
Function Memoization
and

Unique Object Representation
for

ACL2 Functions

Robert S. Boyer
Department of Computer Sciences

The University of Texas
Austin, Texas USA

boyer@cs.utexas.edu

Warren A. Hunt, Jr.
Department of Computer Sciences

The University of Texas
Austin, Texas USA

hunt@cs.utexas.edu

ABSTRACT
We have developed an extension of ACL2 that includes the
implementation of hash-based association lists and func-
tion memoization; this makes some algorithms execute more
quickly. This extension, enabled partially by the imple-
mentation of Hash-CONS, represents ACL2 data objects in a
canonical way, thus the comparison of any two such objects
can be determined without the cost of descending through
their CONS structures. A restricted set of ACL2 user-
defined functions may be memoized; the underlying imple-
mentation may conditionally retain the values of such func-
tion calls so that if a repeated function application is re-
quested, a previously computed value may instead be re-
turned. We have defined a fast association list access and
update functions using hash tables. We provide a file reader
that identifies and eliminates duplicate representations of re-
peated objects, and a file printer that produces output with
no duplicate subexpressions.

General Terms
Function Memoization, Hash CONS, ACL2, Lisp

Keywords
ACL2 Workshop, Hash CONSing

1. INTRODUCTION
We have developed a canonical representation for ACL2

data objects and a function memoization mechanism to fa-
cilitate reuse of previously computed results. We include
procedures to read and print ACL2 expressions in such a way
that repetition of some ACL2 objects is eliminated, thereby

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACL2 ’06 Seattle, Washington USA
Copyright 2006 ACL2 Steering Committee 0-9788493-0-2/06/08.

permitting a kind of on-the-fly file compression. Our imple-
mentation does not alter the semantics of ACL2 except to
add a handful of definitions.

The executable portion of the ACL2 logic is a first-order
logic of recursive functions [8, 9]. Data objects of the ACL2
logic include complex rationals, symbols, characters, and
strings. In addition, a pair of any two objects may be cre-
ated with the CONS function, thus there are five distinct data
types. ACL2 functions require ACL2 objects as arguments
and return ACL2 objects. The functional nature of ACL2
logic permits the canonical representation of ACL2 objects;
that is, we may represent two logically equal objects by using
only one copy.

The ACL2 logic is a formalization of a superset of a subset
of Common Lisp, and the basic axioms of ACL2 provide def-
initions for almost 200 Common Lisp functions. The ACL2
theorem-proving system uses Common Lisp itself to provide
the underlying representation for ACL2 data objects and
function definitions. In the implementation of the ACL2
logic, ACL2 data objects are represented by Common Lisp
objects of the same type, and the ACL2 pairing (CONS) op-
eration is internally implemented by the Common Lisp CONS

procedure. In Common Lisp, CONS is guaranteed to provide a
new pair, distinct from any previously created pair. We have
defined a new ACL2 function HONS that is logically identical
to the ACL2 CONS function, but whose implementation usu-
ally reuses an existing pair if its components are identical to
the components of an existing pair. A record of ACL2 HONS

objects is kept, and when an ACL2 function calls HONS we
search for an existing identical pair before allocating a new
pair; this operation been called Hash CONSing.

It appears that Hash CONSing was first conceived by A.
P. Ershov [5] in 1957, to speed up the recognition of com-
mon subexpressions. Ershov showed how to collapse trees to
minimal DAGs by traversing trees bottom up, and he used
hashing to eliminate the re-evaluation of common subex-
pressions. Later, Eiichi Goto [6] implemented a Lisp system
with a built-in Hash CONS operation: his h-CONS cells
were rewrite protected and free of duplicate copies, and Goto
used this Hash CONS operation to facilitate the implemen-
tation of a symbolic algebra system he developed.

Memoizing functions also has a long history. In 1967,



Donald Michie proposed using memoized functions to im-
prove the performance of machine learning [10, 11]. Rote
learning was improved by a learning function not forgetting
what it had previously learned; this information was stored
as a memoized function values.

The use of Hash CONSing has appeared many times. For
instance, Henry Baker using Hash CONS to improve the
rewriting performance [1] of the Boyer (and Moore) rewrit-
ing benchmark [7]. Baker used both Hash CONSing and
function memoization improve the speed of the Takeuchi
function [2], exactly in the spirit of our implementation, but
without the automated, system-wide integration we report
here.

Our implementation permits memoization of user-defined
ACL2 functions. During execution a user may enable or dis-
able function memoization on an individual function basis,
may clear memoization tables, or even may keep a stack of
memoization tables. This facility takes advantage of our im-
plementation where we keep one copy of each distinct ACL2
data object. Due to the functional nature of ACL2, it is suf-
ficient to have at most one copy of any data structure; thus,
a user may arrange to keep data canonicalized. Our imple-
mentation extends to the entire ACL2 system the benefits
enjoyed by BDDs citeBryant1986: canonicalization, memo-
ization, and fast equality check.

We have defined various algorithms using these features,
and we have observed, in some cases, substantial perfor-
mance increases. For instance, we have implemented un-
ordered set intersection and union operations that operate
in time roughly linear in the size of the sets. Without using
arrays, we defined a canonical representation for Boolean
functions using ACL2 objects. We have investigated the
performance of rewriting and tree consensus algorithms to
good effect, and we believe function memoization offers in-
teresting opportunities to simplify algorithm definition while
simultaneously providing performance improvements.

Our presentation is split into pieces, which we start by
providing an example. We present our logical extensions to
ACL2 by exhibiting a collection of ACL2 definitions. For
a few of these definitions, we have defined Common Lisp
implementations that provide for unique object representa-
tion and function memoization. We recommend that the
reader try to keep the logical definitions separate from their
underlying Common Lisp implementation. We present sev-
eral algorithms designed to take advantage of these features,
and we compare their performance with existing ACL2 al-
gorithms. Our preliminary results suggest that substantial
performance improvement opportunities exist.

2. EXAMPLES
We begin with an example that demonstrates the utility

of function memoization. This definition of the Fibonacci
function exhibits an exponential increase in its runtime as
its input argument value increases.

(defun fib (x)
(declare (xargs :guard (natp x)))
(mbe
:logic
(cond ((zp x) 0)

((= x 1) 1)
(t (+ (fib (- x 1)) (fib (- x 2)))))

:exec

(if (< x 2)
x

(+ (fib (- x 1)) (fib (- x 2))))))

By using the ACL2 function TIME$, we measure the time to
execute a call to the FIB function. Below is the output col-
lected running OpenMCL (a Common Lisp implementation)
on a 1 GHz Apple G4 PowerBook. The first call is made be-
fore memoization is enabled. Note that we have eliminated
some of the output provided by the TIME$ function when
used with OpenMCL. MEMOIZE is actually an ACL2 macro
that expands to the actual ACL2 function used to identify a
function for memoization (see Section6). This function also
accepts a well-formed term that must be true for the system
to memoize a call of the memoized function; to ensure that
the arguments supplied to term are safe, we perform a check
that if the guards to the memoized function are satisifed,
then the arguments to this term will execute without error.
Thus, each time we memoize a function a guard check is
performed and ACL2 prints a guard-related message.

ACL2 !>(time$ (fib 40))
(FIB 40) took 16.072 seconds to run.
102334155

ACL2 !>(memoize ’fib)
The guard for FIB trivially implies
the guard conjecture for T.
Summary
Form: CHECK-CONDITION-GUARD
Rules: NIL
Warnings: None
Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
FIB

ACL2 !>(time$ (fib 40))
(FIB 40) took 0 milliseconds (0.000 seconds) to run.
102334155

ACL2 !>(time$ (fib 100))
(FIB 100) took 0 milliseconds (0.000 seconds) to run.
354224848179261915075
ACL2 !>(unmemoize ’fib)
FIB
ACL2 !>

We see that once the function FIB is identified as a function
for which function calls should be memoized, that the exe-
cution times are substantially reduced. Finally, we can pre-
vent FIB from being further memoized; in fact, UNMEMOIZE
eliminates the previously memoized values.

This contrived example is just that, contrived. A more
sensible implementation would make provisions for record-
ing previously computed values or computing with a linear-
time, tail-recursive algorithm.

(defun f1 (fx-1 fx n-more)
(declare (xargs :guard (and (natp fx-1)

(natp fx)
(natp n-more))))

(if (zp n-more)
fx

(f1 fx (+ fx-1 fx) (1- n-more))))

(defun fib2 (x)
(declare (xargs :guard (natp x)))
(if (zp x)

x
(f1 0 1 (1- x))))



(defthm fib2-is-fib
(implies (natp x)

(equal (fib2 x)
(fib x))))

We can prove that function FIB2 is equal to FIB, thus we
can maintain a simple recursive definition while still provid-
ing an implementation that is roughly linear in time and
space to the input argument. Thus, function memoization,
by itself, is nothing more than a convenient dynamic pro-
gramming mechanism; however, when we combine canon-
ical data representation with memoization, we sometimes
observe substantial performance improvements.

We next consider another somewhat contrived example,
but this example exhibits the cooperation of function mem-
oization with canonical object representation. Consider the
second and third function definitions below; these two func-
tions are provably equivalent.

(defun my-len (x)
(declare (xargs :guard t))
(if (atom x)

0
(1+ (my-len (cdr x)))))

(defun make-list-of-numbers (n)
(declare (xargs :guard (natp n)))
(if (zp n)

nil
(hons (my-len (make-list-of-numbers (1- n)))

(make-list-of-numbers (1- n)))))

(defun make-list-of-numbers2 (n)
(declare (xargs :guard (natp n)))
(if (zp n)

nil
(let ((rest (make-list-of-numbers2 (1- n))))

(hons (my-len rest) rest))))

(defthm make-list-of-number-functions-are-the-same
(equal (make-list-of-numbers n)

(make-list-of-numbers2 n)))

(defmacro bvl (variable new-value)
(declare (xargs :guard t))
‘(mv-let

(erp result state)
(assign ,variable ,new-value)
(declare (ignore result))
(value (not erp))))

Our measurements show function MAKE-LIST-OF-NUMBERS

to have an exponential execution time cost. The equiv-
alent function MAKE-LIST-OF-NUMBERS2 only computes the
remainder of the list once, making the execution linear. Just
the execution of (MAKE-LIST-OF-NUMBERS 22) requires sev-
eral seconds, while the execution of (MAKE-LIST-OF-NUMBERS2
20000) finishes in 13 seconds. The macro BVL prevents the
evaulation result from being printed, but still associates the
result with name in the VARIABLE argument.

ACL2 !>(time$ (make-list-of-numbers 22))
(MAKE-LIST-OF-NUMBERS 22) took 3.580 seconds to run.
(21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0)

ACL2 !>(bvl list-20000
(time$ (make-list-of-numbers2 20000)))

(MAKE-LIST-OF-NUMBERS2 20000) took 13.141 seconds to run.
T

ACL2 !>(memoize ’make-list-of-numbers)
The guard for MAKE-LIST-OF-NUMBERS trivially implies
the guard conjecture for T.
Summary
Form: CHECK-CONDITION-GUARD
Rules: NIL
Warnings: None
Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
MAKE-LIST-OF-NUMBERS

ACL2 !>(bvl list3-20000
(time$ (make-list-of-numbers 20000)))

(MAKE-LIST-OF-NUMBERS 20000) took 13.251 seconds to run.
T

ACL2 !>(unmemoize ’make-list-of-numbers)
MAKE-LIST-OF-NUMBERS

By memoizing the function MAKE-LIST-OF-NUMBERS, we see
execution time comparable to that of MAKE-LIST-OF-NUMBERS2.
If we memoize both MY-LEN and MAKE-LIST-OF-NUMBERS,
then the execution time of MAKE-LIST-OF-NUMBERS is fur-
ther reduced. Before we memoize MY-LEN, the length of the
list so far created is measured again and again.

ACL2 !>(memoize ’make-list-of-numbers)
The guard for MAKE-LIST-OF-NUMBERS trivially implies
the guard conjecture for T.

Summary
Form: CHECK-CONDITION-GUARD
Rules: NIL
Warnings: None
Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
MAKE-LIST-OF-NUMBERS

ACL2 !>(memoize ’my-len)
The guard for MY-LEN trivially implies
the guard conjecture for T.

Summary
Form: CHECK-CONDITION-GUARD
Rules: NIL
Warnings: None
Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
MY-LEN
ACL2 !>(bvl list3-20000

(time$ (make-list-of-numbers 20000)))
(MAKE-LIST-OF-NUMBERS 20000) took 0.153 seconds to run.
T

Thus, when defining a function, it may possible to use
memoization to observe whether further development effort
might provide better execution performance. In our final
example, by memoizing both MAKE-LIST-OF-NUMBERS and
MY-LEN we have reduced the runtime to less than that of
MAKE-LIST-OF-NUMBERS2.

3. ACL2 FUNCTION DEFINITIONS
This section concerns only the logical definition of func-

tions using the ACL2 definition mechanism. In Section 4,
we will discuss the Common Lisp implementation of several
of these functions, but their underlying Common Lisp im-
plementation is not necessary to understand these functions.
Functions that have special Common Lisp implementations
are marked as having an under the hood implementation.

Our first three definitions are logically trivial.

(defun hons (x y)



(declare (xargs :guard t))
;; Has an "under the hood" implementation.
(cons x y))

(defun hons-equal (x y)
(declare (xargs :guard t))
;; Has an "under the hood" implementation.
(equal x y))

(defun hons-copy (x)
(declare (xargs :guard t))
;; Has an "under the hood" implementation.
x)

For our collections of functions that operate on associa-
tions lists (alists), we have defined the predicate HONS-ALISTP
that recognized well-formed alists. We note that any as-
sociation list recognized by ALISTP is also recognized by
HONS-ALISTP, as it allows any atom to terminate the end
of an association list.

(defun hons-alistp (x)
(declare (xargs :guard t))
(if (atom x)

t
(and (consp (car x))

(hons-alistp (cdr x)))))

(defthm alistp-implies-hons-alistp
(implies (alistp l)

(hons-alistp l)))

We access key-value pairs in association list Y with key X us-
ing the function ASSOC-HONS-EQUAL. We define another func-
tion HONS-GET, which is just defined to call ASSOC-HONS-EQUAL;
its purpose involves its underlying definition.

(defun assoc-hons-equal (x y)
(declare (xargs :guard (hons-alistp y)))
(cond ((atom y) nil)

((hons-equal x (car (car y))) (car y))
(t (assoc-hons-equal x (cdr y)))))

(defun hons-get (x l)
(declare (xargs :guard (hons-alistp l)))
;; Has an "under the hood" implementation.
(assoc-hons-equal x l))

To update an association list recognized by the predicate
HONS-ALISTP, we define two semantically equivalent func-
tions, HONS-ACONS and HONS-ACONS!, that add a new key-
value pair to associations list L.

(defun hons-acons (key value l)
(declare (xargs :guard t))
;; Has an "under the hood" implementation. Note:
;; under the hood, the key will be made unique,
;; but the alist and its top-level pairs are built
;; with CONS, not HONS.
(cons (cons (hons-copy key) value) l))

(defun hons-acons! (key value l)
(declare (xargs :guard t))
;; Has an "under the hood" implementation. The
;; (HONS KEY VALUE) below will cause VALUE to have
;; a unique representation, which, for large
;; structures, may require a substantial amount of
;; work.
(hons (hons (hons-copy key) value) l))

We define a read object function HONS-READ-OBJECT that has
a semantics identical to READ-OBJECT, but that uses HONS

instead of CONS to construct all pairs.

(defun hons-read-object (channel state)
(declare
(xargs :stobjs state

:guard
(and (state-p state)

(symbolp channel)
(open-input-channel-p
channel :object state))))

;; Has an "under the hood" implementation.
(read-object channel state))

Finally, we define two functions that remove key-value
pairs that have duplicate keys in association lists recognized
by HONS-ALISTP; their internal implementation provides bet-
ter compression speed than just defining these functions as
written below.

(defun hons-shrink-alist! (alst ans)
(declare
(xargs :guard (and (hons-alistp alst)

(hons-alistp ans))))
;; Has an "under the hood" implementation.
(cond
((atom alst) ans)
(t (let ((p (hons-get (car (car alst)) ans)))

(cond
(p (hons-shrink-alist! (cdr alst) ans))
(t (hons-shrink-alist!

(cdr alst)
(hons-acons! (car (car alst))

(cdr (car alst))
ans))))))))

(defun hons-shrink-alist (alst ans)
(declare
(xargs :guard (and (hons-alistp alst)

(hons-alistp ans))))
;; Has an "under the hood" implementation.
(cond
((atom alst) ans)
(t (let ((p (hons-get (car (car alst)) ans)))

(cond
(p (hons-shrink-alist (cdr alst) ans))
(t (hons-shrink-alist

(cdr alst)
(hons-acons (car (car alst))

(cdr (car alst))
ans))))))))

We have defined a number of other functions that have
ACL2 system-level definitions, but these functions allow a
user to influence the operation of the underlying definitions.
We present these definitions later (Section 5).

4. HONS SYSTEM IMPLEMENTATION
The implementation of the HONS system involves sev-

eral facets: canonical representation of ACL2 data, function
memoization, and the use of Lisp hash tables to improve
the performance of association list operations. We discuss
each of these in turn, and we mention some subtle interre-
lationships. Although it is not necessary to understand the
discussion in this section, it may permit some users to better
use the HONS system. This section may be confusing for some
ACL2 users as it makes references to Lisp implementation
features.

The mechanical implementation of the ACL2 system is
actually written as a Lisp program that is layered on top of
a Common Lisp system implementation. ACL2 data con-
stants are implemented with their corresponding counter-
parts in Common Lisp; that is, ACL2 CONS pairs, strings,



characters, numbers, and symbols, are implemented with
their specific Common Lisp counterparts. This choice per-
mits a number of ACL2 primitive functions to be imple-
mented with their corresponding Common Lisp functions,
but, there are indeed differences. ACL2 is a logic, and as
such, it does not specify anything to do with physical storage
or execution performance. When ACL2 is used, the knowl-
edgeable user can write functions to facilitate the reuse of
some previously computed values. For instance, the previ-
ously introduced function MAKE-LIST-OF-NUMBERS2 is more
efficient than the equivalent function MAKE-LIST-OF-NUMBERS;
the LET form requires only one recursive call instead of the
two calls prescribed in MAKE-LIST-OF-NUMBERS.

There are three mechanisms that are provided by the HONS
system: hash CONS, function memoization, and fast associa-
tion list operations. The function memoization mechanism
takes advantage of the canonical representation of data ob-
jects provided by the HONS operation as does the fast asso-
ciation list operation mechanism. Each time a HONS pair
is created, its arguments are themselves converted, if neces-
sary, to uniquely represented objects.

The ACL2 universe is recursively closed under the CONS

pairing operation and the atoms. Hash CONS is logically
identical to CONS, but a set of tables are used to record each
HONS pair. In fact, our implementation provides a stack
of such tables; thus a new environment of HONS tables can
be requested, used, and then released. When a HONS pair is
requested, the implementation checks, in the current set of
tables, whether the requested pair already exists. If not, a
new pair is created and a record of that pair is made; other-
wise, a reference to the previously created pair is returned.
Thus, any data object created with a HONS operation has
a unique representation, as does every subcomponent. We
also arrange for strings to have a unique representation –
only one copy of each different string is kept – and when
any previously unseen string is an argument to a HONS op-
eration, we add the string to our unique table of strings.
A system-wide benefit of having a canonical representation
for data is that equality comparisons between any two data
objects can be done in constant time.

The definition of the HONS in no way changes the operation
of CONS – a HONS is implemented with a CONS. When asked
to create a HONS, our implementation checks to see if there
is a CONS with the same CAR and CDR as the HONS being
requested. Thus, the only difference between a HONS and
a CONS is a notation in some invisible (to the ACL2 logic)
tables where we record what CONS elements are also HONS

elements. Since a HONS is nothing but a CONS, the operation
of CAR and CDR is unchanged. In fact, we have attempted
to design our HONS implementation so that at any time it is
safe to clear the table identifying which CONS elements are
also considered HONS elements.

User-defined functions with defined and verified guards
can be memoized. When a function is memoized, a user-
supplied condition restricts the domain when memoization
is attempted. When the condition is satisfied, memoization
is attempted (assuming that memoization for the function
is presently enabled); otherwise, the function is just eval-
uated. Each memoized function has a hash table that is
used to keep track of a unique list of function arguments
paired with their values. If appropriate, for each function
the corresponding table is checked to see if a previous call
with exactly the same arguments already exists in the ta-

ble: if so, then the associated value is returned; if not, then
the function is evaluated and a new key-value pair is added
to the table of memoized values so that some future call
will benefit from the memoization. With ACL2 user func-
tions memoization can be dynamically enabled and disabled.
There is an ACL2 function that clears a specific memoiza-
tion table. And finally, just as with the HONS table, a stack
of these function memoization tables are maintained; that
is, it is possible to memoize a function, use it a bit, set the
memoized values aside, start a new table, use it, and then
return to the original table.

A part of our HONS system provides a fast lookup operation
for association lists. When a pair is added to an association
list using the function HONS-ACONS or HONS-ACONS!, our sys-
tem also records the key-value pair in an associated hash
table. So long as a user only used these two functions when
placing key-value pairs on an association list, the key-value
pairs in corresponding hash table will be synchronized with
the key-value pairs in the association list. Later, if HONS-GET
is used to lookup a key, then instead of performing a linear
search of the association list we consult the associated hash
table. If a user does not strictly follow this discipline, then a
linear search may be required. In some sense, these associa-
tion lists are much like ACL2 arrays, but without the burden
of explicitly naming the arrays. The ACL2 array COMPRESS

function is provided by the functions HONS-SHRINK-ALIST

and HONS-SHRINK-ALIST!. There are user-level ACL2 func-
tions that allow the associated hash tables to be cleared and
removed.

It has occurred to us that a global replacement of CONS
by HONS throughout the implementation of the ACL2 theo-
rem prover might be advantageous. However, there are some
subtle issues regarding I/O and state that need further con-
sideration. In addition, many of the algorithms inside the
ACL2 system should be recoded if one wanted to take max-
imum advantage of function memoization. For instance, we
developed simple inside-out and an outside-in rewriters; sub-
tle changes in the definition of the rewrite functions were
required to eliminate memoization interference from their
termination clock input arguments.

We believe, that the use of HONS could benefit the ACL2
theorem prover. One profiling benchmark of the ACL2 re-
gression suite revealed that 13% of the execution time was
spent in the function EQUAL; this was the largest of all pro-
filed functions. Equality tests for two CONS trees requires a
complete exploration of both trees, and the ACL2 theorem
prover often makes such comparisons. For all CONS trees
that are also HONS trees then an equality test can be done
with a few machine instructions. Our HONS-EQUAL equality
check function optimizes equality checking when there is a
mixture of CONS and HONS objects.

5. SYSTEM CONTROL FUNCTIONS
The HONS system provides a number of ACL2 user func-

tions that are logically identity functions, but that provide
system-level side effects such as enabling or disabling func-
tion memoization. These functions allow a user to more
tightly control the use of the underlying resources used to
implement fast association lists, function memoization, and
canonical data representation.

For the active HONS, function memoization, and fast asso-
ciation list support data structures, we have functions that
permit these data structures to be cleared and initialized.



All of the ACL2 functions and macros presented in this sec-
tion have under the hood implementations.

(defun clear-hash-tables ()
(declare (xargs :guard t))
;; Clears the underlying hash tables that are
;; used to determine whether a new HONS (CONS)
;; pair already exists.
nil)

(defun clear-hons-acons-table ()
(declare (xargs :guard t))
;; Clears table that is used to identify an
;; association list with a hash table for
;; hash-based access.
nil)

(defun clear-memo-tables ()
(declare (xargs :guard t))
;; For all memoized functions, clears tables of
;; memoized values.
nil)

(defun init-hash-tables ()
(declare (xargs :guard t))
;; Like CLEAR-HASH-TABLES, but actually removes
;; the underying hash tables and creates new hash
;; tables.
nil)

(defun init-hons-acons-table ()
(declare (xargs :guard t))
;; Like CLEAR-MEMO-TABLES, but removes underlying
;; hash table and creates a new "HONS-ACONS" hash
;; table.
nil)

(defun flush-hons-get-hash-table-link (x)
(declare (xargs :guard t))
;; Breaks the link between association list X and
;; its corresponding a hash table if such a link
;; exists, thus permitting the garbage collection
;; of that hash table.
x)

To permit the creation of a fresh environment for all un-
derlying tables, we provide the HT-LET macro. The side
effects of using this macro are dramatic, as a completely
new environment is created where the HONS table is saved
and a new one is created; all key-value tables for function
memoization are also set aside and new, empty tables are
created. Upon a user’s thread of control leaving this macro,
the original tables are restored.

(defmacro ht-let (x)
;; HT-LET causes the evaluation of X to take place
;; in an environment similar to that produced by a
;; call of CLEAR-HASH-TABLES, CLEAR-MEMO-TABLES,
;; and CLEAR-HONS-ACONS-TABLE, i.e., the HONSing
;; hash table, the function memoization hash
;; tables, and the HONS-ACONS tables are cleared.
;; Upon conclusion of the evaluation of X, the
;; previously existing tables are restored. The
;; user may wish to HONS-COPY in and HONS-COPY out
;; some terms.
x)

The functions MEMOIZE-WITH-CONDITION-FN and UNMEMOIZE

have rather innocent looking semantics, but they enable
and disable memoization. The argument CONDITION is an
ACL2 term that is evaluated to see if memoization should
be attempted; this term must satisfy the same guards as

the guards provided by the function FN that is to be mem-
oized. Function MEMOIZE-WITH-CONDITION-FN could cause
errors due to compilation problems with the user-supplied
memoization condition; CONDITION is not analyzed or com-
piled, nor are its guards checked, until this call is made. A
macro MEMOIZE is provided in an associated ACL2 book that
makes the use of the MEMOIZE-WITH-CONDITION-FN easier for
the usual cases. The arguments HINTS and OTF-FLG are pro-
vided to provide hints to the ACL2 theorem prover when
it attempts to prove that the term CONDITION satisfies the
guards for function FN.

(defun memoize-with-condition-fn
(fn condition hints otf-flg)
;; It is an error to call memoize on something
;; that is not a user-defined ACL2 function
;; symbol. It is also an error to call memoize on
;; a function that is currently memoized.
(declare (xargs :guard (and (symbolp fn)

(pseudo-termp condition)))
(ignore condition hints otf-flg))

;; Has an "under the hood" implementation.
fn)

(defun unmemoize (fn)
;; It is an error to call unmemoize on something
;; not memoized.
(declare (xargs :guard (symbolp fn)))
fn)

(defmacro memo-on (fn x)
;; It is an error to execute memo-on unless FN is
;; already memoized. MEMO-ON causes X to be
;; evaluated in an environment in which FN is
;; memoized.
(declare (ignore fn))
x)

(defmacro memo-off (fn x)
;; It is an error to execute memo-off unless FN is
;; already memoized. MEMO-OFF causes X to be
;; evaluated in an environment in which FN is not
;; memoized.
(declare (ignore fn))
x)

This concludes the definition of ACL2 system-level func-
tions used to define and implement the HONS system.

6. BOOKS FOR THE HONS SYSTEM
To more easily take advantage of the our HONS system,

we have defined a book that contains additional definitions
and lemmas. Here we present a few of these definitions so
as to make more clear some of our use idioms. Some of
the comments in the HONS-HELP book refer to underlying
implementations issues, which provide a potential user with
additional intuition about some of the system issues.

To simplify the memoization of functions, the HONS-HELP

book defines the function MEMOIZE. This function, in turn,
uses the MEMOIZE-WITH-CONDITION macro that calls the ACL2
system-level function MEMOIZE-WITH-CONDITION-FN described
earlier.



(defmacro memoize-with-condition
(fn condition &key hints otf-flg)
‘(memoize-with-condition-fn

,fn ,condition ,hints ,otf-flg))

(defun memoize (fn)
;; It is an error to call memoize on something not
;; an ACL2 user function. It is also an error to
;; call memoize on a function that is currently
;; memoized.
(declare (xargs :guard (symbolp fn)))
;; fn
(memoize-with-condition fn ’’t))

To simplify the creation of data structures, we have de-
fined the macros HONS-LIST and HONS-LIST* that operate
just like the ACL2 macros LIST and LIST*. Actually, there is
another book, HONS-HELP2, that defines a number of aliases;
in this book we define aliases for functions and macros that
begin with HONS-. For instance, HIST is defined as an alias
for HONS-LIST and HIST* is defined as an alias for HONS-LIST*.
Thus, a user can evaluate (HIST* 1 2 3) and see (1 2 .

3) printed.
Since it is not possible to distinguish between data struc-

tures that include structure sharing, we have defined a mech-
anism to count the number of actual HONS (CONS) elements.
We first define a tail-recursive version of LEN.

(defun hons-len1 (x acc)
(declare (xargs :guard (natp acc)))
(if (atom x)

acc
(hons-len1 (cdr x) (+ 1 acc))))

(defun hons-len (x)
(declare (xargs :guard t))
(hons-len1 x 0))

We next define a function that collects each unique subtree
as a key into an association list.

(defun cons-subtrees (x al)
;; (CONS-SUBTREES X NIL) is an alist that
;; associates each subtree of X with the constant
;; T, without duplication.
(declare (xargs :guard (hons-alistp al)))
(cond ((atom x) al)

((hons-get x al) al)
(t (cons-subtrees

(car x)
(cons-subtrees (cdr x)

(hons-acons x t al))))))

Finally, we just count the length of the resulting association
list after throwing away the associated hash table. The sym-
bol ’number-subtrees is used to reduce the chances of an-
other association list being identical to the one constructed
for the purposes of counting the number of entries created
by CONS-SUBTREES.

(defun number-subtrees (x)
(declare (xargs :guard t))
(hons-len (flush-hons-get-hash-table-link

(cons-subtrees x ’number-subtrees))))

We have defined some set operations that appear to have
quadratic performance, but because of our use of our fast
association list mechanism, these set operations generally
exhibit linear performance in the size of the sets. Objects
in the sets may be any object, but better performance will

be provided if pairs are constructed with HONS. The function
BUILD-FAST-ALIST-FROM-LIST just builds an (fast) associa-
tion list from a list of data objects.

(defun build-fast-alist-from-list (l acc)
(declare (xargs :guard (hons-alistp acc)))
(hons-put-list l t acc))

(defun hons-intersection1 (l al acc)
(declare (xargs :guard (hons-alistp al)))
(cond ((atom l) acc)

((hons-get (car l) al)
(hons-intersection1 (cdr l) al

(cons (car l) acc)))
(t (hons-intersection1 (cdr l) al acc))))

(defun hons-intersection (l1 l2)
(declare (xargs :guard t))
(let ((temp-table

(build-fast-alist-from-list
l2 ’*hons-intersection-alist*)))

(let ((ans (hons-intersection1 l1 temp-table nil)))
(let ((temp-table

(flush-hons-get-hash-table-link
temp-table)))

(declare (ignore temp-table))
ans))))

(defun hons-set-diff1 (l al acc)
(declare (xargs :guard (hons-alistp al)))
(cond ((atom l) acc)

((hons-get (car l) al)
(hons-set-diff1 (cdr l) al acc))

(t (hons-set-diff1 (cdr l) al
(cons (car l) acc)))))

(defun hons-set-diff (l1 l2)
(declare (xargs :guard t))
(let ((temp-table (build-fast-alist-from-list

l2 ’*hons-set-diff-alist*)))
(let ((ans (hons-set-diff1 l1 temp-table nil)))

(let ((temp-table
(flush-hons-get-hash-table-link
temp-table)))

(declare (ignore temp-table))
ans))))

(defun hons-union (l1 l2)
(declare (xargs :guard t))
(let ((temp-table (build-fast-alist-from-list

l2 ’*hons-union-alist*)))
(let ((ans (hons-set-diff1 l1 temp-table l2)))

(let ((temp-table
(flush-hons-get-hash-table-link
temp-table)))

(declare (ignore temp-table))
ans))))

With a list of 100,000 numbers we can compute the set
intersection, union, and set difference in under one second.
Below, we have already initialized the ACL2 top-level vari-
able LOTS-OF-NUMBERS to a list containing 100,000 different
natural numbers. Note that we have used more abbrevi-
ations from the HONS-HELP2 book; i.e., HEN for HONS-LEN,
HSET-DIFF for HONS-SET-DIFF, HUNION for HONS-UNION, and
HINTERSECTION for HONS-INTERSECTION.

ACL2 !>(time$ (hen (hintersection
(@ lots-of-numbers)
(@ lots-of-numbers))))

(HEN (HINTERSECTION (@ LOTS-OF-NUMBERS)
(@ LOTS-OF-NUMBERS)))



took 702 milliseconds (0.702 seconds) to run.
100000

ACL2 !>(time$ (hen (hunion
(@ lots-of-numbers)
(@ lots-of-numbers))))

(HEN (HUNION (@ LOTS-OF-NUMBERS)
(@ LOTS-OF-NUMBERS)))

took 652 milliseconds (0.652 seconds) to run.
100000

ACL2 !>(time$ (hen (hset-diff
(@ lots-of-numbers)
(@ lots-of-numbers))))

(HEN (HSET-DIFF (@ LOTS-OF-NUMBERS)
(@ LOTS-OF-NUMBERS)))

took 680 milliseconds (0.680 seconds) to run.
0

7. A BDD IMPLEMENTATION
As a further example of the use of the HONS system, we

present an implementation of the BDD if-then-else (ITE)
operator of Bryant [3]. To implement BDDs requires three
things: unique data representation, memoization of the ITE
operator, and fast equality checking. By using HONS elements
to represent BDDs we get canonical data representation and
fast equality checking. By memoizing our BDD Q-ITE oper-
ator, from which all other Boolean connectives can be built,
we have ITE function memoization.

We represent BDDs as HONS trees. We recognize a well-
formed BDD with the NORMP predicate. Note, that the BDD
does not contain the variables themselves, thus our internal
representation of a BDD node is two machine pointers.

(defun normp (x)
(declare (xargs :guard t))
(if (atom x)

(booleanp x)
(and (normp (car x))

(normp (cdr x))
(if (atom (car x))

(not (equal (car x) (cdr x)))
t))))

To represent a variable, we use the function VAR-TO-TREE,
which given variable order VARS builds the BDD representing
variable VAR. Notice the first case is a non-sensible request
as it corresponds to a request to build a BDD for a variable
not in the BDD variable order.

(defun var-to-tree (var vars)
(declare (xargs :guard (and (symbolp var)

(symbol-listp vars))))
(cond ((atom vars) nil)

((eq var (car vars))
(hons t nil))

(t (hons (var-to-tree var (cdr vars))
(var-to-tree var (cdr vars))))))

In our BDD implementation, we use a BDD representa-
tion where all levels of the BDD exist until a branch can
be specified by a terminal, T or NIL. The BDD algorithm
requires several other simplifications to keep the representa-
tion of the trees canonical; we list the simplifications forms
below:

(Q-ITE X X Y) ==> (Q-ITE X t Y)}
(Q-ITE X Y X) ==> (Q-ITE X Y nil}
(Q-ITE X Y Y) ==> Y
(Q-ITE X t nil) ==> X

Shown below is the entire definition of the BDD ITE oper-
ator using our HONS implementation. Once the BDD ITE
function Q-ITE is memozied, this BDD implementation op-
erates similarly to other BDD packages without the use of
dynamic variable re-ordering. Using a BDD reordering func-
tion we have defined (not shown) and verified, and using the
function NUMBER-SUBTREES (see Section 6) to measure the
size of BDDs, one could augment our BDD implementation
to include dynamic variable re-ordering.

(defmacro qcar (x) ‘(cond ((atom ,x) ,x) (t (car ,x))))

(defmacro qcdr (x) ‘(cond ((atom ,x) ,x) (t (cdr ,x))))

(defmacro qcons (x y)
‘(cond ((or (and (eq ,x t) (eq ,y t))

(and (eq ,x nil) (eq ,y nil)))
,x)

(t (hons ,x ,y))))

(defun q-ite (x y z)
(declare (xargs :measure (acl2-count x) :guard t))
(cond
((null x) z)
((atom x) y)
(t (let ((y (if (hqual x y) t y))

(z (if (hqual x z) nil z)))
(cond
((hqual y z) y)
((and (eq y t) (eq z nil)) x)
(t (let ((a (q-ite (car x) (qcar y) (qcar z)))

(d (q-ite (cdr x) (qcdr y) (qcdr z))))
(qcons a d))))))))

By defining a meaning function, EVAL-BDD, for our BDD
representation, we can prove that Q-ITE operates just like
the ACL2 IF function.1 Although not shown, we have also
proved that when the Q-ITE function is given three argu-
ments each recognized by NORMP, that Q-ITE returns an out-
put recognized by NORMP.

(defun eval-bdd (x values)
(declare (xargs :guard (boolean-listp values)))
(if (atom x)

x
(if (car values)

(eval-bdd (car x) (cdr values))
(eval-bdd (cdr x) (cdr values)))))

(defthm q-ite-correct
(implies (and (normp x)

(normp y)
(normp z))

(equal (eval-bdd (q-ite x y z) vals)
(if (eval-bdd x vals)

(eval-bdd y vals)
(eval-bdd z vals)))))

We regularly use our BDD implementation for a variety
of tasks where efficient Boolean function manipulations are
required. For instance, we have used BDDs to represent
sets, and BDD operations to perform set operations, such as
unions and intersections. We have defined co-factoring and a
general BDD re-ordering algorithm that we have proved cor-
rect. We have defined Boolean quantifier functions. Finally,
we have developed a finite-state machine (FSM) language,
and we have defined the reachability and other operations on
FSMs represented in our language using BDD operations.

1We note our thanks to Qiang Zhang for getting this proof
through the ACL2 system.



8. CONCLUSION
The introduction of function memoization into ACL2 makes

the implementation of dynamic programming problems eas-
ier as it eliminates the need to store and retrieve previously
computed values. The canonical representation of ACL2
data enables fast association list operations and often re-
duces memory requirements. Using these features we have
defined the BDD ITE operator with just 10 lines of ACL2
code. We have also verified its implementation.

We believe the system-wide benefits of unique object rep-
resentation will take some time to realize. We continue to
discover new ways of implementing even basic functions with
improved performance using the HONS system. We have used
these techniques to implement a consensus algorithm for
phylogenetic trees that is much faster than the best avail-
able implementations [4]. We have used the HONS system to
implement a rewriter that have impressive performance, al-
beit on a small set of examples. The HONS system essentially
makes hash tables available to the ACL2 user with a simple
semantics.

9. REFERENCES

[1] Henry Baker. The Boyer Benchmark at Warp Speed.
In ACM Lisp Pointers, Volume 3, July–September,
1992, pages 13–14.

[2] Henry Baker. A Tachy ’TAK’. ACM Lisp Pointers
Volume 3, July–September, 1992, pages 22–23.

[3] Randal E. Bryant. Graph-Based Algorithms for
Boolean Function Manipulation. In IEEE
Transactions on Computers, Volume C-35, Number 8,
pages 677-691, August, 1986.

[4] Robert S. Boyer, Warren A. Hunt Jr., and Serita M.
Nelesen. A Compressed Format for Collections of
Phylogenetic Trees and Improved Consensus
Performance. In Algorithms in Bioinformatics: 5th
International Workshop, WABI 2005, Lecture Notes
in Computer Science 3692, pages 353-364,
Springer-Verlag, 2005.

[5] A. .P. Ershov. On Programming of Arithmetic
Operations. In the Communications of the ACM,
Volume 118, Number 3, August, 1958, pages 427–430.

[6] Eiichi Goto. Monocopy and Associative Algorithms in
Extended Lisp. University of Toyko, Technical Report
TR-74-03, 1974.

[7] Richard P. Gabrial. Performance and Evaluation of
Lisp Systems. MIT Press, 1985.

[8] M. Kaufmann and J S. Moore. ACL2: An Industrial
Strength Version of NQTHM. Proceedings of the
Eleventh Annual Conference on Computer Assurance
(COMPASS-96), pages 23-34, IEEE Computer Society
Press, June 1996.

[9] Matt Kaufmann, Panagiotis Manolios and J Strother
Moore. Computer-Aided Reasoning: An Approach.
Kluwer Academic Press, Boston, Massachusetts, 2000.

[10] Donald Michie. Memo functions: a Language Feature
with Rote Learning Properties. Technical Report
MIP-R-29, Department of Artificial Intelligence,
University of Edinburgh, Scotland, 1967.

[11] Donald Michie. Memo Functions and Machine
Learning. In Nature, Volumne 218, 1968, pages 19–22.

[12] J Strother Moore. Introduction to the OBDD
Algorithm for the ATP Community. In Journal of
Automated Reasoning, Volume 12, Number 1,
February 1994, pages 33–45.

10. ACKNOWLEDGMENTS
We would like to acknowledge our many conversations

with Bill Legato; our interactions certainly improved this
work. We would like to thank the early users: Serita Nele-
sen and Sol Swords. We want to thank Qiang Zhang for his
proof of our BDD ITE operator. This material is partially
based upon work supported by DARPA and the National
Science Foundation under Grant No. CNS-0429591.


