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CHAPTER 15

A Method for Biasing the Learning
of Nonterminal Reduction Rules

STACY C. MARSELLA
CHARLES F. SCHMIDT

1. Introduction

The focus of our research is on experiential learning within a problem
reduction architecture. The first question that we address is that of
motivating and developing an appropriate criterion against which to
evaluate what is learned. Experiential learning systems are often eval-
uated using a model of efficiency that is defined directly on the basic
operations of the specific performance system that utilizes the learning.
We will follow a different course. We will develop an ideal model of effi-
ciency for problem reduction and use the model as the criterion against
which to evaluate what is learned. This approach has two advantages.
First, because the model is abstract, it can be applied to the evaluation
of learning within any performance system that utilizes problem reduc-
tion. Second, this abstract model of efficiency serves as the basis for our
design decisions in implementing our learning and performance system.

The second question that we address is that of the specific design and
preliminary test of a learning component (PRL) designed to satisfy
this criterion. The crucial feature of this design is the ability to control
the formation of hypotheses concerning appropriate problem decompo-
sitions. We will then contrast PRL’s performance with the performance
of an analogous learning component, BU-PRL. Unlike PRL, this learn-
ing component can control the formation of hypotheses in only a limited
way.

We begin with a very simple problem of the sort that our learning sys-
tem will be presented. Figure 15-1 provides such an example problem.
As the figure shows, the domain consists of a square grid of locations,
some of which are occupied by tiles denoted by a letter—A, B, or C in
this case. The primitive moves that are allowed in this domain consist
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Figure 15-1. An example sparse sliding-tile problem.

Table 15-1. The Representation of the Example Problem in Figure 15-1

PROBLEM:

STARTING STATE: location of tile A is cell k
location of tile B is cell 1
location of tile C is cell m
upadjacent to cell k is cell o
cell o is clear
rightadjacent to cell k is cell 1

GOAL STATE: location of tile A is cell p
location of tile B is cell q

of moving a single tile up, down. left, or right to an immediately adja-
cent location. A move can be made if there is an immediately adjacent
location in the direction of the move and if that location is not already
occupied by some other tile.

Our learner begins with knowledge of these primitive moves, the im-
mediate adjacency relations between locations, and the locations of the
tiles. The learner is not given information concerning any global prop-
erties that might hold in the problem domain. For example, it does
not know that the locations can be organized into rows and columns,
that if any tile is in a corner location and has two tiles that are adja-
cent, then it cannot be moved without first moving another tile, and so
on. Table 15-1 describes the example problem using the initial domain
language presumed throughout this chapter.

The example problem is solved when the problem solver discovers
some sequence of primitive moves that leave A and B in the upper row
as depicted in Figure 15-1. Note that the remaining tile, C, is not
constrained to a particular location in the goal state of the problem.
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This problem is not difficuit to solve. There are literally thousands of
ways of solving it, and our problem solver could discover any one of
these by using its knowledge of the primitive moves as a basis for a
systematic search. The hard problem is not to find a solution, but to
find a solution that will provide a basis for determining what to learn
from this example problem.

One answer to the problem of solution choice is to learn from a so-
lution that solves the problem with a minimum number of moves. In
our example problem this ability narrows the choice from thousands of
possibilities to five possible solutions. But it turns out that this minimal
moves criterion is the wrong criterion to apply to learning within the
context of a problem reduction problem solver. To see why, we will re-
view the basic characteristics of problem reduction search and consider
a way in which to accommodate planning within this search strategy.

2. Problem Reduction Search

Problem reduction search realizes a solution by recursively decomposing
a problem into subproblems until “primitive” subproblems are recog-
nized (Amarel, 1984: Nilsson. 1971). A problem or subproblem consists
of a pair < S0, G0 > where the first element of the pair is the starting
state for that subproblem and the second element is the goal state to
be achieved. The search to be carried out in problem reduction can
be represented as an AND/OR-tree with the AND-branches representing
decompositions of the parent subproblem and the OR-branches repre-
senting alternative decompositions. A search for a solution is successful
if a subtree exists in this AND/OR-tree whose root is the root of the tree.
whose branches are all AND-branches. and whose leaf nodes are all primi-
tive subproblems. We will refer to this subtree as the effective derivation
of a solution. The representation of the entire search for a solution to a
particular problem is referred to as the derivation. A derivation is said
to be deterministic if it is equivalent to the effective derivation. This
is the case when no OR-branches exist in the derivation and a solution
has been obtained. Clearly, a derivation that is deterministic is more
efficient than one that involves some degree of nondeterminism.

A deterministic search is guaranteed if the information required to
solve each subproblem can be completely specified when the parent sub-
problem is expanded and if all subproblems at each level of the tree can
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be expanded in parallel or, equivalently, in any order. When a pair of
subproblems at a level in the tree can be expanded in parallel, then
the pair is typically said to be independent. Note that the pair may
not be independent in the logical sense, but only functionally indepen-
dent in the sense that both can be completely and correctly specified
at the point at which they are expanded. This strictly top-down de-
terministic search represents one ideal model of efficiency for problem
reduction search. However, planning problems never exhibit such com-
plete independence. Consequently, we next consider the way in which
dependencies can be efficiently managed in problem reduction search.

Problem reduction search involves the application of two types of
rules. One type, the nonterminal rules, serve to decompose subprob-
lems into an ANDed set of subproblems. The other type, the terminal
rules, are the recognizers of primitive subproblems. In our application
of problem reduction to planning problems, the terminal rules provide
the basis for representing the primitive moves or actions of the domain.
For example, the movement of tile A from its location in the starting
state to the location immediately above is a primitive move that would
be recognized as a primitive subproblem.

A plan is typically defined as a valid ordering of the primitive moves.
In our application of problem reduction, the actions of the plan corre-
spond to the terminal nodes of the effective derivation. However, the
effective derivation does not place an ordering on these terminal nodes.
Consequently, the method must be extended in some way to yield a plan,
that is. a valid ordering on the actions represented by the terminal nodes.

Dependency between nonprimitive subproblems is typical of planning
problems. Consequently, in order to extend this method of search to
planning, we must also consider the way in which such dependencies
can be recognized and accounted for in the problem reduction search. In
our example problem, a nonterminal rule might decompose the problem
into two subproblems, one whose goal is to achieve tile A in its goal
location and the other whose goal is to achieve tile B in its goal location.
The starting state for each subproblem might be the initial state of the
problem. In this case, there exists no solution to the problem where
these two subproblems are independent.

Subproblem dependency can be appropriately resolved if the order in
which the subproblems should be solved is known. The appropriate or-
dering allows the information or constraints introduced by the solution
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of one subproblem to be passed to the context that is needed to solve
the dependent subproblem. At each level of the AND-tree of an effective
derivation there is an implicit partial order on the expansion of the sub-
problems that allows the search to be carried out deterministically. We
will refer to this correct partial order on expansion at each level of the
tree as the planning order. If the planning order for each decomposition
in the effective derivation is known and can be used to control the expan-
sion of subproblems, then a deterministic derivation can be guaranteed.
However, a mechanism must be added that passes constraints up the
tree of subproblems whenever an ordering of subproblem expansion is
required.

Analogously, dependencies between actions can be resolved by im-
posing an appropriate ordering on the actions that are dependent. An
ordering on the execution of actions will be referred to as an ezecution
ordering. The planning and execution ordering are logically distinct.
For example, consider again our sample problem. Figure 15-2 illus-
trates three distinct solutions to the example problem. The topmost
is labelled the Go-Around solution. The labelled arrows shown on the
grid represent the primitive actions involved in a particular solution. To
the right of this grid. the labels of the primitive actions are repeated,
and here the directed edges between nodes represent direct action en-
ablement. For instance. in the Go-Around solution, action al directly
enables a2, and a3 directly enables bl. This enablement graph also con-
stitutes a partial order on the actions (transitive edges are not depicted).
For example, a path from al to bl in the Go-Around solution means
that al must precede bl. Analogous representations. are depicted for
what are termed the ~ ggle solution and the Clear-Out solution. These
latter two solutions botn involve primitive actions that move tile C from
its initial location, whereas the Go-Around solution involves no move-
ment of tile C. Note that for both solutions that involve the movement
of C, it is necessary to plan the solution to the A and B subproblems
prior to planning the solution for the movement of C. The reason is that
the location to which C is moved depends on how the A and B subprob-
lems are solved. However, the actions that realize the movement of C
must come before some of the actions that solve the A and/or B sub-
problems. Thus, both planning and execution ordering are required to
deterministically specify a derivation of a solution that involves sub-
problem dependencies.
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Figure 15-2. Different solutions to the example problem of Figure 15-1.
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The ordering on actions may appear to be required only at the ter-
minal nodes of the effective derivation. However, as we will develop
in more detail, the partial order on the actions that are depicted for
the Go-Around as well as those for the Clear-Out solution cannot be
represented in tree form. A (nondegenerate) tree induces a partitioning
of the actions, and there is no partitioning of these actions that can be
ordered in a way that captures the generality of the partial order asso-
ciated with these solutions. This implies that if the most general partial
order that is consistent with a set of actions is to be represented, then
an additional process and representational machinery must be added to
the basic problem reduction mechanism. This added process is needed
to examine and annotate the set of terminal nodes associated with an
effective derivation of a solution.

The necessity for this additional process can be avoided if we restrict
the representation of the permissible partial order of a solution to a par-
tial order that can be represented by specifying an execution ordering
at each level of the AND-tree. We call a partial order that can be rep-
resented in this fashion a hierarchical partial order (HPO). Figure 15-3
shows an HPO for the actions of the Clear-Out solution. Clearly, we
have sacrificed some generality in the partial order. Now, all of the ac-
tions moving tile C must precede those that move tiles A and B. But we
can now specify the execution ordering at the level where the problem
is decomposed into subproblems involving tiles A, B, and C. When both
the planning order and execution order can be correctly specified at each
level of decomposition, then we can guarantee that (1) the derivation
is deterministic, and (2) the ordering of the actions can be recovered
directly from the effective derivation. Thus, in this case the only pro-
cess that has been added to the special case in which subproblems and
actions are both completely independent is a process that passes con-
straints between dependent subproblems, that is, subproblems whose
order of expansion is specified.

If the correct planning and execution orderings for a solution can
be represented at each level of the tree that constitutes the effective
derivation of a solution, then we take this abstract characterization of a
deterministic derivation to be the most efficient derivation that can be
realized using the problem reduction method when the solution involves
subproblem and/or action dependencies. We can refer to this model of
efficiency as the HPO model. If a learner can be biased to acquire solu-
tions whose planning and execution orderings satisfy this HPO model,
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Figure 15~-3. An HPO on the actions of the Clear-Out solution.

then any measure of the learner’s performance in solving problems cov-
ered by the learning must be more efficient than that of a learner that
does not satisfy this HPO model.

The HPO model serves to partition the space of possible derivations
for a problem into those whose effective derivation is representable as
hierarchical partial orderings on the levels of the tree and those that are
not so representable. Within the space of those effective derivations that
satisfy the HPO model, one such derivation may differ from another in
the degree to which an ordering must be imposed, or, equivalently, in
the degree of dependency that holds between the various subproblems
or actions that occur in the derivation. Solutions that exhibit a simpler
structure of dependencies are preferred. The necessity to order sub-
problem expansion incurs the cost involved in passing information up
the derivation tree. Similarly, if constraints are generated via the sim-
ulation of terminal actions, then the ordering of actions that must be
simulated also increases cost. We refer to the measure that we have de-
veloped to reflect the simplicity of the planning and execution ordering
as LEP. The measure involves determining for the terminal actions in a
solution the longest dependency path that holds in the associated par-
tial order, that is, the cardinality of the maximum chain in the partial
order. In general, LEP can range from one to the number of terminal
actions. If there is no ordering relation in the partial order, then the
value of LEP is one. Conversely, if there is only one valid ordering of
the solution’s k terminal actions, then the LEP is k.

Let us return to Figure 15-2 to illustrate the caiculation of this mea-
sure. Recall that the partial orders illustrated in this figure for the three
solutions reflect the existence of a direct enablement relation between
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the pair of actions connected by a directed arc. The Clear-Out solution
has a LEP of four, whereas each of the other two solutions has a LEP
of six. Also computed for each of these solutions is the number of to-
tal orders that are consistent with the solution’s partial order structure.
There are 140 such total orders that are consistent with the partial order
represented by the Clear-Out enablement graph. Only five total orders
are consistent with the enablement graph for the other two solutions.
Thus, what might appear to be small differences in LEP can reflect very
large differences in the number of total orders.

The LEP measure provides us with an additional measure against
which to evaluate the solutions that are learned. We can also obtain
a measure of the longest dependency path involved in the planning of
a solution. In this case, the partial order on the terminal elements is
obtained by projecting onto these elements the planning orders that are
annotated in the derivation tree.

3. A Problem Reduction Planning System

REAPPR (Bresina, Marsella, & Schmidt, 1987) is a problem reduction
system that allows the user to specify partial orders on derivation and
execution when expressing a nonterminai reduction rule and to use such
information effectively. In REAPPR a problem is specified as a pair of
descriptions < §0.G0>, where the first specifies the problem’s starting
state and the second the goal state. The descriptions are allowed to be
partial state descriptions in the sense that there may be a set of state
pairs in the underlying state space that satisfy these descriptions. In
order to effectively use the planning and execution orders specified in
the nonterminal rule, REAPPR carries out what we term full problem
decomposition when it applies a nonterminal rule. This term was chosen
to contrast with goal decomposition. In full problem decomposition
the nonterminal rule provides the information needed to decompose the
problem into a set of subproblem pairs, < §1,G1>, <52.G2>,....<
Sk,Gk>. Thus, the parent goal is decomposed into a set of goals, and
the parent’s starting state may undergo a decomposition.

This expressive power allows a nonterminal rule to essentially pre-
dictively specify characteristics of “islands” in the solution path. This
capability has been explored in various planning and design tasks, in-
cluding the tower of Hanoi (Bresina, Marsella, & Schmidt, 1987), the
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sparse sliding-tile domain (Marsella. 1988), and a music composition
task (Marsella & Schmidt, 1988).

Search is realized in PRL’s planner via the application of nonterminal
and terminal rules. The main syntactic features of a nonterminal rule
are depicted in Table 15-2. The left-hand side of the rule is a description
of the problems to which the rule can be applied. The right-hand side of
a nonterminal rule includes four components: the decomposition struc-
ture, the planning order, the execution order, and a local evaluation
function. The decomposition structure is a list of labelled subproblems,
each of which consists of a reference label and a partial specification of
a starting state and a goal state. The rule’s planning order determines
the order in which subproblems are expanded. If some subproblem, A,
is ordered before another, B, then A must be fully expanded (i.e., a
complete subtree) until all its terminal subproblems are achieved before
B can be expanded. The execution order determines the order in which
solutions to subproblems must be combined to achieve a partial order on
the achievement of actions. Thus, if the solution to some subproblem A
must precede the solution to subproblem B. then every action in A must
be ordered before every action in B. Both planning and execution orders
are of the form ordering — scheme = (order term, ... term;), where or-
der is either seq (a linear order, or chain, of term, ... term;) or par (the
term, ... term; are unordered. i.e.. an antichain) and where each term;
is either one of the subproblem labels in the decomposition structure
(and thus a child node in the tree) or any embedded ordering scheme.'
Every subproblem label must occur exactly once in each order.? The

expression (seq ... term; ... term, ...) means that any subproblem
whose label is part of term; is ordered before any subproblem whose
label is part of termy, whereas (par ... term; ... terms...) means

that any subproblem whose label is part of term; is not ordered with
respect to any subproblem whose label is part of term,. Finally, there
is a local evaluation function. The learning system places restrictions
on the form of this function to facilitate the manipulations that occur
during learning, but this issue will not be discussed here.

1. A par execution order is to be interpreted as any total order sequence of the
term;.

2. Strictly speaking, this requirement does not apply to the execution order but is
constrained to be the case.
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Table 15-2. REAPPR’s Nonterminal Rule Form

Left-Hand Side of Rule
Applicability Test:

Problem:

So:
partial state spec.
0-

p.artial state spec.

Right-Hand Side of Rule

Decomposition Structure
List of subproblems each of the form:
Label
Starting State: partial state spec.
Goal State: partial state spec.

Planning Order:
Partial Order over subproblem labels

Execution Order:
Partial Order over subprobiem labels

Evaluation Fen:
lambda form

The terminal rules have a left-hand side whose syntax is identical to
the nonterminal rules. The right-hand side contains the representation
of the action as well as a local evaluation function.

Extended problem reduction search proceeds in three phases: node se-
lection, node ezpansion, and tree re-marking. The selection phase picks
a node in the AND/OR-tree to expand based on the planning order an-
notations in the tree and on the values returned by the local evaluation
functions. The planning orders determine a set of nodes that can be
expanded next, and the evaluation functions determine the “best” node
from this set to expand. The expansion phase determines which rules
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apply to the node. For those rules that apply, the match context of the
rule’s applicability test is used to resolve the right-hand side of the rule,
which then is used to form a new node connected by an OR-branch to
the node being expanded. The search can be parameterized to limit the
number of OR-branches formed, in terms of both the number of rules
that are applied and the number of different ways in which any par-
ticular rule is applied. A cost is associated with each new OR-branch
node by applying the rule’s local evaluation function to the node being
expanded. If, on the other hand. no rule applies to the node that was
selected for expansion, then that node is marked with an infinite cost.
Either way, the search re-marks the cost value in the tree and returns
to the selection phase. The cost of an OR-branch is the minimum cost
of the children, and the cost of an AND-branch is the maximum cost of
its children. Marking with an infinite cost will force the system to find
an alternative node to expand during selection. The effect of setting an
infinite cost is to follow an alternative AND-tree in the AND/OR-tree (i.e..
backtrack). The choice of alternative AND-tree is guided by the local
cost functions, planning strategies, and overall structure of the tree.

When the search forms a complete AND-tree, it terminates success-
fully. If, however, the search reaches a point where the root node has
infinite cost, then every alternative AND-tree has a node with infinite
cost, and the values have percolated to the top of the tree. An impasse
results.

4. On the Representation of Partial Orders in Plans

The annotations of partial orders within an AND-tree’s hierarchical struc-
ture realize a partial order on the terminal nodes of the tree. For
example, consider an AND-tree, consisting of a set of nodes N, that
is annotated with partial orders on planning and execution. For sim-
plicity, let us first consider just one of the annotations, say the execution
order—the same structural characteristics hold for the planning order,
although the order need not be the same.. Let N; denote some node in
the tree and T; denote the set of terminal nodes of the subtree rooted at
V;. Given the root node, Ny, in the tree, let Py be the partial order on
execution realized on the terminal nodes, Tj, of the annotated subtree
rooted at Ny. Let Ny,..., N; denote the children of Ny, and let E; be
the partial order on execution annotated in Ny and thus defined over the
set Ny,...,Ny. Thus, E, is a partial order on Ny’s children, specified
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a<c&a<d&b=<d&aTlb&cId&bIc

Figure 15-4. The Z partial order.

by an ordering-scheme. If E, orders N; before Vy, then P, orders every
element of T} before every element of 7;.® In this way, the annotations
in the AND-tree effectively express a hierarchical partial order, a partial
order that can be realized by the annotations in the AND-tree.

We noted above that not every partial order is hierarchical. For
instance, the partial order whose Hasse diagram is depicted in Fig-
ure 15-4 is not hierarchical. Because of its shape, we call this the Z
partial order. This is the “simplest” partial order (fewest edges and
nodes) that is not hierarchical. The Z partial order has special rele-
vance as the basis for recognizing whether some arbitrary partial order
is an HPO. A partial order. P, on a set. A. satisfies the Z-less con-
dition if the partial order does not have any subgraphs isomorphic to
the Z partial order. More precisely, a partial order is Z-less if the fol-
lowing is false for any subset of A and restriction of P to that subset:
alb&cITd&a<c&ka<d&b=<d&bTec, where I is the associated
incomparability relation of the partial order. Although it will not be
demonstrated here, the absence of a “Z” subgraph can be used to rec-
ognize whether a partial order is hierarchical.

Although a hierarchical partial order cannot represent every partial
order,* it can obviously represent the extremes of any total order and any
antichain. For those orders that cannot be represented, there is always
an extension to the partial order that is hierarchical, as suggested by the
various ways the Z-less condition can be satisfied—a Zb, ¢ Zd. or b Zc.

Using the Z-less condition. we can reexamine the enablement graphs
of Figure 15-2. The Toggle solution’s enablement graph satisfies the

3. In more traditional terminology, Py can be expressed by the composition graph
Po = Eo[P\,..., Px], where P, ... Py are the partial orders realized by the subtrees
rooted at Nt ... Ni, respectively, the children of No. Insuch a graph, Ej is termed
an external factor and the P, ... P, are internal factors.

4. Indeed, its partial order dimension cannot be greater than 2.
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Z-less condition and is an HPO. However. both the Go-Around and
Clear-Out graphs are not HPOs. In the case of the Go-Around, the
subgraph consisting of nodes a4, a5. bl, and b2 cause the graph to fail
the Z-less condition. Extending the partial order with the inclusion of
an arc from bl to ab transforms it into an HPO that is consistent with
four of the five total orders of the original graph. In the Clear-Out,
there are two subgraphs isomorphic to the Z partial order. One consists
of the nodes al, a2, cl, and c2. The other consists of nodes cl, a2, bl,
and b2. Figure 15-3 depicts an extension to the original partial order
that, by ordering c2 before al and bl, realizes an HPO that is consistent
with 20 of the original 140 total orders.

Recall that the HPO model also requires that the pianning partial or-
der annotation be specified within the tree’s hierarchy. As a consequence
a node’s planning order annotation is specified over the same nodes as
the execution order (and as a consequence over the same equivalence
classes of nodes denoted by the children of that node.). Otherwise, the
node expansion and solution composition phases of the reduction search
could not be represented within the same tree. The effect is that the
structure of the tree shared by the two order annotations constrains the
HPOs that can be represented in that tree. However, in the trivial case
in which the tree has a maximum depth of 1 (every node is either the
root or a termina. there is no constraint—any HPO on planning and
any HPQO on execi..ion can be expressed by the respective annotations.

5. Two Approaches to Learning

Learning is addressed as an integrated component of the problem re-
duction planner. The planner receives as input an ordered sequence of
problems that it attempts to solve in order. Prior and future problems
in the sequence are not known, and the system has no model of the
class of problems defined by that sequence. In trying to solve a prob-
lem, the planner can (1) fail to find a complete AND-tree, (2) find a tree
that because of dependency does not have a valid solution, or (3) find a
complete tree that is a valid solution. The first two cases result in oppor-
tunities to learn. The failure to generate a complete AND-tree for some
problem in the sequence results in an impasse, and control is passed to
the learning component, which receives as input from the planner some
nonterminal node on the frontier of the incomplete AND-tree, along with
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the set of existing rules. The learning task is. then. to acquire a new
nonterminal reduction rule to expand that node. The failure to generate
a valid solution results in the modification of a rule that is used in the
derivation in order to avoid the dependency. In either case, learning is
based on only the existing rules and a node in the tree that failed.

The main criterion placed on the learning and modification of these
rules is the degree of dependency in both the derivation of the plans
and the execution of the solutions in those plans. This focus on degree
of dependency suggests the proposition that learning nonterminal rules
can be viewed in terms of restrictions on the actions taken by solu-
tions to the subproblems: that is, independence between subproblems
can be achieved by restricting the actions taken to solve the subprob-
lems. Given that the restrictions can be characterized in some way
that suggests subproblems, a search in the space of restrictions can be
used to realize a biased search of a space of alternative decomposition
hypotheses and, therefore. nonterminal rules.

Two problem reduction learners, PRL and BU-PRL, have been de-
signed and implemented to evaluate this restriction-based approach to
biasing the learning of nonterminal rules. Both systems use a refinement-
based approach to learning whereby an initial rule can be modified
by feedback from problem-solving experience. The distinction between
PRL and BU-PRL is that PRL uses a hypothesis-driven approach to
forming that initial rule. In particular, PRL searches a space of alter-
native decomposition hypotheses to derive a tentative rule hypothesis.
That decomposition space is searched indirectly by searching a closely
coupled space, a space of alternative restrictions on solution paths in
the state space. By determining the initial rule. this search in a space
of alternative path restrictions realizes feed-forward control over the
structure of the rule and. therefore, control over the refinements that
can result through the use of that rule.

In BU-PRL, this hypothesis-driven search for the initial rule is re-
placed by a search in the space of solutions for a minimal length solution
to the problem. From this solution, an initial decomposition rule is
formed. This search is in itself not meant to be interesting; in essence,
it emulates receiving a problem solution from an expert. The signifi-
cant distinction between BU-PRL and PRL is that BU-PRL explores
the opposing proposition that a desirable plan structure need not be
coerced, but rather is derivable from a state space solution.
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Figure 15-5. The major components of the PRL architecture.

5.1 An Overview of PRL

Figure 15-5 depicts the major components of PRL. The central compo-
nent is Critique, which. at the top level, sequentially receives problems to
be solved. When invoked, Critique tests whether a problem can be solved
by passing it to the problem reduction planner. The planner attempts to
generate a complete AND-tree and returns control to Critique. Depend-
ing on the state of this tree, Critique then passes control to Hypothesis
Formation or Rule Modification. or it requests a new problem to work on.

If the tree is not complete, Critique selects a subproblem in the tree
that could not be expanded and passes controi to Hypothesis Formation.
which derives its name from the fact that it uses a hypothesis-driven
approach to forming rules. When control is passed to Hypothesis For-
mation, it attempts to generate an ordered list of nonterminal decompo-
sition rule hypotheses for this subproblem if such a list does not already
exist. If a nonempty list is generated (or already exists), Hypothe-
sis Formation returns the first item of the list to Critique and stores
the remaining hypotheses; otherwise, it returns failure. If a hypothe-
sis is returned, Critique recursively invokes itself to test whether this
subproblem can be solved using the rule set embellished by the new
rule hypothesis. Otherwise, it is the case that all the hypotheses have
been exhausted and Critique exits. If this is a top-level invocation of
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Critique, this exit results in failure and a request for the next problem in
the sequence. If it is not a top-level invocation. then Critique exits to a
higher level invocation of Critique and reinvokes Hypothesis Formation.

On the other hand, if Critique gets a complete AND-tree from the
problem reduction planner. the dependencies in the AND-tree are ana-
lyzed to see whether the plan is correct. If the plan is correct, Critique
returns success and a potentially embellished rule set. It then requests
a new problem. If the plan is not correct, Critique selects an incorrectly
solved subproblem and the rule that expanded that subproblem. It then
classifies the error in that subproblem'’s solution as invoiving some form
of dependency, and Critique passes control to Rule Modification, which
returns either failure or a modified version of the rule. If failure is re-
turned, Critique exits; otherwise, Critique is recursively invoked on the
subproblem with the rule set embellished by the modified rule.

To summarize, each of the various components of PRL has a specific
role. 'When Hypothesis Formation is presented with a problem that
cannot be solved, it uses the problem to realize a systematic bias on
the consideration of decomposition hypotheses prior to any complete
search for a solution using one of these hypotheses. That complete
search, performed by Critique and the planner, tests the hypothesis,
which leads to its acceptance, its rejection, or its modification by Rule
Modification.

5.2 An Example of Learning in PRL

With the above as an overview, we turn to a discussion of a nonterminal
rule being hypothesized and modified for the example problem of Fig-
ure 15-1. For this example, we assume that there are no nonterminal
rules in the initial rule set and that the only terminal rules are those that
represent the primitive moves (i.e., the permissible state space opera-
tors). Thus, presenting the example problem to the system will immedi-
ately result in an invocation of Hypothesis Formation on that problem.
The discussion will concentrate on Hypothesis Formation since it is how
PRL biases learning and thus distinguishes PRL from BU-PRL.

5.2.1 HYPOTHESIS FORMATION

Hypothesis Formation proposes restrictions on the paths in the state
space taken by solutions and, based on those restrictions, it proposes
a nonterminal decomposition rule for the impasse subproblem. The
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Table 15-3. Major Steps of Hypothesis Formation

* Perform limited-depth backward partial search.

¢ Perform limited-depth forward partial search.

Apply pairing and decomposition heuristics.

Form rule based on preferred pairing set.

major steps of Hypothesis Formation are depicted in Table 15-3. In the
implementation, these steps are not undertaken in a strictly sequential
fashion. In particular, the search for a hypothesis is wedded closely to
heuristics designed to circumvent the potentially large hypothesis space
and bias the search of that space. However, for explanatory purposes,
we have teased these steps apart in order to simplify the description.

Hypothesis Formation starts with a backward search from the goal,
followed by a corresponding forward search from the starting state. Both
are made to a limited depth (in this case a depth of one in both direc-
tions) using existing rules.® In the present example, this “bidirectional
search” would involve applying the terminal rules that represent the
up, down, right, and left operators backward from the goal state and
forward from the starting state.

Figure 15-6 depicts this bidirectional search on the example problem.
Ny and N, denote the nodes on the forward and backward search fron-
tiers, respectively. Each node is marked by the action taken and the
resulting change in tile location. The expression “Loc A 41" signifies
that the location of tile A is cell 41, where cell 41 denotes the fourth
row and first column, in effect, the top-left cell. This row and column
format is used throughout this example simply to ease readability; recall
that the system has no such global knowledge of the grid structure.

The backward search uses partial matches between the goal (or adds)
expressed in the rule to the desired goal state (Nilsson, 1971). Partial
matches are also allowed in the forward direction under the following
conditions. The expressions that must match are those expressions with

5. Either terminal rules or nonterminal rules can be used, but recail that in the
present example we are restricting ourselves to terminal rules that correspond to
primitive operators.
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A Up: A Up:

Loc A 11 Loc A 21 Loc A 31 Loc A 41
Loc B 12 LocB 42
B Right: B Ug;

LocB 13 Loc B 32
Starting B Up: B Left: Goal
State Loc B 22 Loc B 43 State
Forward Nt‘ Backward N b
Frontier Frontier

Figure 15-6. Partial bidirectional search with nodes on the frontiers marked
by the action taken and the resulting tile location.

fized relations, that is, relations that cannot be deleted or added by some
operator (here, any adjacency relation). as well as those dynamic (i.e.,
not fixed) expressions that are in the goal state and that persist in the
corresponding backward search frontier. which in this example are the
location relations. Other dynamic relations need not match (here, the
clear relations). This constrained partial match in the forward direction
serves to replicate the goal-directed behavior of the backward direction
SO as to restrict the solution structures that the searches suggest.

Now, consider elements of the Cartesian product, N; X N, of all
possible pairings of the nodes, one from each frontier. Each pairing con-
stitutes an incomplete search, or disconnected paths in the state space.®
These pairings are the bases for suggesting restrictions on complete
paths in the state space that may solve part of the goal. Furthermore,
subsets of Ny x N, constitute a basis for an alternative decomposi-
tion of the goal. An important prelude to forming a decomposition is
to form restrictions on the individual pairings. These restrictions play
critical roles in (1) biasing the search through the space of alternative de-
compositions, (2) forming a generalized decomposition hypothesis, and
(3) determining the conditions under which a decomposition is tested.

6. Under the assumption that the search used terminal rules.
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The approach to deriving restrictions on a complete path in the state
space from a pairing’s incomplete search path involves consideration of
the expressions tested in reaching a pairing’s nodes on the search fron-
tiers. These “match contexts” are used to tie nodes from the backward
search to nodes from the forward search. For instance, consider tying
together the forward node Up A and the backward node Up A in Fig-
ure 15-6. Note that the expressions denoting the location of tile A are
tested in both directions and that they persist in the resulting states in
both directions. This persistence in both directions leads to the restric-
tion that the same tile always be moved. Further, the rules involved are
both up moves, which suggests a restriction that each action employed
to generate the full path always be a Move Up.

Based on the above restrictions. pairing heuristics then order the pair-
ings, preferring the most restrictive pairings. For instance, pairings in
which each search direction uses the same rule are preferred. Also pre-
ferred are pairings with similar forward and backward match contexts.
For our example, pairings that move the same tile in the forward and
backward search directions would be preferred. Note that the purpose
of these heuristics is to enforce a preference on those pairings that sug-
gest the greatest restriction on the solution (and match context) for a
subproblem.

Decomposition heuristics are also applied to prune subsets of pairings
from consideration and establish a preference on the overall decomposi-
tion structures. For instance, subsets of Ny x N, are required to cover
the goal. and the preference is for those subsets (1) that actually par-
tition the goal, (2) in which the match contexts of the Ny nodes in
the subset do not overlap, and (3) that have lower cardinality. Note
that (2), and to a lesser extent (3), are quite the opposite of the pairing
heuristic that preferred restrictions, or overlap, in a pairing. In terms
of the sliding-tile domain, covers whose match contexts did not overlap
regions of the board would be preferred.

When these two sets of heuristics are applied to the impasse problem,
the most preferred subset of pairings would consist of two pairings, an
up move applied to tile A in both directions and an up move applied
to tile B in both search directions. A tentative hypothesis about the
decomposition structure is now formed, based on the rules used to reach
the frontiers in each pairing of the preferred set, the match contexts of
these two pairings, and the pairing restrictions. The other, less pre-
ferred pairing sets are stored, since the preferred pairing subset may fail



LEARNING NONTERMINAL REDUCTION RULES 519

Table 15-4. Representation of Initial Rule Hypothesis Formed by Hypothesis
Formation

I
| Subproblem1:

' S1: location 7tilel is ?7x1 ...
, G1: location ?tilel is 7zl

Problem:

S0: location 7tilel is 7x1
location 7tile2 is 7x2
\

' Subproblem?2:
GO: location ?tilel is 721 | ! 'S2: location ?tile2 is 7x2 ...
location ?tile2 is 722 | | G2: location 7tile2 is 7z2

Planning Order: unordered
Execution Order: unordered

Evaluation Fcn: ;ood rule if following aggregates are true

aggregate upadj "x1... w7zl aggregate upadj 7x2... ...722

Key: 7name = match variables
.= 0 or more values or expressions

the subsequent Critique phase. Table 15-4 depicts the rule that PRL
hypothesizes for the present example. Its decomposition structure has
two subproblems consisting of a straight upward path for one tile and
a straight upward path for the other. The problem is the rule’s appli-
cability test, or left-hand side. To the right of the applicability test are
the subproblems of the decomposition, and below these elements are the
planning order and the execution order. Finally, at the bottom of the
figure is the evaluation function. which we discuss below.

The subproblems and the left-hand side of the rule are formed from
the left-hand sides of the rules used to generate the two pairings in the
preferred set. For example. variables in starting and goal states of the
Move Up rules are renamed consistent with the restrictions. Thus, the
same variable denotes the tile in the starting and goal states, but no
similar constraint is placed on the cell location.” These starting and goal

= An alternative approach to forming this generalized rule would be to use stan-
dard goal regression or explanation-based generalization approaches to form the
preconditions for the subproblems. Since the restrictions tie together expressions
from the forward and backward partial searches for each pairing, in this case
via the location of tile expressions, preconditions from the backward search can
potentially be regressed to the starting state. In the example, the significant
difference between these approaches would be that the upadjacent relation that
allows the final up movement to the goal location for each pairing would also
be included in the starting state.
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states then become the subproblems of the new rule’s decomposition and
are composed to form the left-hand side of the rule. The match contexts
are used to distinguish the dynamic relations so as to further restrict the
solution structure. Those dynamic expressions that were not tested in
the backward search are excluded from the new rule. Finally, because
there was no overlap in the match contexts for the pairings, the execution
and planning orders are heuristically assumed to be unordered.

However, note that the subproblems in the rule’s decomposition make
no reference to straight upward paths. There is no reference, because the
bidirectional search was incomplete, because paths are not part of the
original state specification language, and because the rule matcher has
no way of restricting access to the regions of the board (the columns
of cells) that such paths will traverse. For these reasons, the rule is
overgeneralized. More problematic is the lack of a guarantee that the
supposition about a straight upward path suggested by the original
pairing will actually be realized, and therefore tested, when this de-
composition rule is used. This gap between what the pairing suggested
and what the existing state specification language permits must some-
how be closed.

To fill this gap, one additional rule, called a simple generator, is
formed for each pairing. In addition to controlling the condition under
which the testing of the new decomposition rule occurs, simple genera-
tors provide a procedural approach to realizing relations that are not in
the original state description language. Table 15-5 provides a simplified
depiction of the simple generator that would be formed from either pair-
ing in our preferred pairing subset (i.e., up moves of tile A or up moves
of tile B). As in the decomposition rule, this simple generator’s appli-
cability test, or left-hand side, specifies when the rule can be applied.
The rest of the rule includes the recursive structure and the evaluation
function. The recursive structure consists of two steps. Move Up moves
the tile up one location, and Recurse is a recursive step.® Finally, the
evaluation function specifies when it is most useful to apply the rule.

The formation of a simple generator is similar to the formation of
the decomposition rule. It hinges on the restrictions that arise from the
pairing. However, the simple generator is also defined so that it searches

8. Note that the steps have the form of a subproblem’s state pairs, since a simple
generator is implemented as a nonterminal rule. The recursion of this rule ter-
minates via a generic terminal rule in the system’s rule base that checks whether
subgoals are true in the initial state.
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Table 15-5. Representation of Simple Generator Formed by Hypothesis For-
mation

Problem:
10: location ?tilel is 7x0

Move Up:
'T1: location 7tilel is 7x0
! upadj to 7x0 is ?x1

S s
upadj to 7x0 is 7x1 ! ! clear 7x1 ...
r——=> G1: location 7tilel is ?x1
' Recurse:
GO: location ?tilel is 7xn | ) 12: location tilel is 7x1 ...

' 1 G2: location ?tilel is 7xn

Evaluation Fcn: %ood rule if following aggregates are true
aggregate upadj 7x0... ...7xn

Key:
?name = match variables
.. = 0 or more values or expressions

a space that is restricted and abstracted. In defining this abstracted
space, PRL employs a simple heuristic approach that uses information
from the pairing’s match context. In particular, the starting state is
abstracted by removing those expressions from the recursion context
for which it can be ascertained that they will not be tested during
the search. In the present example, such expressions include the right,
left, and down adjacency relations since the generator is always moving
the tile upward. More importantly, the backward search is used to
focus the abstraction of dynamic relations. Dynamic relations in the
preconditions that are not goal specific are asserted but not tested.
Accordingly, the Clear relation is not tested in the left-hand side of the
generator in Table 15-5. However, it is asserted in the Move Up step,
and the upadjacent relation is tested. Furthermore, because the location
of tile A was tested in the backward search, it is not ignored.
Although not depicted in Table 15-5, the simple generator is designed
so that expressions in the preconditions and outcomes of the underlying
rules used to form it (in this case the domain operator Up) are aggre-
gated, as the generator recurses, into expressions we term aggregates.
The determination of what is aggregated and how it is aggregated is
made when the generator is formed and based on the restrictions (see
Marsella & Schmidt, 1991 for additional discussion). For this Up simple
generator, the specific clear cell and upadjacent relations that must be
true to move a tile up a particular path are aggregated as the Up move
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is applied. Furthermore, the clear cells that are the outcome of the Up
move are also aggregated.

This reformulation into aggregate expressions is used in two ways.
The aggregates that are based on dynamic expressions are used during
critiquing to test the simple generator. Those that are based on fixed
expressions are used by the planner, which has mechanisms for storing
and combining the fixed aggregate expressions that result from solving
problems. These expressions are the basis for the testing done by the
evaluation functions of the rules depicted in Table 15-4 and Table 15-5.
The aggregations of fixed expressions state that the corresponding rule
is likely to be particularly good? if it is known at the time of rule applica-
tion that there are aggregate expressions of upadjacent cells—in essence,
columns—that include the initial and goal cell locations. For instance,
“aggregate upadj 7x1... ...7z1” expresses that there is a sequence of upad-
jacent relations in which the first relation has a first argument of 7x1 and
the last relation has a second argument of ?z1. Recall that the represen-
tation of the domain did not assume or specify such global properties.
Whether such aggregate expressions are true is not part of the original
domain specification and must be derived from the solutions to previous
problems/subproblems and remembered. The utility of this “incremen-
tal reformulation” depends on the system discovering, for the set of prob-
lems it solves, a parsimonious and uniform set of solution structures that
operate in restricted spaces; for example, “straight up paths.” However,
a full discussion of this particular issue is beyond the scope of this paper.

5.2.2 CRITIQUE

With the completion of Hypothesis Formation's formation of the rule of
Table 15-4, control is returned to Critique, which in turn invokes the
problem solver, which uses the decomposition rule and simple generators
to search for a solution. As the two Up generators run on tiles A and B,
respectively, they aggregate the preconditions that had to be true as
well as the outcomes. In this example, the simple generators succeed,
returning a complete AND-tree to Critique, which tests for subproblem
dependency.

Critique’s detection and classification of subproblem dependency is
based on the state pair descriptions at particular levels of the tree (not

9. The term particularly good is used to distinguish this evaluation function from
the applicability test, which is a binary, or yes/no, decision.
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Figure 15-7. Sliding-tile problem solved by a follow-the-leader strategy.

on the lowest level action sequences). The execution order annota-
tions throughout the tree establish whether the partial starting and
goal states in the various nodes of the tree will be (or can be) coinci-
dent. If two states are coincident but not consistent, then the plan fails
the critiquing test.

Thus, critiquing verifies the assumptions that are implicit in the de-
composition. With this approach to critiquing, it is useful to distinguish
two sources of dependency—intersubproblem dependency and intrasub-
problem dependency. Intersubproblem dependency is a dependency be-
tween the state descriptions posited by the subproblems’ decomposition
structure. In the example, there is no intersubproblem dependency:.
which is evidenced by the absence of overlap between the simple gener-
ator’s paths for tile A and tile B. Indeed, avoiding such a dependency
was a major goal of the pairing and decomposition heuristics.

In a sliding-tile domain, intersubproblem dependency occurs when
two subproblems generate paths that cross. as in Figure 15-7. In this
figure, tiles A and B have goal locations in the top row of the grid. but
their column positions are interchanged. Some of the ways to deal with
such a dependency are to avoid it, exploit it, or push it lower in the tree.
Avoidance could involve either forcing the use of different paths, which
would likely require sequencing the planning of subproblems to ensure
derivation of nonintersecting paths, or sequencing the execution of the
subproblems’ solutions. Alternatively, such dependencies can sometimes
be exploited. For instance, if two paths cross, perhaps the shared path
can be used for both tiles, as in the follow-the-leader solution depicted
in Figure 15-7. Finally, the decomposition can be modified to push the
dependency lower in the tree.

Intrasubproblem dependency is dependency between a subproblem
and the parent problem’s starting state or goal state. In the exam-
ple, critiquing does detect an intrasubproblem dependency since the
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aggregated clear preconditions for tile A are violated in the actual start-
ing state of the world—tile C is blocking tile A's path.

5.2.3 RULE MODIFICATION

Based on the critiquing, Rule Modification is invoked to modify the
rule’s decomposition and partial orders. The result is a modified decom-
position structure: A new subproblem, call it a clearing subproblem, is
spliced onto the decomposition. The modified rule is shown in Table 15-
6. This new subproblem establishes the goal of making the aggregated
clear relations true. Note the annotations that control the ordering of
actions, the ordering of plan node expansions, and the flow of state
specification information. The terms referred to as aggregate forms in
subproblem1, the clearing subproblem, encapsulate a region of the state
space subtended by the sibling subproblems in the decomposition that
generate the motions of the goal tiles. The planning order ensures that
these aggregate forms are specified when the clearing subproblem is ex-
panded, even though the actual clearing actions must be executed prior
to the movements of the goal tiles that define the region to be cleared.

This clearing subproblem illustrates the use of planning order in spec-
ifying the reduction of problems into subproblems. Clearing could be
described in terms of the goal location of blocking tiles off the paths of
A and B. Yet, this subproblem has no correspondent in the original
goal specification. It is not expressible purely by manipulation or par-
tition of the syntactic expressions in the original problem-expressions.
Furthermore, the task that is involved in solving that subproblem is
ill-defined at the time the rule is used to expand the reduction search
because what constitutes a “blocking tile” and where it has to be moved
are relative to the paths taken for A and B. Control of planning order
enables procedural derivation for the specification of the region that has
to be cleared. The expression of that region depends on the formation of
expressions, not in the original problem description, tailored to describe
the class of solutions (i.e., the AND-subtrees) that are consistent with
the overall decomposition structure and partial orders on planning and
execution. Note that this is a rather sophisticated strategy, despite, and
perhaps by virtue of, the simplicity of the underlying solution structure.

Two alternative modifications deserve mention. One approach is for
Rule Modification to leave the rule of Table 154 as is and form a new
rule that has a decomposition structure of two subproblems, the new
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Table 15-6. Representation of Rule after Being Critiqued and Modified

Subprobl:
| i I1:" location ?tilel is 7x1
| X location 7tile2 is 7x2 ...
| » G1l: aggregated clear expressions

Problem:

10: location 7tilel is 7x1

location 7tile2 is 7x2 , from subprob2 and subprob3

I
= Subprob2:
GO0: location ?tilel is 7z1 ! ' I2: from I0
location ?tile2 is 7z2 | ! G2: location ?tilel is 7zl
I i Subproeb3:

I3: from IO

G3: location ?tile2 is 722
Planning Order: EZ =< 1;&{3 <1
Execution Order: (1<2)}&(1<3

Evaluation Fen: ood rule if following aggregates are true
aggregate upadj ...’x1...7zl... aggregate upadj ...7x2...7z2...

ey: 7name = match variables
... = 0 or more values or expressions

clearing subproblem and the original problem solved by Table 15-4. We
present the rule as above to simplify the discussion. Another modifica-
tion is for the modified rule just to clear tile A’s path. A subsequent
attempt to solve the problem would then detect a dependency with tile
B’s path, and the rule would again be modified so that it would end
up as in Table 15-6. At present, Rule Modification does not take this
alternative, because the resulting decomposition structure and fixed de-
pendency scheme of clearing just tile A’s path are more complex and
would require breaking apart the original decomposition structure of
Table 15-4. However, this approach is in some respects preferable since
it does not make the stronger assumption, or requirement on the num-
ber of clear cell locations, that clearing can be achieved simultaneously
for both subproblems.

In general, critiquing the AND-tree structure and the modification of
rules is a rich topic that has been considered only briefly. The repairs
suggested above manage dependency by restructuring and reordering
the decomposition structure. The restructuring that can occur in PRL
includes the grouping of dependent subproblems; the grouping of in-
dependent subproblems and the sequencing of them prior to dependent
subproblems; and the splicing of an additional subprobiem for failed pre-
conditions. This restricted set of restructuring operators are designed to
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ensure that the planning and execution order imposed by a decomposi-
tion does not become arbitrarilv complex and. of course, that it remains
a hierarchical partial order. Further, the desire is to form rules that will
result in placing manageable dependencies high and less easily manage-
able dependencies low in the tree (i.e., localized). In this domain, such
restructuring also results in the collecting together of tile goals. an in-
stance of which is presented in the next section. Thus, another form
of aggregation is created. an alternative to cell location aggregation by
simple generators as described above.!?

Regardless of the particular modifications that are undertaken. the
major effects on the rule hvpothesis are the same. Both the original
rule and its modifications must be within the constraints imposed by
the HPO model. And because of this relation between Hypothesis For-
mation and Rule Modification, Hypothesis Formation need not directly
consider all possible decompositions.

5.3 BU-PRL

Evaluation of PRL's approach to learning extended problem reduction
rules is being conducted on several fronts. For instance. we are interested
in evaluating whether and when a hypothesis-driven. or feed-forward. ap-
proach to learning nonterminal rules is preferable to an example-driven.
or feedback, approach. To this end, we built a comparison system. BU-
PRL {Bottom Up PRL). whose architecture is depicted in Figure 15-8.
By design, BU-PRL shares all the major components of PRL except
Hypothesis Formation. which is replaced by an Expert component.
When invoked by Critique on some problem that cannot be expanded.
Expert generates a minimal length solution to the problem and then
forms a tentative decomposition that has a subproblem for every ter-
minal action in the solution. In keeping with the focus of learning
rules with low dependency between subproblems, the strong assumption
is made that both planning and execution strategies are unordered.!!
Thus, the rule by construction generates a complete plan but, because
of the strong assumption about execution order, critiquing typically

10. See Marsella (1988) for additional discussion of aggregation and Flann (1989) for
a similar view.

11. By virtue of these assumptions, the task of forming a general rule from the
terminal rules that constitute the actions is straightforward.
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Figure 15-8. The major components of the BU-PRL architecture.

detects intersubproblem dependency. Rule Modification then restruc-
tures the decomposition, typically coalescing dependent subproblems
and transforming the execution and planning strategies, under the con-
straint that the original solution’s total order is a member of the total
orders suggested by the transformed rule.!? Control returns to Critique,
which tries to solve the original problem using this modified rule. Since
there may not be existing rules for the newly coalesced subproblems in
the decomposition, this modified rule may not lead to a complete AND-
tree when it is used. In such a case, Expert is reinvoked to form rules
for the subproblems. Eventually, this process results in a rule set (with
at least one new rule) that includes the original solution provided by
Expert in the space of solutions it can generate.

6. Preliminary Evaluation of PRL and BU-PRL

For illustrative purposes, some preliminary data from PRL and BU-
PRL are presented in Figure 15-9. At the top of the figure, BU-PRL’s
performance is depicted on the problem of moving tiles A and B four

12. The original decomposition is based on terminal actions. An alternative would be
to use terminal rules and any existing nonterminal rules as the basis of the original
decomposition or its modification. The approach here attempts to maximize
independence irrespective of existing rules.
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cells straight up, with tiles C and D blocking the direct movement of
tile A. BU-PRL’s Expert subsystem generates 52 different solutions,
14 of which are total order variations of a Go-Around strategy and 38
of which are total order variations of a Toggle strategy. These solutions
are depicted on the two tile grids at the top of Figure 15-9. Although
the enablement graphs are not depicted in the figure, both solutions
have enablement graphs with LEPs of seven.

The decomposition that BU-PRL realizes differs depending on which
of the 52 solutions Critique and Rule Modification receive from Expert,
even for solutions belonging to the same “strategy.” This variation is
attributable in part to the constraint that a decomposition must cover,
or be able to generate, the solution provided by Expert and in part
to the fact that the realization as a decomposition with fixed partial
orders restricts the underlying enablement structure. Depicted under-
neath each tile grid is a partitioned enablement graph that represents
the solution/decomposition with the weakest partial order (in the sense
of having the most total order extensions) realized by BU-PRL on the
corresponding solution. The dotted lines in the graphs denote the par-
tition that the rule’s decomposition achieves. Thus, for the Go-Around
example, the decomposition results in three subproblems: (1) the first
four movements of tile A in sequence, (2) an ensuing subproblem that
realizes the last two movements of tile A in parallel with the first two
movements of tile B, and (3) finally, a subproblem that realizes the last
two movements of tile B. Rule Modification has grouped together de-
pendent subproblems and independent subproblems. An example of the
former is al... a4 grouped into P1 in the Go-Around decomposition, and
an example of the latter is blb2 into P2 and a5a6 into P3 of the same
decomposition. The solutions that both decompositions realize have six
total order extensions and a LEP of eight. In contrast, a Clear-Out
solution/decomposition that PRL learns is depicted at the bottom of
Figure 15-9. It is consistent with 420 total orders and has a LEP of six.

Although these empirical investigations are at a preliminary stage,
we can make some distinctions between BU-PRL and PRL. Note in
Figure 15-9 that the decompositions that BU-PRL learns break up
solutions into segments that have similar independence or dependence
properties in the underlying state space. Being driven by example so-
lutions, as opposed to being driven by a hypothesis, BU-PRL cannot
impose global restrictions on the part of the state space that is to be
searched for a solution. In addition, the resulting AND-tree that is passed
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Figure 15-9. Preliminary comparisons of PRL and BU-PRL.

to Critique includes only a weak hypothesis about how the actions in
that solution are partitioned; recall that each action is initially assumed
to be an independent subproblem. Therefore, the significant restrictions
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on the modifications of a rule are that the LEP be as low as possible
and that the modified rule “cover” the original solution’s actions and
ordering. Given that it does not exercise control over the solution from
which it is learning, BU-PRL can thus derive decompositions that par-
tition the movements of particular tiles in rather complex ways. Also
as a consequence, BU-PRL tends to end up with not only a nontermi-
nal rule for the problem but also a corpus of rules for the various local
configurations of tiles that form the partitions. Such a consequence is
suggested by the partitions in Figure 15-9.

In contrast, PRL can impose restrictions on both the region of the
state space to consider for each subproblem and the overall decompo-
sition structure. Thus, in the Clear-Qut, there are two subproblems,
one for each tile in its respective column. And because these restric-
tions are imposed top down, they are embedded in the structure of
the AND-tree that is passed to Critique and thus constrain the modifi-
cations performed during rule modification to manipulations involving
those subproblems. Therefore, even though the enablement graph of
the final solution has no isolated subgraphs that would imply indepen-
dence, the initial hypothesis of independence between the movements
of tiles A and B guides the resulting modification toward retaining that
independence.

To obtain similar behavior from BU-PRL would require a more pow-
erful Critique and Rule Modification and a relaxation of the condition
that modified rules generate the original solution. Of course, it is a
considerable (but not impossible) relaxation for BU-PRL to derive a
Clear-Out decomposition from a Go-Around solution. However, it is
more interesting to characterize further how the two approaches differ
in their present forms. To this end, we extend comparisons of PRL
and BU-PRL to consider their performances on different sequences of
problems and different permutations of those sequences.

For instance, we have not discussed the two systems’ different ap-
proaches to learning rules with highly dependent decompositions as well
as rules that do not realize a “syntactic” decomposition of the goal. An
example is a “planning island” approach to moving a tile along an L-
shaped path where there is one subproblem for each straight-line leg of
the path and the planning island is the cell where the paths cross. For
BU-PRL, such a planning island is not, by itself, problematic, or even
distinguishable from other learning situations. As long as BU-PRL is
provided a solution, it will learn something. The issue is whether what
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it learns is a “good” thing to learn. PRL is far more selective. Al-
though we do not include the details in this chapter, PRL’s Hypothesis
Formation only considers such rules when rules already exist for the
subproblems that wiil be generated and PRL can determine how to ex-
press/handle the dependency. For instance. learning such an L-shaped
path rule requires that the problem solver aiready have acquired, from
previous problem solving, rules for moving along each leg of the path to
and from the planning island, which in this case is the crossing point of
the two legs of the path, as well as the knowledge that the island exists.
Given the limited. and very local, initial knowledge of the sliding-tile
domain that the system has in the present example, this latter point
means that the system must have traversed that island cell location
before and knows its relation to the starting and goal locations. This
rather stringent requirement on the learning of dependent decomposi-
tions follows from a desire to constrain the arbitrary chaining of rules
as the basis for forming a decomposition hypothesis. In addition. be-
cause of the dependency between the subproblems, such ruies are at the
“bottom” of Hypothesis Formation’s search.

Another issue that is not included in our discussion of PRL’s Hy-
pothesis Formation but that impacts its learning is whether the simple
generators should remain in the rule set after critiquing and if so under
what conditions. At present, we are testing PRL under the condition
that the simple generators remain in the rule set if the Critique/Rule
Modification phases are eventually successful and if the rules used in the
bidirectional search that generated the corresponding pairing were the
same terminal rule. In general, leaving the simple generators in the rule
set can have considerable impact because Hypothesis Formation is in-
voked at impasse when there are no applicable rules and it hypothesizes
new rules based on existing rules.

Finally we are investigating several domain-related issues. The tile
domain and the representation of it in this chapter have several notable
properties: The operators are invertible: an operator’s deletes are a sub-
set of its preconditions; although the domain representation is very local,
the problems always present a grid with uniform adjacencies; and the
space of alternative operators is rather impoverished. These character-
istics impact in various ways on the nature of subproblem dependencies
that arise and on Hypothesis Formation’s ability to impose restrictions
on the regions of the state space that are considered for its decompo-
sition hypotheses. Exploring the system’s performance in modified tile
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worlds. such as ones with immovable objects. holes, or irregu.ir adja-
cencies, as well as worlds with richer operators can further clarify the
impact of these properties on problem reduction.

7. Concluding Remarks

The PRL problem-solving architecture provides an effective approach
to reduction search within the HPO model of efficiency. The nontermi-
nal rule’s decomposition structure includes full problem decomposition
and partial orders on planning and execution. When employed in the
reduction search, these features provide a mechanism for predictively
managing the dependency between subproblems within the hierarchy
of the AND-tree and characterize the dependence, or degree of indepen-
dence, in some “subregion” of the underlying state space associated with
a problem.

However. as we noted in the various solutions to an example sliding-
tile problem. aiternative solutions to a problem can differ in the degree
to which they can be captured in such nonterminal rules. It may
not be possible to represent the various paths in the state space that
are denoted by a solution’s enablement graph within the partial state
descriptions and hierarchical partial orders of the nonterminal rules.
Furthermore. the enablement graph and the dependency it implies for
any partition or decomposition can impact the utility of doing a decom-
position, the generality of the resuiting rule, and the weakness of the
partial orders expressed in that rule.

This sensitivity of the decomposition to the specific solution poses
a challenge to the learning of nonterminal rules. As we saw in our
discussion of BU-PRL, learning from an example solution presumes not
only that an example is of a structure and form that allow analysis but
also that the example’s structure provides a basis for forming a desirable
strategy for the problem solver’s architecture.’® In the case of problem
reduction, if the learning is to acquire the Clear-Out strategy, then an
arbitrary solution, even one of minimal length, can obfuscate the kind of
knowledge the system needs to acquire. The circuitous routes of the Go-
Around strategy provide a good example. A dependency, or enablement,
analysis will be based on a solution that has the “wrong” structure and
that fails to make explicit such knowledge as the planning order.

13. Similarly, the concern of the CRITIC in LEX (Mitchell, Utgoff, & Baneriji, 1982)
for minimal length was related to the problem-solving architecture.
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The learning in PRL uses a hypothesis-driven heuristic method for
incremental learning of nonterminal rules. as opposed to BU-PRL’s
solution-driven approach. The learning in PRL first forms a rule hy-
pothesis, tests it by using it to generate a solution, and then, on the
basis of the test, may modify the hypothesis. Whereas PRL’s test-
ing and potential modification of the rule hypothesis is, like BU-PRL's
learning, a form of example-driven or feedback learning, PRL’s Hypoth-
esis Formation phase can be characterized as feed-forward learning. The
bias introduced by Hypothesis Formation is not motivated by a desire
to realize directly an efficient search for some solution path in the state
space (as in Sacerdoti, 1974; Knoblock, 1990). Rather, it is an attempt
to derive hypotheses about solution structures that are consistent with
the problem-reduction framework and admit general methods of manag-
ing dependency within that framework. These hypotheses distinguish
PRL from BU-PRL by imposing a desirable global structure on the
decomposition and thus providing a guide to subsequent learning.'*

In forming a rule hypothesis and controlling how it is tested. the
learning is coerced to consider those subregions of the state space that
are likely to have desirable independence properties in the reduction
space. The approach presumes that when there exists a general method
of handling the dependency within this reduction framework, there will
be a relationship between the dependency expressed in a rule’s decom-
position structure and the connectivity between states in an underiying
region of the state space. We expect that the learning, by biasing itseif
to characterize such subregions, will not only learn “good” rules for the
present but also help the system realize a useful cumulative bias on se-
quences of problems and thus potentially provide the problem-reduction
learner an alternative to estimating rule utility (Minton, Carboneil, Et-
zioni, Knoblock, & Kuokka, 1987).

The preliminary experiments with PRL and BU-PRL in the sparse
tile domain have so far been consistent with this view. The utility of
PRL’s approach is tied to the characteristics of the state space graph.
Clearly, in a domain in which the connectivity in state space is very
sparse (in effect, highly dependent solutions) or domains that have state
space graphs dominated by “narrows” (Amarel, 1968), strongly ordered
solutions will be the norm and other approaches to problem solving and

14. Gemplan's (Lansky, 1986) structuring of events into larger units presents a related
view, although the motivation is not based in learning.
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learning (e.g., macros) may be better. At the other extreme, in domains
in which the state space is completely connected, any order will work
and managing dependency is not an issue. The state space for such a
domain may have uniform properties that let it be globally character-
ized. However, we suspect that there is a large class of domains in which
the state space has a variegated structure that makes the techniques we
are exploring of interest.

The PRL problem-solving architecture, with its mechanisms for man-
aging dependency by loosely coupling subproblem searches, is complex,
even for a reduction system. There has been little research on learning for
such complex problem-solving systems, and the reasons are clear: Given
some arbitrary solution, it is very difficult to infer an appropriate map-
ping to the processes and structures of the architecture. Feed-forward
" learning techniques may well be a necessity in such architectures.
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