A SAT-Based Procedure for Verifying Finite State Machines
in ACL2

Warren A. Hunt, Jr.
University of Texas at Austin
Department of Computer Sciences

hunt@cs.utexas.edu

ABSTRACT

We describe a new procedure for verifying ACL2 proper-
ties about finite state machines (FSMs) using satisfiabil-
ity (SAT) solving. We present an algorithm for convert-
ing ACL2 conjectures into conjunctive normal form (CNF),
which we then output and check with an external satisfiabil-
ity solver. The procedure is directly available as an ACL2
proof request. When the SAT tool is successful, a theorem
is added to the ACL2 system database as a lemma for use
in future proof attempts. When the SAT tool is unsuccess-
ful, we use its output to construct a counter-example to the
original ACL2 property.

Categories and Subject Descriptors

B.5.2 [Register-Transfer-Level Implementation]: De-
sign Aids— Verification; F.4.3 [Mathematical Logic and
Formal Languages]: Formal Languages—Decision prob-

lems; F.4.1 [Mathematical Logic and Formal Languages]|:

Mathematical Logic—Mechanical theorem proving, Recur-
sive function theory

General Terms

verification, algorithms

Keywords

hardware verification, Satisfiability solving, theorem prov-
ing, ACL2

1. INTRODUCTION

The ACL2 theorem prover and logic have been used in
many large industrial and academic hardware verification
projects, such as the verification of AMD’s K7 floating point
unit [14] and the verification of an advanced pipelined ma-
chine [15]. Verification techniques based on satisfiability
(SAT) solvers have also proven to be of use in hardware ver-
ification [17]. Techniques based on SAT solvers complement

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACL2 06 Seattle, Washington USA

Copyright 2006 ACL2 Steering Committee 0-9788493-0-2/06/08.

Erik Reeber
University of Texas at Austin
Department of Computer Sciences

reeber@cs.utexas.edu

ACL2 well, since SAT solvers are used in fully automatic
techniques that do not scale well to large designs, whereas
the ACL2 theorem prover is not fully automatic but does
scale to large designs.

We are therefore interested in discovering subclasses of
decidable ACL2 properties that can be reduced to SAT. In
a previous paper, we described the Subclass of Unrollable
List Formulas in ACL2 (SULFA) and showed that it can
be reduced to SAT [13]. SULFA is an interesting subclass
because properties involving a finite number of steps of a
finite state machine, modelled in ACL2, can be expressed
in it. We can therefore reduce many interesting hardware
properties to properties in SULFA.

We have extended the ACL2 theorem prover to include a
new hint that proves or disproves SULFA properties through
the use of a SAT-based decision procedure. In this paper
we describe in detail the algorithm used to convert SULFA
properties into the input of a SAT solver. We also present
the sketch of a proof that this new hint only verifies valid
properties. Furthermore, we show how to create ACL2
counter-examples for invalid SULFA properties.

We begin this paper with a simple example that illustrates
how our new hint allows the verification of properties that
would otherwise require manual guidance to prove. Next, in
Section 2, we give background information on SAT solving
and describe SULFA. In Section 3, we show how the input
of SAT solvers can be embedded in the ACL2 logic. In Sec-
tion 4 we describe our SAT-based procedure for verifying
SULFA properties. In Section 5 we show how our algorithm
performs on some examples and compare it to other tech-
niques. In Section 6 we discuss related work in more detail,
before concluding in Section 7.

Example

To show how our tool is used, we present a simple FSM that
implements a ten-digit decimal counter. Each digit is repre-
sented by four Boolean values. The property we would like
to prove is that if every digit of the counter is initially be-
tween zero and nine, then every digit of the counter forever
remains between zero and nine.

We represent the state for this counter as an n-element
list where each element is a list of four Boolean values. We
then model the counter as a function (run-counter n init
clk) that, given the initial state, returns the counter’s state
after clk clock cycles.

We define a function, (valid-digits n x), to recognize
whether x is a list of n elements that contains only digits
between zero and nine. Our property is represented by the

following ACL2 theorem.
(defthm valid-digit-invariant
(implies

(valid-digits 10 x)

(valid-digits 10 (run-counter 10 x clk))))
ACL2 can prove this theorem automatically if we have al-
ready added the following theorem to ACL2’s database.

(defthm valid-digit-step
(implies

(valid-digits 10 x)

(valid-digits 10 (next-counter-state 10 x))))
Here (next-counter-state n x) returns the next state of
the counter given the state from the previous cycle.

A typical way to prove this invariant is to generalize it into
a theorem about an n-digit counter and then use induction
and some lemmas to prove the generalized invariant. With
our ACL2 system extension, however, we prove the theorem
automatically in 0.65 seconds (proving the invariant for a
hundred digit counter takes about thirteen seconds). Note
that our extension does not require x to be restricted to a
finite domain; no hypothesis is required to tell the extension
that x is a list of 10 four bit, bit vectors.

2. BACKGROUND

We assume the reader is familiar with ACL2. For more
information on ACL2, see the book by Kaufmann, Manolios,
and Moore [5]. In this section we give an overview of SAT
solving and define the SULFA subclass of ACL2 formulas.

2.1 Satisfiability Solving

In this paper we refer to satisfiability (SAT) solving as de-
termining whether there exists an instantiation of variables
to Booleans that satisfies a formula in Conjunctive Normal
Form (CNF). The following is a simple example of a CNF
formula:

dxo, x1, 2 : (a?() ViV :EQ) A (—|$() \Y —\xl) A (ZE() V _‘172)

A CNF formula consists of a conjunction of clauses. A
clause is a disjunction of literals. Each literal is a Boolean
variable or its negation.

SAT solving is known to be NP-Complete. Nevertheless,
there are tools that can solve a wide array of practical prob-
lems [10]. SAT solving is particularly well-suited to integra-
tion with other tools since SAT solvers usually conform to
a standard input format.

2.2 The Subclass of Unrollable List Formulas
in ACL2 (SULFA)

In our previous paper we identified a decidable subclass of
ACL2 formulas, SULFA [13]. As illustrated by our previous
decimal counter-example, SULFA is sufficiently expressive
to describe useful FSM properties succinctly. In our previ-
ous paper, we also show that invariants used to verify com-
ponents of the TRIPS processor, a prototype grid processor
designed by the University of Texas and IBM [1], can be
reduced to SULFA properties.

The idea behind SULFA is to include only functions that
can be unrolled into expressions of car, cdr, cons, consp,
and if. An expression involving only these primitives is
known to be decidable [11]. Our hint mechanism contains
an efficient recognizer of SULFA properties, which gener-
ates an error if a user attempts to apply our procedure to a
property that is not in SULFA. This recognizer is defined as

(defun concatn (n a b)
(if (zp n)
b
(cons (car a) (concatn (- n 1) (cdr a) b))))

(defun uandn (n a)
(if (zp n)
t
(if (car a)
(uandn (- n 1) (cdr a))
nil)))

(defun bequiv (a b)
(if a b (not b)))

(defthm SULFA-thm
(bequiv (uandn 4 (concatn 2 a b))
(and (uandn 2 a) (uandn 2 b))))

(defthm general-thm
(bequiv (uandn (+ x y) (concatn x a b))
(and (uandn x a) (uandn y b))))

Figure 1: In this example we present the theorem that the
unary-and of the concatenation of two bit vectors is equiva-
lent to the conjunction of the unary-and of each individual
bit vector. Given vectors of known widths this theorem is in
SULFA. However, the more general theorem must be verified
via traditional theorem proving.

a set of mutually recursive ACL2 functions. These include
functions that calculate the non-list arguments of any ACL2
function and the unbound non-list variables of an expression,
as defined below:

e The non-list arguments of a function, intuitively, form
the subset of formal arguments that must be constant
in order for a function application to be unrolled into
the primitives car, cdr, cons, consp, and if. Since no
argument to a list primitive needs to be constant to un-
roll it into itself, its set of non-list arguments is the full
set of its formal arguments. Since any other primitive
cannot be converted into a list primitive, its non-list
arguments is the empty set. For non-primitives, the
set of non-list arguments is defined as the minimal fix
point that includes both unbound variables occurring
in the function’s measure and unbound non-list vari-
ables occurring in the function’s body.

e The unbound non list variables of an ACL2 expres-
sion form a subset of the unbound variables in that
expression. This subset is calculated by looking at the
arguments to each function application. If an argu-
ment corresponds to a non-list argument of the applied
function, then all unbound variables occurring in it are
unbound non-list variables.

An ACL2 formula is in SULFA if two conditions are met.
First all functions in the formula must be executable and
total (i.e. defined with defun). Second the set of unbound
non-list variables in the formula must be empty.

Consider the functions and theorems shown in Fig. 1. The
functions concatn and uandn each only have one non-list ar-
gument, n. The argument n is a non-list argument since it

is used in the termination measure of the function and is
used as an argument to zp. Since a and b are only used
as arguments to car and cdr, these arguments are list argu-
ments. Therefore the theorem SULFA-thm is in SULFA, since
all non-list arguments in it are constant. On the other hand,
the theorem general-thm, is not in SULFA, since (+ x y),
x, and y are all non-constant expressions used as non-list
arguments.

3. FORMALIZING CNF IN ACL2

In order to combine a SAT solver with the ACL2 logic,
we first show how to represent the input of a SAT solver, an
existentially quantified Boolean CNF formula, in the ACL2
logic. We represent this CNF formula by negating it and
driving the negation through the existential quantification.
For example the following negated CNF formula

=(Fzo, z1, 22 : (To VX1V x2) A (m20 V 2T1) A (T0 V —22))

corresponds to the following ACL2 formula:
(not (and (or x0 x1 x2)

(or (not x0) (mot x1))

(or x0 (not x2))))
Note that it is not necessary to constrain variables to be

Boolean, since in the ACL2 logic every formula X is equiv-
alent to (X # nil).

4. CONVERSION ALGORITHM

In our previous paper [13], we present a simple algorithm
for converting a SULFA property into SAT and argue that
this algorithm forms a valid decision procedure for SULFA
properties. This simple algorithm relies on expanding func-
tion calls and replacing (if x y z) with (and (or (not x)
y) (or x z)). This algorithm, however, does not achieve
adequate performance. Using our implementation of the
simple conversion algorithm we could not prove the asso-
ciativity of an eight bit adder. In this section we present a
more efficient algorithm that can verify the associativity of
a 200 bit adder.

The problem with the simple algorithm is that function
call expansion and if removal may cause unnecessary expo-
nential increases in the size of the formula. We can alleviate
this problem by creating new variables, in a similar way to
that used by Tseitin [16]. In particular we create variables
for function parameters and the conditions of if expres-
sions. Creating new variables and properly handling the
expressions containing these variables adds a considerable
amount of complexity to the algorithm. In order to make
the high-performance algorithm easier to understand, we di-
vide it into five phases: initial clausification, equal clause
simplification, relevant boolean discovery, boolean variable
creation, and iff removal. Each phase produces an ACL2
formula that is closer to a CNF formula than its input.

In this section we describe each phase and use the SULFA-thm

example from Fig. 1 to illustrate it. We also prove that
the final phase produces a valid formula only if the original
ACL2 formula is also valid. Finally we present our algorithm
for generating ACL2 counter-examples from a satisfying in-
stance to a CNF formula.

4.1 Initial Clausification

The first phase of our algorithm begins by converting the
ACL2 conjecture into a negated conjunction. We refer to

(bequiv (uandn 2 (concatn 1 a b))
(if (uandn 1 a) (uandn 1 b) nil))

=

(not (not (bequiv
(uandn 2 (concatn 1 a b))
(if (uandn 1 a) (uandn 1 b) nil))))

=

(nand (equal x0
(bequiv
(uandn 2 (concatn 1 a b))
(if (uandn 1 a) (uandn 1 b) nil)))
(not x0))

Figure 2: A simplified version of the theorem shown in
Fig. 1 is converted into a negated conjunction.

each member of this conjunction as a clause. The initial
clausification phase is illustrated in Fig. 2. The example in-
put is the theorem SULFA-thm shown in Fig. 1. This property
states that the unary-and of two, one bit, bit-vectors pro-
duces the same result as the conjunction of the unary-and of
each component (note that (and x y) is an abbreviation for
(if x y nil)). A new variable, x0, is created to represent
the original ACL2 property.

4.2 Equal Clause Simplification

The next phase, the equal clause simplification phase, re-
moves if, cons, and user-defined functions. Equal clause
simplification involves repeatedly applying the four simpli-
fication steps shown in Fig. 3. These four steps are:

1. New variables are created for non-primitive function
calls that occur as arguments to other function calls
and in the condition parameter of a call to if. For
example, in part A of Fig. 3 we create variables for
each parameter of bequiv. Eventually a variable will
also be created for the condition of
(if (uandn 1 a) (uandn 1 b) nil) (this is the vari-
able x4 in Fig. 4).

2. A non-primitive function call is expanded once its ar-
guments contain no non-primitive function calls them-
selves, as shown in part B of Fig. 3. After a func-
tion call is expanded any obvious simplifications are
performed—constant expressions are evaluated, (if T
y z) is replaced with y, (car (cons x y)) is replaced
by x, etc.. In our example concatn is opened using the
definition from Fig. 1 and (zp 1) is evaluated, leading
to the removal of the outer if function call.

To ensure termination of the equal clause simplifica-
tion phase, we make use of the measures used to prove
termination of the functions in the SULFA property.
For any recursive function f, let m be the measure
used in the proof of termination of f. Every formal
that occurs in m is a non-list argument. Since non-list
arguments are constant in SULFA, we can associate a
constant ordinal with any call of f by substituting for-
mals with arguments. From the proof of termination
of the function, we conclude that this ordinal decreases
on every recursive call. If an ordinal fails to decrease

A. Creating Variables

(equal x0
(bequiv (uandn 2 (concatn 1 a b))
(if (uandn 1 a) (uandn 1 b) nil)))

=

(and

(equal x1 (uandn 2 (concatn 1 a b)))

(equal x2 (if (uandn 1 a) (uandn 1 b) nil))
(equal x0 (bequiv x1 x2)))

B. Opening Functions

(equal x3 (concatn 1 a b))

=

(equal x3 (cons (car a) (concatn O (cdr a) b)))
C. Breaking Up Conses

(equal x3 (cons (car a) (concatn 0 (cdr a) b)))
=

(and (consp x3)
(equal (car x3) (car a))
(equal (cdr x3) (concatn O (cdr a) b)))

D. Breaking Up Ifs
(equal x1 (if (car x3) (uandn 1 (cdr x3)) nil))
=

(and (or (equal x1 (uandn 1 (cdr x3)))
(not (car x3)))
(or (equal x1 nil) (car x3)))

Figure 3: An illustration of the various simplifications on
equal clauses.

on a recursive call, this recursive call has already been
proven to be irrelevant and can therefore be replaced
with nil without affecting the value of the expanded
body.

3. When a cons expression occurs on the right-hand side
of an equality the clause is broken into three equivalent
clauses involving consp, car, and cdr, as shown in part
C of Fig. 3.

4. When an if expression with a simple condition occurs
on the right-hand side of an equality, its clause is bro-
ken into two equivalent clauses, as shown in part D of
Fig. 3.

The above rules are repeatedly applied until reaching a
fix point. At this point, each clause consists of a disjunction
of expressions containing only calls to equal, car, cdr, and
consp. Fig. 4 shows the formula output by the equal clause
simplification phase when run on our example.

THEOREM 1. A formula output by the equal clause sim-
plification phase is valid only if its input is valid.

New Variables:

x0=(bequiv (uandn 2 (concatn 1 a b))

(if (uvandn 1 a) (uandn 1 b) nil))
x1=(uandn 2 (concatn 1 a b))
x2=(if (uandn 1 a) (uandn 1 b) nil)
x3=(concatn 1 a b)
x4=(uandn 1 a)

Resulting Negated Conjunction:

(nand

(consp x3)
(equal (car x3) (car a))
(equal (cdr x3) b)
(or (equal x1 t)

(not (car x3))

(not (cadr x3)))
(or (equal x1 nil)

(not (car x3))

(cadr x3))
(or (equal x1 nil) (car x3))
(or (equal x4 t) (not (car a)))
(or (equal x4 nil) (car a))
(or (equal x2 t) (not x4) (not (car b)))
(or (equal x2 nil)

(not x4)

(car b))
(or (equal x2 nil) x4)
(or (equal x0 x2) (not x1))
(or (equal x0 (not x2)) x1)
(not x0))

Figure 4: Our example from Fig. 2 at the end of the equal
clause simplification phase.

Proof Sketch. It is sufficient to prove that if an assignment
of variables to values satisfies every clause input to the equal
clause simplification phase, then there exists an assignment
that satisfies every clause output. We prove this by showing
that for each of the four simplification steps, if an assignment
o satisfies every clause input to the step then there exists an
assignment 7 that satisfies every clause output by the step.

1. Creating Variables In this step, a new variable z,
not occurring in any of the input clauses, is intro-
duced. An expression F occurring in an input clause
is replaced with x and a new clause (equal x E) is
added. The assignment m = o0 U [z — E /o] therefore
satisfies the output clauses.

2. Opening Functions. By a function’s definitional ax-
iom, the assignment o produces the same value for a
function call as it does for the function’s instantiated
body. Therefore, m = o satisfies the output clauses.

3. Breaking Up Conses. The value of (equal x (cons
a b)) under o is Boolean equivalent to (and (equal
(car x) a) (equal (cdr x) b) (comsp x)) under
o. Therefore m = o satisfies the output clauses.

4. Breaking Up Ifs. The value of (equal x (if a b
c)) is Boolean equivalent to (and (or (equal x b)
(not a)) (or (equal x c) a)) under o. Therefore
m = o satisfies the output clauses. [J

4.3 Relevant Boolean Discovery

The next step in our conversion process is finding a set
of Boolean expressions v that are relevant to the validity
of the formula. In this section, we refer to the members of
the disjunction of a clause as equal elements and non-equal
elements, depending on whether they contain an equality.
Furthermore, we use the function bfix, which maps ACL2
constants into the Boolean domain using the following func-
tion:

(defun bfix (x) (if x t nil))

Initially «y is the empty set. If a non-equal element is (consp
X) or (not (comsp X)), where X is an ACL2 expression,
then (consp X) is added to . If a non-equal element is X
or (not X) then (bfix X) is added to . Fig. 5 shows the
non-equal elements found in our example from Fig. 4, and
the relevant Boolean expressions added to v due to these
elements.

The equal elements of clauses are traversed in a specific
order, from the last clause to the first (this ensures that the
variable on the left hand side of an equality is traversed after
traversing every equality where it occurs on the right hand
side). Equal elements with a constant right-hand side are ig-
nored. For every other equal element we propagate relevant
Boolean expressions involving the left-hand side of the equal-
ity into corresponding expressions involving the right-hand
side. For example, the first equal element in Fig. 5 is (equal
x0 (not x2)). Since the Boolean expression (bfix x0) is
relevant, (bfix x2) is added to . If the right hand-side had
been (not (consp x2)) then we would have added (consp
x2) to <y instead. When the right-hand side has no nega-
tion or call to consp, then many Boolean expressions can be
propagated. For example, if (consp (cadr x3)) and (bfix
(cdr x3)) were relevant, then (consp (car b)) and (bfix
b) would be added to « after traversing the third equality
in Fig. 5.

Non-Equal Elements:

(consp x3) (not (car x3))
(not (cadr x3)) (not (car x3))
(cadr x3) car x3)
(not (car a)) (car a)
(not x4) (not (car b))
(not x4) (car b)
x4 (not x1)
x1 (not x0)

Relevant Boolean Expressions Added To ~:

(consp x3) (bfix (car x3))
(bfix(cadr x3)) (bfix x4)
(bfix (car a)) (bfix (car b))
(bfix x0) (bfix x1)

Equal Elements:

1: (equal x0 (not x2))

2: (equal x0 x2)

3: (equal (cdr x3) Db)

4: (equal (car x3) (car a))

Relevant Boolean Expressions Added To ~:
(bfix x2)

Figure 5: The non-equal and equal elements from our ex-
ample and the relevant Boolean expressions after considering
these elements

4.4 Boolean Variable Creation

The next phase of our algorithm creates a variable for
each Boolean expression found to be relevant. First, new
variables are chosen for each Boolean expression, as illus-
trated in part A of Fig. 6. Next these variables are substi-
tuted for the non-equal elements, as illustrated in parts B
and C. Since a relevant Boolean expression exists for each
non-equal element, every non-equal element is replaced.

The last of the non-Boolean variables are removed by re-
placing each clause with an equal element with clauses in-
volving iff as shown in part D. One iff expression is cre-
ated for each relevant Boolean expression involving the left
hand side of the equality. For example we replace a clause
involving (equal x1 t) with one involving (iff (bfix x1)
t) since the only relevant expression involving x1 is (bfix
x1). Then the Boolean relevant expression is replaced with
its new variable—e.g. (iff (bfix x1) t) becomes (iff y3
t).

If the right hand side of the equality is a variable, then a
Boolean expression for the right hand side corresponding to
the left hand side’s relevant Boolean expression is guaran-
teed to be relevant, by virtue of the way relevant Boolean
expressions are propagated from left to right through equal-
ities. For example, if a clause existed containing (equal
x3 xN) for some variable xN, then this clause would become
three clauses containing (equal (consp x3) (consp xN)),
(equal (bfix (car x3)) (bfix (car xN))), and (equal
(bfix (cadr x3))

(bfix (cadr xN))). All of these Boolean expressions would
then be replaced by Boolean variables.

Clauses that can be deduced from the following theorems
are also added.

A. Choose New Variables
yO := (bfix (car a))

yl := (bfix (car b))

y2 := (bfix x0)

y3 := (bfix x1)

y4 := (bfix x2)

y5 := (consp x3)

y6 := (bfix (car x3))

y7 := (bfix (cadr x3))

y8 := (bfix x4)

B. Substitute consp non-equal elements
(or (comsp x3) ...)

=

(or y5 ...)

C. Substitute bfix non-equal elements
(or (equal x1 t)

(not (car x3))

(not (car (cdr x3)))

=

(or (equal x1 t)
(not y6)
(not y7))

D. Break Equal Clauses into Components
(or (equal x1 t) (not y6) (not y7))

=

(or (iff y3 t) (not y6) (mot y7))

E. Add List Axioms

(implies (bfix (car x3)) (consp x3))
=

(or (not y6) yb5)

(nand

(implies (not y6) y5)

(implies (not y7) yb5)

y5

(iff y6 yo)

(iff y7 y1)

(or (iff y3 t) (not y6) (mot y7))
(or (iff y3 nil) (mot y6) y7)

(or (iff y3 nil) y6)

(or (iff y8 t) (not yO0))

(or (iff y8 nil) yO0)

(or (iff y4 t) (not y8) (mot y1))
(or (iff y4 nil) (nmot y8) yl)

(or (iff y4 nil) y8)

(or (iff y2 y4) (mot y3))

(or (iff y2 (not y4)) y3)

(not y2))

Figure 6: Examples illustrating the substitution of relevant
Boolean variables for ACL2 variables.

(implies (bfix (car x)) (consp x))
(implies (bfix (cdr x)) (consp x))
(implies (comnsp x) (bfix x))

For each relevant Boolean expression we follow the chain
of reasoning implied by the above theorems until we reach
another relevant Boolean expression, at which point we add
the implication as a new clause. For example the chain of
reasoning

(and

(implies (bfix (cadr x3)) (consp (cdr x3)))
(implies (consp (cdr x3)) (bfix (cdr x3)))
(implies (bfix (cdr x3)) (consp x3)))
leads to the addition of a clause for (implies (bfix (cadr
x3)) (consp x3)) in part E of Fig. 6. These implications
are intended to ensure that a valid list structure can be
constructed from any assignment of Boolean expressions to
Boolean values that satisfies every clause.

The result of the Boolean creation phase on our example
is shown in Fig. 7. The two clauses in the top row resulted
from list axioms; each of the rest of the clauses corresponds
to one of the clauses in Fig. 4.

THEOREM 2. A formula output by the boolean variable
creation phase is valid only if the formula input to it is valid.

Figure 7: Our example from Fig. 4 after creating new vari-
ables for each Boolean component shown in Fig. 5.

Proof Sketch. It is sufficient to prove that if an assignment
o satisfies every clause input to the Boolean variable cre-
ation phase, then there exists an assignment 7 that satisfies
every clause output. Such a 7 is the assignment that maps
each variable y; in the output of the phase with E; /o, where
E; represents the relevant Boolean expression corresponding
to y;. Clearly (implies x (bfix x)), (implies (not x)
(not (bfix x))), and for any function f, (implies (equal
x y) (Aff (f x) (f y))). Therefore any clause in the
output that is derived from a clause in the input is satis-
fied (clause generated by rules B, C, and D of Fig. 6). The
remaining clauses in the output are merely instantiations of
the valid theorems (implies (bfix (car x)) (consp x)),
(implies (bfix (cdr x)) (comnsp x)), and
(implies (consp x) (bfix x)). [J

4.5 Iff Removal

The final phase in the conversion process removes each
clause with an iff expression and replaces it with two clauses
using the equivalence of (or (iff x y) z) and (and (or
(not x) y z) (or x (mot y) z)). We also remove clauses
containing a literal and its negation, remove redundant lit-
erals, and remove constants. Fig. 8 shows the final formula
output by our conversion algorithm on our example. At this
point the expression is in negated CNF form and an external
SAT solver can be used to prove it.

THEOREM 3. A formula Fou: output by the conversion al-
gorithm is valid only if the original ACL2 property P is valid.

Proof Sketch. If P is invalid, then the formula input to the
equal clause simplification phase is invalid since the initial
clausification phase produces a formula trivially equivalent
to P. Therefore, by Lemma 1 and Lemma 2, the formula
output by the Boolean variable creation phase is also invalid.
The iff removal phase produces a formula trivially equivalent
to its input; therefore, the formula output by the conversion
algorithm is invalid. [

Theorem 3 ensures that it is safe to add SULFA properties
resulting in unsatisfiable CNF formulas into ACL2’s theo-
rem database. We believe the converse of Theorem 3 also

Final Negated Conjunction:

(nand
(or y6 y5)
(or y7 y5)
y5
(or y6 (not y0))
(or (not y6) y0)
(or y7 (not yi1))
(or (nmot y7) yi1)
(or y3 (not y6) (mot y7))
(or (not y3) (not y6) y7)
(or (not y3) y6)
(or y8 (not yO0))
(or (not y8) y0)
(or y4 (not y8) (not y1))
(or (not y4) (not y8) yl)
(or (not y4) y8)
(or y2 (not y4) (mot y3))
(or (not y2) y4 (not y3))
(or y2 y4 y3)
(or (not y2) (not y4) y3)
(not y2))

Final Variables:

yO := (bfix (car a))
yl := (bfix (car b))
y2 := (bfix x0)

y3 := (bfix x1)

y4 := (bfix x2)

y5 := (consp x3)

y6 := (bfix (car x3))
y7 := (bfix (cadr x3))
y8 := (bfix x4)

Figure 8: Our example from Fig. 7 with all the iffs removed.
At this point we have reached our target negated CNF form.
We also show our final variables and how they relate to the
original inputs.

holds; SULFA properties resulting in satisfiable CNF formu-
las are invalid. There are no severe consequences, however, if
the converse does not hold; the counter-example generation
algorithm, presented in the following section, will merely re-
port that the SAT-based procedure has failed to prove or
disprove the property.

4.6 Counter-Example Generation

If the SAT solver returns a satisfying instance for the final
formula, a counter-example for the original ACL2 expression
is generated, which maps free variables into constants under
which the original expression evaluates to nil. To generate
this counter-example we find a value for each free variable
i in the original ACL2 expression using the following algo-
rithm:

1. If (bfix i) is a relevant Boolean expression (an ex-
pression identified in the relevant Boolean discovery
phase of the conversion algorithm) and its correspond-
ing variable is false then i gets nil.

2. Else if (consp ¢) is a relevant Boolean expression and
its corresponding variable is false then i gets t.

Table 1: Performance of the ACL2 Simplifier, BDD
System, and SAT System

N | Example ACL2 | BDD SAT
1 4 Adder-A 248s 0.0s 0.0s
2 32 Adder-A Hokodk 0.3s 1.1s
3 200 Adder-A *RFE | 48.6s | 33.2s
4 32x6 Shift-0 54.8s 5.1s 8.6s
5 64x7 Shift-0 1710s 181s 55.6s
6 32x4 Add-Shift 2540s 2.7s 12.7s
7 64x6 Add-Shift HoAEE 205s 230s
8 100 Digit-Inv Ak 1.7s 3.5s

3. Else if there are no relevant Boolean expressions in-
volving (car i) or (cdr i), then ¢ gets t.

4. Else return to step 1 with (car i) in place of ¢ and
recursively find a value x for (car i). Repeat this
process to recursively find a value y for (cdr i). The
value of 7 is then (cons x y).

4.7 Optimization

There is one optimization we use that we have not yet dis-
cussed. This optimization is implemented during relevant
Boolean expression discovery and Boolean variable creation
phases and takes advantage of the fact that a singleton equal
clause can be treated as a rewrite rule. If a clause (equal X
Y) is encountered, where Y is an expression that involves
neither negation nor consp, then (equal X Y) is removed.
For later purposes X and Y are treated as indistinguish-
able. This optimization is implemented by sharing the data
structures that store relevant expressions for X and Y.

This optimization removes the two singleton equal clauses
from our example in Fig. 4. Furthermore, in part A of Fig. 6
the variables yO and y1 are used to represent (bfix (car
x3)) and (bfix (cadr x3)) rather than y6 and y7.

5. RESULTS

In this section we compare the performance of our SAT
system to two other approaches available for proving hard-
ware theorems with the ACL2 theorem prover. One of these
uses ACL2’s built-in BDD system, and the other uses the
ACL2 simplifier (without generalizing the problems and in-
voking induction). For this analysis we used zChaff version
2003.11.04 on a 3.0GHz Intel(R) X EONT™ processor with
2 GB of RAM running ACL2 v3.0 on Allegro Common Lisp
7.0.

On eight examples, Table 5 compares the performance
three approaches available in the ACL2 theorem prover, sim-
plifying by brute-force, appealing to the BDD-based system,
and using our SAT-based system (**** denotes results which
require more than an hour or more memory than was avail-
able). In general, our SAT-based system performed better
than the ACL2 simplifier and on par with the BDD system.
It should be noted that the ACL2 simplifier is not designed
to be used in a brute-force manner. Nevertheless, we wanted
to show that ACL2 is capable of verifying SULFA properties
automatically, albeit slowly. Furthermore, the BDD system
is different from the new SAT system in many ways other
than merely using BDDs. The BDD system is internal to
ACL2, is not completely automatic, and is applicable to a
larger set of ACL2 problems.

Table 2: Code Size Needed for the ACL2 Simplifier,
BDD System, and SAT System

N | Example Functions ACL2 | BDD | SAT

1 | 4 Adder-A 4 17 25 | 21
2 | 32 Adder-A 4 17 42 | 21
3 | 200 Adder-A 4 17 202 | 21
4 | 32x6 Shift-0 6 53 60 | 34
5 | 64x7 Shift-0 6 53 65 | 34
6 | 32x4 Add-Shift 4 58 71 | 44
7 | 64x6 Add-Shift 4 58 77| 44
8 | 100 Digit-Inv 4 44 | 280 | 36

For each example, Table 5 gives the number of lines of code
required to write the functions needed, followed by the num-
ber of lines required to specify and verify the property using
the ACL2 simplifier, the BDD-based system, and the new
SAT-based system. The SAT-based system requires fewer
lines since properties can be expressed compactly, with no
type hypotheses and since the proof is fully automatic. The
ACL2 simplifier also can express the properties compactly,
but requires a few more lines since the definitions must be
rewritten as rewrite rules. The BDD system requires a sub-
stantial amount of code, because of the need for definitions
to be rewritten, variable orderings to be specified, extra hy-
potheses stating that free variables are Boolean lists, and
rewrite rules that push if expressions to the leaves of list
structures.

5.1 Description of Examples

The first problem we consider is proving the associativity
of a ripple carry adder. We give results for 4 bit, 32 bit, and
200 bit versions of the adder. On this example, the SAT
system performs much better than the ACL2 simplifier and
on par with the BDD system. The BDD system requires a
user-specified variable ordering to achieve these results (the
default ordering was poor).

The BDD system requires a substantial number of lines
of code to prove the associativity of our adders. Most of
this code is simple and has the potential to be automated,
merely consisting of rewrite rules that replace function calls
by their bodies. The final theorem though is also verbose
since we must give a variable order for 200 variables and each
variable is Boolean. The SAT system, by contrast, requires
only a small statement of the theorem followed by a line
instructing the theorem prover to use SAT.

We next implement a Ny.y X Ny shifter which left shifts
a Nyeg bit register by the value of a N, bit input. We first
prove that 32x6 and 64x7 shifters output all zeros when
given a large enough shift value. For a 32 by 6 bit shifter
the BDD system is comparable to the SAT system. For any
larger problems, however, the BDD system performs poorly,
because there is no good variable ordering for this problem.

We also combine our shifter and ripple-carry adder to
prove that shifting a value by z and then by y is equiva-
lent to shifting by z+y (with an extra bit of shift to handle
carry).

In our final example, we prove the invariant mentioned in
our introduction needed to show that the 100 digit version
of the decimal counter described in Section 1 stays in its
valid range. On this problem, the BDD system performs
better than the SAT system. However, the BDD system

requires more guidance on this problem than on any other
problem due to the unique structure of the state of our 100
digit counter.

5.2 Performance Analysis

The table shown in Table 5.2 shows the minimum num-
ber of Boolean variables that would be required to represent
the input SULFA property, the number of Boolean variables
actually present in the final CNF formula, the number of
clauses in the final CNF formula, the time spent during con-
version, the time spent SAT solving, and the total time to
solution.

Note there is also a trade-off between the conversion time
and the SAT solving time—the more effort spent producing
an easy problem for the SAT solver, the more time spent
during conversion. Our tendancy has been to reduce the
conversion time as much as possible, at the expense of the
time spent SAT solving.

There is also a trade-off between the number of variables
and the number of clauses in the final CNF formula. For
example, one could minimize the number of variables by not
creating variables during conversion. Such a methodology,
however, would lead to an exponential number of clauses,
which would slow down both the conversion time and the
SAT solving time. Our rule of thumb has been to minimize
the number of variables while keeping the number of clauses
at most quadratic.

6. RELATED WORK

The complementary techniques of theorem proving and
model checking have been combined previously on many oc-
casions. Issabelle, for example, incorporates a number of
decision procedures inspired by model checking, including
a SAT-based decision procedure for propositional logic [18].
The general-purpose theorem prover PVS was designed with
the combination of model-checking and theorem proving in
mind [12]. Intel’s FORTE system uses a HOL-based theo-
rem prover built on top of an efficient procedure for symbolic
trajectory evaluation [4]. The most general combination of
theorem proving and model-checking of which we know is
implemented by the SyMP model prover [2].

Fewer attempts, however, have been made to integrate
model checking with ACL2. A BDD-based engine has been
built into the theorem prover for some time [9], but uses
a significantly different approach. The BDD-based engine
is not fully automatic over any clearly defined subclass of
ACL2 formulas, but instead, with some human guidance,
attempts to operate on a wider set of ACL2 formulas.

Other work incorporating fully automatic tools with ACL2
includes the definition in ACL2 of a simple model checker
for the Mu-Calculus [7] and the integration of ACL2 with
UCLID [8]. The main difference between our work and this
work is the relative simplicity of the logic used by SAT
solvers, which allows us to create a more natural embed-
ding into the ACL2 logic. We also have used UCLID [6]
to verify some of our examples from Section 5, but found
that it was not designed with low-level hardware models in
mind. When used with the zChaff SAT solver, UCLID re-
quires 6.33s to verify the invariant of the ten digit decimal
counter and after ten minutes was still unable to verify the
invariant of the hundred digit decimal counter. It may be
possible to improve on these results, however, with the help
of an experienced UCLID user.

Table 3: Performance Data

N | Example Input Vars | Final Vars | Clauses | Conversion Time | Solving Time Total Time
1 4 Adder-A 12 61 202 0.0s 0.0s 0.0s
2 32 Adder-A 96 509 1910 0.1s 1.0s 1.1s
3 200 Adder-A 600 3197 12158 0.4s 32.8s 33.2s
4 32x6 Shift-0 38 104 2677 8.6s 0.0s 8.6s
5 64x7 Shift-0 71 201 10469 55.6s 0.0s 55.6s
6 32x4 Add-Shift 40 181 3573 12.0s 0.8s 12.7s
7 64x6 Add-Shift 76 351 23025 137s 92.5s 230s
8 100 Digit-Inv 400 2705 39209 2.0s 1.6s 3.5s

7. CONCLUSION

We have developed an algorithm for converting a subset
of ACL2 conjectures automatically into CNF so their va-
lidity may be determined by a SAT solver. This subset of
ACL2 conjectures is rich enough to include properties about
a finite number of cycles of an FSM. Both the finite state
machine models and the properties about them are written
in a compact, human-readable format, which is critical for
integrating our technique with interactive theorem proving.

We have already begun to apply the SAT-based procedure
as part of a larger hardware verification system described
at CHARME 2005 [3]. In this verification system one uses
ACL2 theorem prover to decompose a hardware property
into multiple FSM properties, each of which involve only a
finite number of steps of an FSM. As shown in our paper
on SULFA, we have used this technique to verify a number
of properties of the TRIPS processor [13]. The TRIPS pro-
cessor is a prototype grid processor being designed at the
University of Texas and IBM [1]. The SAT-based procedure
automatically verifies ACL2 properties that would otherwise
require human guidance to prove and it eases debugging of
invalid conjectures by generating counter-examples for them
in the ACL2 environment.

We believe that the general-purpose nature of the ACL2
language is key for specifying the kind of complex proper-
ties that should be checked in modern hardware and soft-
ware systems. By integrating finite decision procedures with
ACL2 as external tools, we can make much of the proof of
these properties fully automatic.

8. REFERENCES

[1] Tera-op Reliable Intelligently adaptive Processing
System, www.cs.utexas.edu/users/cart/trips.

[2] S. Berezin. Model Checking and Theorem Proving: A
Unified Framework. PhD thesis, Carnegie Mellon
University, 2002.

[3] W. A. Hunt, Jr. and E. Reeber. Formalization of the
DE2 Language. In Proceedings of the 13th Conference
on Correct Hardware Design and Verification Methods
(CARME 2005), pages 20-34. Springer, 2005.

[4] R. Jones, J. O’Leary, C.-J. Seger, M. Aagaard, and
T. Melham. Practical Formal Verification in
Microprocessor Design. IEEE Design and Test of
Computers, 18:16—25, 2001.

[5] M. Kaufmann, P. Manolios, and J. S. Moore.
Computer Aided Reasoning: An Approach. Kluwer
Academic, 2000.

[6] S. K. Lahiri and R. E. Bryant. Deductive Verification
of Advanced Out-of-Order Microprocessors. In Proc.

(10]

(11]

15th Int. Conf. Computer Aided Verification
(CAV’03), pages 341-354. Springer, 2003.

P. Manolios. Mechanical Verification of Reactive
Systems. PhD thesis, The University of Texas at
Austin, 2001.

P. Manolios and S. K. Srinivasan. Automatic
Verification of Safety and Liveness for XScale-Like
Processor Models Using WEB Refinements. In DATE,
pages 168-175, 2004.

J. Moore. Introduction to the OBDD Algorithm for
the ATP Community. Journal of Automated
Reasoning, 12(1):33-45, 1994.

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and
S. Malik. Chaff: Engineering an Efficient SAT Solver.
In 39th Design Automation Conference, 2001.

G. Nelson and D. C. Oppen. Simplification by
Cooperating Decision Procedures. ACM Transactions
on Programming Languages and Systems,
1(2):245-257, 1979.

S. Rajan, N. Shankar, and M. K. Srivas. An
Integration of Model Checking with Automated Proof
Checking. In P. Wolper, editor, Proc. 7th International
Conference on Computer Aided Verification (CAV),
volume 939, pages 84-97. Springer Verlag, 1995.

E. Reeber and Warren A. Hunt, Jr. A SAT-Based
Decision Procedure for the Subclass of Unrollable List
Functions in ACL2 (SULFA). In Proceedings of the
Third International Joint Conference on Automated
Reasoning (IJCAR). LNCS, 2006.

D. Russinoff. A Mechanically Checked Proof of IEEE
Compliance of a Register-Transfer-Level Specification
of the AMD K7 Floating Point Multiplication,
Division and Square Root Instructions. LMS Journal
of Computation and Mathematics, 1:148-200, 1998.

J. Sawada. Formal Verification of an Advanced
Pipelined Machine. PhD thesis, University of Texas at
Austin, 1999.

G. Tseitin. On the complexity of derivation in
propositional calculus. Seminars in Mathematics, 8,
1968.

M. Velev and R. E. Bryant. Effective Use of Boolean
Satisfiability Procedures in the Formal Verification of
Superscalar and VLIW Microprocessors. Journal of
Symbolic Computation, 35(2):73-106, 2003.

T. Weber. Using a SAT solver as a fast decision
procedure for propositional logic in an (lcf)-style
theorem prover. In J. Hurd, E. Smith, and A. Darbari,
editors, Proc. TPHOLS, pages 180189, 2005.

