
Directorial Control in a Decision-Theoretic
Framework for Interactive Narrative

Mei Si, Stacy C. Marsella, and David V. Pynadath

Institute for Creative Technologies
University of Southern California

Marina del Rey, CA 90292
meisi@ict.usc.edu, marsella@ict.usc.edu, pynadath@ict.usc.edu

Abstract. Computer aided interactive narrative has received increasing
attention in recent years. Automated directorial control that manages the
development of the story in the face of user interaction is an important
aspect of interactive narrative design. Most existing approaches lack an
explicit model of the user. This limits the approaches’ ability of pre-
dicting the user’s experience, and hence undermines the effectiveness of
the approaches. Thespian is a multi-agent framework for authoring and
simulating interactive narratives with explicit models of the user. This
work extends Thespian with the ability to provide proactive directorial
control using the user model. In this paper, we present the algorithms in
detail, followed by examples.

1 Introduction

With the rapid development of computer technology, a new form of media – in-
teractive narrative has received increasing attention in recent years. Interactive
narrative allows the user to play a role in a story and interact with other char-
acters controlled by the system. It has been widely applied for both pedagogical
and entertainment purposes [1–10].

The support of interactivity distinguishes interactive narrative from other
narrative forms. In traditional narratives, the relation of the audience (or reader)
to the narrative is always passive. By allowing the user to interact, interactive
narrative provides a potentially more engaging experience. Moreover, because
different choices of the user can result in different stories, the author can tailor
the experience for individual users.

On the other hand, user interactivity introduces tremendous challenges to the
design process. As the author cedes partial control of the story to the user, it is
much harder to control the development of the story for creating the author’s de-
sired effects [11]. For example, in non-interactive narratives, the dramatic effects
are created by imposing conflicts and tensions on the characters and resolving
them over the course of the story. However, the user in an interactive narrative
has control over their character and may act to avoid such conflict and tension.

To control the development of the story in the face of user interaction, auto-
mated directorial control (drama management) is often applied. It continuously
adjusts the story, so that the story’s development is both coherent and leads to
the author’s desired effects.

Various approaches for directorial control have been proposed. In search-
based approaches, the drama manager operates over a set of plot points with
pre- and postconditions [12, 13, 4, 14]. Based on an author-specified evaluation
function and in reaction to the user’s actions, the drama manager reconfigures
the story world to achieve best quality in the story. In contrast, in Mimesis the
system may prevent the user’s action from being effective [5]. When the user’s
action deviates from the pre-computed story plan, the system either replans or
makes the user’s action having no effect on story development. Similarly, in IDA
[7], when there is a problem with the flow of the story, the director agent tries to
get the story back on track. Façade [10] utilizes a beat-based drama management
system, where beat is the smallest unit of a story. Based on a desired global plot
arc, the drama manager chooses the next beat that is suitable to the context
and whose dramatic value best matches the arc.

Most existing approaches do not model the user explicitly (IDA [7] is a no-
table exception.) The lack of a user model restricts the effectiveness of their
directorial control in several ways. In existing works, directorial controls are of-
ten applied based on rules predefined by the author for a “standard user,” and
therefore cannot be adaptive to individuals who may react to the events dif-
ferently. Further, the coherence of narrative, which requires the events in the
story to be meaningfully connected in both temporal and causal ways [15], is
crucial for ensuring that people can understand their experience [16, 17]. A key
aspect of creating coherent narratives is that the characters’ behaviors must be
interpretable to the user. In interactive narratives, it is hard to avoid generating
unnatural characters’ behaviors when interacting with the user without a model
of the user’s beliefs and experiences. In addition, user modeling opens the possi-
bility of simulating the user as a means to test the interactive narrative system
[18].

Thespian [19, 3] is a multi-agent framework for interactive narratives. Thes-
pian models each character in the story as a decision-theoretic goal-driven agent,
with the character’s personality/motivations encoded as the agent’s goals. The
user is also modeled using an agent, based on the character which the user takes
the role of [18]. In modeling the user, not only the goals of the user’s character
are considered, but also the goals associated with game play, e.g. exploring the
environment (see [18] for details.) This model allows other agents to form mental
models about the user the same way as about other characters and the system
to reason about the user’s beliefs and experience.

Thespian facilitates the user’s understanding of their experience in two ways.
First, the ability of goal-based agents to decide their actions based on both the
status of the interaction and their goals makes Thespian agents react to the
user and behave with consistent motivations. Secondly, Thespian agents possess
a “Theory of Mind” [19] and can model emotions [20] and social normative
behaviors [21]. The Theory of Mind capacity allows the agents to reason about
others’ beliefs, goals and policies when deciding their own actions. Along with
the modeling of emotions and social normative behaviors, these capabilities make
the agents’ behavior seem more socially aware and life-like.

This work extends Thespian to provide proactive directorial control. A di-
rector agent is designed to monitor the progress of the story, predict its future
development and adjust the virtual characters’ behaviors and beliefs if necessary
to prevent violations to directorial goals. The evaluation of the achievements of
directorial goals is tied to the model of the user. In addition, the adjustments to
the virtual characters do not break their appearance of acting with consistent
motivations. We present the algorithms in detail, followed by examples.

2 Example Domain

In this paper, the “Little Red Riding Hood” story is used to demonstrate our
approach for directorial control. The user plays the role of the wolf. The story
starts as Little Red Riding Hood (Red) and the wolf meet each other on the
outskirt of a wood while Red is on her way to Granny’s house. The wolf has a
mind to eat Red, but dares not because there are some wood-cutters close by. The
wolf, however, will eat Red at other locations where nobody is around. Moreover,
if the wolf hears about Granny from Red, it will even go eat her. Meanwhile, the
hunter is searching the wood for the wolf. Once the wolf is killed, people who
were eaten by it can escape.

3 Thespian’s Current Architecture

We developed Thespian as a multi-agent framework for authoring and simulat-
ing interactive narratives. Thespian is built upon PsychSim [22], a multi-agent
system for social simulation based on Partially Observable Markov Decision
Problems (POMDPs) [23].

3.1 Thespian Agent

Thespian’s basic architecture uses decision-theoretic goal-based agents to control
each character in the story, with the character’s personality/motivations encoded
as the agent’s goals. Each agent can have multiple and potentially conflicting
goals with different relative importance (weight). For example, the wolf can be
modeled as having the goals of not starving itself and also keeping itself alive,
with the latter being ten times more important. An agent’s state keeps track
of the agent’s physical and social status in the story. State is defined by a set
of state features, such as degree of hunger, whether being alive, and degree of
affinity with another character. The values of state features can be changed
by both the agent’s own actions, e.g. eat, and other characters’ actions, e.g.
being killed. Thespian agents have beliefs (subjective view) about itself and
others, which forms a “Theory of Mind”. An agents’ beliefs can also include
other agents’ subjective views of the world, a form of recursive agent modeling
[24]. For example, the wolf can have beliefs about Red’s beliefs about the wolf’s
goals. Currently, for decision-making all agents use a bounded lookahead policy.
They project limited steps into the future to evaluate the effect of each available
action, and choose the one with the highest overall expected utility (the sum
of utilities at each future step). Because Thespian agents have a “Theory of
Mind”, it considers other agents’ responses, and in turn its own responses when
evaluating the utility of an action option.

3.2 Fitting Characters’ Motivations

Thespian’s fitting procedure [25, 19] allows the author or the director agent (see
Section 4 for details) to configure the goals of an agent using linear story paths
(sequence of characters’ actions). The fitting procedure can tune the agent’s goal
weights according to the agent’s role in the story paths, so that the agent’s au-
tonomous behaviors follow the story paths when the user’s behavior also follows
the paths. When the user deviates from the paths, the agent will use the same
goals weights “learned” from the paths to motivate its actions.

The fitting procedure automatically extracts constraints on the agent’s goal
weights from the story paths and determines whether consistent goal preferences
can be inferred, i.e. whether the same goals preferences can drive the agent to act
as specified in the story paths. When fitting fails, it is impossible for a character
with consistent motivations to follow all the story paths. The author or the
director agent will need to modify either the paths or the design of the agent.

3.3 Suggest Changes to Character’s Beliefs

Similar to fitting, the “Suggest” procedure can adjust an agent’s configuration so
that the agent prefers the action desired by the author or the director agent over
other choices. “Suggest” achieves this functionality in the opposite way to fitting.
In fitting, the relative goal weights of the agents are adjusted, and the agent’s
beliefs and state are untouched. The “suggest” procedure suggests changes to
the agent’s beliefs without affecting its goals. For example, to make the wolf not
eat Granny, fitting may result in the wolf having a very low goal weight of not
starving itself, and the “suggest” procedure may return a suggestion that the
wolf should believe it is not hungry.

4 Directorial Control

Thespian utilizes a specialized agent – a director agent – to realize directo-
rial control. Different from other agents, the director agent is not mapped to
an on-screen character. The director agent also has accurate beliefs about all
other agents including their beliefs about each other. In contrast, for modeling
narratives it is often necessary for characters to have incorrect beliefs about
each other. The function of the director agent is to monitor the progress of the
story and adjust the virtual characters’ behaviors if needed to achieve directo-
rial goals. When the director agent is functioning, it takes over other agents’
decision-making processes, decides the best movements for the story and causes
other agents to perform the corresponding actions.

The director agent has a model of the user, which assums that the user iden-
tifies with the character, and therefore adopts the character’s goals to a certain
degree. Directorial control is performed based on the director agent’s expecta-
tions about the user’s experience and choices. Of course, the user can always act
unexpectedly to the director agent, but this does not affect the director agent’s
workflow (see Section 4.3 for details.)

4.1 Design Challenge and Approach

Thespian agents are goal-based agents. Their behaviors are decided by their be-
liefs and goals. Adjustments to the agents’ behaviors often require adjustments
to their beliefs and goals. Though the characters’ belief changes are not directly
visible, improper belief changes may result in the characters having sudden and
unnatural behaviors, and may lead the user to interpret the characters as incon-
sistent. Therefore, the basic challenge for directorial control in a system that uses
autonomous characters is how to ensure that the virtual characters exhibit con-
sistent motivations throughout the story while modifying their beliefs and goals.
Further, the characters’ motivations should be consistent with the author’s por-
trayals of the characters in the story paths used for configuring (fitting) the
agents.

To address this challenge, the basic assumption is that the user will not have
a precise mental model about the characters because the user’s observations in
the story will not support such precision. Typically a range of configurations of
a character can be used to explain its behaviors. Therefore, as long as the ad-
justments to the character’s goals and beliefs fall within the space of the user’s
mental model about the character, the user will not experience inconsistency
in the character. The boundary of the range, i.e. how precise the user’s mental
model about the character is, is decided by the user’s prior interactions with
the character and the user’s prior beliefs about the character. In this work, we
use fitting-based procedures to decide whether a belief change is reasonable to
happen for a character, and whether an action is consistent with a character’s
motivations exhibited in its prior interactions with the user, and with the au-
thor’s design of the character.

4.2 Directorial Goals

Directorial goals are used by the author to indicate how they want the story to
progress, such as when an action should happen, or a character should change
its belief about another character. Thespian currently supports directorial goals
expressed as a combination of temporal and partial order constraints on the
characters’ including the user’s actions and beliefs. Table 1 lists the syntax for
specifying directorial goals. Six different types of goals are supported. The events
in the syntax can be either an action, e.g. “wolf-eat-Granny” or a character’s
belief, e.g. “wolf: wolf’s hunger = 0 (the wolf believes that the value of the wolf’s
state feature hunger is 0) .” The author can combine any number of goals defined
using this syntax. Table 2 gives an example of directorial goals.

4.3 Director Agent

Directorial control is applied every time after the user performs an action. Func-
tion Directorial Control (Algorithm 1) contains the pseudo code for the over-
all workflow of directorial control.

Table 1. Syntax for Specifying Directorial Goals

orders = [event1,event2]
event2 should happen after event1

earlierThan = [event,step]
event should happen before step steps of interaction

laterThan = [event,step]
event should happen after step steps of interaction

earlierThan2 = [event1,event2,step]
event2 should happen within step steps after event1 happened

laterThan2 = [event1,event2,step]
event2 should happen after step steps after event1 happened

NoObjIfLater = [event,step]
if event hasn’t happen after step steps of interaction, the con-
straint for it to happen if exists, does not apply any more

Table 2. Directorial Goals Example

orders = [[“wolf-eat-Granny”, “anybody-kill-wolf”],
[“wolf-eat-anybody”, “wolf: wolf’s hunger = 0”]]

earlierThan = [[“wolf-eat-red”, 50], [“wolf-eat-Granny”, 80]]
earlierThan2 = [[“wolf-eat-Granny”, “anybody-kill-wolf”, 30]]
laterThan2 = [[“wolf-eat-red”, “wolf-eat-Granny”, 10]]
NoObjIfLater = [[“wolf-eat-red”, 60]]

Overview of the Workflow

The director agent maintains a list of objectives that it will try to reach. Each
objective indicates the desirability of an event, such as “hunter-kill-wolf is desir-
able”, or “Red: Red’s alive = 0 is undesirable”. Initially, this list is empty (line
1 in Algorithm 1). After each time the user acts, the director agent simulates
lookaheadSteps steps of interaction in the future (line 8), examines whether the
future development of the story is consistent with the author’s directorial goals,
and creates a list of objectives if it foresees violations (line 9).

Table 3 lists the objectives that will be created in function Test Violation

for violating each type of directorial goals. In general, if a partial order constraint
is expected to be violated, the director agent will try to prevent the latter event
from happening; if a temporal constraint is expected to be violated, the director
agent will try to arrange the event to happen or not happen according to the
constraint. For example, based on the directorial goals described in Table 2, if
the wolf has not eaten Red by 50 steps of the interaction, a violation happens,
and the objective of “wolf-eat-Red is desirable” will be added. As the last step of
Test Violation, the “NoObjIfLater” goals are applied – if there is an objective
for event to happen, and step steps of interaction have already passed, the
objective will be taken out.

Algorithm 1 Directorial Control()

1: objectives ← []
2: bestOption ← []
3: minV iolation ← ∞
4: futureSteps ← []
5: for each i in range(Num of Tests) do

6: if objectives != [] then

7: Adjust Config(objectives)
8: futureSteps ← Lookahead(lookaheadSteps)
9: objectives, numV iolation ← Test Violation(futureSteps)

10: if numV iolation < minV iolation then

11: bestOption ← futureSteps

12: minV iolation ← numV iolation

13: return bestOption

When the list of objectives is not empty (line 6 in Algorithm 1), the director
agent will try to tweak the characters’ configurations for reaching the objectives.
Function Adjust Config (Algorithm 2) adjusts the characters’ beliefs and goals
for inducing actions or preventing actions from happening as indicated in the
objectives. Adjusting the characters’ beliefs often requires a fictional action to
happen for inducing the belief change (see Algorithm 4 for details) and therefore
may have side effects. Therefore, preference is given to adjusting the characters’
goals for achieving the objectives. Function Adjust Config first tries to fit
the characters’ goals to achieve the objectives. If none of the objectives can be
reached this way, it will try to change the characters’ beliefs and then fit the
characters’ goals again. If the objectives involve the user’s actions (either being
desirable or undesirable), the director agent will try to affect the user’s decisions
only by changing his/her beliefs.

As part of the process for adjusting the characters’ beliefs, whether a belief
change is reasonable is tested, and how to make the belief change happen is
proposed. The same process is used for reaching the objectives that specify
constraints on the characters’ beliefs. The details of this process are given in
Algorithm 4 and related discussions. However, the rest of this section is organized
around how to achieve objectives regarding the characters’ actions.

Table 3. Objectives if Directorial Goals are Violated

Violated Goal Desirable
Actions

Undesirable
Actions

orders =[event1,event2] event2
earlierThan =[event,step] event

laterThan =[event,step] event

earlierThan2 =[event1,event2,step] event2
laterThan2 = [event1,event2,step] event2

Algorithm 2 Adjust Config(objectives)

1: fitting result ← Fit To Objectives (objectives)
2: if fitting result == false then

3: beliefChanges ← Find Suggestions(objectives,futureSteps)
4: for each beliefChange in beliefChanges do

5: if Find Explanation(beliefChange) then

6: Apply Belief Changes(beliefChange)
7: Fit To Objectives(objectives)

Algorithm 3 Fit To Objectives(objectives)
1: history: interaction history
2: paths: list of story paths designed by the author for configuring the characters
3: success ← false

4: for each objective in objectives do

5: actor ← objective.action.actor

6: if objective.desirable then

7: all paths = paths + history.append(objective.action)
8: return Fit(actor, all paths)
9: else

10: for each action in actor.actionOptions do

11: if action != objective.action then

12: all paths = paths + history.append(action)
13: if Fit(actor, all paths) then

14: success ← true

15: return success

After making all the adjustments, the director agent will again test whether
the directorial goals will be violated in future interactions using lookahead pro-
jection (line 8-9 in Algorithm 1). This iterative process will stop when a satis-
factory solution has been found or the maximum number of attempts has been
reached, in which case the characters will act according to the futureSteps with
minimal violations of directorial goals.

Fitting Characters’ Goals to Objectives

Function Fit To Objectives fits the agents’ goals to the objectives. For each
objective that contains a desirable action, the function tests to see whether it
is possible for the action to happen. For each objective that contains an unde-
sirable action, the function tests to see whether it is possible for the actor of
that action to do something else, and possibly nothing. The function also tests
whether doing an action is consistent with the author’s design of the character
by considering the story paths designed by the author for configuring (fitting)
the characters.

Slightly different from the fitting procedure used in authoring, here it is okay
for the utility of the desired action to be the same as other actions’ utilities. In
this case, even though the agent is not guaranteed to choose the action, which

is not ideal for authoring, the action is a reasonable choice for the character’s
goals. In fact, for characters who do not have a clear personality/motivation in
the story, the constraints on utility can be further relaxed to accommodate more
action options for the director agent. In the extreme case, the director agent can
directly order the characters without testing whether the suggested actions are
consistent with the characters’ motivations, in which case the fitting procedure
always returns true.

Adjusting Characters’ Beliefs

When Fit To Objectives alone cannot achieve any objectives, the director
agent will try to tweak the characters’ beliefs. Function Find Suggestions in
Algorithm 2 calls the “suggest” procedure for each objective and for each char-
acter, and merges the results into a list of all the suggestions to the characters’
beliefs. For example, to make Granny give some cake to the wolf, Granny hav-
ing cake and being at the same location as the wolf are likely to be suggested.
These suggestions make the achievement of the objectives possible, but do not
guarantee it. To test the effect of applying the belief changes, one needs to either
simulate lookahead projections or try to fit the characters to the objectives.

Further, whether the belief changes are reasonable needs to be tested before
they can be applied. Function Find Explanation looks for an action that is
reasonable to happen at the moment or in the past, and can explain the be-
lief change. If such action exists, even though the user does not see the action
happening, the user may assume that it happened when he/she was not there.
Therefore, changes in the characters’ behaviors, because of their belief changes,
will not seem sudden and unnatural to the user. See Example II in Section 5 for
an example. Of course, the belief change cannot be caused by a user’s action,
because the user knows what he/she has done in the past. If the director agent
wants the user’s belief to change, it needs to arrange the action that can cause
the belief change to actually happen. For example, for the user to believe that
the hunter is close by, the director agent needs to let the hunter appear at the
user’s location. In general, all the suggested belief changes need to be tested
by Find Explanation. The author can make exemptions by specifying state
features whose values are not important to the user. For example, in the Little
Red Riding Hood story, the locations of the characters who are outside of the
user’s sight can be changed freely by the director agent.

5 Examples

This section provides two step-by-step examples of applying directorial control.
Example I starts by a potential violation of directorial goals being detected:

the wolf will eat Red before Red gives the cake to Granny. The corresponding
objective is added to the list: the director agent “wants” the wolf to choose an
action other than eating Red. Since the wolf is played by the user, the director
agent skips fitting the wolf’s motivations for achieving the objective, and directly
tries to change the characters’ beliefs. It finds that if the wolf believes that
the hunter is close by, the wolf will choose a different action than eating Red.

Algorithm 4 Find Explanation(beliefChange)
1: history: interaction history
2: paths: list of story paths designed by the author for configuring the characters
3: for each character in story do

4: if ! character == user then

5: for each action in character.actionOptions do

6: all paths = paths + history.append(action)
7: if Fit(character, all paths) then

8: if Effects(action) == beliefChange then

9: return true

10: return false

Algorithm 5 Directorial Control: Example I

Lookahead projection :“wolf-eat-Red”, “Red-doNothing”, “hunter-walk” ...
Detect goal violation : order: [“red-give-cake-Granny”,“wolf-eat-red”]
Add objective : [“wolf-eat-Red”, “undesirable”]
Adjust beliefs : hunter’s location = wolf’s location
Simulate user’s lookahead : “wolf-run”
Request characters to act : “hunter-walk-towards-wolf”

Assuming the belief change has happened, the director agent tests for potential
goal violations again with lookahead projection. This time the director agent
expects no violations. It then proceeds by applying the belief change – in this case
by physically re-locating the hunter – and ordering the characters, other than the
wolf, to act according to its last lookahead projection. After the user responds,
the director agent will start another round of directorial control, starting by
detecting potential goal violations.

The basic procedure in Example II is the same as in Example I, and therefore
will not be repeated. Note that in this example because the directorial goal is
defined with the keyword “anybody”, the director agent can try to make any
character kill the wolf. Often, there are many alternatives for adjusting the
characters. The author can specify priorities, e.g. always try to adjust Red’s
configurations first. Otherwise the system will randomly pick an order. In this
example, the director agent starts by trying to make Red kill the wolf. It failed

Algorithm 6 Directorial Control : Example II

Lookahead projection : “wolf-walk”, “Red-walk”, “hunter-walk” ...
Detect goal violation : earlierThan2: [“wolf-eat-Granny”, “anybody-kill-wolf”, 30]
Add objective : [(“anybody-kill-wolf”, “desirable”)]
Fit characters to the objectives : failed to fit Red
Adjust beliefs : Red’s location = wolf’s location; Red’s power > wolf’s power
Find explanation : “hunter-give-gun-Red” → Red’s power > wolf’s power
Fit characters to the objectives : succeed, “Red-kill-wolf”
Request characters to act : “Red-walk-towards-wolf”

to fit Red’s motivations. It then proceeds to adjust the characters’ beliefs. It
finds that when Red is next to the wolf and believes that she is stronger than
the wolf, Red can be fitted to do the action. The director agent also has tested
whether the belief changes are reasonable. Find Explanation returns that in
order for Red to believe that she is stronger than the wolf, the hunter should
have given Red a gun and this is a reasonable action for the hunter. The director
therefore decides the belief changes to Red are feasible to happen.

6 Future Work
Our future work is planned in three difference directions. First, we will enrich
the syntax for specifying directorial goals so that more complex constraints can
be expressed, such as constraints that are contingent on the current state of
the story. Secondly, we will allow the author to specify priorities among the
directorial goals. So that when there are conflicts among the goals, the director
agent can make decisions based on the importance of the goals. For example,
in Example II if there is another directorial goal that requires the wolf to eat
the cake, a conflict exists between the two goals: the wolf can not eat the cake
if it is killed. Currently, when conflicts happen, an implicit priority is assumed
based on the order the author lays out the goals. Finally, directorial control does
not always succeed. Whether a set of directorial goals can be achieved depends
on the algorithms used by the director agent, the model of the characters, the
type of user who is interacting with the system and even the initial state of the
characters and the user. We plan to conduct an evaluation on the effectiveness
of the directorial control we deployed in the Little Red Riding story.

7 Conclusion
In this work, we present a unique approach for realizing directorial control in
interactive narratives based on the model of the user. This approach is imple-
mented within the Thespian framework for interactive narratives. Thespian’s
director agent monitors the progress of the story and adjusts the virtual charac-
ters’ behaviors and beliefs if necessary to achieve directorial goals. The explicit
modeling of the user enables our approach to avoid accidentally creating in-
consistent characters during directorial control, and to better predict the user’s
experience. For example, our approach allows the author to specify directorial
goals regarding the characters’ states and beliefs, so that the directorial control
can directly target the user’s cognitive and affective experience. The algorithms
used by the director agent are presented in this paper, followed by examples of
applying directorial control in the Little Red Riding Hood story.

References

1. Marsella, S.C., Johnson, W.L., Labore, C.: Interactive pedagogical drama for
health interventions. In: AIED. (2003)

2. Paiva, A., Dias, J., Sobral, D., Aylett, R., Sobreperez, P., Woods, S., Zoll, C.:
Caring for agents and agents that care: Building empathic relations with synthetic
agents. In: AAMAS. (2004) 194–201

3. Si, M., Marsella, S.C., Pynadath, D.V.: Thespian: An architecture for interactive
pedagogical drama. In: AIED. (2005)

4. Kelso, M.T., Weyhrauch, P., Bates, J.: Dramatic presence. Presence: Teleoperators
and Virtual Environments 2 (1993)

5. Riedl, M.O., Saretto, C.J., Young, R.M.: Managing interaction between users and
agents in a multi-agent storytelling environment. In: AAMAS. (2003) 741–748

6. Cavazza, M., Charles, F., Mead, S.J.: Agents’ interaction in virtual storytelling. In:
Proceedings of the International WorkShop on Intelligent Virtual Agents. (2001)
156–170

7. Magerko, B., Laird, J.E.: Mediating the tension between plot and interaction. (In:
AAAI Workshop Series: Challenges in Game Artificial Intelligence.) 108–112

8. Szilas, N.: IDtension: a narrative engine for interactive drama. In: the 1st Interna-
tional Conference on Technologies for Interactive Digital Storytelling and Enter-
tainment, Darmstadt Germany (2003)

9. Braun, N.: Storytelling in collaborative augmented reality environments. In: Pro-
ceedings of the 11th International Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision. (2003)

10. Mateas, M., Stern, A.: Integrating plot, character and natural language processing
in the interactive drama Façade. In: the International Conference on Technologies
for Interactive Digital Storytelling and Entertainment. (2003)

11. Murray, J.H.: Hamlet on the Holodeck - The Future of narrative in Cyberspace.
MIT Press, Cambridge (1997)

12. Bates, J.: Virtual reality, art, and entertainment. Presence: Teleoperators and
Virtual Environments. 2(1) (1992) 133–138

13. Weyhrauch, P.: Guiding Interactive Drama. PhD thesis, Carnegie Mellon Univer-
sity (1997) Technical Report CMU-CS-97-109.

14. Lamstein, A., Mateas, M.: A search-based drama manager. In: the AAAI-04
Workshop on Challenges in Game AI. (2004)

15. Onega, S., Landa, J.A.G.: Narratology: An Introduction. Longman, London and
New York (1996)

16. Bruner, J.: Acts of Meaning. Cambridge, Mass : Harvard University Press. (1990)
17. Ochs, E., Capps, L.: Living narrative. Creating lives in everyday storytelling.

Cambridge, MA, Harvard University Press (2001)
18. Si, M., Marsella, S.C., Pynadath, D.V.: Proactive authoring for interactive drama:

An author’s assistant. In: IVA, Paris, France (2007)
19. Si, M., Marsella, S.C., Pynadath, D.V.: Thespian: Using multi-agent fitting to

craft interactive drama. In: AAMAS. (2005) 21–28
20. Si, M., Marsella, S.C., Pynadath, D.V.: Modeling appraisal in theory of mind

reasoning. JAAMAS. (2009)
21. Si, M., Marsella, S.C., Pynadath, D.V.: Thespian: Modeling socially normative

behavior in a decision-theoretic framework. In: IVA. (2006)
22. Marsella, S.C., Pynadath, D.V., Read, S.J.: PsychSim: Agent-based modeling of

social interactions and influence. In: Proceedings of the International Conference
on Cognitive Modeling. (2004) 243–248

23. Smallwood, R.D., Sondik, E.J.: The optimal control of partially observable Markov
processes over a finite horizon. Operations Research 21 (1973) 1071–1088

24. Gmytrasiewicz, P., Durfee, E.: A rigorous, operational formalization of recursive
modeling. In: ICMAS. (1995) 125–132

25. Pynadath, D.V., Marsella, S.C.: Fitting and compilation of multiagent models
through piecewise linear functions. In: AAMAS. (2004) 1197–1204

