
Interactive Drama Authoring with Plot and Character:
An Intelligent System that Fosters Creativity

Mei Si and Stacy C. Marsella
Information Sciences Institute

University of Southern California
{meisi, marsella}@isi.edu

Mark O. Riedl
School of Interactive Computing

College of Computing
Georgia Institute of Technology

riedl@cc.gatech.edu

Abstract

Computer-based systems for interactive dramas allow the
user to participate actively in the unfolding of a story in a
virtual world. Various approaches have been explored for
facilitating the human author in creating computer-based in-
teractive dramas. Most of these approaches can be catego-
rized as either story-centric or character-centric designs. In
this work, we present a new framework that integrates both
character-centric and story-centric designs to support author-
ing of interactive dramas. This framework encourages the
author to think in different levels of abstraction and different
perspectives when designing interactive dramas. In addition,
it works as a colleague to the author by suggesting ideas and
critiquing the author’s ideas. We explore the use of this new
framework for fostering the author’s creativity in designing
interactive dramas. Preliminary examples of using this new
framework to author an interactive drama are presented, fol-
lowed by discussion and future work.

Introduction
Storytelling is an integral part of the human experience. Sto-
ries are told to exchange information about relevant events
and occurrences, to entertain, and to educate. Dramas are ar-
tifacts that are deliberately created to achieve some desired
effect on an audience. The process of creating dramas is
one that requires a degree of skill, practical experience, and
creativity.

Computer aided interactive drama allows the user to ac-
tively participate in the story, by playing a role or applying
directorial control over the characters. The user’s choices af-
fect the unfolding of the story. The authoring process for in-
teractive dramas is even more complex. Merging interactiv-
ity into narrative results in the need to handle a tremendous
amount of contingencies. Authoring enough contingencies
to create a rich environment for an engaging experience is
often intractable (Riedl and Young 2006). Moreover, it is
hypothesized that this labor intensive process often hurts the
author’s creativity.

Various computer aided authoring frameworks have been
designed for dynamically generating interactive dramas and
for facilitating human author’s creation of interactive dra-
mas. Many of these authoring frameworks adopt approaches

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

inspired by theories of what makes a good story. In Po-
etics, Aristotle argued that character was subsidiary to ac-
tion. A more contemporary view on character and action,
as espoused by Lajos Egri (Egri 1949), suggests that plot
unfolds based on the characters, that characters can essen-
tially “plot their own story”. Correspondingly, story-centric
processes, e.g. (Mateas & Stern 2003; Szilas 2003; Braun
2003; Riedl, Saretto, & Young 2003; Young et al. 2004;
Magerko 2005) for interactive drama focus on the structure
of the overall story in terms of plot arc, and aim at providing
automated approaches for arranging events to happen during
the interaction to form a well-structured story. Character-
centric processes, e.g. (Cavazza, Charles, & Mead 2001;
Louchart & Aylett 2004; Traum et al. 2005; Si, Marsella,
& Pynadath 2005), on the other hand, emphasize the devel-
opment of individually plausible, autonomously motivated
characters under the assumption that coherent narrative and
dramatic effect should ideally emerge from interacting with
these characters.

There are many ways in which a computer system can
support creative activity. In Lubart’s (Lubart 2005) work,
four uses of computer systems are suggested:

1. Computer as Nanny: helps organizing the project and per-
forms routine tasks for the user.

2. Computer as Pen-pal: facilitates collaboration among
multiple users.

3. Computer as Coach: implements approaches to enhance
creativity.

4. Computer as Colleague: contributes to idea generation.
Most of the existing authoring frameworks are not de-

signed with a specific goal of fostering the author’s creativ-
ity. Instead, they automate the generation of the interactive
dramas based on the author’s input, and therefore prevent
the author’s creativity from being hurt by onerous program-
ming.

This paper presents a mixed initiative authoring frame-
work that not only facilitates the author’s design of interac-
tive dramas, but also fosters the author’s creativity. This new
framework uses an original approach that integrates both
story-centric and character-centric processes for interactive
dramas. It allows the author to design interactive dramas
at different levels of abstraction (plot level vs. moment-to-
moment interaction level) and different perspectives (overall

story structure vs. motivated characters). The author re-
ceives feedback from the framework, which takes the form
of explanations for how characters behave in guided sim-
ulations, and explanations for unexpected occurrences. In
addition, the framework also gives creative suggestions on
new actions to be included in the models of the story.

This new framework fosters the author’s creativity by act-
ing both as a Coach and a Colleague to the author. It allows
and encourages the author to think of and design different
aspects of the interactive experience; a common technique
used for successfully designing traditional dramas. More-
over, this new framework stimulates the author’s creativity
by brainstorming with the author, and providing suggestions
and feedbacks to the author’s ideas.

The details of this new framework are provided in this pa-
per. Preliminary examples of human author interacting with
the framework to create an interactive drama are presented,
followed by a discussion of implications for future work in
intelligent creative authoring systems.

Example Domain
The example domain of this work is a Grimms’ fairy tale,
“Little Red Riding Hood”. The story contains four main
characters, Little Red Riding Hood, Granny, the hunter and
the wolf. The story starts as Little Red Riding Hood (Red)
and the wolf meet each other on the outskirt of a wood while
Red is on her way to Granny’s house. The wolf has a mind to
eat Red, but it dares not because there are some wood-cutters
close by. At this point, they can either have a conversation or
choose to walk away. The wolf will have a chance to eat Red
at other locations where nobody is close by. Moreover, if the
wolf hears about Granny from Red, it can even go eat her.
Meanwhile, the hunter is searching the woods for the wolf
to kill it. Once the wolf is killed, people who were eaten by
it can escape.

Overview of the New Framework
When designing interactive dramas, the goal of the human
author is to capture and encode his or her intentions for the
interactive experience. We assume part of this intention is
that the user’s experience (a) constitutes a well-formed, story
and (b) conforms to particular aesthetic, thematic, and/or
pedagogical properties. For example, the author’s intention
may be that the user experiences a narrative that is remi-
niscent of the classic Little Red Riding Hood story (but not
identical because the user has the ability to express his/her
agency and explore alternative potential story paths) and it-
self makes up a coherent story. To support an authoring pro-
cess with considerations of both character plausibility and
well-formed story structure, this new framework integrates
a partial order planner with the Thespian framework, which
models virtual characters as autonomous agents, for interac-
tive drama.

Partial order planners have often been used in story-
centric processes for interactive drama creation because they
can automatically generate sequences of the characters’ ac-
tions - plans to reach story goals (e.g. Red is eaten by the
wolf and then the wolf is killed by the hunter) and at the

Figure 1: Overview of the New Framework

same time ensure plausible causal relationship among events
in the plan. However, such plans do not provide the author
insight about the characters’ motivations, and therefore can
not avoid creating inconsistent character motivations during
the interaction.

Thespian (Si, Marsella, & Pynadath 2005) is a multi-agent
system for authoring and simulating interactive dramas.
It adopts a character-centric approach, and uses decision-
theoretic goal-driven agents to control each character, with
the character’s motivations encoded as agent goals with rel-
ative weights. Thespian provides an automated fitting pro-
cedure for authoring. This procedure can tune virtual char-
acters’ motivations to the story paths (sequences of the char-
acters’ actions) designed by the author. The resulting virtual
characters will recreate the story paths when executed and
the user’s actions are the same as specified in the story paths.
When the user deviates from the story paths, the characters
will respond to the user using the motivations “learned” from
the story path fitting process. However, each story path can
only provide limited information about the characters’ mo-
tivations. As a result, when the user’s behavior dramatically
differs from all the story paths designed by the author, the
emergent interaction may not meet the author’s expectations.
To design an interactive drama, the author may need to de-
sign many story paths to prepare for different types of user
interactions.

In this new framework, we integrate a partial order plan-
ner with the Thespian framework by using the planner to
partially automate the story path designing process. The au-
thor works with the planner to construct plot outlines - rep-
resented as plans - and the plans are then used to provide
guidelines for configuring Thespian agents, which are later
used for moment-to-moment interactions with the users. To
allow the author to design interactive dramas at different ab-
straction levels, this new framework provides a special inte-
gration procedure that can fit Thespian agents to plot level
plans, which only contain major events (plot points) of the
story. This procedure first fills in interactions between plot
points, and then tunes Thespian agents’ motivations to the
final story path. During this process, feedback in terms of
why the characters can or can not act according to the plot
level plan are generated, including creative ideas on new ac-

tions to be included into the story.
Figure 1 lays out the overall structure of this new frame-

work. This mixed initiative authoring framework lets the au-
thor interact with both the planner and the Thespian agents
to create interactive dramas. The authoring process starts
with the author using the planner to produce one or more
plot level skeletons (plans) of the story. The author does so
by providing specifications for what they would like to see in
the plot. For example, the author might specify that Granny
is eaten by the wolf. The planner responds by generating a
plan such as: Red meets the wolf, Red tells the wolf about
Granny and then the wolf eats Granny. It is important to
note that this plan is merely a suggested set of plot points
outlining some, but not all, of the events. The Thespian
agents learn their motivations from the plans and give the
author feedback, including the moment-to-moment interac-
tions that need to be inserted between two plot points, e.g.
Red and the wolf greet each other before Red tells the wolf
about Granny, the motivations (goal weights) for the charac-
ters to behave following the plans, or new actions that need
to be added to the models of the story, e.g. an action that can
change Red’s belief about the wolf from a bad character to
a good character. Based on this feedback, the author may
make modifications to the planner’s model or Thespian’s
model of the story, and then generate new plans to fit the
Thespian agents. The author can also directly interact with
Thespian agents by specifying story paths to be included in
fitting, in addition to those generated by the planner.

Implementation
In this section, we introduce the Thespian framework, and
its integration with a partial order planner. A standard POP
planner is assumed to be used in this framework, so no detail
about the planner is included in this paper.

Thespian
Thespian is a multi-agent system for authoring and con-
trolling virtual characters in an interactive drama. It is
built upon PsychSim (Marsella, Pynadath, & Read 2004), a
multi-agent system for social simulation based on Partially
Observable Markov Decision Problems (POMDPs) (Small-
wood & Sondik 1973). This section describes components
in Thespian that are relevant to this new framework.

Thespian Agent Thespian’s basic architecture uses
POMDP based agents to control each character, with the
character’s personality and motivations encoded as agent
goals. Each Thespian agent consists of five components:
its state, action dynamics, goals, policies, and beliefs about
self and others.

An agent’s state is defined by a set of state features, such
as its name location. The agent’s action dynamics define
how its state is affected by events (actions of characters) hap-
pen in the story. An agent’s goals are expressed as a reward
function over the various state features the agent seeks to
maximize or minimize. For example, the wolf character may
have goals of satisfying its hunger and keeping itself alive,
with the latter one having higher importance. Agents have
recursive beliefs about self and others, e.g. my belief about

your belief about me. This forms a model of theory of mind.
This model enables Thespian agents to reason about other
characters’ reactions when planning on their own behaviors.
Currently, all agents use a bounded lookahead policy. Fol-
lowing this policy, when an agent selects its next action it
projects limited steps into the future to evaluate the effect
of each option. The agent considers not just the immediate
effect of an action, but also the expected responses of other
characters and, in turn, the effects of those responses, and its
reaction to those responses and so on. The agent evaluates
the overall effect with respect to its goals and then chooses
the action that has the highest expected value.

Fitting Procedure and Authoring Thespian’s fitting pro-
cedure enables an author to define characters’ roles in a
story by creating alternative desired story paths (sequences
of characters’ actions) of the story. It judges if consistent
character motivations can be inferred from them. If the an-
swer is yes, it tunes the characters’ motivations to the story
paths.

Algorithm 1 Fit Sequence(S0, charName, seq,
fixedGoals)

1: S0 : initial state set by author at initialization
2: charName : character whose role is to be fitted
3: seq : story path
4: fixedGoals : goals whose weights should not be

changed in this process
5: C ← [] : constraint on goal weights
6: S ← S0

7: for each action A in seq do
8: if A.actor == charName then
9: # adding constraints

10: for each action B in charName.getOptions() do
11: newC ← Reward(A,S) ≥ Reward(B,S)
12: C.Append(newC)
13: # update state
14: S ← S × Dynamics(A)
15: return GoalWeights(charName, C, fixedGoals)
16:
17: GoalWeights(charName, constraints, fixedGoals)

returns if charName’s goal weights can be adjusted so
that all the constraints are satisfied

In fitting, Thespian proceeds iteratively for each story
path, fitting the goals of one agent at a time and holding
all other agents’ goals as fixed. Specifically, for each story
path and each character, Algorithm 1 is invoked to fit that
character so that it performs its actions in the story path.
The algorithm proceeds down the sequence of actions in the
story path (Step 7). If the current action is performed by the
agent that is currently being fitted (Step 8), the fitting process
simulates the agent’s lookahead process, and automatically
calculates constraints on goal weights to ensure the desired
action receives highest utility among all candidate actions
(Step 11). By the end, the constraints resulting from fitting
each path can be merged into one common constraint set.
By default, in fitting, the weights of all of the agent’s goals
can be adjusted. Typically, there are multiple candidate goal

weight values that are consistent with the story paths defined
by the author. Thespian will pick the goal weights as close
to the original ones as possible. When fitting results in no
candidate goal weight values, it is not possible for the char-
acter to be motivated to behave following all the story paths
and the author should exclude or modify some of the story
paths.

Suggest Changes to Character’s Beliefs “Suggest” is a
function provided by PsychSim. Similar to fitting, it can
make an agent perform an action that was not chosen previ-
ously. “Suggest” achieves this functionality almost the op-
posite way as fitting. In fitting, the relative goal weights of
the agents are adjusted, and the agent’s beliefs and state is
untouched. The “suggest” function suggests changes to the
agent’s beliefs. These changes can lead the agent to choose
the author’s desired action without affecting the agent’s cur-
rent goals. For example, we want Red to perform the ac-
tion of talking about Granny without being asked. Using
fitting, the result may be that Red’s goal of being talkative
has an extremely high weight. On the other hand, the “sug-
gest” function will suggest a change to Red’s beliefs that
Red thinks she is asked for the question. Finally, unlike fit-
ting the “suggest” function currently cannot ensure that the
agent performs a sequence of actions as specified. It only
works with the agent’s immediate next action.

Use Plot Level Plans to Train Thespian Agents
Using a planner, the author sets some goals for the planner
to achieve - a goal can be a final state or intermediary states
- and the planner automatically searches the action spaces
of virtual characters in the story and constructs a plan (story
path) to reach the final state. For example, in the Red Riding
Hood domain, given the author’s goal of the story as both
Red and Granny being eaten by the wolf, the following plan
may be generated:

1. Red and the wolf meet on the road.

2. Wolf: where are you going?

3. Red: I am going to Granny’s house to give her this cake.

4. ...

In this framework, we replace the hand authored story
paths in Thespian’s authoring procedure with story paths
generated by a planner, and use plans to provide guidance
for virtual characters’ behaviors. It is straightforward to tune
Thespian agents’ motivations to plans generated at the same
detail level as that used by Thespian’s model; the fitting pro-
cedure can be directly called. However, Thespian agents
may also need to be trained to behave according to plot level
plans, because this new framework is designed to allow and
encourage the author to think of interactive dramas at dif-
ferent abstraction levels. To train Thespian agents in this
case, each plot level plan is first expanded into a full story
path. The Thespian agents are then fitted to these story paths
and any additional ones designed by the author. This section
presents the algorithms for expanding a plot level plan into
a full story path.

Model Story at Different Abstraction levels To enable
the integration of the plot level model of the story and de-
tailed model of the story, the two models have to be compati-
ble. Currently in this framework we require actions modeled
in the planner and in Thespian share the same names and ef-
fects (action dynamics). When modeling a story at a more
abstract level, the planner utilizes a smaller set of actions
that does not include small talk or moment-to-moment inter-
actions - only major events are kept. For example, the plan-
ner may model the Red Riding Hood story as only consist-
ing of seven major events: Red tells the wolf where Granny
lives, the wolf eats Granny, the wolf eats Red, the hunter
kills the wolf, Red and Granny escape from the wolf and
Red gives the cake to Granny. On the other hand, Thes-
pian will have a detailed model that not only includes these
events, but also includes the characters’ conversations, and
other actions such as moving around.

Identify Gaps in a Plan When a plan is passed to Thes-
pian, no special tag is needed to indicate whether it is a plot
level plan. Instead, the system uses automated procedures to
find out if there are moment-to-moment interactions missing
from the plan. In other words, whether there is a “gap” in
the plan. If the answer is yes, the next step is to determine
what actions should be inserted into the plan and where they
should be inserted. This information is returned to the author
as feedback. These steps may need to be repeated multiple
times until all the gaps in the plan are filled. Algorithm 2 is
used for locating the first gap in a plan.

Algorithm 2 Identify Gap(plan)
1: if Fit(plan[1:len(plan)]) then
2: return -1
3: else
4: for i=1:len(plan) do
5: if Fit(plan[1:i]) then
6: break
7: return i

Algorithm 3 Fit(seq,fixedgoals=[])
1: for each character in story do
2: if Fit Sequence(S0, character,seq,fixedgoals) ==

false then
3: return false
4: return true

Algorithm 2 first tries to treat the entire plan as a regular
story path. If virtual characters can be successfully fitted to
the plan, it is suggested that the planner models the story
at the same level as Thespian, and no further actions need
to be taken. Otherwise, this algorithm progresses stepwise
to find the first gap in the plan. Starting with i equals to 1,
it fits the virtual characters to the first i actions in the plan.
If it succeeds, it fits the virtual characters to the first i + 1
actions in the plan. When fitting fails, we know that there
is a gap between the ith action and the i + 1th action in
the plan, and additional actions need to be inserted either

between these two actions or before the ith action. The Fit
function used in Algorithm 2 is defined in Algorithm 3. It
fits all the characters in the story to a sequence of actions,
and only returns true if all the characters can be successfully
fitted.
Fill Gap with Actions Existing in the Model When a gap
occurs in the plan and needs to be filled with moment-to-
moment interactions, usually the solution is not limited to a
unique one. For example, the plan may specify a plot level
description of the story as: Red meets the wolf in the wood,
and then Red tells the wolf that she is on her way to Granny’s
house ... When fitting Thespian agents to this plot level plan,
a gap is found between the two actions; because Red and the
wolf are strangers when they met, Red will not tell the wolf
so much information about herself. The simplest way to fill
the gap is to add small talk between Red and the wolf. The
small talk will gradually build rapport between the two char-
acters. Alternatively, more complex stories can be made,
such as a wood-cutter happens to pass by and he convinces
Red the wolf is a good friend. Different ways of filling the
gap shapes the resulting story path and the Thespian agents,
which will be used to interact with the user, differently.

Upon the identification of a gap, the system automatically
divides virtual characters’ actions into three categories based
on how much the action can potentially change the story
when used for filling the gap. The first category contains
small talk actions that involve only the characters related to
the gap. The characters related to the gap are those who
act right before or after the gap, e.g. Red and the wolf in
the previous example. The second category contains these
characters’ other actions, such as talking to other characters
and moving around. The third category contains other char-
acters’ actions, such as the wood-cutter’s actions. Adding
small talk actions between related characters affect the story
least, because small talk is most likely to be omitted when
modeling a story at an abstract level; and it is assumed
that unrelated characters’ actions can potentially change the
story most dramatically. The author is given freedom to
specify which categories of actions to use for filling the gap,
and their priorities. In addition to what actions can be in-
serted, the location of the inserted interactions, e.g. within
the gap or right before the gap vs. several steps before the
gap, and the length of the inserted interactions also affect the
difference between the resulting story path and the original
plot level plan. Algorithm 4 & 5 give the pseudo code for
filling gaps based on the parameters set by the author.

As shown in Algorithm 4, the plot level plan is first cut
into three parts. Path0 contains the sequence of actions be-
fore the gap. Islands contains the two actions around the
gap and the n actions that immediately precede the gap. The
basic idea is to replace islands with detailed moment-to-
moment interactions; all the actions in islands need to be
included in the final story path with their original order kept.
This way, moment-to-moment interactions are inserted be-
tween the events in islands. Finally, the third part of the
plan is the sequence of actions that happen after the gap.
Currently they do not affect the gap filling process.

The author can indicate the sets of actions to be

Algorithm 4 Fill Gap(plan, i, allActionSets, n, maxL)
1: i: location of the gap in plan
2: allActionSets: sets of actions to be used. The sets are

ordered in descending priorities.
3: n: the starting location for filling
4: maxL: maximum length of interaction allowed for fill-

ing the gap
5:
6: res← false
7: path0← plan[0, i− n]
8: islands← plan[i− n, i + 2]
9: actionSet← allActionSets[0]

10:
11: res← RI (path0, islands, actionSet,maxL)
12: if res == false then
13: for newActions in allActionSets[1 :] do
14: actionSet← actionSet + newActions
15: res← RI (path0, islands, actionSet,maxL)
16: if res == true then
17: break
18: return res

Algorithm 5 RI(path0, islands, actionSet,maxL)
1: res← false
2: for action in actionSet do
3: path← copy(path0)
4: path← path + action
5: if checkOrder(path, islands) then
6: if checkComplete(path, islands) then
7: res← Fit (path)
8: if res == true then
9: return true

10: else
11: maxL←maxL -1
12: if maxLength ≥ 0 then
13: res← RI (path, islands, actionSet,maxL)
14: if res == true then
15: return res
16: return res
17:
18: checkOrder(path, islands): returns if the order of ac-

tions in islands is retained in path.
19: checkComplete(path, islands): returns if each action

in islands is included in path

considered for filling the gap with priorities using the
allActionSets parameter. Initially only the set with high-
est priority is used (line 9 in Algorithm 4). If it fails to fill
the gap, the set of actions with next highest priority will be
added for consideration (line 14-15 in Algorithm 4).

Algorithm 5 illustrates how actions are taken from the al-
lowed action sets (actionSets) and combined together to
replace islands in the plan. As actions are appended one by
one to the end of Path0 (line 4 in Algorithm 5), the func-
tion keeps on checking if the story path satisfies the basic
requirements for replacement - all actions in islands are in-
cluded in the story path with their original order (line 5-6
in Algorithm 5). If the story path passes this checking, the
function will try to fit virtual characters to the story path
(line 7 in Algorithm 5). If fitting succeeds, the gap is suc-
cessfully filled with moment-to-moment interactions. In the
worst case, this recursive function will try all the combina-
tions of actions from actionSets where the length of the
sequence is equal to or less than maxL.

Fill Gap by Suggesting New Actions to be Created It
is possible that Algorithm 4 fails to fill the gap using the
parameters specified by the author. In this case, just using
actions that already exist in Thespian’s model is not enough
to recreate the story laid out by the planner. This is not bad
news for the author though. The “suggest” function can now
be used to identify necessary belief changes to enable the
Thespian agents to follow the plot level plan. This process
often generates many interesting and creative ideas. A few
examples are given in the next section.

Example
In this section, two examples of using this new framework
to author the Red Riding Hood story are provided. We omit
demonstrating the step of generating plot level plans, since
it is a standard procedure to use a POP planner to gener-
ate such plans. Both examples start with the plot level plan
and demonstrate how the system interacts with the author to
configure Thespian agents.

Example 1
This example demonstrates how small talk actions can be
used to turn a plot level plan into a complete story path.

In this example, the planner produces the following plan
and hands it to Thespian.

1. the wolf comes to Red (on the road)

2. Wolf: where are you going?

3. Red: I am going to Granny’s house to give her this cake.

4. ...

The system applied Algorithm 2 and found a gap between
the wolf’s enquiry and Red’s reply. Next, the system tried to
fill the gap using only small talk actions and succeed. The
following story path was generated and returned to the au-
thor as feedback. The Thespian agents’ motivations were
also turned to this story path.

1. the wolf comes to Red (on the road)

2. Wolf: hello!

3. Red: hello!

4. Wolf: how are you?

5. Red: I am doing good.

6. Wolf: where are you going?

7. Red: I am going to Granny’s house to give her this cake.

If the author approves the story path is reasonable, the
system will proceed to identify the next gap in the plan. Oth-
erwise, the author can always ask the system for more solu-
tions, design new story paths, or even change the planner’s
model or Thespian’s model of the story.

Example 2
This example demonstrates how belief changes in characters
are suggested for linking plot points in the plan; and how
these belief changes can be tuned into creative ideas for new
actions in the story.

The plot level plan indicates that the following scenario
should happen after the wolf eats Granny in the cottage.

1. Red comes to the door.

2. Red enters the cottage.

3. the wolf eats Red.

The system applied Algorithm 2 and found there is a gap
between “Red enters the cottage” and the previous step if
Red knows the wolf is inside. The system then tried to fill the
gap using all the actions that exist in Thespian’s model and
found only one solution: the wolf leaves the cottage before
Red enters. However, the author disapproves this solution
because they foresee that it will make the later action - the
wolf eats Red (in the cottage) - impossible to happen. Next,
the system called the “suggest” function, which returns the
following results:

• Red believes that it is Granny who is inside

• believes that the wolf is somewhere else

• Red believe that the wolf is full

• Red believes that the wolf thinks she is dead (the logic
behind is that the wolf will not eat a dead person)

Each of these belief changes can make Red enter the cot-
tage. The author needs to design new actions that can reach
any of these effects. The system’s suggestions ideally spur
the author’s creativity. In our case, we designed several new
actions, such as “the wolf disguises as Granny”, “the wolf
pretends he is leaving” and “the wolf eats food in Granny’s
kitchen”. Following is one possible final story path the sys-
tem generated after adding all these new actions to Thes-
pian’s model of the story:

1. the wolf disguises as Granny.

2. Red comes to the door.

3. Red enters the cottage.

4. the wolf eats Red.

Discussion and Future Work
In this paper, we present a new framework that integrates
both story-centric and character-centric designs to facilitate
authoring interactive dramas. With this new framework, the
author starts by using a planner to sketch a plot level plan
of the story. The system then works with the author to ex-
pand it into a full story path, as shown in the examples. The
system first tries to fill in moment-to-moment interactions
between plot points. If this is not feasible or the author does
not like the suggested solutions, the system will propose new
actions to be modeled in the story. The author needs to re-
spond by inventing some of the actions or changing the de-
sign (the plot level plan) of the story. There may be several
rounds of interactions between the author and the system.
Finally, Thespian agents “learn” their motivations from the
final story path and any other paths designed previously by
the author or the system, and interact with the users.

This framework is designed to foster the author’s creativ-
ity in two ways. First, it acts as a coach to the author. It en-
courages the author to think about the story at different lev-
els of abstraction (plot level vs. moment-to-moment interac-
tion level) and different perspectives (overall story structure
vs. motivated characters). Secondly, this new framework
also works as a colleague and designs the story together with
the author. It turns a skeleton of the story designed by the
author into a story path with full details, gives feedback to
the author’s designs, and suggests new character actions to
be included in the model of the story.

We are currently planning on future work in two direc-
tions. One direction is to perform formal evaluations for
this framework to compare the authors’ subjective experi-
ence and the actual qualities of the interactive drama when
using our framework to other authoring approaches, e.g. us-
ing a planner alone. The knowledge we gain in these studies
will give us a better understanding of people’s cognitive pro-
cess in creative works, and help us to refine the framework
in the future.

We will also improve the algorithms used for integrating
a partial order planner with the Thespian framework. Cur-
rently, we treat each gap in the plan independently. When
filling a later gap, we assume all the gaps that happen earlier
have already been filled and a normal story path exists be-
fore the gap. However, when a plan contains multiple gaps,
certain solutions to an earlier gap may make the filling of a
later gap infeasible. Similarly, in a larger scale where mul-
tiple plot level plans are provided, solutions for gaps in one
plan can affect the feasibility of solutions for gaps in another
plan. We will address this problem by developing a heuris-
tic for updating the priorities of solutions for filling each gap
based on their influences on successfully filling other gaps.

References
Braun, N. 2003. Storytelling in collaborative augmented
reality environments. In Proceedings of the 11th Interna-
tional Conference in Central Europe on Computer Graph-
ics, Visualization and Computer Vision.
Cavazza, M.; Charles, F.; and Mead, S. J. 2001. Agents’
interaction in virtual storytelling. In Proceedings of the

International WorkShop on Intelligent Virtual Agents, 156–
170.
Egri, L. 1949. The Art of Dramatic Writing. New York:
Simon & Schuster.
Louchart, S., and Aylett, R. 2004. The emergent narra-
tive theoretical investigation. In the 2004 Conference on
Narrative and Interactive Learning Environments.
Lubart, T. 2005. How can computers be partners in the
creative process: Classification and commentary. Interna-
tional Journal of Human-Computer Studies 63(The Special
Issue).
Magerko, B. 2005. Story representation and interactive
drama. In Artificial Intelligence and Interactive Digital En-
tertainment (AIIDE).
Marsella, S. C.; Pynadath, D. V.; and Read, S. J. 2004. Psy-
chSim: Agent-based modeling of social interactions and
influence. In Proceedings of the International Conference
on Cognitive Modeling, 243–248.
Mateas, M., and Stern, A. 2003. Integrating plot, character
and natural language processing in the interactive drama
Façade. In the International Conference on Technologies
for Interactive Digital Storytelling and Entertainment.
Riedl, M. O.; Saretto, C. J.; and Young, R. M. 2003. Man-
aging interaction between users and agents in a multi-agent
storytelling environment. In AAMAS, 741–748.
Si, M.; Marsella, S. C.; and Pynadath, D. V. 2005. Thes-
pian: An architecture for interactive pedagogical drama. In
AIED.
Smallwood, R. D., and Sondik, E. J. 1973. The optimal
control of partially observable Markov processes over a fi-
nite horizon. Operations Research 21:1071–1088.
Szilas, N. 2003. IDtension: a narrative engine for inter-
active drama. In the 1st International Conference on Tech-
nologies for Interactive Digital Storytelling and Entertain-
ment.
Traum, D. R.; Swartout, W.; Marsella, S. C.; and Gratch, J.
2005. Fight, flight, or negotiate: Believable strategies for
conversing under crisis. In IVA.
Young, R. M.; Riedl, M. O.; Branly, M.; Jhala, A. H.; Mar-
tin, R. J.; and Saretto, C. J. 2004. An architecture for
integrating plan-based behavior generation with interactive
game environments. In Journal of Game Development.

