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Summary. A person's behavior provides signi�cant information about their emo-
tional state, attitudes, and attention. Our goal is to create virtual humans that
convey such information to people while interacting with them in virtual worlds.
The virtual humans must respond dynamically to the events surrounding them,
which are fundamentally inuenced by users' actions, while providing an illusion of
human-like behavior. A user must be able to interpret the dynamic cognitive and
emotional state of the virtual humans using the same nonverbal cues that people
use to understand one another. Towards these goals, we are integrating and ex-
tending components from three prior systems: a virtual human architecture with a
wide range of cognitive and motor capabilities, a model of task-oriented emotional
appraisal and socially situated planning, and a model of how emotions and coping
impact physical behavior. We describe the key research issues and approach in each
of these prior systems, as well as our integration and its initial implementation in a
leadership training system.

1 Introduction

A person's emotional state inuences them in many ways. It impacts their
decision making, actions, memory, attention, voluntary muscles, etc., all of
which may subsequently impact their emotional state (e.g., see [2]). This per-
vasive impact is reected in the fact that a person will exhibit a wide variety
of nonverbal behaviors consistent with their emotional state, behaviors that
can serve a variety of functions both for the person exhibiting them as well as
for people observing them. For example, shaking a �st at someone plays an in-
tended role in communicating information. On the other hand, behaviors such
as rubbing one's thigh, averting gaze, or a facial expression of fear may have
no explicitly intended role in communication. Nevertheless, these actions may
suggest considerable information about a person's emotional arousal, their
attitudes, and their focus of attention.
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Our goal is to create virtual humans that convey these types of information
to humans while interacting with them in virtual worlds. We are interested
in virtual worlds that o�er human users an engaging scenario through which
they will gain valuable experience. For example, a young Army lieutenant
could be trained for a peacekeeping mission by putting him in virtual Bosnia
and presenting him with the sorts of situations and dilemmas he is likely to
face. In such scenarios, virtual humans can play a variety of roles, such as an
experienced sergeant serving as a mentor, soldiers serving as his teammates,
and the local populace. Unless the lieutenant is truly drawn into the scenario,
his actions are unlikely to reect the decisions he will make under stress in
real life. The e�ectiveness of the training depends on our success in creating
engaging, believable characters that convey a rich inner dynamics that unfolds
in response to the scenario.

Thus, our design of the virtual humans must satisfy three requirements.
First, they must be believable; that is, they must provide a suÆcient illusion
of human-like behavior that the human user will be drawn into the scenario.
Second, they must be responsive; that is, they must respond to the events sur-
rounding them, which will be fundamentally inuenced by the user's actions.
Finally, they must be interpretable; the user must be able to interpret their
response to situations, including their dynamic cognitive and emotional state,
using the same nonverbal cues that people use to understand one another.
Thus, our virtual humans cannot simply create an illusion of life through
cleverly designed randomness in their behavior; their inner behavior must re-
spond appropriately to a dynamically unfolding scenario, and their outward
behavior must convey that inner behavior accurately and clearly.

This paper describes our progress towards a model of the outward mani-
festations of an agent's cognitive and emotional state. We review three prior
systems that have heavily inuenced our thinking on expressive behaviors, dis-
cussing the unique aspects of each and illustrating how they have inuenced
the design of an integrated system. The �rst, Steve [40, 42, 41], provides an
architecture for virtual humans that can collaborate with human users and
other virtual humans in 3D virtual worlds. Although Steve did not include any
emotions, its broad capabilities provide a foundation for the virtual humans
towards which we are working. The second, Jack and Steve, provides a model
of how emotions arise from the relationship between environmental events and
an agent's plans and goals [16], as well as a model of socially situated planning
that builds on that emotional appraisal model. The third, Carmen's Bright
IDEAS [31], contributes a complementary model of emotional appraisal as
well as a model of the impact of emotional state and coping on physical be-
havior. After describing the key concepts in each of these prior systems, we
describe a new project in which we have integrated these concepts into virtual
humans for experiential learning in engaging virtual worlds.
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2 Steve

Our earliest work on virtual humans resulted in Steve (Figure 1), an animated
agent that collaborates with human users and other virtual humans on tasks
in 3D virtual worlds [40, 42, 43]. Such task-oriented collaboration requires an
agent to balance a variety of demands. Tasks require an agent to perceive the
state of the virtual world, assess the state of goals, construct plans to achieve
those goals, navigate through the virtual world and execute its plans. Collabo-
ration requires these task-related behaviors to be interleaved with face-to-face
social interactions with others (human users and virtual humans) embedded
in the same virtual world. The agent's environment is unpredictable in many
ways: others may speak to the agent or take actions in the world at any time,
and the virtual world itself may change unexpectedly (e.g., through simulated
equipment failures). Thus, the agent must be able to adapt its task-related
and social behaviors at any time. Steve's main contribution is its ability to
interleave task-related behaviors and face-to-face dialogue in such dynamic
virtual worlds.

Fig. 1. Steve describing a power light
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Despite an impressive variety of related work on embodied conversational
agents [6] and animated pedagogical agents [21], Steve is unique in this abil-
ity. Several systems have carefully modeled the interplay between speech and
nonverbal behavior in face-to-face dialogues [5, 7, 4, 36], but these systems
focused exclusively on dyadic conversation, and they did not allow users and
agents to collaborate on tasks in a 3D virtual world. The Gandalf system [7],
which provided a sophisticated model of real-time face-to-face interaction, al-
lowed an agent and human to cohabit a real physical space, and to use gaze
and gesture to reference an object (i.e., a wall-mounted display screen) in
that space, but the agent's presence was limited to a 2D head and hand on
a computer monitor. Similarly, the Rea agent [4] provides a state-of-the-art
model of dyadic face-to-face conversation, but bypasses issues of collaboration
in dynamic virtual worlds; she can transport herself to and into virtual houses
and apartments, and the user can point to some objects within those virtual
environments, but the user is not immersed in those environments, and Rea's
movement and references within them is very limited. The Cosmo agent [27]
includes a sophisticated speech and gesture generation module that chooses
appropriate deictic references and gestures to objects in its virtual world based
on both spatial considerations and the dialogue context, but the agent and
its environment are rendered in 2D and the user does not cohabit the virtual
world with Cosmo. The WhizLow pedagogical agent [28] performs tasks in a
3D virtual world, but the agent does not collaborate with students on tasks;
the student speci�es high-level tasks via menus, and the agent carries them
out. Bindiganavale et al. [3] developed a training system that allows multiple
virtual humans to collaborate on tasks in a virtual world, but the trainee
learns by giving natural language instructions (task knowledge) to the agents
and viewing the consequences; she cannot participate in the scenario directly.
Each of these systems provides impressive capabilities in its area of research
focus, but none of them can interleave task-related behaviors and face-to-face
dialogue with humans and virtual humans in dynamic virtual worlds.

To support these capabilities, Steve consists of three main modules: percep-
tion, cognition, and motor control [40]. The perception module monitors mes-
sages from other software components, identi�es relevant events, and main-
tains a snapshot of the state of the world. It tracks the following information:
the simulation state (in terms of objects and their attributes), actions taken
by students and other agents, the location of each student and agent, the ob-
jects within a student's �eld of view, and human and agent speech (separate
messages indicate the beginning of speech, the end, and a semantic represen-
tation of its content). The cognition module, implemented in Soar [24, 34],
interprets the input it receives from the perception module, chooses appro-
priate goals, constructs and executes plans to achieve those goals, and sends
motor commands to the motor control module. Steve's cognition module can
typically react to new perceptual input in a fraction of a second, so it is
very responsive [42]. The cognition module includes a wide variety of domain-
independent capabilities, including planning, replanning, and plan execution;
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Fig. 2. The architecture of a Steve agent

mixed-initiative dialogue; assessment of student actions; question answering
(\What should I do next?" and \Why?"); episodic memory; path planning;
communication with teammates [43]; and control of the agent's body. The
motor control module accepts the following types of commands: move to an
object, point at an object, manipulate an object (about ten types of manipu-
lation are currently supported), look at someone or something, change facial
expression, nod or shake the head, and speak. The motor control module
decomposes these motor commands into a sequence of lower-level messages
that are sent to the other software components (simulator, graphics software,
speech synthesizer, and other agents) to realize the desired e�ects.

Low-level animation of Steve's body runs as software that is linked into
the graphics software for the virtual world rather than into Steve. The anima-
tion software is controlled by messages it receives from Steve's motor control
module. Because the animation software controls the dynamics of all body mo-
tions, the motor control module need only specify the type of motion it wants.
Steve's animation software is very exible, placing relatively few constraints
on how and when the motor control module can make new demands. This
exibility comes from two properties. First, the animation software generates
all movements dynamically; there are no keyframes or canned animations.
Second, movements involving di�erent parts of the body can be performed
simultaneously, and a new command to a body part interrupts any existing
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motion for that part with a smooth transition. The resulting exibility is an
important part of Steve's ability to react instantly to unexpected events.

The cognition module generates Steve's communicative behavior by dy-
namically selecting its next action from a repertoire of behavioral primitives.
To support the needs of task-oriented collaboration, Steve includes the fol-
lowing primitives:

� Speak: Steve can produce a verbal utterance directed at a human or an-
other agent. To make it clear to whom the utterance is directed, the motor
control module automatically shifts Steve's gaze to the hearer just prior
to the utterance. (Task-related events can cause gaze to shift to something
else before the utterance is complete.) To make it clear that Steve is speak-
ing, the motor control module automatically maintains a \speaking face"
(eyebrows slightly raised and mouth moving) throughout the utterance.
Steve has a wide range of utterances, all generated from text templates,
ranging from a simple \OK" or \no" to descriptions of domain actions and
goals. A message from the speech synthesis software indicates to Steve's
perception module when the utterance is complete.

� Move to an object: To guide the student to a new object, Steve can plan
a shortest path from his current location and move along that path [40].
To guide the student's attention, the motor control module automatically
shifts Steve's gaze to his next destination on each leg of the path. In
contrast, to simply follow the student around (e.g., when monitoring the
student's activities), Steve shrinks and attaches himself to the corner of
the student's �eld of view, so that he can provide visual feedback on their
actions.

� Manipulate an object: To demonstrate domain task steps, Steve can ma-
nipulate objects in a variety of ways. Currently, this includes manipu-
lations that can be done by grasping the object (e.g., moving, pulling,
inserting, turning) or using his �ngers (e.g., pressing a button, ipping a
switch). To guide the student's attention, the motor control module auto-
matically shifts Steve's gaze to the object just prior to the manipulation.
State change messages from the simulator indicate to Steve's perception
module when the manipulation is complete (e.g., a button's state attribute
changing to \depressed").

� Visually check an object: Steve can also demonstrate domain task steps
that simply require visually checking an object (e.g., checking the oil level
on a dipstick or checking whether an indicator light is illuminated). This
requires Steve to shift gaze to the object and make a mental note of the
relevant property of that object.

� Point at an object: To draw a student's attention to an object, or connect a
verbal referring expression to the object it denotes, Steve can point at the
object. To further guide the student's attention, the motor control module
automatically shifts Steve's gaze to the object just prior to pointing at it.
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� Give tutorial feedback: To provide tutorial feedback on a student's action,
Steve indicates a student error by shaking his head as he says \no," and he
indicates a correct action by simply looking at the student and nodding.
The motivation for shaking the head is to complement and reinforce the
verbal evaluation, and the motivation for the head nod is to provide the
least obtrusive possible feedback to the student.

� O�er turn: Since our goal is to make Steve's demonstrations interactive,
we allow students to interrupt with questions (\What next?" and \Why?")
or to request to abort the task or �nish it themselves. Although they can
talk during Steve's utterances or demonstrations, Steve explicitly o�ers the
conversational turn to them after each speech act (which could be several
sentences) or performance of a domain action. He does this by shifting
his gaze to them and pausing one second. Not only does this give stu-
dents convenient openings for interruptions, but it also helps to structure
Steve's presentations. (Prior to adding this feature, users complained that
Steve's presentations were hard to follow because he never paused to take
a breath.)

� Listen to student: When the student is speaking, Steve can choose to qui-
etly listen. This simply involves shifting gaze to the student to indicate
attention.

� Wait for someone: When Steve is waiting for someone to take an action
(either the student or a teammate in a team training scenario), he can
shift gaze to that person (or agent) to indicate his expectation.

� Acknowledge an utterance: When a student or teammate says something
to Steve, he can choose to explicitly acknowledge his understanding of
their utterance by looking at them and nodding. The speech recognizer
does not provide recognition of intermediate clauses, so Steve is limited to
acknowledging understanding of entire utterances.

� Drop hands:When Steve is not using his arms and hands, he can drop them
back down to hang loosely at his sides. Although there is evidence that
such a move can convey a conversational signal (i.e., end of turn) [12], Steve
does not currently use this behavior for that purpose; it simply means he
has nothing else to do with his hands (such as pointing or manipulating).

� Attend to action: When someone other than Steve manipulates an object
in his environment, Steve automatically shifts his gaze to the object to
indicate his awareness. Unlike all the above behaviors, which are chosen
deliberately by the cognition module, this behavior is a sort of knee-jerk
reaction invoked directly by the perception module. Because an object
manipulation is a very transient event, our design rationale was to react
as quickly as possible.

Steve's main challenge is generating coherent behavior, and the key to
addressing this challenge is to maintain a rich representation of context. The
ability to react to unexpected events and handle interruptions is crucial for
task-oriented collaboration in dynamic virtual worlds, yet it threatens the
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coherence of an agent's behavior. A good representation of context allow an
agent to be responsive while maintaining its overall focus. Steve maintains
two separate but complementary types of context:

� Task Context: Steve models tasks using a hierarchical, partial-order plan
representation. As a task proceeds, Steve continually monitors the state of
the virtual world, and it uses the task model to maintain a plan for how
to complete the task, using a variant of partial-order planning techniques
[40]. This allows Steve to revise its plans to adapt to unexpected events.

� Dialogue Context: The dialogue context represents the state of the inter-
action between a student and Steve, including whether the student and/or
Steve is currently speaking; a focus stack [20] representing the hierarchy of
tasks, subtasks, and actions in which the student and Steve are currently
engaged; the state of their interaction on the current task step (e.g., the
state might be that Steve has explained what must be done next but nei-
ther he nor the student has done it); a record of whether Steve or the stu-
dent is currently responsible for completing the task (this task initiative
can change during a mixed-initiative interaction); the last answer Steve
gave, in case the student asks a follow-up question; any pending obliga-
tions (i.e., student requests or questions that Steve has not yet addressed);
and the actions that Steve and the student have already taken [42].

Based on the current task and dialogue contexts, Steve can choose his
next action to �ll one of three roles. First, he can respond to the student.
This includes responding to a student's request, giving them tutorial feedback
on their action, or simply listening when they are talking. Second, Steve can
choose for himself how to advance the collaborative dialogue. This includes
things like suggesting the next task step, describing it, or demonstrating it in
cases where the student did not explicitly request such help. Third, Steve can
choose a turn-taking or grounding act [50] that helps regulate the dialogue
between the student and himself without advancing the task. This includes
o�ering the student the conversational turn or acknowledging understanding
of an utterance with a head nod.

Several such actions may be appropriate at any given moment, so priorities
allow Steve to choose the most appropriate. The highest priority is to respond
to the student. If no such actions are proposed, the next priority is to perform
any relevant conversational regulation action. However, if an opportunity for
a conversational regulation action is missed due to a higher priority action for
responding to the student, it will not be deferred and performed later. Only
when neither of these types of actions is proposed will Steve take the initiative
to advance the task collaboration, and he only does that when he has the task
initiative. Traum proposed a similar priority scheme in his model of spoken
task-oriented dialogue [49].

The original version of Steve, described in this section, did not include
a model of emotions, and expressive behavior was not a primary research
focus. However, Steve's broad capabilities have served as a valuable founda-
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tion for our current work on virtual humans, described later in this chapter.
The expressive behaviors that we have integrated into Steve are derived from
two separate research projects: �Emile (Jack and Steve) and Carmen's Bright
IDEAS.

3 Jack and Steve

Jack and Steve was an exploration in the extent to which plans and plan
reasoning could inform rich models of expressive social behavior. The Jack
and Steve system was predicated on two basic claims: 1) that plans and plan
reasoning can mediate expressive behavior and 2) that small biases in how
plans are evaluated and generated can result in large systematic di�erences
in agent behavior.

With these goals in mind, Jack and Steve di�ered in several respects from
the preceding Steve system. To support biases in plan evaluation, Jack and
Steve incorporated a richer plan representation, including decision-theoretic
information to inform the evaluation process and meta-planning capabilities.
To translate small biases into large external variations, Jack and Steve fo-
cused on plan generation, whereby these biases could be magni�ed over the
multiple steps involved in the generation process. In contrast, Steve focused
more on plan execution and repair, so its plan generation algorithm was less
general. The systems also di�ered signi�cantly in terms of their inter-agent
behavior. Steve focused on collaborative interactions between agents and hu-
man users, whereas Jack and Steve explored how biases in the plan generation
process could support a variety of non-collaborative interactions as well, but,
as the focus was exploring systematic di�erences in joint behavior, agents only
interact with other computational agents and not with human users.

The Jack and Steve system led to two key innovations that have inuenced
our subsequent agent designs: �Emile [16], a plan-based model of emotional
appraisal, and socially situated planning [17], whereby an agent may alter its
goal-directed behavior based on features of the social context. These models
were integrated with the animation system developed for the Steve system,
described above, augmenting them with a limited ability to generate facial
expressions, expressive gestures, and emotionally biased speech synthesis.

Jack and Steve was motivated by a convergence of several distinct bodies
of research. First, psychological theories of emotion emphasize the pervasive
role of emotions in social interactions and suggested that human emotions are
mediated by some form of goal-directed reasoning. Cognitive appraisal the-
ory, in particular, argues that emotions arise from an assessment process that
characterizes how events impact goals along several abstract dimensions such
as goal-relevance, goal-congruence, and likelihood [45]. Second, psychological
theories of personality illustrate that people of di�erent personality types will
appraise and respond to events quite di�erently, and that goal-directed rea-
soning may mediate this process as well. These theories argue that relatively
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small biases in appraisal or response might lead to large systematic di�erences
in outward behavior. For example, conscientious individuals tend to accept
greater personal responsibility for joint goals, which in turn can lead to the
construction of quite di�erent plans and collaborative interactions than might
result from a non-conscientious individual [38]. Finally, arti�cial intelligence
theories of collaborative behavior have begun to build formal models of so-
cial interaction in terms of goal-directed reasoning. Work on shared plans [19]
and joint intentions [10] illustrate how reasoning about interactions between
plans, and representing beliefs, obligations and commitments, could motivate
social behavior. Jack and Steve joined these strands of research into a sys-
tem that utilized plans and plan reasoning to model an agent's relationship
to its physical and social environment, and to support systematic individual
variations in how this relationship was conceived.

3.1 Motivating Example

The Jack and Steve application domain centered on the antics of two South-
ern Californian roommates, Jack and Steve. The agents engaged in unscripted
interactions via simulated speech, and a user could explore a variety of interac-
tions by altering internal characteristics of either agent. For example, a user
could alter an agent's goals (e.g, to have fun or to make money) and alter
characteristics of their personality (e.g., are they cooperative or rude).

In this motivating example, Jack's goal is to make money, he views Steve as
a friend, and treats him fairly. Steve wants to surf, views Jack as a friend, but
tends to be rude in his dealings. All of these terms have a speci�c technical
de�nition discussed below. Both agents develop di�erent plans but have to
contend with a shared resource. Besides performing task level actions, the
agents engage in speech acts and generate gestures, facial expressions, and
a�ective speech modulation based on properties of the social context.

What follows are annotated traces of two separate runs of the system where
the only di�erence is a change in the personality of the Steve agent. In the �rst
trace he treats Jack rudely and in the second he treats him fairly. The agents
generate speech via simple template �lling and agents actually communicate
with each other through a stylized plan-communication language. Figure 3 il-
lustrates the mental state of each agent at some point in the interaction. White
boxes indicate individual actions and arrows indicate the establishment of an
action's preconditions by another action's e�ects, or a threat to some precon-
dition's establishment by an intervening action that negates the establishing
e�ect. Blue boxes indicate \plans," which are sets of actions treated as a con-
ceptual unit by the social layer. The emotion windows illustrate each agent's
current emotional state, characterized in terms of intensity values along a set
of basic emotions.

Rude Interaction:
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Fig. 3. Representation of Jack and Steve's appraised state, including each agent's
base-level task network, plans, and emotional state.

Jack: I want to make-some-big-money. [Begins generating a plan for this
goal. Displays a concerned expression, scratches his head, then, after devising
a complete plan, displays a hopeful expression.]

Steve: I want to catch-some-waves. [Begins generating a plan for this goal.
Looks concerned, scratches head, and continues to look concerned. Sur�ng is
important to Steve and he cannot devise a satis�cing plan.]

Jack: [Perceives Steve's display of concern and generates an information
request.] Hey Steve, what's wrong?

Steve: [Identi�es the feature in plan memory contributing to the most in-
tense negative emotional excitation. Communicates the associated plan in a
distressed tone of voice.] I want to catch some waves but can't �nd any good
breakers.

Jack: [Incorporates Steve's plan into plan memory and locates relevant
information. Jack knows of an event that establishes Steve's blocked subgoal.]
Steve, does it help that someone did say there's some great waves near the
pier?

Steve: [Incorporates the communicated event into plan memory. Completes
a plan to go sur�ng and looks hopeful.]

Jack: [Perceives Steve's change in expression and seeks to con�rm his ex-
pectation that the information he provided helped Steve.] So that information
helped?

Steve: [Handles Jack's information request.] Yes Jack. I plan to drive the
car to the beach, then I plan to surf-my-brains-out.
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Jack: [Incorporates Steve's revised plan and �nds a conict with his own
plans. Based on personality, Jack attempts to negotiate a fair solution.] Wait
a second. Our plans conict. I plan to drive the car to the-quicky-mart then
I plan to buy a-lottery-ticket.

Steve: [Incorporates Jack's plan and recognizes the same interaction. Based
on personality model, Steve responds to the interaction di�erently. He devises
a plan that satis�es his own goals without regard to any conicts it may in-
troduce in Jack's plans. Steve exits stage right.] Later dude, I'm driving the
car to the beach.

Jack: [Perceives that the car has departed without him. Looks angry. Says
in angry voice:] I want to kill-my-roommate.

Cooperative Interaction:

In this second interaction, the user replays the interaction but �rst alters
Steve's personality to treat Jack fairly. The agents have identical goals and
knowledge, but due to di�erences in their social appraisals the interaction is
quite di�erent. The interaction is identical up to the point that Jack detects
an interaction between the plans:

Jack: [Incorporates Steve's revised plan and �nds a conict with his own
plans. Based on personality, Jack attempts to negotiate a fair solution.] Wait
a second. Our plans conict. I plan to drive the car to the-quicky-mart then
I plan to buy a-lottery-ticket.

Steve: [Incorporates Jack's plan and recognizes the same interaction. Based
on Steve having somewhat lower social status, he takes the initiative in repair-
ing the conict.] Well, I could change my plans. [Looks concerned, scratches
head, then devises a possible joint plan.] I have a suggestion. Could you drive
the car to the-quicky-mart with-me then I could drive the car to the beach.

Jack: [Incorporates Steve's suggested joint plan, determines that it is con-
sistent with his own plans, and agrees to form a joint commitment to the
shared plan.] Sounds good to me.

3.2 Plan-based Social Appraisal

As discussed earlier, The Jack and Steve system was predicated on two ba-
sic claims: 1) that plans and plan reasoning can mediate expressive behavior
and 2) that small biases in how plans are appraised and generated can result
in large systematic di�erences in agent behavior. Jack and Steve supported
such expressive and exible interactions by implementing social reasoning as a
layer atop a general-purpose partial-order planning system [1, 51]. The plan-
ning system provides domain-independent representations of world actions
in terms of preconditions and e�ects, and provides general reasoning mech-
anisms that construct partial plans, repair interactions between them, and
oversee plan execution. The social layer manages communication and biases
plan generation and execution in accordance with the social context (as as-
sessed within this social layer). In this sense, social reasoning is formalized as
a form of meta-reasoning.
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To support a variety of social interactions, the social reasoning layer must
provide a rich model of the social context. The social situation is described
in terms of a number of static and dynamic features from a particular agent's
perspective. Static features include innate properties of the character being
modeled (social role and a small set of personality variables). Dynamic fea-
tures are derived from a set of domain-independent inference procedures that
operate on the current mental state of the agent. These include the set of
current communicative obligations, a variety of relations between the plans in
memory (e.g., your plans threaten my plans), and a model of the emotional
state of the agent (important for its communicative role).

One novel aspect of the system is the way in which the social layer funda-
mentally alters the planning process. Grosz and Kraus [19] show how meta-
level constructs like social commitments can act as constraints that limit the
planning process in support of collaboration (for example, by preventing a
planner from unilaterally altering an agreed-upon joint plan). Jack and Steve
went beyond this to show how to model a variety of \social stances" one can
take towards other individuals based on one's role in an organization and
other dispositional factors. In terms of planning, rather than simply being
cooperative, the social layer can bias planning to be more or less considerate
to the goals of other participants. In terms of communication, agents can vary
in terms of how much initiative or control they can take over the interaction,
from bossy agents that try to tell others what to do to more passive agents
that meekly avoid interactions or social conicts.

3.3 Social Context

As in the preceding Steve system, Jack and Steve maintains a rich represen-
tation of the social context to drive coherent behavior. Domain independent
appraisal rules map features of an agent's current plan knowledge into a cur-
rent social context. Besides static features of the social context set by the user,
such as the agents' goals and personality, the social context can be divided
into the following distinct components.

Plan Context: The plan context plays an analogous role to the Task
Context in the original Steve system. The plan context represents information
about the plans agents are entertaining, as well as meta-level information
about the status of these plans. The Jack and Steve system incorporated
a di�erent plan representation than the original Steve system. While both
systems used general plan representations, Jack and Steve also incorporated
a decision-theoretic model, representing the likelihood and utility of various
plans (which is quite useful in modeling the intensity of emotional responses).
Unlike Steve's plans, which are hierarchical, Jack and Steve adopted a simpler
non-hierarchical plan representation but included an explicit model of meta-
plan reasoning.

Jack and Steve's base-level planning layer represents future-directed ac-
tions that an agent is aware of (whether they come from its own planning
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or are communicated from outside) as a single plan in the classical planning
sense (i.e., a partially-ordered set of actions with establishment and threat
relations between actions), henceforth referred to as the task network. This
allows the base-level planner to reason about the interrelationship between
these activities. However, at the social level, subsets of this task network are
explicitly treated as distinct plans in the commonsense use of the term (i.e,
a coherent set of actions directed towards a goal), henceforth referred to as
plans. Plans at this social layer may belong to the agent or may corresponding
to (what the agent believes to be) plans of other gents.

The plan context also represents a number of meta-level relations between
these plans. Plans can contain threats if the actions within a plan threaten
each other and the plans of one agent can introduce threats or be threatened
by the plans of another agent (such relations are computed using the basic
plan-evaluation routines provided by standard planning systems). Plans of one
agent are deemed relevant to the plans of other agents if they may causally
interact [11].

Emotional Context: Unlike the preceding Steve system, the Jack and
Steve system maintains a representation of the agents' emotional state. The
model of emotional reasoning that supports this, �Emile, has been described
extensively elsewhere [16, 18]. �Emile adopts the cognitive view of emotions as
a form of plan evaluation, relating events to an agent's current goals (c.f., [35,
25]). As in other appraisal-based computational models of emotion [13, 33],
�Emile classi�es events in terms of a set of appraisal variables :

� goal relevance - are the consequences of an event relevant to an organism's
goals

� desirability - how desirable are the consequences
� likelihood - how likely are the consequences
� causal attribution - who is the causal agent underlying the event and do

they deserve credit or blame

Unlike prior computational models, �Emile rei�ed these variables in terms of
domain-independent features of an agent's plans in memory. �Emile contains
a set of recognition rules that scan an agent's internal representations and
generate an appraisal frame whenever certain features are recognized. For
example, when Steve states he will drive the car to the beach, the e�ect of
this potential action (that the car is no longer at home) threatens Jack's plan
to get to the quicky mart. The existence of a threat to an important goal is
interpreted as an undesirable event, which ultimately gets mapped into a fear
response based on the likelihood of the threat and the importance of the goal.

Many appraisals may arise from the current plan context (e.g., Steve may
be simultaneously hopeful that he will surf but fearful that Jack may abscond
with the car). Individual appraisals are collected together by class and their
intensities summed into an overall emotional context. Di�erent subsets of ap-
praisals can be aggregated and associated with meta-level constructs, allowing
�Emile to compute an agent's overall state, track the emotions arising from a
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speci�c plan, or make estimates of the overall emotional state of other agents
(given an understanding of their goals and plans). Each of these aggregate
states is represented as a real-valued vector representing the intensities of dif-
ferent emotional states (Fear, Joy, etc.) and �Emile dynamically modi�es this
state as appraisals change in response to the current world situation and the
state of plans in memory.

Communicative Context: The communicative context tracks what in-
formation has been communicated to di�erent agents and maintains any com-
municative obligations that arise from speech acts. When one agent commu-
nicates a plan to another, the social layer inserts the plan into the task net-
work and records that the recipient knows this plan. This belief persists until
the sender's planning layer modi�es the plan, at which point the social layer
records that the recipient's knowledge is out of date. If one agent requests an-
other's current plans, the social layer represents a communicative obligation:
the fact that the recipient of the request owes a response is recorded in each
agent's social layer (though whether the recipient satis�es this obligation is
up to its own social control program).

The communicative context roughly corresponds to the earlier Steve sys-
tem's notion of dialogue context in the sense that both are concerned with
representing a history of preceding communication and its impact on current
beliefs and pending obligations. The Steve system, however, focused more on
dialogue related to hierarchical task execution (e.g., the focus stack), whereas
Jack and Steve focus more on the relationship of dialogue acts to plan gener-
ation.

3.4 Social Operators and Social Stances

Social operators are actions that occur at the social level. These are sub-
divided into meta-planning operators and communicative operators. By trig-
gering these operators based on features of an agent's social context, the Jack
and Steve system could represent a number of distinct social behaviors.

Meta-planning operators alter the way the planner operates at the base-
level. Meta-planning operators allow the social level to react and manipulate
plan objects, populate them with subsets of the task network, and alter how
the planner operates on those subsets. For example, if Steve communicates
his plan to Jack, Jack could create a new plan object (\Steve's Plan") and
populate it with the set of communicated actions. Di�erent plans could be
treated di�erently by allowing or disallowing certain types of planning modi-
�cations. Classical planning algorithms can be viewed as a sequential decision
process: some critiquing routines identify a set of problems with the current
plan network and propose a set of modi�cations that resolve at least one of
these problems (an action should be added, these actions should be reordered,
etc.); one modi�cation is applied and the process continues [23]. The social
level might disallow any changes to a plan (corresponding to the idea that
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the agent is committed to the plan), or it may allow more subtle variations in
how plans are changed by constraining the set of allowable modi�cations.

Communicative operators correspond to a set of speech acts that an agent
may use to communicate with other agents. As they are de�ned at the meta-
level, they can operate on plans only as an atomic structure and cannot make
reference to components of a plan (although one has the option of breaking
a plan into explicit sub-plans). Some speech acts serve to communicate plans
(one can INFORM another agent of one's plans, REQUEST that they accept
some plan of activity, etc.). Other speech acts serve to change the state of some
previously communicated plan (one can state that some plan is under revision,
that a plan is acceptable, that it should be forgotten, etc.). Communicative
primitives also include non-verbal communication, such as gestures.

From the standpoint of modeling expressive behavior, the most novel con-
tribution of the Jack and Steve system was the way social operators could al-
ter the way the planner handles interactions between plans of di�erent agents,
thereby implementing the idea of a social stance. A number of distinct social
stances could be modeled and were organized along four roughly orthogo-
nal dimensions: conscientiousness, dominance, sociability, and independence.
These stances are all implemented as search control strategies, limiting certain
of a planner's threat resolution options or the agent's communication options.

Conscientiousness impacts the extent that an agent respects the goals and
plans of other agents. A non-conscientious (rude) agent only considers threats
to his own plans and discounts any threats that his own actions introduce into
the plans of other agents. For example, the rude Steve agent runs to grab the
keys before Jack gets a chance to take the car. This corresponds to the threat
resolution strategy of promotion, whereby a threatened action is moved before
the threat. A conscientious agent wouldn't consider promotion as it prevents
Jack's plans from succeeding (in planning terminology this is an instance
of brother-clobbers-brother-goal); however a rude agent would discount this
other-directed threat.

Dominance impacts whether an agent is willing to dictate actions to other
agents. For example, a dominant agent would freely introduce actions into the
plans of other agents, or incorporate steps into his own plans that other agents
are expected to perform. In contrast, a meek agent would avoid these options
and tend to work around interactions. For example, a meek Steve might �nd
some other way to get to the beach or simply stay home.

Sociability relates to how readily an agent communicates to resolve con-
icts or to provide potentially useful information. Social agents communi-
cate whenever they encounter interactions between plans while asocial agents
would try to resolve conicts without communication. For example, an asocial
agent could resolve the resource conict involving the car by simply taking
the car to the quicky mart before the other agent gets a chance to take it to
the beach.

Finally, agents vary in terms of their independence. An independent agent
would refuse to develop plans that depended on the actions of other agents.
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For example, the plan of riding to the quicky mart together would be ruled
out by an independent agent.

Beyond social stances, meta-operators allow the social level to create and
manipulate plan objects. Plans can be created and destroyed, and they can be
populated with new goals and with activities communicated by other agents.
Another set of meta-operators determines whether the planning algorithm
can modify the activities in one of these plan objects. One can make a plan
modi�able, allowing the planner to �x any aws with that plan, or one can
freeze its current state (as when adopting a commitment to a certain course
of action. One can also modify the execution status of the plan, enabling or
disabling the execution of actions within it.

Distinct personalities and social stances are implemented via a set of social
rules that execute sequences of social operators based on appraised features
of the social context. These rules can be viewed as a simple social domain
theory or, alternatively, as a simple reactive plan.

The Jack and Steve system included about thirty social rules. A few ex-
amples are listed here.

Social-Rule: plan-for-goal

IF I have a top-level ?goal
THEN

Do-Gesture(Thinking)
Say(to-self, \I want to ?goal")
?plan = create-new-plan(?goal)
enable-modi�cation(?plan)

The plan-for-goal rule creates a new plan object for an agent's top-level
consisting of one dummy step that has the goal as its precondition, and, by
enabling modi�cation, allows the base-level planner to add actions to the
plan in order to achieve the goal. The rule also triggers an utterance (\I
want to . . . ") and an expressive \Thinking" gesture (implemented by a motor
procedure that turns the agent's head up and to the side and raises one arm
to scratch the head).

Social-Rule: commit-to-plan

IF I have ?plan
AND I am currently modifying ?plan
AND the ?plan is free of threats

THEN
Do-Gesture(Nod-Head)
commit-to(?plan)
disable-modi�cation(?plan)

If at some point the base-level planner successfully constructs a threat-free
plan to achieve to goal, the commit-to-plan rule commits to the plan and pre-
vents the planner from making further modi�cations. Note that the de�nition
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of \threat-free" is dependent on the agent's social stance (for example, a rude
agent may perceive his plan as threat-free even though it is clobbering steps
of another agent's plans).

Social-Rule: help-friend

IF I have a ?plan that is relevant-to the plan of another ?agent
AND I am friends with ?agent
AND I am socially-adept
AND the ?plan is not known to ?agent

THEN
Do-Gesture(Look-at ?agent)
SpeechAct(INFORM, ?plan ?agent)

If an agent has been de�ned to be socially-adept and they are aware of
some information that may causally impact the plans of another agent, the
help-friend rule ensures that this information is communicated to the other
agent.

Social-Rule: you-cause-problems-for-me

IF I have a ?plan
AND ?you have ?your-plan
AND my ?plan is threatened by ?your-plan
AND I am committed to my ?plan
AND I am not meek
AND ?you don't know my ?plan

THEN
Say(?you, \Wait a second, our plans conict")
SpeechAct(INFORM, ?plan, ?you)

If an agent has committed to a plan and discovers that the actions of
another agent are threatening the plan's execution, a non-meek agent should
communicate his own plans with the unstated expectation that the other agent
will respond cooperatively.

Many of these rules, such as help-friend, correspond to standard conven-
tions in collaborative planning. What is novel about Jack and Steve, however,
is the idea of di�erentially applying them depending on features of an agent's
personality, allowing, for example, a exible gradation between cooperative
and non-cooperative behavior. Collectively, these rules form a sort of social
domain theory and, by explicitly representing social context and social oper-
ators, Jack and Steve facilitates the easy construction of di�erent mappings
between them and thus easy experimentation with di�erent social theories.

3.5 Bodily Expression

The Jack and Steve system's chief contributions are in its internal process
models of how emotion gets appraised and planning gets altered by social
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stances. However, this internal machinery must be manifested externally to
have an impact on the user. Jack and Steve's reasoning mechanism was
connected to the Steve agent body described earlier. This provided non-
photorealistic 3D human-like bodies that included control of body movements
(including procedural control of gaze, pointing and grasping) and procedural
control of facial expressions (including control of eyebrows, eyelids and mouth
characteristics). It also included a text-to-speech system with some coarse con-
trol over the characteristics of speech that could give some sense of emotional
speech. Through these controls we developed a small repertoire of exaggerated
facial poses to convey basic emotions and a set of arm and facial gestures to
indicate other mental processes. This included pointing to the air and nodding
when successfully completing a plan, scratching one's head when developing
a plan, and winking when irrecoverably destroying another agent's plans.

Jack and Steve were never formally evaluated but anecdotal evidence sug-
gests that people could easily recognize certain basic di�erences in personality
(e.g. rude versus cooperative) through the di�erent trajectory of the interac-
tions and the type of plans agents developed, although not all combinations of
traits led to recognizable di�erences. Facial expressions and gestures seemed
primarily useful for conveying information about the agent's appraised inter-
nal state and apparently added to the perceived humorousness of the interac-
tion.

We subsequently implemented a version of the system using more photo-
realistic faces which people, interestingly, found rather less funny and more
disturbing. This was likely due to the crude control we had over facial ex-
pressions. In both systems, characters would hold a �xed facial expression
for several seconds. In the non-photorealistic Steve graphical bodies, people
seemed to �nd this acceptable. However with the more photorealistic faces
people felt the characters were \creepy" or \maniacal." This reinforces the
conventional wisdom that the drive toward photorealism in graphical models
will demand considerably more attention to the form and dynamics of physical
expressions.

4 Carmen's Bright IDEAS

Carmen's Bright IDEAS (CBI) was an agent-based system designed to re-
alize an Interactive Pedagogical Drama (IPD) [31], an approach to learning
that immerses the learner in an engaging, evocative story where she inter-
acts openly with realistic characters. The pedagogical goal of CBI was to help
mothers of pediatric cancer patients deal with the many stresses they face due
to their child's illness. A mother learns by making decisions or taking actions
on behalf of a character in the story, and sees the consequences of her decisions
subsequently played out. To bring this pedagogy to life, the drama mirrors
the mother's own problems. In the CBI story, the various stresses Carmen is
facing are revealed, including her son's cancer, her daughter Diana's temper
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tantrums, work problems, etc. The drama foregrounds these stresses and al-
lows the learner to interactively inuence how Carmen copes with them. To
facilitate open interaction, the characters in CBI were realized as autonomous
agents.

Many of the di�erences with the previously discussed systems stem from
the fact that the agents in CBI realize a social drama about very stressful
issues. In particular, CBI's drama explores how the main character agent
develops cognitively and emotionally. In contrast, the focus for the previously
discussed Steve agent was on performing a procedural task in an immersive
environment. Therefore drama and character development was not a central
concern.

As a consequence of this dramatic goal, the design of the agent models in
CBI was rooted in psychological research in stress and causes of emotions. In
particular, like �Emile, cognitive appraisal theory inuenced the design of the
CBI agents, though the two systems realize di�erent, complementary aspects
of appraisal theory. The focus in �Emile was on the task-oriented causes of
emotion. In CBI, there was a more pressing requirement to model the causes of
emotion that stem from what psychologists call an ego identity, an individual's
concerns for loved ones, for how others perceive them, for performing their
social roles well, and for measuring up to their personal ideals. Emotions stem
from how events impact these concerns. Further, CBI agents needed to also
model the consequences of emotions { how people cope with diÆcult emotional
stresses in both adaptive and maladaptive ways as well as how to learn better
ways of coping.

Also, the animated agents needed e�ective ways to convey the impact of
emotion on both the agent's dialog and physical behavior. In particular, this
required developing models of how complex, sophisticated emotional stress
processes are revealed over time in coping behavior and dialog. Although
other systems have addressed expressive behavior, this modeling of human
coping and its dynamic impact on behavior set CBI apart. The concern for
expressive behavior that reveals underlying dynamics grew out of the fact
that CBI was being designed for a clinical trial with mothers of pediatric
cancer patients. The dynamics would potentially bene�t believability of the
agents and facilitate the learner's identi�cation with the agents. In addition,
it might further the learner's understanding of the underlying emotional and
coping processes that the agents were modeling, which in fact was part of the
pedagogy.

4.1 The drama of Carmen's Bright IDEAS

CBI is a three act interactive drama. In the key act, Carmen discusses her
problems with a clinical counselor, Gina, who suggests she use a problem
solving technique called Bright IDEAS to help her �nd solutions. Note each
letter of IDEAS refers to a separate step in the problem solving method:
Identify a solvable problem, Develop possible solutions, Evaluate your options,
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Act on your plan and See if it worked. Bright refers to the need for a positive
attitude. Figure 4 is a shot of Carmen and Gina in Gina's oÆce. With Gina's
help, Carmen goes through the initial steps of Bright IDEAS, applying the
steps to one of her problems, and then completes the remaining steps on her
own. The �nal act reveals the outcomes of Carmen's application of Bright
IDEAS.

Fig. 4. Carmen (right) speaking with Gina (left).

Central to the drama's tension is the interaction between Gina, Carmen
and the learner. The interaction model we designed for CBI is what we call
a rubber-band model. See Figure 5. Both Gina and the learner exert inu-
ence over Carmen but the inuence is partial and mediated by Carmen's
own cognitive and emotional dynamics. Thus we characterize this inuence
as rubber-bands. It is Gina's job to keep the social problem solving on track
so that the story proceeds to a successful outcome by e�ectively responding
to Carmen's cognitive and emotional state, at times motivating her through
dialog to work through the steps of IDEAS on some problem or alternatively
calming or reassuring her. The human mother interacts with the drama by
making choices for Carmen such as what problem to work on and how she
should cope with the stresses she is facing. The learner can choose alterna-
tive internal thoughts for Carmen, such as \I hope this helps with Diana."
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These are presented as thought balloons (see Figure 6). Both Gina's dialog
moves and the learner's choices inuence the cognitive and emotional state
of the agent playing Carmen, which in turn impacts her behavior and dialog,
perhaps in conicting ways. The cognitive and emotional dynamics within
the Carmen agent ensures that Carmen's behavior is believable at all times,
regardless of how Gina and the learner may be inuencing her.

In this interaction model, the Gina agent is both an on-screen character
and the drama's director. The social interaction between agents is driven by
the Gina agent's persistent goal to motivate the Carmen agent. Therefore,
Gina typically takes the initiative. If the Carmen agent is distressed, she
requires considerable prompting, praise and guidance from Gina. But as she
is reassured about IDEAS, she will begin to \feel" hopeful and may engage
the problem solving without explicit prompting.

Fig. 5. Rubber band interaction model.

The combination of Gina's motivation of Carmen through dialog and the
learner's emotional impact on Carmen creates tension, a rubber-band tug-of-
war between Gina's attempts to motivate Carmen and the initial, possibly
less positive, attitudes of the Carmen/learner pair. As the learner plays a role
in determining Carmen's attitudes, she assumes a relationship in this tug-
of-war, including, ideally, an identi�cation with Carmen and her diÆculties,
a responsibility for the onscreen action and perhaps empathy for Gina. If
Gina gets Carmen to actively engage in applying the IDEAS technique with
a positive attitude, then she potentially wins over the learner, giving her a
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positive attitude. Regardless, the learner gets a vivid demonstration of how
to apply the technique. The design also allows the learner to adopt di�erent
relationships to Carmen and the story. The learner may have Carmen feel as
she would, act the way she would or \act out" in ways she would not in front
of her real-world counselor.

Fig. 6. Learner inuences Carmen by selecting Thought Balloons.

4.2 CBI Agent Models

Technically, the basic design for interactive pedagogical drama includes �ve
main components: a cast of autonomous character agents, the 2D or 3D pup-
pets which are the physical manifestations of those agents, a director agent,
a cinematographer agent, and �nally the learner/user who impacts the be-
havior of the characters. Animated agents in the drama choose their actions
autonomously but also follow directions from the learner and/or a director
agent. Director and cinematographer agents manage the interactive drama's
onscreen action and its presentation, respectively, so as to maintain story
structure, achieve pedagogical goals, and present the dynamic story so as to
achieve best dramatic e�ect. Here, the discussion will focus on the onscreen
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Fig. 7. Agent Architecture.

character agents. In CBI, one of the onscreen character agents, Gina, also
serves as director. Further discussion of the cinematographer agent can be
found in [31].

Each onscreen character is realized by an agent architecture that has mod-
ules for problem solving, dialog, emotional appraisal and behavior generation.
See Figure 7. The problem solving module is the agent's cognitive layer, specif-
ically its goals, planning and deliberative reaction to world events. The dialog
module models how to use dialog to achieve goals. The emotional appraisal
module determines how the agent emotionally evaluates (appraises) events.
Finally, behavior generation constructs the agent's behavior and passes that
behavior on to an animation program (not shown). Each of these modules will
be discussed in greater detail in subsequent sections.

There are several novel pathways in the architecture worth noting. It is
possible for the agent to say something and emotionally and cognitively react
to the fact that it has said it, since the agent's own dialog feeds back as
input. Emotions impact problem solving, dialog and behavior. Finally, there
are multiple inputs to behavior generation, from emotional appraisal, dialog
and problem solving, all competing for the agent's physical resources (arms,
legs, mouth, head, etc.). For instance, the dialog module derives dialog that it
intends to communicate, which may include an intent to project an associated
emotion. This communication may be suggestive of certain nonverbal behavior
for the agent's face, arms, hands etc. However, the agent's emotional state
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derived from emotional appraisal may suggest quite di�erent behaviors. As
we will discuss, behavior generation mediates this contention.

An example demonstrates how these pathways work within the architec-
ture. At one point, Gina asks Carmen why her daughter is having tantrums.
Carmen tends to feel anxious about being judged a bad mother and the learner
may choose a thought that reinforces this anxiety. Carmen copes (problem
solving) by dismissing the signi�cance of the tantrums (dialog model): \She
is just being babyish, she wants attention." Based on Carmen's dialog and
emotional state, behavior generation selects relevant behaviors (e.g., �dgeting
with her hands). Her dialog also feeds back to emotional appraisal. She may
now feel guilty for \de-humanizing" her child, may physically display that
feeling (behavior generation) and then go on to openly blame herself. Car-
men can go through this sequence of interactions solely based on the ux in
her emotional reaction to her own behavior. Gina, meanwhile, will emotion-
ally appraise Carmen's seeming callousness and briey reveal shock (e.g., by
raised eyebrows), but that behavior is quickly overridden if her dialog model
decides to project sympathy.

As noted in Figure 7, the agents use dialog annotations to communicate.
In order to maximize expressive e�ect of such dialog, recorded dialog of voice
actors was used instead of speech synthesis. A signi�cant amount of variability
in the generated dialog is supported by breaking the recordings into mean-
ingful individual phrases and fragments and by recording multiple variations
(in content and emotional expression). There are 480 dialog fragments in the
clinical trial version of CBI. The agents compose their dialog on the y, using
annotations attached to the fragments to understand each other and decide
how to respond. The agents experience each fragment's annotation in order,
so their internal state and appearance can be in ux over the dialog segment.

Emotional appraisal and dialog are depicted in Figure 7 as happening in
parallel. However the phrase-by-phrase dialog generation and comprehension
of the associated annotation tags in practice results in appraisals being inter-
leaved with the dialog. As this sequential process unfolds phrase by phrase,
a behavior program is being incrementally constructed by the Behavior Gen-
eration. It is useful to understand this sequencing because it helps determine
how emotion relates to other components of the architecture and therefore
how the subtlety and dynamics of emotional expression in CBI is realized. In
particular, the sequencing is closely related to the resulting expressive behav-
ior program that will be discussed in the Behavior Generation section.

Agents process dialog in the following order:

1. \Hear" Dialog Line (other speaker) if there is one.
2. Appraise dialog from step 1 and pass result to Behavior Generation.
3. Decision-making { form intent to perform a dialog act based on some list

of phrases to speak.
4. If agent wants to speak goto 5 otherwise goto 1.
5. Appraise step 3 decision-making and pass result to Behavior Generation.
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6. Compute dialog pause based on emotional state and pass to Behavior
Generation.

7. Pass phrase and annotations to Behavior Generation to build the part of
the behavior program that will be executed in parallel with this phrase.

8. Appraise phrase just spoken and pass to Behavior Generation.
9. If phrases remain go to 6 else inform Behavior Generation that dialog turn

is over and goto 1.

The Appraisal at (2) is the starting emotional appraisal. It sets emotional
state and consequently informs behavior generation, and thus indirectly man-
ages the initial face, head turns and body expression (posture) of the agent,
as well as impacting the decision making that precedes its own dialog. De-
cision making at (3) comes up with a plan to say something. The appraisal
at (5) sets emotional state and expressions based on decision making at 3 -
the dialog intent/content of the entire response. This may in turn update face
expression, head position and body focus. The pause at (6) simply manipu-
lates the time between the agent's phrases based on emotional state, allowing
expressive pauses in the dialog.

The part of the behavior program built at (7) creates a parallel and se-
quential structure that includes gestures, facial expressions, head movements,
blink patterns, posture shifts and speaking of the appropriate surface phrase.
Because of animation infrastructure, the behavior program is incrementally
built by these steps but execution only happens when the complete program
is constructed for the dialog turn. The appraisal at (8) sets emotional state
in reaction to content relayed by each phrase.

The dialog annotations are not designed to fully describe the dialog but
rather constitute an abstract level at which the agents reason about how to
react to each other's as well as their own dialog. Annotations include:

� Dialog content: Dialog Act, Speaker and Addressee
� Emotional content: Coping Act (e.g. denial)
� Propositional content: Main referent (e.g. Diana) and Topic (e.g., temper

tantrums)
� Performance content: Referential structure (e.g., \me" indicates speaker is

referring to self as \I feel...", \me{other" indicates speaker is referring to
self and someone else) that is used in gesture determination and duration
of phrase (used to decide which gesture macro to use, when to use it and
how to set blink pattern)

4.3 Emotional Model

The emotion model in CBI has several unique features required to realize
expressive, interactive psychosocial drama that set it apart from standard
models of emotions used in agent systems. Central to these features is the
fact that emotions in CBI are not simply there to make the characters more
believable. Emotions and how individuals cope with emotional stress were an
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integral aspect of the pedagogy. The pedagogical goal was for the mothers
to learn how to choose and carry out the right coping strategy for a given
situation and to maintain a realistic belief in their eÆcacy.

Consistent with the pedagogical role of emotion in CBI, the agents' inter-
actions with each other and the learner are in fact grounded in the research
that inuenced the Bright IDEAS pedagogy: the cognitive appraisal theory
of human emotion as posited by Richard Lazarus [25]. This theory organizes
human behavior around appraisal and coping. Appraisal leads to emotion by
assessing the person-environment relationship. This assessment is performed
along several key dimensions. For example, did an event facilitate or inhibit the
agent's goals; who deserves blame or credit? Most notable for the discussion
here is the dimension of ego involvement: how an event impacts an individ-
ual's ego-identity. Ego-identity is the individual's collection of concerns for
self- and social-esteem, social roles, moral values, self-ideals as well as concern
for other people's well-being.

Coping is the process of dealing with emotion, either by acting externally
on the world (problem-focused coping), or by acting internally to change be-
liefs or attention (emotion-focused coping). For example, a problem-focused
way to attempt to deal with a loved one's illness is to take action that
gets them medical attention. Alternatively, one might use an emotion-focused
strategy such as avoiding thinking about it, focussing on the positive (e.g.,
one's love for an ill child) or denying the seriousness of the event. In Lazarus's
theory, coping and appraisal interact and unfold over time, supporting the
temporal character of emotion evident in human behavior.

As the previous tantrum example reveals, ego-identity and coping are key
aspects of the emotion modeling in CBI. The focus on ego identity, in par-
ticular, distinguishes CBI from systems like �Emile that model emotions that
arise from tasks. In CBI, the knowledge modeled by the agent's ego identity
comprises a key element of how it interacts with other characters and its re-
sponse to events. For example, it is Carmen's concern for her son's well-being
that induces sadness. And it is her ideal of being a good mother, and desire
to be perceived as one (social esteem), that leads to anxiety about discussing
Diana's tantrums with Gina.

Another key concern for CBI was to support the temporal character of
emotion: an agent may \feel" distress for an event which motivates the shifting
of blame, which leads to anger. The venting of that anger may in turn lead to
guilt. In particular, capturing and expressing these dynamics in CBI lead to
a design whereby agents emotionally evaluate and react to their own dialog.
The expression of emotion also stems from two sources, appraisals [16] as well
as the intention to communicate emotions [26, 39] that is derived from the
current dialog act. Thus an agent can communicate emotions that they do
not \feel". We will discuss in the Behavior Generation section how these two
sources are mediated.

In CBI, ego-identity is modeled as a collection of role ideals (Carmen
wants to be a good-mother), concerns (good-mothers want their children to



28 Stacy Marsella, Jonathan Gratch, and Je� Rickel

be happy and healthy) and responsibilities (good-mothers are responsible for
their child's behavior). The system also models social relations (Gina is in
essence a parental-surrogate for Carmen). Appraisal rules derive emotions
from these various representations. Figure 8 describes some of the knowledge of
ego-identity, roles and social relationships. Some of the appraisal rules used in
the emotional processing are exempli�ed in Figure 9. Note that the appraisals
are also performed on topic changes. Topics such as Diana's tantrums and
Jimmy's illness have pre-existing emotional state information that is averaged
into current emotion state when the topic is raised (as we will see MRE realizes
such a capability in a more principled fashion). Emotions are represented as
scalars on key types of emotion and coping factors. The appraisals result
in changes in these values, which in turn impact dialog transitions, dialog
rules and expressive behavior. Although there was an attempt to write these
appraisal rules in a general fashion, the coverage is also partial, driven by the
demands of the interactive story and characters and the pragmatic demand
of getting CBI ready for clinical trials with real mothers.

Roles and Ideals

� (ego-ideal <person> <role> <type>)
{ Example: (ego-ideal Carmen mother good-mother)

� (concern <type> <relationship> <state>)
{ Example: (concern good-mother dependent positive{a�ect)

� (responsibility <type> <relationship> <state>)
{ Example: (responsibility good-mother dependent behavior)

Relationships

� (parental-surrogate <person> <person>)
{ Example: (parental-surrogate Carmen Gina)

Fig. 8. Example Ego-Identity Representations

4.4 CBI Dialog Model

The dialog model used by the CBI agents is designed to support considerable
exibility, dialog turn by dialog turn, while supporting interesting dramatic
outcomes. Most interesting from an expressive behavior standpoint, all this
exibility in dialog is often driven by emotions, speci�cally the agents' emo-
tional state, their coping strategies and their assessment of the other's agent's
emotional state. To better appreciate this impact of emotions, we will briey
describe how dialog is generated.

The agent's dialog module selects high-level strategies to drive the dis-
course through the scene. These strategies are descriptions of possible realiza-
tions of the major components of the discourse and are designed to support
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� If event violates a concern, it is negative.

� If asked by parental{surrogate about negative event which agent feels responsi-
ble for then increase anxiety.

� If talking about negative event then increase sadness.

� If talking about negative event which agent feels responsibility for then increase
guilt.

� If new topic is raised and agent has pre-existing emotional attitude towards it
then average in emotions with current emotional state.

Fig. 9. Example Appraisal Rules

considerable exibility in the agent's turn-by-turn dialog. For example, the
main act in CBI is Gina's goal of getting Carmen to apply the IDEAS steps
to one of her problems. Gina has an abstract strategy to do this: reassure Car-
men, suggest they jointly apply Bright IDEAS, ask her to choose a problem
and guide her through the task of solving that problem - speci�cally guide her
through the subgoals of I-D-E-A-S applied to that problem. This particular
strategy sets an overall direction for the scene. The agents also have alterna-
tive substrategies that can hierarchically expand a strategy. For example the
I-D-E-A-S subgoals need to be expanded. One substrategy is to repeatedly
prompt/help the other agent to enumerate possible solutions to a subgoal.
For example, Gina might use this substrategy to help Carmen develop (the
D in IDEAS) possible solutions to Diana's tantrums. Another is to ask an or-
dered sequence of questions on a topic. Gina, for example, might help Carmen
identify (I) the current problem's features by answering the \5Ws": who is at
the center of the current problem being discussed, what is the problem, where
does the problem happen, when does it happen and why does it happen.

The high level strategy and substrategies are not �xed prescriptions for
the dialog. Rather, the agent expands the hierarchy and works out steps in the
strategy interactively with the other agent. In the case of CBI, the expansion
is done via joint agreement of Gina and Carmen. Gina suggests a substrategy
like the \5Ws" and Carmen decides whether to agree to that approach. Each
step in a strategy may need to be further expanded by the agents, via selecting
another substrategy to expand it. Alternatively, a step may be primitive in
the sense that there is no strategy to expand it. Such primitive steps are not
single dialog turns, however. Rather, the agent generates its dialog turn-by-
turn by exibly interpreting the high-level strategies using a state machine.
This machine allows the agent to adapt to twists and turns in the dialog caused
by the autonomy of the agents and the learner's interactions. In the case of
non-primitive steps in a strategy, it manages the dialog interactions which will
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hopefully lead to an agreement on how to expand the step. Similarly, in the
case of primitive steps, like answering the \why" question of the \5-Ws", the
state machine manages how the agent will interact with the other agent to
satisfy the step.

The state machine includes two kinds of nodes: dialog acts that generate
a dialog turn and nodes that step through the current (sub)strategy being
interpreted (e.g., Next Step). Both of these node types manage the dialog
state by expanding a strategy, maintaining what the current strategy and
topic is, where the agent is in the strategy and dialog obligations. Transitions
occur between nodes depending on the current strategy, the current state of
the dialog as well as the agent's and listener agent's emotional state. The
dialog acts are:

� Suggest (e.g., a joint subplan),
� Agree (to subplan),
� Ask/Prompt (e.g., for an answer),
� Re-Ask/Re-Prompt,
� Answer or re-answer,
� Reassure (e.g., to impact listener's emotional state),
� Agree/Sympathize (convey sympathy),
� Praise,
� O�er-Answer (without being asked),
� Clarify (elaborate),
� Resign (give-up) and
� Summarize

Most notable are the ones that are tightly coupled to emotional state and
pedagogy: Reassure, Praise, Agree/Sympathize, Resign (Give-up) and Sum-
marize.

This design allows for both deliberative dialog and reactive dialog that
variabilizes the agent interactions at multiple levels. At the highest level, al-
ternative strategies and substrategies can be selected. Further, the speci�c
transitions and resulting acts realize those strategies dialog turn by dialog
turn in exible ways, because a single step of the strategy can be realized
by di�erent paths through the agent's dialog state machine. Finally, there
are typically multiple realization rules to address a speci�c act. For example,
there may be multiple ways for Carmen to answer a speci�c question. Some
of these may be qualitatively di�erent in the sense that they lead to di�erent
recorded dialog lines and di�erent dialog annotations. Such di�erences lead to
a di�erent resulting state of the system. Others may have the same resulting
annotations, but actually use di�erent lines or even the same line spoken with
di�erent a�ect. For example, Carmen has multiple ways to say many of her
lines, using di�erent a�ect (frustrated, depressed, optimistic, etc.), that are
selected based on her emotional state.

Emotion and its expression play a key role in the dialog in other ways.
For example, Gina's transitions between dialog acts are based on Carmen's
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emotional state. She reassures or sympathizes when Carmen is distraught
but prompts Carmen to address the current step in the current dialog strat-
egy when Carmen is less distraught. If Carmen's emotion model leads her
to respond inappropriately, Gina has to decide how to repair this failure. In
psychological terms, Gina is often choosing whether to direct Carmen towards
emotion-directed versus problem-directed coping by giving either emotional
or instrumental support. Coping is key to the agent's selection of dialog and
its response to it. Carmen may choose an evasive coping strategy and select
dialog consistent with that strategy using the coping annotations. For exam-
ple, the Carmen agent's emotion model appraises the discussion of Diana's
tantrums as a source of distress because of her concern for Diana and because
failure to control Diana may reect on her ability as a mother. Her response
to this stress may be to blame Diana and trivialize her tantrums by saying
she is just being babyish. The Gina agent will not accept this answer, again
because of the coping strategy annotation, and will ask a follow-on question.
But Carmen may also reject her own answer �rst. Speci�cally if she is not too
anxious or angry, the guilt caused by the answer may cause her to re-answer
it prior to Gina's further prompting.

4.5 Behavior Generation

As noted, nonverbal behaviors are generated by the behavior generation mod-
ule. The design of this module was heavily inuenced by the psychological
research of Freedman [15]. Freedman described behavior of clinical patients
in terms of modes mediated by emotional state. In our computational model,
we have delineated three modes: body-focus, transitional and communicative,
roughly based on his work. These modes are arranged in a �nite state ma-
chine, which we call a physical focus model. Body-focus mode is marked by
a self-focused attention, away from the conversation and the problem-solving
behavior. Emotionally, it is associated with considerable depression or guilt.
Physically, it is associated with the tendencies of gaze aversion, paused or
inhibited verbal activity and hand-to-body stimulation that is either soothing
(e.g., rhythmic stroking of forearm) or self-punitive (e.g., squeezing or scratch-
ing of forearm). The agent doesn't exhibit communicative gestures such as
deictic or beat gestures when in this mode. Transitional indicates a less with-
drawn attention, less anxiety, a burgeoning willingness to take part in the
conversation, milder conicts with the problem solving and a closer relation
to the listener. Physically, it can be marked by hand-to-hand �dgeting. There
are more communicative gestures in this mode but they are still muted. Fi-
nally, communicative indicates a full willingness, or intent, to engage in the
dialog and problem solving. Physically, it is marked by the agent's full range
of communicative gestures and use of gaze in turn taking.

Behavior generation selects behavior based on physical focus mode. At
any point in time, the agent will be in a speci�c mode based on emotional
state that predisposes it to use nonverbal behavior in a particular fashion.
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Each behavior available to an agent is categorized according to which subset
of these modes it is consistent with. Any speci�c nonverbal behavior, such as a
particular nod of the head, may exist in more than one mode, and conversely
a type of behavior, such as head nods in general, may be realized di�erently
in di�erent modes. Transitions between modes are based on emotional state.

By grouping behaviors into modes, the physical focus mode attempts to
mediate competing communicative and non-communicative demands on an
agent's physical resources, in a fashion consistent with emotional state. Ges-
tures, gaze and head movements are in particular driven by the physical focus
mode. As we will see, facial expressions have a more temporal relation to
the focus mode, driven by a desire to balance the expression of underlying
emotional state with the communicative intent to express emotion as a social
signal. This grouping model is designed to be general across agents. However,
realism also requires that behaviors within each mode incorporate individual
di�erences, as in human behavior. For example, Carmen's and Gina's reper-
toire of gestures incorporate individual di�erences.

Based on the current focus mode and emotional state, behavior rules, trig-
gered in concert with the dialog and appraisal processes noted above, build a
behavior program that expresses how those processes are unfolding. Behaviors
include a combination of posture, head movement, facial expressions, blinking
and dialog, arranged in an XML structure.

The structure of the behavior program consists of animation directives for
the pieces of the agent's body, composed by parallel <P> and sequential <S>
markers as well as pause animation directives. This allows recursive structures
capable of simultaneous, sequential and delayed behaviors of arbitrary com-
plexity. The XML structure in CBI is similar to other XML based animation
languages, including most recently the work of Cassell et al. [8] and Pelachaud
et al. [37]. Even though CBI's parallel, sequential and pause language is simple
and quite aged now, it is somewhat unique in its ability to support timing of
one behavior in absolute time or relative to any other behavior. Often XML
languages only support timing of behaviors tied to the schedule of the speech.

Figure 10 depicts the high level XML structure of the resulting animation
program for one phrase of an agent's dialog turn. Each box in the diagram
would in turn be realized by nested XML animation directives. Note there are
starting and ending expressions for the entire dialog turn as well as expres-
sions that are displayed as the dialog turn unfolds, phrase by phrase. This
allows the agent's behavior to reect unfolding emotional signals driven by
the multiple appraisals and sources of emotions as noted earlier. In partic-
ular, the starting facial expressions are driven by appraisal of the previous
speaker's dialog. Expressions during the phrase are driven either by appraisal
or the intent to communicate emotion derived by the dialog model. In com-
municative mode, it is the latter while in body and transitional mode it is
the former. Note, the system originally used a weighted average of these two
sources of emotion to select the expression but, in actual practice, there was
insuÆcient expressive facial behavior in the animation resources to support
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such averaged distinctions, a point we return to in section 4.6. Gestures are
created in parallel with the phrase. Again the gestures used are determined
by the focus mode, as well as the dialog annotations, including the referential
structure noted earlier.

PreSpeak
Express.

Emot.
Pause

Speak
Phrase

Gesture/Posture

During Speaking
Expression

</P>Start
Express.

Ending
Face

Phrase

<P>

Additional
Phrases

Fig. 10. High level description of XML structure for one phrase of an agent's dialog
turn.

Each individual behavior, such as the starting emotional expression, may
have a recursive parallel and sequential structure. Figure 11 depicts just one
such expression, a guilt expression, that would be one small component of
a full behavior program for a dialog turn. Note the expression involves two
sequential threads of parallel motion involving eye, brow, mouth and head
movements. The initial segment includes movement of the eyebrows and eyes.
Once these animations are done, there is then a pause followed by �nal move-
ments of head, mouth, eyes and brows. This use of structured and animated
movements of the head even for just one component of the full animation
program grew out of a small empirical study which suggested that expressive
facial behavior was best revealed by changes in expression, including head
movements, as opposed to static expressions.

Finally, note each animation directive has an \identi�er". This is simply
a pointer to a frame or sequence of frames in a vector animation �le for that
body part. The bodies used for Carmen and Gina were composed of separate
parts, including legs, torso (posture), arms, head position, eyes, brows and
mouth. Each of these assets were hand animated by artists and then stored in
multi-frame animation �les. This allowed the animation directives to identify
single frames, say for a �xed arm position, or a sequence of frames for a
particular movement of the arm.

4.6 Remarks

In Carmen's Bright IDEAS, the design of dialog, emotions and expressive
behavior systems was driven by a need to convey deep inner conicts and
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<S>

<P>

(Carmen, brows, <identifier>)

(Carmen, eyes, <identifier>)

</P>

(pause, <ticks>)

<P>

(Carmen,head, <identifier>)

(Carmen,mouth, <identifier>)

(Carmen,eyes, <identifier>)

(Carmen,brows, <identifier>

</P>

</S>

Fig. 11. Facial and head behavior for a guilt expression.

how those conicts play out expressively over time. This lead the design of
the agents along certain paths: how to model ego-identity, coping and the
dynamics of expression. Perhaps the best test of its success in doing so were
the trials with real mothers of pediatric cancer patients.

Carmen was evaluated in an exploratory arm of a larger clinical trial of the
Bright IDEAS technique. The evaluation was very promising for Carmen and
the use of interactive pedagogical drama in health interventions. Details on
the results can be found in [30]. Overall, mothers were very enthusiastic. They
found the story and its presentation in animated form to be very believable as
well as a very e�ective and concrete way to learn Bright IDEAS. At the same
time, one mother noted slowness in the graphics and other mothers wanted
more story content that addressed other issues (such as marital concerns).

For the discussion in this chapter, this reveals a fundamental concern. One
of the key issues that was faced in design of CBI was not having the suÆcient
resources to create the necessary dialog and animation assets to reveal all the
expressive capabilities of the underlying models. Going forward with such ap-
plications will require us to leverage existing character animation frameworks
as opposed to building our own as we did in Carmen. Nevertheless, systems
like CBI could �ll a void in making e�ective health intervention training avail-
able to the larger public. The training task for CBI was a diÆcult one, fraught
with potentially many pitfalls. The fact that it was received so well by the
mothers was remarkable and bodes well for applying IPD to other training
and learning tasks.

5 Mission Rehearsal Exercise

The Mission Rehearsal Exercise (MRE) system [46] brings together ideas from
each of the preceding systems to create a broader and more exible array of
expressive behaviors. The goal of the MRE is to teach leadership skills in



Expressive Behaviors for Virtual Worlds 35

high-stakes social situations. The system places a human learner in command
of a team of virtual humans interacting in an emotionally charged virtual
environment. For example, in our initial scenario, the learner's team has, by
accident, critically injured a young boy and the learner must juggle how to
treat the boy without jeopardizing his mission or the safety of his team. To
accomplish this, the learner must engage in face-to-face dialogue with his team
members, take stock of the situation, give orders, and monitor their execution.
Complicating this are characters that may express intense emotion and o�er
potentially biased or misleading information.

To model such dramatic and interactive scenarios, the MRE combines a
number of elements of the preceding systems. We build on Steve's ability to
exibly interact with a human user, but augment it with the richer social
and emotional behaviors of CBI and Jack and Steve. This has pushed us
towards a tight integration of approaches, in some cases signi�cantly altering
their character, while at other times forcing us to defer key capabilities of the
preceding systems for future research.

Although this chapter focuses on expressive behavior and the cognitive
processes that support this, the MRE combines a variety of capabilities in
service of realistic and natural collaboration with virtual humans including:

� a realistic model of human auditory and visual perception [44]
� a domain-speci�c �nite-state speech recognizer that recognizes thousands

of distinct utterances in noisy environments
� a �nite-state semantic parser that produces (partial) semantic representa-

tions of the information in the text strings returned from speech recogni-
tion

� a dialogue model that explicitly represents aspects of the social context
[49, 32] while supporting multi-party conversations and face-to-face com-
munication in 3D virtual worlds [47]

� a dialogue manager that recognizes dialogue acts from utterances, updates
the dialogue model, and selects new content for the virtual human to say

� a natural language generator that can produce nuanced English expres-
sions, depending on the virtual human's personality and emotional state
as well as the selected content [14]

� an expressive speech synthesizer capable of speaking in di�erent voice
modes depending on factors such as proximity (speaking vs. shouting)
and illocutionary force (command vs. normal speech) [22]

The MRE seeks to advance the state of the art in each of these areas, but
also to explore how best to integrate them into a single agent architecture
[44], incorporating a exible blackboard architecture to facilitate experiments
with the connections between the individual components. We refer the reader
to the above citations for details on these other components and here focus
on our innovations in expressive behavior.

Figure 12 illustrates a scene from the MRE scenario. The learner plays
the role of a lieutenant in the U.S. Army involved in a peacekeeping operation
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in Bosnia. In route to assisting another unit, one of the lieutenant's vehicles
becomes involved in a traÆc accident, critically injuring a young boy. The
boy's mother is understandably distraught and a local crowd begins to gather.
The learner must resolve the situation by interacting through spoken dialogue
with virtual humans in the scene.

Fig. 12. A scene from the MRE scenario.

5.1 Cognition and Emotions

To support such emotionally dramatic situations, virtual humans not only
must produce a range of realistic expressive behaviors, but require the cog-
nitive machinery to recognize which behaviors are appropriate in the course
of an unscripted interaction with a human user. When selecting an expres-
sive behavior, the virtual human's mental processes must take into account
not only the task and dialogue context, as in the Steve system, but also how
features of the social context will inuence emotional appraisal and coping
strategies.

We adopted Steve as a starting point for our integrated model of the
cognition that underlies expressive behavior as, unlike Jack and Steve and
CBI, the system supported exible face-to-face interactions with a human
user. However, Steve's task model had to be extended in a number of ways to
represent the socio-emotional context.

Integrating the �Emile plan-based appraisal model into Steve was relatively
straightforward as both systems used similar task representations. Steve al-
ready possessed a model of task responsibility that supported appraisals of
causal attribution, though Steve's task model had to be extended to represent
probabilities and utilities and the processes that update these values. Steve
also did not explicitly represent threats between task steps, necessary for ap-
praisals of fear or anger, so we incorporated standard threat detection and
resolution schemes.
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One key di�erence between Steve and the Jack and Steve system was that
the former focused on collaborative task execution and did not represent mul-
tiple competing ways to accomplish a task. (Steve would represent multiple
alternative plans, but the current state of the world would always uniquely
identify a \best" plan that all agents would be in agreement with.) We gener-
alized the Steve task representation to encode multiple competing courses of
action (recipes) for accomplishing a task. This allows agents to negotiate over
tasks and express emotions and coping behaviors that may indicate varying
preferences over alternatives [48].

Integrating CBI's coping model motivated further changes and resulted in
a tight integration between appraisal, coping, and task reasoning that closely
follows the cognitive appraisal theories of Richard Lazarus [25], and, in the
end, elevated emotion processing to a central organizing construct for the vir-
tual human's behavior. Recall this theory posits that human behavior is orga-
nized around appraisal and coping. Appraisal generates emotion by assessing
the person-environment relationship and coping is the process of dealing with
emotion, either by acting externally on the world (problem-focused coping), or
by acting internally to change beliefs or attention (emotion-focused coping).
Coping and appraisal interact and unfold over time, supporting the temporal
character of emotion highlighted by CBI: an agent may \feel" distress for an
event (appraisal), which motivates the shifting of blame (coping), which leads
to anger (re-appraisal).

Through integrating CBI's coping model, coping strategies were recast
explicitly into procedures that updated Steve's task representations and rea-
soning processes. For example, a strategy like problem-focused coping might
motivate the task reasoner to re�ne its plans or motivate the agent to propose
a particular course of action to the learner. Emotion-focused strategies like
denial or shifting blame operate on the task representations, inuencing the
assignment of responsibility or altering the probability or utility of task con-
sequences [29]. As many coping responses relate to past actions or decisions,
we found it necessary to extend Steve's task representation to explicitly en-
code a causal history of past events and actions. Thus, appraisal and coping
operate over a uni�ed representation of past, present, and future task-related
information.

Some of the key innovations of CBI and Jack and Steve have not, as of yet,
been integrated into the MRE system, including planning stances and CBI's
emphasis on ego identity. Although the integrated system does allow more ex-
ibility in the plan generation process than the original Steve system, we have
not adopted the full generative planning approach underlying Jack and Steve
that planning stances require. In terms of cognitive appraisal, both CBI and
Lazarus' theories emphasize the importance of ego identity. However, given
�Emile's heavy emphasis on task-related appraisals and domain-independent
appraisal mechanisms, we have not found a suitable general way to repre-
sent the fact that certain threats are more central to an agent's makeup than
others.
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5.2 Physical Behavior

Internally, the virtual humans are continually perceiving the events surround-
ing them, understanding utterances, updating their beliefs, formulating and
revising plans, generating emotional appraisals, and choosing actions. Virtual
humans in the MRE attempt to manifest the rich dynamics of this cognitive
and emotional inner state through each character's external behavior using
the same verbal and nonverbal cues that people use to understand one an-
other. The key challenge is the range of behaviors that must be seamlessly
integrated: each character's body movements must reect its awareness of
events in the virtual world, its physical actions, the myriad of nonverbal sig-
nals that accompany speech during social interactions (e.g., gaze shifts, head
movements, and gestures), and its emotional reactions. Expressive physical
behavior in the MRE agents integrates the task-related nonverbal behaviors
of the Steve system and the coping behaviors of CBI, leveraging the close
integration of task-related and social information maintained by the virtual
human's mental state.

Our use of gaze illustrates this tight integration. Since gaze indicates a
character's focus of attention, it is a key element in any model of outward
behavior, and must be closely synchronized to the character's inner thoughts.
Prior work on gaze in virtual humans has considered either task-related gaze
[9] or social gaze [5] but has not produced an integrated model of the two. Our
gaze model is driven by our cognitive model, which interleaves task-related be-
haviors, social behaviors, and attention capture. Task-related behaviors (e.g.,
checking the status of a goal or monitoring for an expected e�ect or action)
trigger a corresponding gaze shift, as does attention capture (e.g., hearing a
new sound in the environment). Gaze during social interactions is driven by
the dialogue state and the state of the virtual human's own processing, includ-
ing gaze at an interlocutor who is speaking, gaze aversion during utterance
planning (to claim or hold the turn), gaze at an addressee when speaking, and
gaze when expecting someone to speak. This tight integration of gaze behav-
iors to our underlying cognitive model ensures that the outward attention of
the virtual humans is synchronized with their inner thoughts.

Body movements are also critical for conveying emotional changes, in-
cluding facial expressions, gestures, posture, gaze and head movements. In
humans, these behaviors are signals and as such they can be used intention-
ally by an individual to inform or deceive but can also unintentionally reveal
information about the individual's internal emotional state. Thus a person's
behavior may express anger because they feel it or because they want others
to think they feel it or for both reasons. With the exception of CBI, prior
work on emotional expression in virtual humans focused on either the in-
tentional use of emotional expression or revealing the agent's \true" internal
emotional state [33]. Our work attempts to integrate these aspects by tying
expressive behavior to coping behavior, generalizing the mechanism used in
CBI. Emotional changes in the virtual human unfold as a consequence of Soar
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operators updating the task representation. These operators provide a focus
for emotional processes, invoking coping strategies to address the resulting
emotions which in turn leads to expressive behaviors. This focus on operators
both centers emotional expression on the agent's current internal cognitive
processing but also allows coping to alter the relation of the expression to
those internal cognitive processes. Thus, when making amends, our virtual
humans might freely express their true appraisal-based feelings of guilt and
concern, for example through facial expressions, gestures, posture, gaze and
head movements. However, when shifting responsibility, they might suppress
an initial expression of guilt and rather express anger at the character they
are blaming, to reect a more calculated attempt to persuade others.

Finally, a wide range of body movements are typically closely linked to
speech, movements that emphasize, augment and even supplant components
of the spoken linguistic information. Consistent with this close relation, this
nonverbal behavior, which can include hand-arm gestures, head movements
and postural shifts, is typically synchronized in time with the speech. Realizing
this synchronization faces the challenge that we do not have an incremental
model of speech production. Such a model would allow us to tie nonverbal
behaviors to speech production operations much like the gaze and coping
behaviors are tied to cognitive operations. Rather, our approach is to build on
the gesture scheduling approach developed for CBI, which plans the utterance
out and annotates it with nonverbal behavior. The annotated utterance is
then passed to a text-to-speech generation system that schedules both the
verbal and nonverbal behavior, using the BEAT system [8]. This approach
is similar to the work of Cassell et al. [5]. Our work di�ers in the structure
passed to the gesture annotation process, in order to capture the myriad ways
that the nonverbal behavior can relate to the spoken dialog and the internal
state of the virtual human. Speci�cally, while both systems pass the syntactic,
semantic and pragmatic structure of the utterance, we additionally pass the
emotional appraisal and coping information associated with the components
of the utterance. The gesture annotation process uses this information to
annotate the utterance with gestures, head movements, eyebrow lifts and eye
ashes.

Some key aspects of Carmen's Bright IDEAS have not been incorporated
into the current MRE system. CBI made e�ective use of the dramatic impact
of pauses in speech, which can convey emotional turmoil or deliberation. CBI
agents also had a far richer repertoire of expressive behaviors, particularly
variability in motions associated with the eyes, eyelids, and brows. Such ex-
pressivity is not currently possible with the speech and animation systems
used in the MRE system. While the MRE uses more realistic graphical mod-
els than the preceding three systems, they were developed by a third-party
vendor, so we had less creative control over the animation than the other sys-
tems, which were developed in-house. Further the stylized 2D animation used
in CBI supported a greater range of recognizable expressions. The greater
complexity of MRE's natural language modules also limits the range of ex-
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pressive behavior. In contrast to CBI, which used voice actors, MRE utilizes
a fully automated speech generation pipeline, which provides the capability of
dynamically generating a wide range of utterances, but allows far less nuanced
speech, both in terms of emotional dynamics and creative use of pauses.

6 Conclusion

This chapter has shown the evolution of our ideas on expressive behaviors
and their integration in our current virtual humans. Steve's ability to in-
terleave task-related behaviors and face-to-face dialogue in dynamic virtual
worlds serves as the foundation for the virtual humans in our MRE system.
The Jack and Steve system contributed a model of task-oriented emotional
appraisal (�Emile) and a model of socially situated planning. The CBI system
contributed a complementary model of emotional appraisal focusing on social
relationships and ego identity, as well as a model of coping and of the e�ect of
emotions and coping on physical behavior. Our MRE virtual humans integrate
many of the ideas from these three prior systems, while signi�cantly extending
our prior work in some areas, such as our model of coping. The animation and
speech capabilities in these four systems have o�ered di�erent tradeo�s in gen-
erality and expressivity, illustrating the fact that any implemented model of
expressive behavior must be closely integrated with the animation and speech
capabilities available to it; otherwise, it may not be possible to accurately ex-
press the distinctions in that model. In our current work, we are continuing to
push the frontiers of both our model of expressive behavior and its connection
to the latest technologies in animation and speech production.
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