPLAN Notices, June 1998. Invited paper.

[6] Felleisen, M., R. B. Findler, M. Flatt and
S. Krishnamurthi. How to Design Programs. MIT Press,
2001.

[7] Felleisen, M., R. B. Findler, M. Flatt and
S. Krishnamurthi. The TeachScheme! project:
Computing and programming for every student.
Computer Science Education, 14:55–77, 2004.

[8] Findler, R. B. PLT DrScheme: Programming
environment manual. Technical Report
PLT-TR05-3-v300, PLT Scheme Inc., 2005.
http://www.plt-scheme.org/techreports/.

[9] Findler, R. B., J. Clements, C. Flanagan, M. Flatt,
S. Krishnamurthi, P. Steckler and M. Felleisen.
DrScheme: A programming environment for Scheme.

Journal of Functional Programming, 12(2):159–182, March
2002.

[10] Findler, R. B. and M. Felleisen. Contracts for
higher-order functions. In ACM SIGPLAN International
Conference on Functional Programming, 2002.

[11] Flatt, M. Composable and compilable macros: You
want it when? In ACM SIGPLAN International
Conference on Functional Programming, 2002.

[12] Flatt, M. PLT MzScheme: Language manual. Technical
Report PLT-TR05-1-v300, PLT Scheme Inc., 2005.
http://www.plt-scheme.org/techreports/
jfp01-fcffksf.

[13] Flatt, M. and R. B. Findler. PLT MrEd: Graphical
toolbox manual. Technical Report PLT-TR05-2-v300,
PLT Scheme Inc., 2005.
http://www.plt-scheme.org/techreports/.

[14] Harper, R. and B. C. Pierce. Design issues in advanced
module systems. In Pierce, B. C., editor, Advanced Topics
in Types and Programming Languages. MIT Press, 2004.

[15] Kaufmann, M., P. Manolios and J. S. Moore.
Computer-Aided Reasoning: ACL2 Case Studies. Kluwer
Academic Publishers, 2000.

[16] Page, R. L. Engineering software correctness. In
Findler, R. B., M. Hanus and S. Thompson, editors,
Functional and Declarative Programming in Education,
2005.

[17] Peyton-Jones, S., editor. Haskell 98 Language and
Libraries The Revised Report. Cambridge University
Press, Cambridge, UK, April 2003.

[18] Plotkin, G. D. Call-by-name, call-by-value, and the
λ-calculus. Theoretical Computer Science, pages 125–159,
1975.

[19] The Coq Development Team. The Coq Proof Assistant
Reference Manual. LogiCal Project, INRIA, 8.0 edition.
http://coq.inria.fr/doc/main.html.


