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Abstract. Effective social interaction and, in particular, a Theory of Mind are
critical components of human intelligence, allowing us to form beliefs about
other people, generate expectations about their behavior, and use those expec-
tations to inform our own decision-making. This article presents an investigation
into methods for realizing Theory of Mind within Sigma, a graphical cognitive
architecture. By extending the architecture to capture independent decisions and
problem-solving for multiple agents, we implemented Sigma models of several
canonical examples from game theory. We show that the resulting Sigma agents
can capture the same behaviors prescribed by equilibrium solutions.

1 Introduction

Social interaction is a critical function of human intelligence, allowing us to make ef-
fective decisions when interacting with other people. We form beliefs about others, use
those beliefs to generate expectations about their behavior, and use those expectations
to inform our own behavior. In doing so, we attribute an intelligence like our own to
other people as well. This cognitive capacity for Theory of Mind distinguishes social
interaction from the decision-making we do in isolation [18]. We therefore expect that
a system capable of artificial general intelligence (AGI) would provide natural support
for Theory of Mind. Previous computational approaches have successfully captured
aspects of this cognitive capacity, including modeling the beliefs of others [4, 6], pre-
dicting behavior [1], and factoring behavior predictions into decision-making [3, 13].

We are interested here in how all of these Theory of Mind capabilities may be real-
ized within Sigma (Σ), a nascent cognitive system—an integrated computational model
of intelligent behavior—that is grounded in a cognitive architecture, a model of the fixed
structure underlying a cognitive system [11]. In prior work, we have demonstrated this
architecture’s ability to support multiple cognitive capabilities, such as problem solving
[14], mental imagery [16], and learning [15]. Here, our goal is to extend this exist-
ing integration to the critical cognitive capability of Theory of Mind, while shedding
additional light on both Sigma and the architectural basis of Theory of Mind.

To that end, we explore the degree to which existing capabilities within Sigma’s
cognitive architecture already provide the necessary support for Theory of Mind. We
draw on canonical examples from the game theory literature as test cases for driving
the need for reasoning about other agents [2]. These games provide a natural setting for
Theory of Mind, because agents seeking to perform well must take each other’s action
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selection into account. Across these games, we examine the conditions under which the
Sigma-generated outcomes conform to those prescribed by game-theoretic analyses.

We also identify the need for new capabilities within Sigma to address these games
and present the extensions we implemented to provide them. Sigma turns out to sup-
port two distinct approaches to Theory of Mind, based respectively on automatic versus
controlled processing [17] or, alternatively, System 1 versus System 2 thinking [7].
Both modes of reasoning are possible without any change to the underlying architec-
ture, providing a novel unification of the two forms of Theory of Mind within a single
cognitive system. By successfully realizing Theory of Mind reasoning and combining
it with Sigma’s other cognitive capabilities (e.g., learning), we now open up novel lines
of investigation into more general mechanisms for social reasoning.

2 Sigma

Sigma’s cognitive architecture is built upon graphical models [8]. Graphical models
provide a general computational technique for efficient computation with complex mul-
tivariate functions by leveraging forms of independence to: decompose them into prod-
ucts of simpler functions; map these products onto graphs; and solve the graphs via,
for example, message passing or sampling methods. They are particularly attractive as
a basis for broadly functional, yet simple and theoretically elegant cognitive architec-
tures, because they provide a single general representation and inference algorithm for
processing symbols, probabilities and signals. The cognitive architecture leverages this
generality through a core knowledge structure—the conditional—that provides a deep
blending of the forms of conditionality found in both rules and probabilistic networks.

Sigma’s long-term memory comprises a set of conditionals, which are jointly com-
piled into a single factor graph [9] at the level below. Memory access occurs by passing
messages in this graph, via the summary product algorithm [9], until quiescence; that
is, until there are no more messages to send. Each message is an n-dimensional piece-
wise linear function that is defined over an array of rectilinear regions. These piecewise
linear functions can approximate arbitrary continuous functions as closely as desired,
as well as be restricted to represent both discrete probability distributions and relational
symbol structures. Working memory consists of a set of peripheral nodes in the graph
that provide fixed evidence during solution of the long-term-memory graph.

This way of viewing the Sigma cognitive system divides it into three layers: one for
the graphical models, one for the (Sigma) cognitive architecture, and one for the knowl-
edge and skills encoded via conditionals on top of the cognitive architecture. However,
the Sigma cognitive architecture also embodies its own hierarchy of three layers that is
central to realizing Theory of Mind. Modeled after the Soar architecture [10], the Sigma
architecture comprises a reactive layer that acts as the inner loop for a deliberative layer
that acts as the inner loop for a reflective layer. The reactive layer simply consists of
quiescent memory access. In Soar, this form of knowledge search provides a parallel
associative retrieval of information stored in rules. In Sigma it searches over the more
general representation provided by conditionals and factor graphs.

Sigma’s deliberative layer provides a model of sequential action [14], during which
operators are selected and applied in service of achieving goals (or of maximizing util-



ities). In Sigma, as in Soar, operator selection and application are both mediated by
the reactive layer, with the core cognitive cycle becoming quiescent memory access
followed by a decision. In general, the distinction between reactive and deliberative
layers maps onto two well-known distinctions in human cognition: automatic versus
controlled [17] and System 1 versus System 2 [7].

The reflective layer determines how metalevel processing—including problem space
search—occurs when resolving impasses in deliberative processing. In Sigma, three
kinds of impasses can occur when attempting to make a decision. A none impasse oc-
curs when there are no candidate operators for selection. A tie impasse occurs when
there are multiple candidate operators, but insufficient knowledge to choose among
them. A no-change impasse occurs when an operator is selected but no state change re-
sults. When processing begins, there is only a base-level state (state 0) active. When an
impasse happens in a state, a structure representing it is added to working memory and
a new state with a number one higher is added. Whenever an impasse occurs for a state,
all existing higher numbered states are deleted, with just the one new state then added.
Thus, if impasses occur simultaneously for multiple states, only the lowest numbered
impasse goes into effect, as all higher numbered ones are for states that are deleted.

An impasse, along with its resulting state—and all higher numbered states (which
ultimately only exist in service of this lower numbered impasse)—will also go away
when it is no longer valid. This can happen because the impasse is resolved: the ap-
pearance of a candidate operator resolves a none impasse, the selection of an operator
resolves a tie impasse, and a change in the state resolves a no-change impasse. It can
also happen because the impasse changes, such as when the appearance of multiple
undifferentiated operators shifts the impasse from none to tie. Communication across
states in the metalevel hierarchy occurs via the affine transforms that were earlier im-
plemented in Sigma in service of modeling mental imagery [16]. Translation along the
state dimension moves information to higher numbered states (to initialize metalevel
states) and to lower numbered states (to return results from reflective processing).

3 Single-Stage Simultaneous-Move Games

B → C D

A
C rACC , rBCC rACD, rBCD

D rADC , rBDC rADD, rBDD

Fig. 1: Payoff matrix for two-player,
simultaneous-move game

We begin our investigation by modeling
single-stage simultaneous-move games
within Sigma. Two agents, A and B,
choose from two operators: C and D
(typically, cooperate and defect, respec-
tively). After the players simultaneously
reveal their operator selection, the corre-
sponding entry in the payoff matrix yields the outcome for A and B. For example, if A
cooperates and B defects, then Table 1 specifies that A gets rACD and B gets rBCD.

The typical analysis of such games revolves around Nash equilibria. In such an equi-
librium, each agent is unable to increase its reward by unilaterally changing its chosen
strategy. For example, if rBCC > rBCD and rBDC > rBDD, then agent B will choose
to cooperate, as it yields a higher payoff, regardless of what agent A does. Knowing
that B will cooperate, agent A will also choose to cooperate if rACC > rADC . If both



conditions hold, the situation where both agents cooperate constitutes a Nash equilib-
rium, because neither has incentive to defect. In this investigation, we consider only
such pure-strategy equilibria, where the agents’ choices have no stochastic component.

There are at least three different ways the independent decision-making processes
of A and B could conceivably be represented within Sigma. Multiple agents could be
represented in Sigma as multiple instances of the whole system, or as multiple graphs
(and associated decision making) within a single instance of Sigma, or by adding an
agent dimension to functions within a single graph. For this work, we chose the third
approach, so as to maximize the possibility of sharing functional structure among mul-
tiple agents, and thus to minimize the cost of doing complex Theory of Mind reasoning.
In addition to adding an agent dimension to functions, this involved simply extending
the decision procedure to make independent decisions for each agent.

Fig. 2: Factor graph generated for one-shot games

To model such games in
Sigma, we require four condi-
tionals to completely capture the
generation of the two agents’ ex-
pectations and decisions. Two
conditionals (AB → AA and
BA → BB in Figure 2) spec-
ify the value of each agent’s
operator selection as a func-
tion of its expectations about
the other agent’s selection. For
example, the function at PAB
would specify that if B chooses
oB ∈ {C,D}, then the value to A of choosing oA ∈ {C,D} would be rAoAoB . Agent
B has an analogous conditional (BA→ BB) regarding the impact of its expectation of
A’s choice. The remaining two conditionals (AA → AB and BB → BA) capture A’s
and B’s expectations about each other’s action values in response to their own choices.

When executing this model, Sigma begins by computing values over each agent’s
options (AA and BB in Figure 2), first assuming a uniform distribution over the other
agent’s possible moves (AB and BA). The resulting values are normalized into a prob-
ability distribution over the deciding agent’s selection, which then feeds, in turn, into
the other agent’s conditional (AA → AB and BB → BA). The values go around this
loop several times before converging. By using a linear transformation of action val-
ues into probabilities, each agent assigns a nonzero probability that the other does not
choose a best response, possibly deviating from a Nash equilibri. However, if agents
select operators stochastically according to this distribution (instead of deterministic
maximization), then the agents would be playing a quantal response equilibrium, as
their actions would be a best response to the probability of each other’s choices [12].

Perhaps the most famous example of a single-stage, simultaneous-move game is
the Prisoner’s Dilemma (Table 1a). From the payoff matrix of Table 1a, we can see that
each agent is better off by choosing to defect, regardless of what the other agent does.
Thus, there is a single pure-strategy Nash equilibrium, where both agents choose D,
even though both agents would be better off if they both chose C.



B → C D

A
C 0.3, 0.3 0.1, 0.4

D 0.4, 0.1 0.2, 0.2

(a) Prisoner’s Dilemma

B → C D

A
C 0.3, 0.3 0.0, 0.1

D 0.1, 0.0 0.1, 0.1

(b) Stag Hunt

B → C D

A
C 0.1, 0.1/0.4 0.2, 0.4/0.1

D 0.3, 0.1/0.4 0.1, 0.4/0.1

(c) Dominant B strategy

B → C D

A
C 0.1, 0.2 0.2, 0.1

D 0.2, 0.1 0.1, 0.2

(d) Matching pennies

Table 1: Payoff matrices for one-shot games

When we use Table 1a’s payoff matrix, Sigma requires 401 messages to compute the
agents’ action selection values. The resulting values favor defecting over cooperating,
0.572 vs. 0.428, for both agents, matching the Nash equilibrium. We are thus able to use
a single graph to model both agents’ individual, self-interested perspectives, as opposed
to finding the C-C outcome that is socially optimal from a global perspective.

The Stag Hunt (Table 1b) is an example of a coordination game, because any out-
come where the two agents choose the same action is a Nash equilibrium. Intuitively, if
both agents cooperate to hunt a stag, they will succeed and receive the maximum pay-
off. However, any player who defects to hunt a hare will succeed, albeit for a smaller
payoff. An agent who attempts to hunt the stag unassisted (i.e., chooses to cooperate
when the other agent defects) will fail and receive no payoff. Thus, while this game
shares the same D-D equilibrium as the Prisoner’s Dilemma, it also supports a C-C
equilibrium, which is also the socially optimal outcome.

In the Stag Hunt, Sigma requires 681 messages to compute a distribution where
both agents favor cooperating over defecting with values of 0.573 vs. 0.427. Our Sigma
model thus finds the socially optimal Nash equilibrium. The values are similar to those
for the Prisoner’s Dilemma, although the cycle requires significantly more messages.

In the Prisoner’s Dilemma, defecting is dominant for each agent regardless of the
other agent’s choice. In the Stag Hunt, agents greedily seeking the highest potential
payoff might also find the C-C equilibrium accidentally. We implemented the game of
Table 1c to make sure that our Sigma agents are properly considering their opponents’
decisions. There are two variations for B’s payoffs, separated by a “/”. With the left
payoffs, D is a dominant action for B, while with the right, C is dominant. In the
former case, C is A’s best response, while in the latter, D is the best response. Thus,
we can generate two different optimal decisions for A by changing only B’s payoffs.

For both versions of this game, Sigma computes a distribution over actions after a
total of 226 messages. B’s values are symmetric across both versions, with the domi-
nant action being preferred 0.708 vs. 0.292. When B prefers C, A prefers D 0.595 vs.
0.405, while when B prefers D, A prefers C 0.511 vs. 0.489. Thus, agent A makes the
equilibrium-specified decision under both cases, while the higher payoff for D in Table
1c shows up in the stronger bias in the former case.



Unlike the previous games, the Matching Pennies game (Table 1d) has no pure-
strategy Nash equilibrium. If both agents choose the same action, B gets a higher pay-
off; otherwise, A gets the higher payoff. To see that no pure-strategy equilibrium exists,
consider the case if A chooses C, so that B chooses C, so that A chooses D, so that B
chooses D, so that A chooses C again, returning us to the beginning of this sequence.

In this game, Sigma finishes computation after only 151 messages with each agent
having a value of 0.5 for both operators. With this distribution over values, neither agent
has a preference over its operator selection. Given the lack of any equilibrium in this
game, it makes sense for the agents to be indifferent among their options.

Sigma is thus able to find the equilibrium strategies through graphical message-
passing, without requiring the logical, case-by-case reasoning that is required in gen-
eral. Of course, as already described, the graph is not guaranteed to find the equilibrium
strategy in all games. There is a potential relationship between the quantitative values
computed by Sigma and the frequency with which people play equilibrium strategies in
the same games, but studying that relationship is beyond the scope of this investigation.

4 Sequential Games: The Ultimatum Game

Fig. 3: Extensive form of
ultimatum game

In Section 3’s games, both players reveal their moves si-
multaneously. In contrast, the agents in sequential games
take turns choosing their actions. In this section, we ex-
amine the ultimatum game [5], where agent A starts with
a fixed amount of money (3 in our example), and offers a
portion of it to B, who then accepts or rejects the offer. If
B accepts, it receives the offered amount, while A keeps
the remainder. However, if B rejects, both agents get 0
(Figure 3 shows the game tree).

The game’s sequential nature leads to a different strat-
egy structure than in simultaneous-move games. While
agent A’s strategy is still a single choice (the amount to
offer), agent B’s strategy is now a function from A’s possible offers to a binary accep-
tance/rejection. There are many Nash equilibria within this strategy space, including
one if A offers 0 and B accepts any offer. B has no incentive to reject an offer of 0,
and if B accepts any offer, then A has no incentive to offer more. At the other extreme,
there is an equilibrium where A offers everything to agent B and B rejects if offered
anything less than everything. Again, neither agent has reason to unilaterally deviate.

This highly divergent space of Nash equilibria leads us instead to the stricter concept
of subgame perfection, where the overall equilibrium strategy is also an equilibrium
strategy over any subgame in the game tree. For example, the second Nash equilibrium
mentioned is not a subgame perfect equilibrium, because it is not an equilibrium strat-
egy for B to (for example) reject in the subtree rooted after A offers only 1. Therefore,
it is not credible for B to reject any offer less than everything. We can determine the
subgame perfect equilibrium strategy by backward induction from the end payoffs. If
A offers any amount more than 0, B’s best response is to accept the offer, because any
positive offer is better than the 0 it would get by rejecting. Out of these positive offers,



A prefers offering the minimal amount of 1, which forms a subgame perfect equilibrium
strategy in combination with B’s acceptance of any nonzero offer.

We present two contrasting methods of decision-theoretic Theory of Mind process-
ing for a Sigma agent to use in such sequential games. In the first (Section 4.1), the
agent’s reasoning takes place within a single cognitive cycle, as in Section 3’s approach
to single-stage games. In other words, the agent’s decision is the outcome of memory
access (i.e., message passing) within Sigma’s reactive layer. In contrast, our second
method (Section 4.2) leverages Sigma’s deliberative and reflective layers to perform
combinatoric search across multiple problem spaces, as the agents reach impasses (e.g.,
when there are no alternatives available for operator selection). The ability of humans
to solve problems in either fashion is well documented, but this flexibility is rare in AGI
systems, and previously non-existent for Theory of Mind.

4.1 Automatic Processing in the Ultimatum Game

We label the first method as automatic processing, as it is represented directly at Sigma’s
reactive layer, via a trellis graph that passes utilities at terminal states backwards over

Fig. 4: Trellis-shaped factor graph for auto-
matic processing in the ultimatum game

transition functions that represent the
agents’ actions. Figure 4 shows this
graph for the ultimatum game, where of-
fer representsA’s possible offers, and ac-
cept representsB’s binary decision of ac-
ceptance as a function of A’s offer. We
translate the money the agents receive at
the end into the reward function according to how they value money. In the example
implemented here, both agents value 0 at .1, 1 at .4, 2 at .7 and 3 at 1. If we are consid-
ering A’s model of B, then (A’s model of) B’s evaluation of the outcomes is converted
into (A’s model of) B’s utilities for its accept and reject operators, given A’s offers,
by passing these utilities backwards over the transition function for (A’s model of) B’s
actions (TB). In other words, there is a Sigma conditional that passes the values over
B’s ending money (mB) to B’s accept operator, where accepting an offer of q implies
that mB = q, while rejecting any offer implies that mb = 0.

While the values computed here are sufficient for B’s operator selection through
utility maximization, we must then convert these utilities into a probability distribution
for A’s model of B’s choices. If A uses these values as probabilities directly, then the
resulting distribution will be linear in those utilities (as in Section 3). Reinforcement
learning more commonly uses a softmax function to convert values over operators, O,
into probabilities, Pr(O), according to Pr(O = o) ∝ exp(V (o)/τ), for some tem-
perature parameter, τ , and after normalization. Game theory’s logit form of a quantal
response equilibrium (LQRE) uses a similar form to map values into probabilities [12].

We can incorporate the same concept by exploiting Sigma’s support of Boltzmann
selection, allowing an agent to choose operators probabilistically according to an ex-
ponential transformation of utilities, as in the softmax and LQRE formulations. This
capability had been used previously to encourage exploration when Sigma agents are
performing reinforcement learning. The multiagent context is slightly different, in that
we need to transform (A’s model of) B’s utilities in a corresponding manner to yield



B’s choice probabilities. To enable this, the cognitive language was extended to allow
messages coming from particular working memory functions to be scaled exponentially
(and normalized), using the architecture’s support for Boltzmann distributions.

Evaluations for A’s offer operators are then computed by passing the products of
A’s own utilities for B’s choices and its model of B’s probabilities for these choices
backwards over the transition function for A’s own actions (TA), while summarizing
out—via integration across—(A’s model of) B’s choices. Both the product and sum-
marization required here are computed naturally by the summary product algorithm
underlying this processing.

All together, the processing involves five conditionals that define: (1) the utility
functions of the agents; (2) the transition function for A’s offer operators; (3) (A’s
model of) the transition function for B’s accept operators; (4) the exponential transfor-
mation from (A’s model of) B’s operator utilities to its operator selection probabilities;
and (5) the product of (A’s model of)B’s operator probabilities andA’s utilities. A total
of 94 messages are required to compute a distribution over the agents’ operators. B’s
contingent strategy has normalized values of 〈0.500, 0.800, 0.875, 0.909〉 for accepting
the corresponding offer of 0, 1, 2, or 3 fromA. After passing through the Boltzmann dis-
tribution and A’s transition function, A arrives at values of 〈0.315, 0.399, 0.229, 0.057〉
for offering 0, 1, 2 or 3. We thus arrive at the subgame perfect equilibrium ofA offering
1 and B accepting nonzero offers. Although Sigma’s reactive layer is modeled after
Soar’s, the extension to graphical models, and the resulting ability to perform proba-
bilistic reasoning over trellises, is central to decision-theoretic Theory of Mind here.

4.2 Controlled Reasoning in the Ultimatum Game

Sigma’s ability to engage in problem space search across metalevel states can be lever-
aged to provide our second method for Theory of Mind: a controlled form of decision-
theoretic reasoning. This method of Theory of Mind reasoning required an extension of
Sigma’s impasse detection and processing to multiple agents. Simple single-agent ap-
proaches that used mechanisms related to affine transforms to modify the state dimen-
sion had to be replaced with more elaborate mechanisms that operated independently
on segments of functions corresponding to individual agents.

Figure 5 illustrates this multiagent mechanism for the ultimatum game without the
trellis in long-term memory. Four undifferentiated offer operators—for 0 through 3—
are acceptable, and a tie impasse occurs (at the top-left node of Figure 5). At the next
higher state, evaluation (meta-)operators are acceptable, one for each offer operator,
and made best—that is, receive a rating of 1—so that one is chosen at random. A no-
change results on this (meta-)operator since direct knowledge about how to evaluate its
operator is unavailable. At the next higher state, the operator to be evaluated is made
best, and thus selected and applied, yielding a specific offer. A second-level tie impasse
then occurs on (A’s model of) B’s choice of accept versus reject, yielding a second
round of choices among evaluation (meta-)operators. At the next higher state, accept or
reject is selected according to the evaluation (meta-)operator selected. It is then applied,
yielding the resulting monetary outcomes for both A and B, plus the utilities of these
outcomes (at the bottom of the leftmost tree of Figure 5).



Fig. 5: Progression of problem spaces during controlled reasoning in ultimatum game

Returning results up a level enables terminating the evaluation (meta-)operator and
selecting the other one. Once both are terminated, a none impasse occurs, as there are
no more evaluation (meta-)operators (the middle tree of Figure 5). This is the signal
to combine the results across B’s choices for the offer operator being evaluated for A,
terminating the higher evaluation (meta-)operator, and enabling other offer operators to
be evaluated in the same manner. Once a none impasse occurs here, these evaluations
are returned, enabling A to select the best offer (as in the rightmost tree of Figure 5).

The distribution over the four offers calculated in this fashion is 〈.0550, 0.699,
0.400, 0.100〉, which when normalized to 〈0.314, 0.400, 0.229, 0.057〉 again yields the
subgame perfect equilibrium, with a distribution that is comparable to that computed
reactively via the trellis. The knowledge here comprises 19 conditionals, 3 of which are
general conditionals for evaluation (meta-)operators—corresponding to what are called
default rules in Soar—and 16 specific to this task. The processing occurs across 72
cognitive cycles, each involving on average 868 messages.

5 Conclusion

We have shown how Sigma can capture different types of Theory of Mind in several
multiagent domains. The success of this endeavor relied on extensions to the architec-
ture to be able to maintain the individual reasoning of multiple agents, whether within
a single level at the reactive layer, or across nested problem spaces. The reactive ap-
proach in Sigma provides a more efficient compiled form of the calculation, gaining
a factor of 6334 in speedup in the ultimatum game, where automatic processing takes
0.02s on a laptop, while the controlled version takes 126.69s. In Soar, chunking is a
learning mechanism that compiles reflective problem solving into more efficient reac-
tive rules. Although Sigma does not yet embody a comparable learning mechanism, we
do have initial ideas for a generalization of chunking that could potentially compile the
sequential problem solving of Section 4.2 into the reactive trellises of Section 4.1.

In addition to using Theory of Mind to motivate necessary extensions to Sigma, we
also open up the possibility of exploiting Sigma’s other cognitive capabilities in the ser-
vice of Theory of Mind. For example, all of the models presented here gave the agents
complete information, so that the payoffs of both agents were common knowledge. It



is straightforward to relax that assumption and give the agents uncertainty regarding
each other’s payoffs. If we model that uncertainty within Sigma, we can potentially ap-
ply its learning capability [15] to allow the agents to learn models of each other in a
repeated-game setting. We thus hope that continued progress in this direction can lead
to a synergy that can generate insights into both the requirements of AGI in multiagent
contexts and general-purpose mechanisms for Theory of Mind.
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