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Abstract. Continuous and synchronized whole-body motions are essen-
tial for achieving believable autonomous virtual humans in interactive
applications.

We present a new motion control architecture based on generic controllers
that can be hierarchically interconnected and reused in real-time. The
hierarchical organization implies that leaf controllers are motion gener-
ators while the other nodes are connectors, performing operations such
as interpolation, blending, and precise scheduling of children controllers.
We also describe how the system can correctly handle the synchroniza-
tion of gestures with speech in order to achieve believable conversational
characters. For that purpose, different types of controllers implement a
generic model of the different phases of a gesture.

1 Introduction

Interactive virtual humans [1] are software artifacts that look and act like humans
but are embedded in a virtual world where they interact with humans much like
humans interact with each other. To cohabit a virtual world with a human, a
virtual human needs to perform a range of behaviors. It must be able to look
and move around its environment, pick-up objects and engage in conversation
with a human.

To support human-like interactions, these behaviors must be performed con-
tinuously in realistic and meaningful ways. Specifically, we want these behaviors
to play a similar role in the virtual human’s interaction with humans as they do
in human-human interaction. For example, people’s nonverbal behaviors perform
a variety of roles during conversational interactions. Gestures can emphasize or
qualify what is being said. They can also substitute for words, for example by
conveying greetings, goodbyes, insults, spatial relations or physical properties of
objects. They also convey attitudes and reactions to events. The manner of ges-
tures in particular reveals affective information. Gestures also serve to regulate
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dialog interaction. For example, a speaker can relinquish a dialog turn with a
gesture that metaphorically offers the turn to the next speaker, using an upward
facing palm, or can seize the turn with a vertical hand with palm facing the
speaker, essentially a “stopping” gesture. This expressiveness is not unique to
gestures. Gaze behavior plays a similarly rich set of roles in human interactions.

There are several basic challenges that must be addressed in creating a vir-
tual human body that can realize such behaviors. Because the virtual human is
interacting with a human within a virtual world, it must be prepared to react
to unexpected events either created by the human or by the virtual world itself.
As such, body motions must be interruptable. Similarly, it must be prepared to
adjust to the physical constraints implied by the virtual world itself. The virtual
human may also be doing more than one thing at a time, for example, walking,
gesturing and talking at the same time.

Further, virtual human’s behaviors typically involve multiple parts of the
body being in motion. Visually realistic gaze behavior, for example, often re-
quires the careful coordination of a range of motions, including eye movements,
head/neck movements, twisting of the joints in the torso as well whole-body
stepping movements as necessary. Furthermore, gaze may also have to be co-
ordinated and synchronized with other body movements and communication
channels, e.g. with the phonemes and visemes of speech.

It is our experience that these requirements need behavioral flexibility. The
virtual human body must be prepared to compose and synchronize multiple
behaviors both sequentially and simultaneously, in a continuous fashion that
allows it to be embedded and interacting with humans in the virtual world.
Alternatives, such as long duration carefully crafted full body motions may look
better but over-reliance on them restricts the behavioral responses of the virtual
human and causes breakdowns in interactions with humans.

Indeed, a blend of animation approaches is required to achieve both flexibil-
ity and realism. The ability to point and look at an unexpected event arbitrarily
located in the virtual world is a key capability in a virtual human. Procedu-
ral approaches for realizing this capability (e.g. using Inverse Kinematics [2])
are flexible and can exhibit sufficient realism, especially given that the human’s
attention is divided between the virtual human and the object that is being at-
tended to. On the other hand, revealing a dejected affective state by the virtual
human looking downward might be more effectively realized by crafted anima-
tions or motion captured sequences [3].

Because of the important role the virtual human’s “physical” behavior plays
as well as the challenges posed in realizing those behaviors, a key aspect of any
virtual human is the animation algorithms and their coordination that constitute
its “body”. To address these concerns, we propose a motion control architecture
based on generic controllers that can be hierarchically interconnected in real-time
in order to achieve continuous motion respecting given constraints.

The approach is inspired by neuroscience evidence that complex motor behav-
ior might be obtained through the combination of motor primitives [4]. Primitive
controllers in our system are motion generators that can be built with arbitrary



animation algorithms, such as keyframe interpolation or procedural animation.
Primitive controllers can then be connected to higher level controllers performing
different kinds of operations, such as scheduling, blending and interpolation.

In particular we show how our system handles the synchronization of motion
segments with speech. The problem is formulated as a scheduling problem where
motion controllers are sequenced and blended with gaps filled by interpolation,
according to given timing constraints.

2 Related Work

A wide range of computer animation techniques have been proposed in the lit-
erature [2]. In particular for interactive virtual humans, different motion gen-
eration techniques are available: walking [5] [6] [7], reaching and object manip-
ulation [8] [9] [10], Inverse Kinematics [11] [12] and keyframe interpolation of
designed or motion captured [3] keyframes.

We focus on this work on the integration of such different animation tech-
niques in a single animation platform. This involves building abstractions encap-
sulating the output of motion controllers which can then be blended, resulting in
seamless transitions between the different controllers. Such integration has been
already employed in some sense in previous systems [13] [14] [15]. In particu-
lar, the AgentLib system [15] [16] encapsulates controllers as specialized actions,
which can then be blended for achieving smooth transitions. There are some
new animation packages available in the web that seem to address similar issues,
however no precise information about the employed techniques were found.

Our approach builds on these previous models by adding the capability of
hierarchically organizing the motion flow between controllers. This allows the
creation of controllers which are in fact modifying and/or controlling children
motion controllers. For example, an open-door controller would control two chil-
dren controllers (walking and reaching) for achieving the needed coordination
for opening the door. In the end, the open-door controller is seen as any other
motion controller and can be further processed and sequenced with other con-
trollers. In our architecture, complex object interactions [17] can thus be seen as
a standard motion controller. This notion of hierarchical organization has been
already used in previous systems [18], however in the context of dynamical sim-
ulation and not with the goal of synchronized scheduling and blending as in our
work.

The architecture is specially well suited for handling the speech-gesture syn-
chronizations required in conversational characters [19] [20] [21]. We show how
two controllers (a scheduler and an interpolator) are able to synchronize pre-
designed gesture motions in order to achieve perfect synchronization with speech.

3 Conversational Characters Requirements

We list here some of the particular requirements for synchronizing motion con-
trollers with speech that have helped motivate our approach.



Meaning of motion The dynamic and spatial qualities of motions convey
meaning in different subtle ways. In some cases this quality can most readily be
preserved with carefully designed motions, built by skilled artists or via motion
capture. On the other hand, some motions such as deictics/pointing can usually
be synthesized with different Inverse Kinematics techniques [11] [12]. In our
framework, generic motion controllers are used independent of the underlying
motion generation technique.

Gesture structure Gestures have a structure comprised of several phases
[22]. A preparatory phase brings the hand/arm into position to perform the
gesture. The stroke phase is the main part of the gesture and largely carries
its meaning. This phase is closely synchronized to the corresponding speech.
There is also a relaxation phase where the gesture ends with the hand being
in a resting pose. Between those phases, there may also be hold phases where
the arm and hand are more or less stationary (see Fig. 1). The appropriate
temporal manipulation of these phases is an important means to manipulate the
expressive, affective quality of the motion as well as control the synchronization
of gesture, speech and social interaction.

Continuous gesturing People regularly perform one gesture right after
another. In such cases, the gesture does not go to a fully relaxed position but
rather relaxes into a “gesture space” (roughly in front of the speaker), ready to
perform another gesture. We call this continuous gesturing. Many factors influ-
ence the likelihood of such gesturing, including personality, cultural differences,
situational and relational factors, and the arousal of the speaker. We see the
ability to do such gestures as an important means to convey these factors. From
the standpoint of the animation system, this suggests that there must be some
means to compose, and if necessary procedurally adapt, the motions that com-
prise the gestures in order to achieve fluid, realistic motion over the multiple
gestures.

Full body motion The virtual human will only look realistic if the full
body moves in a synchronized way. In the case of human gestures, gestures
may involve motion of not only the hand and arm, but also the rest of the
body. In fact, gestures that only involve the arm and hands often look robotic,
or unexpressive. This is especially true of gestures that have strong dynamics
and large spatial extent, both of which are an effective ways to convey arousal.
It is also critical that the gesture be closely synchronized with the head and
gaze motion. Shifts in the temporal relation between gestures and gaze/head
movement can alter the interpretation of the gesture.

Synchronization Motions must be able to be synchronized with external
events. In the case study considered here, external events are timings for speech
synchronization.

4 Motion Engine Architecture

The motion engine architecture is a C++ class library allowing the creation and
interconnection of arbitrary skeletons (i.e. characters) and motion controllers.
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Fig. 1. The considered phases of a gesture.

A controller is a generic self-contained object that maintains the description
of the skeleton joints being controlled and as well the respective joint values
of the generated motion at a given time. Joint values can then be sent to a
skeleton or connected to other controllers for further processing. Generic methods
are available for querying and evaluating controllers at any given (monotone)
time. The specific motion generation algorithms are not relevant for using the
controllers.

4.1 Character Representation

A character is represented as an articulated figure composed of hierarchical
joints. Each joint rotation is parameterized differently and contains individu-
ally placed joint limits according to its anatomical properties.

The local rotations of joints are always represented in quaternion format [2].
However, different parameterizations can be defined for each joint. For joints
with 3 degrees of freedom (DOFs), the swing and twist decomposition is usually
preferred [23]. These joints have a local frame with the z-axis lying along the main
axis of the corresponding limb. The swing rotation axis is always perpendicular
to the z-axis and the twist rotation that follows is simply a rotation around the
z-axis. The swing motion is therefore a rotation around a vector lying in the x-y
plane and is represented as a 2D axis-angle s = (x,y), where s is the rotation
axis and ||s|| is the rotation angle. Such representation allows straightforward
use of spherical ellipses for meaningfully bounding the swing motion [23], which
is very important for developing procedural controllers, for example based on
Inverse Kinematics (IK) [11]. The twist rotation is bounded with minimum and
maximum values.

Joints with 2 DOFs are either parameterized with a swing axis-angle, or with
2 Euler angles. For instance, the elbow and knee joints need to be parameterized
with flexion and twist Euler angles while the wrist and ankle joints are better pa-
rameterized with a swing axis-angle and its ellipsoidal limits. As twist rotations,
Euler angles are bounded with minimum and maximum values. Similarly, the
remaining joints of the character are parameterized with Euler angles, swings,
twists, or with quaternions as appropriate.

4.2 Channels

Each controller specifies the preferred type of parameterization in each controlled
joint. For instance, controllers based on keyframe interpolation only need to
interpolate joint values and therefore quaternion parametrization with no joint



limits is usually the best choice. Procedural controllers however will prefer other
parameterizations and with joint limits.

We use the term channel to specify one piece of information controlling a
joint. Channels can describe one DOF, such as “x-rotation”, or “y-translation”,
but they can also describe a 3-DOF rotation with a quaternion or a 2-DOF
swing rotation. The used channels are therefore described as an ordered list in
the following format:

C= ((jhcl)a--'v(jnacn))a (1)

where j; is the joint identifier, and ¢; is a descriptor of the used parame-
terization for that joint, 0 < ¢ < n. Given the channels description C, a buffer
containing joint values for C' is denoted as:

Be = (01,400, Um)s (2)

where v; is the 4" channel value, 0 < j < m, according to the channels de-
scription C' (n < m). For example if C' describes a linkage with 1 swing rotation,
and 1 Euler angle, we will have m = 3, which is the number of values required
according to C'. Note that, as controllers may choose different parameterizations
for a same joint, joint values can always be converted to a same quaternion
format when needed (e.g. to be blended).

4.3 Connections

Each controller defines the channels C to be used, and has an evaluation func-
tion that generates and stores the joint values for a given time t in buffer B¢.
Usually ¢ must be evaluated monotonically, but some controllers (as keyframe
interpolators) allow evaluation at arbitrary times.

Controllers can be mainly of two types. Source controllers generate motion
while connector controllers receive as input motion from source controllers, and
perform further operations such as interpolation, blending, filtering, scheduling,
etc. Connectors can also be connected to other connectors, achieving arbitrary
hierarchical configurations. At any time, any controller can be connected to a
skeleton for final visualization of the motion in the character. Fig. 2 exemplifies
possible connections. In the figure, controller A affects the joints of the right arm
and the resulting arm motion can be blended with another motion coming from
controller B; the blending operations are decided by controller C.

Connections require a matching of joint identifiers and parameterization
types. Each channels description C' maintains a hash table with all pairs (j;, ¢;)
(as in equation 1). These pairs are composed of integer identifiers and there-
fore simple and compact hashing functions can be used. When a controller with
buffer B¢, is mapped to another controller with buffer B¢,, each channel in C4
is searched for a matching channel in Cs. Relying on hash table allows a linear
time matching algorithm. After the matching is done, a mapping list is obtained
and tells exactly where in B¢, each entry in B¢, should be mapped to. Non-
mapped channels are detected and can be treated as needed (e.g. ignored). The
same mapping process is used to map controllers to skeletons, with the difference
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Fig. 2. Example of connections. When controller A is evaluated at a given time, it
will fill its buffer with the joint values resultant from the evaluation. Controller A can
be connected directly to a skeleton, or alternatively, connected to controller C for a
blending operation with controller B.

that the mapping is done directly to the joints of the skeleton. Controllers have
a generic apply method that will send the current values in their buffer either
to the buffer of another mapped controller or to any skeleton attached.

5 Controllers for Scheduling Synchronized Gestures

Besides the fact that motion controllers are self-contained objects, they also con-
tain higher level semantic information about the generated motions. For example
parameters such as minimum and maximum allowed time warping factors, point
of emphasis, etc, are available and are used for making decisions in the scheduling
process.

We focus now on the problem of composing controllers for matching timing
constraints for a conversational character. The problem is specified with anno-
tated text telling the exact times when each motion should have its point of
emphasis played. The timing annotation is specified with a text-to-speech syn-
thesis system.

Motions are played with a keyframe-interpolator controller and synchro-
nized with scheduler and controller-interpolator controllers. Composing these
controllers is the role of a body planner that determines in real time a schedule
of controllers to be played (see Fig. 3). The composition planning process is an
extension of existing approaches [20] that takes into account the extra parame-
ters introduced by the system. We present now each of the used controllers.
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Fig. 3. Controllers are composed and scheduled in real time by a body planner, and
the final result satisfying the given timing constraints is played by the motion engine.

5.1 Keyframe Interpolator

The implemented keyframe interpolator controller basically interpolates joint
values in quaternion format without considering joint limits, as the input key
postures are supposed to be correct.

In general, commercial modeling packages store joint rotations with Euler
angles, and we have created plug-ins that convert and export them directly
in quaternion representation. In that way, the interpolator can directly apply
spherical linear interpolation between keys without conversions and few other
optimizations are possible, as for instance a quaternion does not require trigono-
metric functions when converted to a rotation matrix, which is the final repre-
sentation needed by the graphics cards.

Exported motions are annotated with the local time of their emphasis points,
and furthermore contain minimum and maximum time warping factors for allow-
ing different operations when fitting the motions in the final solution schedule.
For that purpose, we have developed an interactive application that is able to
load the exported motions and annotate them with such parameters (see Sec-
tion 7).

5.2 Scheduler

The scheduler (Fig. 4) is the main controller used for synchronizing children
controllers. It keeps a stack of controllers, which are evaluated at any given time
t in an ordered fashion, from the bottom of the stack to the top of the stack.
When inserted in the scheduler, several parameters are available for defining
the evaluation behavior of the overall schedule, as for example the blending
periods for ease-in and ease-out transitions. When a controller is evaluated, if
the evaluation time falls inside a blending interval, the values resulted from the



ease-in ease-out

‘_/ Controller B \‘
Controller A ¥‘

l Controller C ‘

Evaluation order

Scheduler Buffer ‘

Fig. 4. Scheduler.

evaluation are blended with the current values in the scheduler buffer, and the
result is put back in the same buffer. Therefore the final behavior is a pairwise
blending sequence from the bottom of the stack to the top of the stack, equivalent
to a layering mechanism.

Additional parameters are available, for example to extend a controller dura-
tion by repeating its last frame during a desired time interval, after the controller
completion. Early commencement of a controller can similarly be obtained.

Note that the scheduler also specifies start and end times to activate con-
trollers and therefore the blending may only occur between controllers which
are active at the same given time. In general, blending occurs mainly between
pairs of adjacent controllers in the timeline. Even if other behaviors can be
achieved, the main purpose of the scheduler is to compose a motion sequence
of arbitrary length, with blends producing seamless transitions between con-
trollers. The architecture also allows a same controller to be scheduled several
times (even blending with itself), and to schedule other scheduler-controllers,
achieving arbitrary hierarchical configurations.

5.3 Interpolator

A specific interpolator-controller was designed for blending the output motions of
two children controllers according to a user specified blending curve (see Fig. 5).
The blending curve allows designers to explore different kinds of effects and is
represented as a piecewise cubic spline editable via control points.

The interpolator can be configured in different ways. It can be used for in-
terpolating between the last frame of one controller and the first frame of the
subsequent controller, for example to fill the holds between the gesture phases
shown in Fig. 1.

The interpolator can also be configured to interpolate the results of con-
trollers while they are being evaluated. Each time the interpolator is evaluated,
it will first evaluate its children controllers and then blend the results in each
of the buffers for filling its own buffer. Fig. 5 shows an example where during
t1 and to controller 1 is being evaluated and its result is blended with the first
frame of controller 2. During ¢5 and t3 the last frame of controller 1 is blended
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Fig. 5. The interpolator controller blends the results of controller 1 and controller 2
according to a user-specified blending curve.

with the first frame of controller 2, and during ¢3 and t4 the the last frame of
controller 1 is blended with the result of the controller 2 evaluation. Note that
such interpolator can have an arbitrary length, affecting the time duration be-
tween to and t3. The blending curve can be easily scaled as needed in order to
fit arbitrary lengths.

6 Final Gesture Implementation

The gesture model depicted in Fig. 1 is finally implemented by combining the
presented controllers. For each given gesture with a time constraint for its point
of emphasis (see Fig. 3), the three keyframe-interpolator controllers designed for
the gesture’s prep, stroke and relax phases are sequenced in a scheduler. They are
placed so as to respect the timings of the emphasis points of the stroke phases.

However depending on the required times, additional adjustments have to be
made. Usually the motions are not long enough to provide a continuous motion,
i.e., there might be empty spaces in the schedule timeline. In this case, empty
spaces are filled with interpolators, which will produce motion for the “hold
phases” (see Fig. 6).

Pre-Stroke Post-Stroke
Prep Hold Stroke Hold Relax
. Intelpolqt.ql;:" . Intexpola_t'ql;:' .
Motion 5 Motion o Motion

4 t, t t, ts te  time

Fig. 6. Scheduling the phases of a gesture with several controllers. Keyframe animation
motion controllers can vary their length with local time warping, and interpolator
controllers can have arbitrary length. The gesture planner is responsible for finding the
best schedule for respecting given timing constraints.

In the case the speech is faster than the disponible motions, there will be no
time for holds and the keyframe-interpolator controllers might even be required
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to be time-warped for producing faster motions respecting the needed timings.
In really fast speech cases the controllers of the prep and relax phases can even
be removed from the scheduler. These cases give an idea of the decisions made
by the body planner depicted in Fig. 3 and illustrates the several possibilities
that can be handled by our system.

Fig. 7 shows some snapshots of our experiments with a conversational doctor
character. During these experiments, the presented controllers have shown to
be well suited for composing gesture motions under time constraints and at the
same time providing a continuous full-body motion.

(a) (c)

Fig. 7. Several postures from a talking doctor character protecting a clinic: a) “you
are the threat...”, b) “do you see that patient over there...”, ¢) “we need to protect
these people...”; d) “what are you waiting for...”.

7 Current System

Our current Motion Engine system is under test in a larger project and consists
of a stand-alone C++ library and a few applications for editing and testing the
created controllers. Fig. 8 shows a snapshot of the main tool used for specifying
controllers. We have also written a few Maya mel scripts for exporting motions
and characters created by skilled animators.

8 Conclusions

This paper presents an animation system based on the hierarchical organization
of generic motion controllers, which can be interconnected and connected to
characters arbitrarily in real-time. The approach is similar to the organization
of 3D scenes in modern scene graphs, where nodes can be of several types (shapes,
engines, transformations, etc).

We believe that such generic organization is of main importance for achieving
complex motion for autonomous virtual humans, and we show how controllers
can be scheduled in order to synchronize gestures for conversational characters.
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Fig. 8. Example of some windows used for editing and testing the several parameters
of the interpolator controller.

As future work we intend to include additional channels for sensing the en-
vironment and for synchronization between concurrent controllers commanding
different parts of the body. A challenge would be to develop algorithms for the
emergence of complex controllers from given primitive ones [4].
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