
Phylogenetic Trees in ACL2

Warren A. Hunt Jr.
Department of Computer Sciences
The University of Texas at Austin

hunt@cs.utexas.edu

Serita M. Nelesen
Department of Computer Sciences
The University of Texas at Austin

serita@cs.utexas.edu

ABSTRACT
Biologists studying the evolutionary relationships between organ-
isms use software packages to solve the computational problems
they encounter. Several of these problems involve the production
and analysis of phylogenetic trees. We present our system for phy-
logenetic tree manipulation, TASPI, which was designed to allow
the specification and verification of various tree operations, while
giving good execution performance. The first aspect of TASPI is
a new format for storing and manipulating phylogenetic trees that
significantly reduces storage requirements while continuing to al-
low the trees to be used as input to post-tree analysis. We also
prove the correspondence of this format to another tree format. In
addition, we give a consensus algorithm with verified guards that is
faster by an order of magnitude than standard phylogenetic analysis
tools.

Categories and Subject Descriptors
E.2 [Data Storage Representations]: Hash-table representations;
F.4.1 [Mathematical Logic]: Mechanical theorem proving; D.2.4
[Software/Program Verification]: Correctness proofs

General Terms
Verification, Performance

Keywords
ACL2, Phylogenetics

1. INTRODUCTION
Phylogenetic trees represent the evolutionary relationship between

species. Biologists attempt to find the correct phylogenetic tree
to answer scientific questions ranging from “Why does Columbia
have more types of birds than any other country?” to “Do wings,
flippers and arms all evolve from the same structure in some an-
cient organism?” Phylogenetic trees are also used to answer more
practical questions. For example, phylogenetics have been used to
determine the sources of infection from HIV [11], and to predict
gene function, which is used for drug discovery [13].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACL2 ’06 Seattle, Washington USA
Copyright 2006 ACL2 Steering Committee 0-9788493-0-2/06/08.

Given the importance of the results of these studies, we would
like to know that the software producing the trees in accurate. Un-
fortunately, this is not currently the case. For example, we found
several cases where PAUP [14], one of the most widely used pack-
ages for phylogenetic inference, produced output that was not even
well-formed (the author was notified of the bug).

This paper introduces TASPI, an experimental system written
from scratch in the ACL2 [12] formal logic, that performs a few
of the operations used in phylogenetics. In particular, we are ad-
dressing those operations that use trees as input. Our goal is to
build a system that is clearly specified, and about which various
properties can be proved. In addition, we would like this system to
be competitive in terms of execution speed.

Towards these goals, we have developed methods for storing and
retrieving phylogenetic tree data, and using these methods we have
implemented a consensus algorithm. Our approach permits very
large data sets to be compactly stored and retrieved without any loss
of precision. Also, our implementation of our consensus algorithm
provides greatly increased performance when performing strict and
majority consensus computations as compared to currently avail-
able software, such as PAUP [14] and TNT [9].

2. BACKGROUND
Biologists interested in the phylogenetic relationship between or-

ganisms attempt to produce a tree that best represents evolutionary
history. Given that the true history can never be known for cer-
tain, they instead produce a tree that optimizes some criterion (with
information about the species involved at the leaves). Two of the
most common criteria for deciding which tree is the correct tree are
Maximum Parsimony (MP) and Maximum Likelihood (ML).

Both MP and ML are computationally intensive (they have been
proven to be NP-hard [5] [4]). Since the number of possible trees
grows extremely fast as the number of taxa (species) increases,
heuristics are used to attempt to find the optimal tree without doing
an exhaustive search. This can result in large numbers of trees with
equally (or nearly equal) optimal scores.

When a biologist is presented with multiple trees that are equally
good as far as their optimization criteria is concerned, they often
perform some form of consensus analysis to create a consensus
tree. Consensus trees are defined by Felsenstein as “trees that sum-
marize, as nearly as possible, the information contained in a set of
trees whose tips are all the same species” [8]. Consensus meth-
ods return a single tree, or an indication that no tree meeting that
method’s requirements exists.

There are many types of consensus trees, but two of the most
common are strict and majority. Both of these decide which branches
in the input trees to keep, and then build a tree from the resulting
branches. Strict consensus requires that any branch in the consen-



sus tree be a branch in every input tree, while a majority tree only
requires that any branch in the consensus tree be a branch in at least
some majority of the input trees. Strict and majority consensus al-
gorithms always return a tree, and have optimal O(kn) algorithms
as described by Day [6] and Amenta et al. [1] (where k is the num-
ber of trees and n is the number of taxa).

3. REPRESENTATIONS

3.1 TASPI’s tree format
Newick format [7] is the standard way of storing a collection of

phylogenetic trees. Adopted in 1986, Newick is a parenthetical no-
tation that uses commas to separate sibling subtrees, parentheses
to indicate children, and a semicolon to conclude a tree. Newick
outlines each tree in its entirety whether storing one tree, or a col-
lection of trees.

On the other hand, our system, TASPI, capitalizes on common
structure within a collection of trees. TASPI stores a common sub-
tree once, and then each further time the common subtree is men-
tioned, TASPI references the first occurrence. This saves consider-
able space since potentially large common subtrees are only stored
once, and the references are much smaller (for empirical results see
Section 5).

There are two layers to the TASPI representation of trees. At a
high-level, trees are represented as Lisp lists, similar in appearance
to Newick, but without commas and semicolons. This is the format
presented to the user of TASPI and on which user functions operate.
At a low-level, the data are instead represented in a form that uses
hash-consing [10] to achieve decreased storage requirements and
improved accessing speeds.

We have a couple ACL2 predicates that together recognize well-
formed trees. First, taspip checks that a tree is made up of symbols
and integers for leaves (though nil is not a valid taxa name), and
that any time there are sibling subtrees, they are part of a true-listp.

(defun taspip (flg tree)
(if flg

(if (atom tree)
(or (and (symbolp tree)

(not (equal tree nil)))
(integerp tree))

(taspip nil tree))
(if (atom tree)

(null tree)
(and (taspip t (car tree))

(taspip nil (cdr tree))))))

Second, ordered-taspi checks that a tree follows a specified or-
dering. Any sibling taxa are to be in the order given, and sibling
subtrees must have the first taxa in each of their representations in
the correct order.

(defun first-taxon (term)
(if (atom term)

term
(first-taxon (car term))))

(defun ordered-taspi (tree order)
(if (consp tree)

(if (consp (cdr tree))
(and (< (cdr

(assoc-equal
(first-taxon tree)
order))

(cdr
(assoc-equal

(first-taxon
(cdr tree))

order)))
(ordered-taspi (car tree)

order)
(ordered-taspi (cdr tree)

order))
(ordered-taspi (car tree) order))

t))

3.2 Trees from bipartitions
Lisp programmers can easily see how the parenthetical notation

given above is intuitive for representing trees. However, for sev-
eral algorithms using trees as input, having a representation more
directly related to the branches of the tree is useful.

A branch in a tree separates the taxa into two sets: the taxa reach-
able from one side of the branch versus the taxa reachable from the
other. These two sets together make up a bipartition. A tree can
then be represented by listing the set of bipartitions in the tree.

We represent bipartitions in TASPI by listing the taxa on one side
of a branch, and then using a list of all the taxa in the tree to infer
the other side. A valid bipartition is recognized by good-partp,
which checks that there are no duplicate taxa names, that each taxa
name is either a symbol or integer, and that there are at least 2 taxa
names in the bipartition.

(defun good-partp (x)
(and (int-symlist x)

(no-duplicatesp-equal x)
(< 1 (len x))))

In order to move between a bipartition representation of trees
and the parenthetical notation, we have functions that transform
one representation into the other:

(defun fringes (flg tree order)
(if flg

(if (consp tree)
(cons

(ofringe t tree order)
(append

(fringes
t (car tree) order)

(fringes
nil (cdr tree) order)))

nil)
(if (consp tree)

(append (fringes
t (car tree) order)

(fringes
nil (cdr tree) order))

nil)))

(defun partstotaspi (top under order)
(if (consp under)

(orderly-cons
(partstotaspi

(car under)
(get-subsets (car under)

(cdr under))
order)

(partstotaspi



(difference top (car under))
(get-non-subsets (car under)

(cdr under))
order)

order)
top))

fringes takes a tree in parenthetical notation, and produces a list
of bipartitions where each bipartition has been ordered according
to the given order. If given a non-nil flag, the first element of the
list is not a bipartition, but instead an ordered list of the taxa in the
tree. partstotaspi takes a list giving all taxa in the tree (top), the
list of bipartitions (under) and an ordering in which to create the
parenthetical notation.

These functions are not tail-recursive, and as such are not the
most efficient implementation. However, these simplified defini-
tions allow us to prove the following theorem:

(defthm fringes-partstotaspi-inverse
(implies

(and (ordered-taspi x order)
(good-order-list order)
(not (and flg

(not (consp x))))
(no-duplicatesp-equal

(strip-cdrs order))
(no-duplicatesp-equal (mytips x))
(subset (mytips x)

(get-taxa-from-order order))
(taspip flg x))

(if flg
(equal (partstotaspi

(car (fringes flg x order))
(cdr (fringes flg x order))
order)

x)
(equal (partstotaspi

(ofringe flg x order)
(fringes flg x order)
order)

x)))
:rule-classes :nil)

This theorem says that if given a good ordering of taxa in the
tree, and a tree that is in a good form and appropriately ordered,
then applying partstotaspi to the result of fringes gives back the
original tree.

4. CONSENSUS ANALYSIS
Given a collection of phylogenetic trees, there are several opera-

tions that a biologist may which to perform. The first that we have
implemented are majority and strict consensus. We compute a con-
sensus through a sequence of steps. We first read the source file
containing the trees for which a consensus is to be computed. Dur-
ing the read process, we identify every subtree for which we have
already read an identical subtree. We next create a mapping from
all subtrees to their parents. Using this information, we compute
the occurrence frequency of every branch. Finally, after we have se-
lected the branches that match our selection criteria, we construct
the consensus answer. For a more thorough explanation, see our
previous paper [3].

The functions implementing our consensus algorithm have all
of their guards verified, which gives us a formal specification for
the algorithm. Also, though we have used somewhat simplified

Figure 1: Storage requirements

versions of the functions for the theorem in Section 3.2, the effi-
cient implementation makes use of BDDs for improved set com-
putations. Further, we have built this system in a version of ACL2
with hash-consing and memoization [2] which we use to avoid re-
computation whenever possible.

5. EXPERIMENTS
One of our goals with TASPI is to create a system for phylo-

genetic trees that is both clearly specified, and that performs well.
Having specified our system, we compared its performance to cur-
rently available software. We obtained collections of phylogenetic
trees generated by researchers, and also generated two large collec-
tions ourselves.

Using PAUP [14], TNT [9] and TASPI, we measured the time it
took the software to read each collection, and the time needed to
compute both a strict and majority consensus tree. We also com-
pared the storage space requirements for each collection in several
different formats.

Figure 1 shows two sizes for each of our benchmark data sets.
The Newick line represents the size of the file storing trees in Newick
format. TASPI.bhz displays the size of the file after compression
using the Boyer-Hunt method. Notice that this file is still in ASCII,
but with redundancies removed. Unlike most compression meth-
ods, all the information present in the original files is still immedi-
ately accessible, without a decompression step.

As Figure 1 shows, using the compressed TASPI format saves
considerable memory space. The amount of storage space saved
is dependent on the amount of similarity between input trees. The
more similarity between input trees (i.e. the greater the number
of common subtrees) the more effective the compression. For the
data sets shown, the compressed TASPI format uses just 5% of the
storage requirement of the Newick format.

Figure 2 shows the time to compute consensus with each of
TASPI, TNT and PAUP. In each case, both a strict consensus tree
and a majority consensus tree are computed. Notice that the time
to compute consensus includes the time to read the collection of
trees since the trees are the input to a consensus calculation. Thus,
we show both the time to compute consensus when reading com-
pressed trees (TASPI.bhz line) and also the time when reading Newick
trees (TASPI line).

In all cases, the result TASPI produces is identical to that pro-
duced by PAUP (when PAUP is able to read the input), but TASPI is
faster. For the data sets PAUP and TNT can process that we present,
using TASPI to compute consensus with input trees in compressed



Figure 2: Time to read a collection of trees and compute their
strict and majority consensus

TASPI format requires 6% of the time it takes PAUP to compute
consensus with input trees in Newick format. If we factor out the
improved reading time, TASPI computes these consensus trees in
about 11% of the time it takes PAUP to do the same computation.

6. CONCLUSION
Using ACL2, we have begun a package for accurate phylogenetic

tree manipulation. We have shown two representations of trees and
proved that we can move accurately between them. Thus, in fu-
ture work, we can encode other algorithms using trees as input in
either format. We have also built a consensus method that gives
(provably) well-formed results without losing performance, in fact,
demonstrating decreased running times.

By programming in ACL2, we achieve confidence in our system.
Verifying guards, and proving other key properties of the functions
involved guarantees that TASPI does what it was designed to do. As
we further this work, we hope to create a system that can reliably
and efficiently answer questions biologists ask of both a particular
phylogenetic tree, and a collection of trees.

While using ACL2 to implement further operations may not al-
ways give us the same dramatic performance improvement it did
for consensus analysis, the ability to provide verified results is ex-
tremely useful.

Acknowledgments
This material is based upon work supported by the National Science
Foundation under grant EF-0331453 and supported by DARPA and
NSF under grant CNS-0429591. Also, Nelesen was supported by
an NSF IGERT fellowship in Computational Phylogenetics and
Applications to Biology at the University of Texas at Austin.

7. REFERENCES
[1] Nina Amenta, Frederick Clarke, and Katherine St. John. A

linear-time majority tree algorithm. In Gary Benson and Roderic
D. M. Page, editors, Algorithms in Bioinformatics, Third
International Workshop, WABI 2003, Budapest, Hungary, September
15-20, 2003, Proceedings, volume 2812 of Lecture Notes in
Computer Science, pages 216–227. Springer-Berlin / Heidelberg,
2003.

[2] Robert S. Boyer and Warren A. Hunt Jr. Function memoization and
unique object representation for acl2 functions. In Sixth International
Workshop on the ACL2 Theorem Prover and its Applications
(ACL2-2006), August 2006.

[3] Robert S. Boyer, Warren A. Hunt Jr., and Serita M. Nelesen. A
compressed format for collections of phylogenetic trees and

improved consensus performance. In Algorithms in Bioinformatics:
5th International Workshop, WABI 2005, number 3692 in Lecture
Notes in Computer Science, pages 353–364. Springer-Verlag, 2005.

[4] B. Chor and T. Tuller. Finding the maximum likelihood tree is hard.
In Proceedings of the 9th Annual International Symposium on
Research in Computational Biology (RECOMB 2005), 2005.

[5] W. Day, D. Johnson, and D. Sankoff. The computational complexity
of inferring rooted phylogenies by parsimony. Mathematical
Biosciences, 81:33–42, 1986.

[6] William H. E. Day. Optimal Algorithms for Comparing Trees with
Labeled Leaves. Journal of Classification, 2(1):7–28, 1985.

[7] J. Felsenstein. The Newick tree format.
http://evolution.genetics.washington.edu/
phylip/newicktree.html, 1986.

[8] Joseph Felsenstein. Inferring Phylogenies. Sinauer Associates, Inc.,
2004.

[9] P.A. Goloboff, J.S. Farris, and K.C. Nixon. TNT (Tree analysis using
New Technology) (BETA) ver. 1.0. Published by the authors,
Tucumán, Argentina, 2000.

[10] E. Goto, T. Soma, N. Inade, T. Ida, M. Idesawa, K. Hiraki,
M. Suzuki, K. Shimizu, and B. Philpov. Design of a LISP Machine -
FLATS. In LFP ’82: Proceedings of the 1982 ACM Symposium on
LISP and functional programming, pages 208–215, 1982.

[11] D. M. Hillis, J. P. Huelsenbeck, and C. W. Cunningham. Application
and accuracy of molecular phylogenies. Science, 264:671–677, 1994.

[12] Matt Kaufmann, Pete Manolios, and J. S. Moore. Computer-Aided
Reasoning: An Approach. Kluwer Academic Publishers, July 2000.

[13] David B. Searls. Pharmacophylogenomics: Genes, evolution and
drug targets. Nature Reviews Drug Discovery, 2:613–623, 2003.

[14] D. L. Swofford. PAUP*: Phylogenetic Analysis Using Parsimony
(and Other Methods) 4.0 Beta. Sinauer Associates, Sunderland,
Massachusetts, 2002.


