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Abstract Gaze is an extremely powerful expressive signal that is used for many pur-

poses, from expressing emotion to regulating human interaction. The use of gaze as

a signal has been exploited to strong effect in hand-animated characters, greatly en-

hancing the believability of the character’s simulated life. However, virtual humans

animated in real-time have been less successful at using expressive gaze. One reason

for this is that a gaze shift towards any specific target can be performed in many

different ways, using many different expressive manners of gaze, each of which can

potentially imply a different emotional or cognitive internal state. However, there is

currently no mapping that describes how a user will attribute these internal states to

a virtual character performing a gaze shift in a particular manner. In this paper, we

begin to address this by providing the results of an empirical study that explores the

mapping between an observer’s attribution of emotional state to gaze. The purpose of

this mapping is to allow for an interactive virtual human to generate believable gaze

shifts that a user will attribute a desired emotional state to. We have generated a set of

animations by composing low-level gaze attributes culled from the nonverbal behavior

literature. Then, subjects judged the animations displaying these attributes. While the

results do not provide a complete mapping between gaze and emotion, they do provide

a basis for a generative model of expressive gaze.
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1 Introduction

Animated characters in feature films function at a high level of believability, appear to

come alive, and successfully engage the film’s audience; as do characters in many video

games, although arguably to a lesser extent. Unfortunately, the autonomous animated

characters developed by the virtual humans community struggle to achieve this goal.

Additionally, the animation methods, such as hand-animation and motion capture, used

to create the film and video game characters are expensive and time consuming. To

use these methods, each physical behavior the virtual human could potentially portray

would need to be hand-animated or motion-captured in advance, leading either to long

and expensive development cycles, or to limited interaction in dynamic environments.

Instead, real-time animation systems that express believable behavior are necessary.

Our specific interest is in gaze behavior, which is expressive not only in terms

of where the gaze is directed, but also in the physical manner of a gaze, how it is

performed. However, there is currently no mapping that describes how a user will

attribute internal states necessary to a lifelike appearance, such as emotion or cognition,

to a virtual character performing a gaze shift in a particular manner. In this paper, we

begin to address this by providing the results of an empirical study that explores the

mapping between an observer’s attribution of emotional state to gaze. The purpose of

this mapping is to allow for an interactive virtual human to generate believable gaze

shifts that a user will attribute a desired emotional state to.

Our previous work on the Expressive Gaze Model (EGM) [14,15], helps address the

difficulty virtual humans have with expressive gaze by providing a means to generate a

gaze shift towards an arbitrary target that displays an arbitrary emotion. The EGM is

composed of two elements. The first is the Gaze Warping Transformation (GWT) [14],

a motion-capture based method for producing emotionally expressive head and torso

movement during gaze shifts.

The GWT represents “emotional gaze manner.” It is derived from the difference

between motion capture data of an emotionally neutral and an emotionally expres-

sive gaze shift, both directed from the same initial posture to the same target. This

transformation, when applied to an emotionally neutral gaze shift towards a different,

arbitrarily placed target, will modify that neutral gaze shift into one which displays

the same expressive behavior as the original emotionally expressive gaze shift used to

produce the GWT. This head and torso movement is then integrated with the second

component of the EGM, a procedural model of animated eye movement.

There are several benefits to this hybrid approach. By combining an animation

method based on motion capture with a procedural animation method, high quality

animation that produces gaze shifts to arbitrary targets while displaying desired behav-

ior can be obtained. In addition, the gaze movement is based firmly in human behavior

by generating the head and torso movement with motion capture data, and drawing

both the model of eye movement - and the integration of eye movement and motion

capture - from work in the visual neuroscience literature, such as [17].

However, our goal is to allow virtual humans to produce emotionally expressive

gaze shifts with a minimum of motion capture data. The most intuitive way to do this

would be to have a Gaze Warping Transformation for each desired emotional state, and

then apply that emotional GWT to an emotionally neutral gaze shift directed towards

an arbitrary target. While this means that it is no longer necessary to provide the

virtual human with a large motion capture library that contains separate gaze shifts

for displaying every desired emotion to every possible gaze target, the library would
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still require a motion capture for every desired emotional state. This may be difficult

to obtain, and will still require a potentially large collection of motion captures if we

are interested in subtle combinations or varying degrees of emotion.

In this paper, we describe an empirical study that provides an alternative to this

intuitive approach by mapping between individual gaze behaviors and emotion. This

will allow a further reduction in the size of the motion capture library required by

allowing the virtual agent to combine individual gaze behavior components in order to

realize the overall expressive quality the agent desires. Thus, the goal of this approach

is to obtain a set of low-level gaze behaviors annotated with emotional data that can

then be combined according to a model of emotion such that the attribution of emotion

to the resulting gaze shift can be predicted. This will allow the generation of a broader

array of emotional responses while using a smaller motion library than would a one-

to-one method of mapping between physical behavior and emotional attribution.

However, this raises the question, why perform an empirical study at all? Why not

just use the mappings between emotion and behavior already reported in the nonverbal

behavior literature? Unfortunately, the relationship between behavior and emotion in

this literature is still too unclear to simply use it as a mapping. This is due to a number

of factors: first, it is not known exactly how behavior expresses emotion. While many

behaviors have been shown to be expressive, it is not always clear what is expressed.

For example, head angle can express both dominance and pleasure [19].

Second, even if reliable maps existed between emotion and behavior, it may not fol-

low that motion captures of these behaviors would replicate those results. For example,

an actor could perform behavior in a subtly idiosyncratic fashion, leading to different

interpretations of the behavior. Additionally, the knowledge of how behaviors express

emotion does not provide a mapping describing how combinations of those behaviors

express emotion. Finally, the psychology literature does not provide the dynamics for a

behavior. For example, while turning the head down can display a lack of dominance,

it is unclear how exactly the turn should be performed.

For these reasons, our empirical study was performed based on the “reverse en-

gineering” approach of Grammer and Oberzaucher [10]. In this context, “reverse en-

gineering” is used to mean a non-interpretive bottom-up approach where nonverbal

behavior expressions are generated through the combination of low-level physical be-

haviors, and then displayed to subjects who rate the expression on its emotional con-

tent. The goal of Grammer and Oberzaucher’s work was to obtain an emotional an-

notation of Facial Action Coding System (FACS) Action Units (described in [7]) in

order to predict the attribution of emotion to a complex facial expression generated

from the combination of emotionally annotated Action Units. Specifically, Grammer

and Oberzaucher used Poser - a 3d human model animation suite - to generate ran-

dom facial expressions from the space of all possible combinations of FACS Action

Units. Subjects then evaluated the resulting expressions using the circumplex model

of emotion, a two-dimensional model of emotion based on the dimensions Valence and

Arousal, providing a mapping between the expressive behavior space defined by the

FACS Action Units, and the emotional space defined by the circumplex model.

We used a similar process to find a model that describes the mapping between gaze

behaviors and the attribution of emotion to gaze shifts displaying those behaviors. For

this, we used two different representations of emotion: a set of emotional categories,

such as anger or fear; and the Pleasure-Arousal-Dominance dimensional model of emo-

tion [20]. Then we determined a space of possible gazes and the physical manners which

they perform. To do this, we have culled a set of low-level, composable gaze behaviors,
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such as bowing the head during a gaze shift, from the nonverbal behavior literature.

We collected motion capture of these behaviors, which we produced GWTs from. We

then composed the GWTs of the behaviors and used the resulting movement to drive

animated characters. Finally, subjects attributed emotion to the animated characters

displaying these behaviors during gaze shifts.

As a result of this reverse engineering study, we were able to demonstrate that

composition of these low-level gaze behaviors preserved the PAD dimensional ratings.

These results, while promising, do not provide a complete mapping between gaze and

emotion. However, they do provide a basis for a generative model of expressive gaze.

While these results have the most application to our GWT-based gaze model, any

gaze model with sufficient control over the animation curves used to generate gaze

shifts should be able to take advantage of this mapping. In addition, the results also

further our basic understanding of how gaze behavior expresses emotion.

2 Related Work

There have been many previous attempts to systematically determine how emotion is

attributed to bodily expression in both humans [30], and in virtual characters, such as

Coulson’s [5] work on the attribution of emotion to rendered images of mannequins in

various static postures. More recently, researchers have examined this question with

the express intent of applying the answer to animated virtual humans, such as Gram-

mer’s [10] work on facial expression, or Shaarani’s [29] work on static postures of 3D

characters. In this work, we continue to examine this larger question by examining the

attribution of emotion to video clips of animated characters performing gaze shifts.

There also have been many implementations of gazing behaviors in real-time ap-

plications such as embodied virtual agents. Several of these gaze implementations in

virtual characters are based on communicative signals (e.g. [2,24]). Other gaze models

have been developed for agents that perform tasks in addition to dialog [9,27]. There

are also models of resting gaze, which simulate eye behavior when the eye is not per-

forming any tasks [16,6]. Additionally, there are attention-based models of gaze that

perform eye movements based on models of attention and saliency [25,26].

There are several trends which can be seen in these implementations of gaze. First,

the models focus on when and where the character looks, not on how the gaze shift

occurs. Second, these models, with few exceptions, focus on communicative or task-

related gaze behaviors, not on how gaze reveals emotional state.

In addition to the previous research on implementing models of nonverbal gazing

behavior, there has been recent work focused on the manipulation of parameters de-

scribing the way in which general movement is performed. This concept is referred

to as manner or style. This research can provide methods for manipulating the way

in which movements are performed, or to obtain the style from one movement and

transfer it to another [1,3,11]. This research was inspirational to the development of

the Gaze Warping Transformation, but does not deal with the constraints specific to

gaze movement, nor does it identify specific styles and their expressive meaning, which

is the purpose of this study.
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3 Expressive Gaze Model

We used our previous work on gaze to generate the gaze shifts for this study. Our gaze

model combines two parts: first, a parameterization called the Gaze Warping Transfor-

mation (GWT), that generates emotionally expressive head and torso movement during

gaze shifts [14]. The GWT is a set of parameters that transforms an emotionally neu-

tral gaze shift towards a target into an emotionally expressive gaze shift directed at

the same target. A small number of GWTs can then produce gazes displaying varying

emotional content directed towards arbitrary targets.

The second part [15] is a procedural model of eye movement based on stereotypical

eye movements described in the visual neuroscience literature [17]. The procedural

eye movement is automatically layered framewise onto the GWT-generated head and

torso movement. Emotion is expressed using the GWT, while the procedural eye model

ensures realistic motion.

3.1 Gaze Warping Transformation

A Gaze Warping Transformation, or GWT, is found by obtaining two motion captures

of gaze shifts directed from the same start point to the same target, one emotionally

expressive, the other emotionally neutral, and finding a set of warping parameters

that would convert the animation curve representing each degree of freedom in the

emotionally neutral animation into the animation curve for the corresponding degree

of freedom in the emotionally expressive movement [14].

This works by transforming the keyframes of each animation curve. The keyframes

of an animation are a subset of that animation’s frames, such that the values of the mo-

tion curves for intermediate frames are found by interpolating between the keyframes.

We select the keyframes for each gaze by aligning it to a “stereotypical” gaze shift with

known keyframe locations [15]. The gazes are aligned using the ratio of movement that

occurred by each frame to that throughout the entire curve. Key frames may not be

evenly spaced in time, but are instead placed where the interpolation will best recreate

the values of the intermediate frames.

The result of this is a set of keyframes x(t), defined as a set of value, frame pairs,

(xi, ti). These keyframes are transformed to those of a new motion x′(t′), defined as

the set of pairs (x′

i
, t′

i
) through the use of two functions. The first function, given a

frame in the emotional curve t′
i
, calculates the location of the corresponding frame ti

in the neutral motion curve. For the GWT, we use the function:

ti = c(t′i) ∗ (t′i − t
′

i−1) (1)

where given a frame time in the emotional movement t′
i
, the corresponding frame ti

in the neutral movement is determined through a scaling parameter c(t′
i
), which scales

the time span between two adjacent keyframes. The second function is:

x
′(t′i) = x(ti) + b(ti) (2)

where b(ti) is a spatial offset parameter that transforms the neutral curve amplitude

x(ti) into the corresponding emotional amplitude x′(t′
i
). The final GWT is an m ∗ n

set of (c, b) pairs, where m is the number of degrees of freedom in the animated body,

and n is the number of keyframes in the animation.
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Table 1 Classes of Gaze Movement

Gaze Movements

Eye-Only Gaze Shift
Eye-Head Gaze Shift
Eye-Head-Torso Gaze Shift
Head-Only Movement
Head-Torso Movement

As the GWT is based on simple geometric transformations [1,31], the generated ani-

mations can move outside the physical limits of a human body. To solve this, we use

an inverse kinematics system implemented using nonlinear optimization. This system

simulates a rigid skeleton, keeping our animated movement within the limits of the

human body [15].

3.2 Procedural Model of Eye Movement

In addition to the GWT, which describes head and torso movement during gaze shifts,

we developed an integrated procedural model of eye movement [15]. This model of

eye movement is based on the visual neuroscience literature, specifically on research

describing the different movements eyes perform during gaze, and the way in which

eye movement and head movement are integrated during gaze shifts [17]. It generates

several classes of gaze movements (Table 1) using the following building blocks:

Saccades: The saccade is a very rapid, highly-stereotyped eye movement which rotates

the eye from its initial position directly to the target. We approximate the main

sequence relationship as a linear relation between the saccade amplitude and the

number of animation frames the saccade takes to execute. The velocity is implicitly

determined by the amplitude and duration.

Vestibulo-Ocular Reflex (VOR): Through the VOR, the eyes rotate within their orbit

so that the gaze maintains the same target while the head moves. The VOR pro-

duces the Head-Only and Head-Torso movements, and is implemented by counter-

rotating the eyes to the head rotation, maintaining the same gaze target.

Combined Eye-Head Movement: This is used to integrate eye movement and head-

torso movement, and generates the Eye-Head and Eye-Head-Torso gaze shifts. The

position of the eye during this movement is determined by generating a saccade to

the target once the head has turned more than 1 away from its starting location.

Once the eyes reach the target, the VOR keeps the eyes on target as the head

continues to turn.

4 Approach

We performed an empirical study to determine a mapping between a space of gaze

behaviors and the emotion that subjects attributed to gaze shifts performing the be-

haviors. To obtain this mapping, we first selected appropriate emotional models and

the space of gaze behaviors to map between. To determine the mapping between a par-

ticular gaze and the attribution of emotion to that gaze, we use a “reverse engineering”
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Fig. 1 PAD Dimensional Model of Emotion with Example Emotional Categories

approach [10]. Specifically, we generate all combinations of gaze behavior allowed by

our space of gaze behaviors, and collect data of subjects attributing emotion to the

resulting gaze shifts.

4.1 Structure of Model

Selected Emotion Model. There are many potential models of emotion we could have

mapped to the gaze behaviors. For this study, we have selected two: the first is the

Pleasure-Arousal-Dominance or PAD model [20]; a model of emotion that views emo-

tion as a space described with a three dimensions: pleasure / displeasure, arousal /

non-arousal, and dominance / submissiveness. While there are many possible alter-

native emotional models, the PAD dimensional model is composed of a manageable

number of dimensions, each of which have a background of research describing nonver-

bal behaviors associated with them (for example, see [23,19]).

We are also mapping gaze behaviors to a set of intuitive emotional categories. These

categories of emotion, such as anger or sadness, can be represented in the PAD model

by subregions in the space defined by the emotional dimensions. For example, anger

can be defined as negative valence, high arousal, and high dominance, while fear can be

defined as negative valence, high arousal, and low dominance, and sadness can occupy

a region where valence is negative, and arousal and dominance are both low. A visual

depiction of the emotional dimensions and one possible division into categories is shown

in Figure 1. Rather than using an existing categorical model, this categorization was

derived from observer responses to the animations.
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Table 2 Gaze Behaviors

Emotional Gaze Behaviors

Head Raised
Head Bowed
Faster Velocity
Slower Velocity
Torso Raised
Torso Bowed

Selected Gaze Behavior. In order to use this reverse engineering approach, a set of gaze

behaviors to reproduce in animations is required. Therefore, we also had to determine a

space of gaze behaviors, due to the lack of a descriptive set of gaze behaviors analogous

to the FACS system used by Grammer and Oberzaucher [10]. We identified a set of

emotional behavior attributes from the psychology and arts literature that are likely

to reveal emotional state. This set of behavior attributes can be seen in Table 2.

Because the emphasis of this work is on generating emotional behaviors that can

be correctly recognized by observers and associating these behaviors with emotions

using a bottom-up behavior-based method, the focus for selecting behaviors was on

the identification of a space of behaviors that can be used to express emotion in gaze,

not on what emotional states these behaviors actually display.

As a result, these guidelines are simplifications of the actual literature [13]. The

literature indicates that vertical head orientation will affect the display of dominance

[19], that the perception of arousal is strongly related to velocity [14], and that ver-

tical posture of the body will display emotional pleasure [28]. While there are many

alternative gaze behaviors that could also be modeled using the GWT, such as sub-

tle variations in dynamics, or wider variations on posture, this limited set provides a

starting point for this research.

4.2 Motion Capture Collection

For the head and torso behaviors, we asked the actor to perform “raised,” “neutral,”

and “bowed” versions of the behavior, and collected data from the resulting move-

ment. We also collected “fast,” “neutral,” and “slow” velocity movements. However,

the “raised” torso posture was indistinguishable from the “neutral” torso posture, due

to the limitations of the motion tracking system we used, resulting in the set of physical

behaviors shown in Table 3. All captured gaze shifts consisted of the desired behavior

being displayed in a gaze aversion that started gazing straight ahead in a neutral po-

sition and posture, and ended gazing 30 degrees to the right displaying the intended

gaze behavior. From this motion data, we produced eight behavior GWTs, one for each

behavior listed in Table 3.

Table 3 Discretization of Gaze Behaviors

Behavior Dimension Possible Values

Head Posture Raised, Neutral, Bowed
Torso Posture Neutral, Bowed
Movement Velocity Fast, Neutral, Slow
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Table 4 Combinations of Gaze Behaviors

Head Posture Torso Posture Movement Velocity Label

Raised Neutral Fast RNF
Raised Neutral Neutral RNN
Raised Neutral Slow RNS
Neutral Neutral Fast NNF
Neutral Neutral Neutral NNN
Neutral Neutral Slow NNS
Neutral Bowed Fast NBF
Neutral Bowed Neutral NBN
Neutral Bowed Slow NBS
Bowed Neutral Fast BNF
Bowed Neutral Neutral BNN
Bowed Neutral Slow BNS
Bowed Bowed Fast BBF
Bowed Bowed Neutral BBN
Bowed Bowed Slow BBS

We also collected motion capture and produced GWTs of the different classes

of gaze movement (Table 1). The classes of gaze movement were captured both as

aversions that began gazing straight ahead and ended gazing 30 to the right, and as

attractions that began 30 degrees to the right and ended gazing straight ahead. This

resulted in 10 GWTs - one aversive and one attractive gaze movement for each of the

different classes of gaze movement in Table 1.

4.3 Animation Generation

From these 8 GWTs representing the discretized physical behaviors (Table 3) and 10

GWTs representing the various classes of gaze movement (Table 1), we generated 150

animations for use in our empirical bottom-up study. To do this, we first composed

the gaze behaviors in all possible ways, leaving out combinations of a raised head

with bowed torso due to the physical implausibility of the behavior, resulting in 15

total behavior combinations (shown in Table 4). These behavior combinations provide

the emotionally expressive content of the generated gaze shifts. Then, these combined

gaze behaviors were composed with the 10 gaze movement GWTs from Table 1, that

describe how the eye movement is related to the head movement, resulting in 150

GWTs that demonstrated both a wide range of expressive behavior, and a wide range

of eye-head movement relationships. Finally, to generate the animations, we applied

these 150 GWTs to neutral gaze shifts, with the resulting output rendered using Maya.

These animations can be seen at:

http://people.ict.usc.edu/~blance/AnimationGallery/AnimationGallery.html

4.4 Category Formation

In order to determine the categories for our primary experiment and obtain a picture

of how well the animated gaze behaviors covered the emotional space defined by the

emotion models, we performed a preliminary category formation study.
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Table 5 Emotional Categories

Emotional Categories

Anger Contempt
Disbelief Excitement
Fear Flirtatious
Guilt Sadness
Secretive Surprise

Approach. 31 subjects each viewed 20 animations randomly selected from the set of 150

animations with no duplicates, giving us 620 views, or approximately 4 per animation,

and provided an open-ended written response to the question “What emotional state

is the character displaying?” We then categorized the affective responses based on the

hierarchical model of emotion described in [21].

Results. We used the hierarchical model as a sorting guideline, to divide the individ-

ual responses into ten categories (Table 5); for example categorizing “expression of

contempt” as Contempt, or “terrified” as Fear. However, we also utilized additional

categories that were common in the subject’s open ended responses but not described

by the hierarchical model. After categorizing the responses, we then selected categories

where at least one video had 50% of the subjects rate it with that category.

We then discarded those categories that were related to attention, discarding re-

sponses such as “change in attention,” “displaying strong interest,” and “distracted.”

Since every gaze inherently indicates interest, attention, or distraction, we were con-

cerned that these types of categories would become “catch-alls,” and draw a dispro-

portionate number of responses during the forced-choice selection, while providing no

relevant information. Finally, we discarded the responses indicating “uncertainty,” as

we were concerned that it would be applied when the subject was uncertain of the

character’s state, not when the character was displaying uncertainty.

4.5 Emotional Attribution Experiment

After selecting the low-level behaviors, generating the animations, and setting the

emotional categories, we performed the empirical study. The animations were placed

online, and subjects rated the animation in two ways: first by selecting the emotional

category (Table 5) that most closely approximated the emotion that they perceived

in the animation, and second by locating the animation’s perceived emotion along the

emotional dimensions of the PAD model.

Table 6 Emotional Dimension Rating Scales

Emotional Dimension Rating Statement

High Dominance The character is dominant.
Low Dominance The character is submissive.
High Arousal The character is agitated.
Low Arousal The character is relaxed.
High Valence The character is pleased.
Low Valence The character is displeased.
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Subjects rated the animation’s location within the PAD model by using five-point

scales to indicate their agreement with two statements representing each dimension,

seen in Table 6. The scale items were 1 = Strongly Disagree, 2 = Disagree, 3 = N/A,

4 = Agree, 5 = Strongly Agree. Both emotional categories and rating statements were

displayed in random order for each animation. One hundred people each rated fifteen

unique, randomly selected animations, resulting in ten ratings for each of the 150

animations.

5 Results

We uncovered the mapping between emotion models and physical behaviors in order

to answer the following questions:

1. How did the PAD ratings relate to the low-level gaze behaviors in Table 3?

2. Can these low-level gaze behaviors be composed within the PAD dimensions?

3. Can low-level gaze behaviors be combined across PAD dimensions into emotional

categories?

We had originally intended to find how the 150 individual animations varied across

emotional state, but ten ratings per animation was too few to perform a reliable statis-

tical analysis. Instead, we combined gazes across the classes of gaze movement (Table

1), giving us 50 ratings for each of the 15 combinations of gaze behaviors (Table 4).

5.1 Dimensional Results

How reliable were the dimensional ratings scales? Before exploring the dimensional

results, we tested how well our dimensional rating scales measured the emotional di-

mensions they were intended to by calculating the correlation and Cronbach’s Alpha

between each pair of rating scales from Table 6.

The Pleased and inverted Displeased scales performed well. The correlation between

them was 0.615, and the standardized Alpha score indicating scale reliability was high,

with α = 0.7610, (α > 0.7 is considered a reliable scale). Dominant and inverted

Submission also did well, with a correlation of 0.6649, and a high Alpha (α = 0.7987).

Therefore, we averaged Pleased and inverted Displeased into one Pleasure scale, and

combined Dominant and inverted Submission into one Dominance scale. Correlations

between the Dominance and Pleasure scales were low, (0.1569), indicating little overlap.

However using the ratings of Relaxed and Agitated as a scale for Arousal was less

reliable, as both correlation (0.3745) and Alpha (α = 0.5449) were low. In addition, cor-

relations between Relaxed and Pleased (0.5353) and between Agitated and Displeased

(0.4889) were higher than between Relaxed and Agitated. For the remainder of this

paper, we will be using the two scales separately as Relaxed and Agitated. As we used

5-point scales, but only animated 3-point scales of physical behavior, we condensed the

collected data into 3-point scales by combining “Strongly Disagree” and “Disagree”,

as well as “Strongly Agree” and “Agree”, leaving Neutral ratings unchanged.

How did the PAD dimension ratings relate to the low-level gaze behaviors in Table 3?

A series of MANOVAs (multivariate analysis of variance) and post-hoc tests deter-

mined whether or not the mean emotion dimensions ratings differed across the low
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Table 7 Significant Relationships between PAD Dimension and Individual Gaze Behaviors

Emotional Dimension Head Torso Velocity

High Dominance Raised Bowed Fast
Low Dominance Bowed Neutral Non-Fast
Relaxed Bowed
Agitated Non-Bowed Fast
High Pleasure Neutral Bowed
Low Pleasure Non-Neutral Neutral

level behaviors found in Table 3. Four MANOVAs were performed, each with one di-

mension (Pleasure, Agitation, Relaxation, or Dominance) as the dependent variable,

and Head Orientation, Torso Orientation, Velocity, and Subject as the independent

variables, while testing for second degree factorial interaction between the indepen-

dent variables. Table 7 provides the results of this analysis, and each row in the table

provides alternative methods for signaling that emotional dimension.

As shown in Rows 1 and 2 of Table 7, the ratings for Dominance attributed to

gaze shifts significantly differed across differing Head Orientation, Torso Orientation,

and Velocities. The MANOVA results for Dominance showed significant effects (N =

1500, DF = 18, F = 14.5110, p < .001) for head orientation (F = 24.0776, p < .001),

torso orientation (F = 82.5508, p < .001), and velocity (F = 7.3838, p < .001), with a

significant interaction between head and torso orientation (F = 6.4689, p < .05).

In addition, Rows 1 and 2 show the results of the post-hoc tests. These tests showed

clear differences between group means, with higher Dominance ratings corresponding

to raised head gaze shifts, and lower Dominance ratings corresponding to bowed head

shifts. In addition, the post-hoc tests revealed that a bowed posture was rated as

higher Dominance, and a neutral posture was rated for lower Dominance. Finally, the

Dominance rating for fast movements was higher than that for slow or for neutral

movements (all results significant to p < .01).

In contrast, Row 3 displays the post-hoc tests results showing that the Relaxed

dimension only significantly differs across torso orientation, with gaze shifts displaying

a bowed torso drawing significantly higher Relaxed ratings from subjects (p < .01).

However, MANOVA results showed significant differences (N = 1500, DF = 18, F =

1.8892, p < .05) across both the torso orientation (F = 11.4132, p < .001) and the

velocity (F = 3.7849, p < .05), with a significant interaction effect between torso and

velocity (F = 3.6755, p < .05). The post-hoc tests did not reveal useful information

about the velocity, indicating that the significant difference found by the MANOVA was

likely related to the interaction between torso and velocity. Row 4 shows the post-hoc

test results that raised and neutral head orientations were rated as significantly more

Agitated than bowed head orientation, and that the Agitated rating for high velocity

was higher than that for slow or neutral (p < .05). The MANOVA for Agitation found

significant differences (N = 1500, DF = 18, F = 4.5978, p < .001) across the head

orientation (F = 19.6129, p < .001), the velocity (F = 6.0387, p < .01), and the

subject (F = 17.1201, p < .001), and a significant interaction effect between the head

and the velocity (F = 7.1696, p < .05).

Finally, post-hoc tests (p < .01) revealed that the Pleasure rating for a neutral head

orientation was significantly higher than those for bowed and raised head orientations,

and that a bowed posture received significantly higher Pleasure ratings than a neutral

posture, as shown in Rows 5 and 6. The MANOVA showed that Pleasure significantly
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Fig. 2 Mean Dominance Rating vs. Number of High Dominance Behaviors

Fig. 3 Mean Dominance Rating vs. Number of Low Dominance Behaviors

differed (N = 1500, DF = 18, F = 5.9261, p < .001) across both the vertical orientation

of the head (F = 6.5836, p < .05) and the torso (F = 77.5703, p < .001), with no

significant interaction effects. The ratings for Pleasure also differed significantly (F =

4.0601, p < .05) across subject.

Can these low-level gaze behaviors be composed within the PAD dimensions? In order

to determine whether or not the low-level behaviors can be composed within individual

PAD dimensions, a second analysis tested whether or not gaze shifts displaying differ-

ent numbers of behaviors significantly related to a specific emotional dimension would

have different ratings for that dimension attributed to them. For example, does the

mean Dominance rating of a gaze shift that displays one Low Dominance behavior sig-

nificantly differ from the mean Dominance rating of a gaze shift that displays two Low
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Dominance behaviors? In turn, do these ratings significantly differ from a gaze shift

that displays 3 Low Dominance behaviors? For this analysis, four MANOVAs were

Fig. 4 Mean Dominance Rating vs. Number of High Pleasure Behaviors

Fig. 5 Mean Dominance Rating vs. Number of Low Pleasure Behaviors

performed. Each MANOVA used an emotional dimension (Dominance, Relaxed, Agi-

tated, and Pleasure) as the dependent variable, while the independent variables were

the number of behaviors associated with that emotional dimension, and the subject.

Thus, one MANOVA had Dominance as a dependent variable, while the independent

variables were the number of low dominance behaviors, the number of high dominance

behaviors, and the subject. The results of this analysis clearly showed that mean at-

tributed ratings for an emotional dimension increased as the number of gaze behaviors
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associated with that emotional dimension increased, as seen in Figures 2 through 6.

This indicates that physical gaze behaviors, when composed within PAD dimensions

will be rated as predicted by the composed behaviors.

The specific results for Dominance show that there were significant differences

(N = 1500, DF = 6, F = 32.2426, p < .01) across the number of both Low (F =

14.1668, p < .001) and High Dominance (F = 26.3914, p < .001) behaviors displayed

in a gaze shift, and a significant (F = 6.9287, p < .01) interaction effect between Low

and High Dominance. Post-hoc tests showed that as the number of High Dominance

gaze behaviors displayed in a gaze shift increased, the mean rating of Dominance for

that gaze shift significantly increased (p < .01) as well (Figure 2). In contrast, as the

number of Low Dominance behaviors increased, the mean rating of Dominance for that

gaze shift significantly decreased (Figure 3). Note that at most two High Dominance

behaviors could be composed, due to the incompatibility between a raised head and a

bowed torso.

The mean Pleasure rating showed significant differences across the number of

both Low and High Pleasure behaviors displayed in a gaze shift (N = 1500, DF =

3, F = 22.9619, p < .001), although there were also significant differences across view-

ers (F = 4.8669, p < .05), and no interaction effects. Subsequent post-hoc tests showed

that mean ratings of Pleasure significantly increased (p < .01) as the number of High

Pleasure behaviors displayed in a gaze shift increased (Figure 4); and that mean ratings

of Pleasure significantly decreased (p < .01) as the number of Low Pleasure behaviors

increased (Figure 5).

The MANOVA for Agitated revealed that there were again significant differences

across the number of behaviors (N = 1500, DF = 3, F = 18.3058, p < .001) displayed

in a shift, but also showed significant differences across viewers (F = 20.5002, p < .001),

although there were no interaction effects. The post-hoc tests demonstrated that gaze

shifts with zero or one Agitated behaviors were rated as significantly less Agitated than

those shifts with two Agitated behaviors (p < .01), although the difference between

zero and one behaviors was not significant (see Figure 6).

As the relaxed dimension only had one behavior associated with it, no further testing

was performed.

5.2 Categorical Results

Can low-level gaze behaviors be combined across PAD dimensions into emotional cate-

gories? To answer this question, we generated a cross tabulation of the 15 combinations

of gaze behaviors (Table 4) against the emotional categories (Table 5), and used Pear-

son’s chi squared (χ2) test to examine relationships in the data. We then performed

further tests on the residuals to determine which had significant differences.

Results of this analysis can be seen in Table 8. The χ2 test showed that gaze

combinations and emotional categories were not randomly related (N = 1500, DF =

126, χ2 = 775.817, p < .01). The table rows show behavior combinations with a signif-

icant number (p < .05) of ratings for that emotional category. For example, Contempt

was significantly associated with the gaze behavior combination of Raised Head, Neu-

tral Torso, and Neutral Velocity, while Excitement was significantly associated with

the combination of a Neutral Head, Bowed Torso, and Fast Velocity.

While only 5 of the 15 gaze behavior combinations from Table 4 had significant

associations to emotional categories, it was clear through examination of the residuals
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Fig. 6 Mean Dominance Rating vs. Number of Agitation Behaviors

that further study of the relationship between the emotional categories and the low-

level behaviors from Table 3 could be useful. For example, while no individual gaze

behavior combination was rated significantly high for Flirtatious, all gaze shifts with

the bowed head behavior had more Flirtatious ratings than did the gaze shifts without

bowed head. To examine this, we generated crosstabs and performed additional χ2 tests

to determine which individual gaze behaviors were significantly correlated against the

emotional categories (Table 9).

We found significant interactions between head vertical orientation and emotional

categories, (N = 1500, DF = 18, χ2 = 329.47, p < .001). Testing the residuals showed

that the Contempt category was more likely (χ2 = 70.35, p < .05) to be attributed

to a gaze shift with the head raised behavior, while Flirtatious (χ2 = 73.41, p < .01),

Guilt (χ2 = 81.33, p < .01), and Sadness (χ2 = 42.51, p < .01) were all more likely

to be attributed to bowed head gaze shifts. Finally, Surprise was significantly less

likely (χ2 = 55.30, p < .01) to be attributed to bowed head gazes. Anger, Disbelief,

Excitement, Fear, and Secretive did not relate to head vertical orientation significantly.

Torso posture was not randomly related to emotional category (N = 1500, DF =

9, χ2 = 187.49, p < .001). Excitement was more likely to have a bowed torso (χ2 =

62.94, p < .01), while Contempt (χ2 = 24.24, p < .05), Fear (χ2 = 29.19, p < .01), and

Guilt (χ2 = 19.88, p < .01) were attributed more often to neutral torso animations.

We also found no strong relationships between the emotional categories and the

velocity of the gaze using a crosstab of emotions by velocity. While, the chi squared

test showed that emotional category and velocity are not randomly related (N =

1500, DF = 18, χ2 = 42.36, p < .001), upon examination of the residuals, no emotional

categories significantly differed across velocities.

6 Discussion

The goal of this reverse engineering study was to attribute emotional state to low-

level gaze behaviors, and then test whether or not gaze shifts generated by composing

these behaviors would have similar emotions attributed to them. The results are highly
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Table 8 Emotional Categories and Significantly Related Behavior Combinations

Emotional Categories Significantly Related Behavior Combinations

Contempt Head Raised, Torso Neutral, Velocity Neutral
Excitement Head Neutral, Torso Bowed, Velocity Fast
Fear Head Neutral, Torso Neutral, Velocity Neutral

Head Neutral, Torso Neutral, Velocity Slow
Guilt Head Bowed, Torso Neutral, Velocity Neutral

Head Bowed, Torso Neutral, Velocity Slow
Sadness Head Bowed, Torso Neutral, Velocity Fast

Head Bowed, Torso Neutral, Velocity Neutral

Table 9 Significant Relationships between Emotional Categories and Individual Behaviors

Emotional Category Head Torso

Contempt Raised Neutral
Excitement Bowed
Fear Neutral
Flirtatious Bowed
Guilt Bowed Neutral
Sadness Bowed
Surprise Neutral

promising. The foremost result is that individual gaze behaviors can be associated with

individual dimensions in the Pleasure-Arousal-Dominance space (Table 7).

Once this is done, the rating along a single PAD dimension that a subject will

attribute to gaze shifts generated through the composition of these individual gaze

behaviors can be predicted. For example, a gaze shift containing more behaviors asso-

ciated with a higher mean Dominance rating will be much more likely to be viewed as

a High Dominance gaze shift (see Figures 2 through 6).

In addition, this study demonstrates that limited composition across PAD dimen-

sions is possible, as shown in Table 10. This table shows that the emotional categories

of Contempt, Excitement, Guilt, and Sadness are significantly related to the same be-

havior combinations that are also significantly related to the location of the categorical

emotion when mapped into PAD space (mapping based on [12] and [8]).

In Row 1 of Table 10, we provide the result that Contempt is significantly related

with the behavior combination of a raised head, a neutral torso, and a neutral velocity

(Table 8). The raised head is consistent with a High Dominance (+D), the neutral torso

is consistent with Low Pleasure (-P), and the non-fast velocity is consistent with a Low

Agitation (-A) (Table 7). Jiang [12] maps Disdainful, an emotional label very similar

to Contempt into the -P -A +D quadrant of the PAD model. Thus, by combining the

High Dominance (+D), Low Pleasure (-P) and Low Arousal (-A) behaviors into a gaze

shift, subjects will attribute the emotional state of Contempt to the resulting gaze shift.

Similarly, in Row 2, Excitement is significantly related to the behavior combination of

neutral head, bowed torso, and fast velocity (Table 8), which are associated with High

Dominance, High Pleasure and High Arousal, respectively (Table 7). Excitement can

be mapped into the PAD quadrant of Exuberant (+P +A +D) [20,8].

Row 3 shows Guilt, which is very similar to the emotional label Remorse that is

mapped to (-P -A -D) by Jiang [12] and to (-P +A -D) by Gebhard [8]. Guilt was

significantly associated with two behavior combinations: bowed head, neutral torso,



18

Table 10 Composition of Behaviors Across PAD Dimensions into Emotional Categories

Emotional PAD Rating Significantly Related Behavior Combinations
Categories of Categories and PAD Rating of Individual Behaviors

Contempt -P-A+D Head Raised Torso Neutral Velocity Neutral
+D -P -A

Excitement +P+A+D Head Neutral Torso Bowed Velocity Fast
+D +P +A

Guilt -P+A-D/ Head Bowed Torso Neutral Velocity Neutral
-P-A-D Head Bowed Torso Neutral Velocity Slow

-D -P -A
Sadness -P-A-D Head Bowed Torso Neutral Velocity Fast

-D -P +A
Head Bowed Torso Neutral Velocity Neutral
-D -P -A

neutral velocity, and bowed head, neutral torso, and slow velocity (Table 8). These are

in turn significantly associated with Low Dominance, Low Pleasure, and Low Arousal

(Table 7). Finally, Row 4 shows that Sadness can be mapped into the PAD space

as negative Pleasure (-P), negative Arousal (-A), and negative Dominance (-D) [12],

and is significantly more likely to be attributed to gaze shifts with a bowed head, a

neutral torso, and a neutral velocity (Table 8). In Table 7, it is shown that bowed head

and a neutral torso are significantly associated with negative Dominance and negative

Pleasure, that neutral velocity are not associated with Agitation.

7 Conclusion

In this paper, we have provided the results of a reverse engineering study resulting in a

preliminary mapping between gaze behaviors and emotional states that could be used

with a variety of gaze or emotion models. In addition, we have shown that combining

low-level behaviors associated with emotional dimensions in accordance with those

dimensions generates a gaze shift that subjects attribute the combined emotional state

to. These results, while promising, do not provide a complete mapping between gaze

and emotion. However, this study demonstrates the utility of the GWT as a nonverbal

behavior research tool, and points towards several directions for future research.

Many of the relationships between behavior and emotion found in this study are

consistent with previous research. For example, Wallbott [30] found that shame was

associated with a bowed head, similar to these findings for guilt; and Coulson [5] showed

that upwards tilted head with a neutral torso was associated with disgust, similar to

these contempt findings.

However, several of these findings conflict with earlier research as well. Coulson’s

[5] subjects attributed anger and fear to postures with the torso bowed and the head,

while this study found that excitement was attributed to a bowed torso and upright

head. In addition, de Meijer [18] found that trunk bowing was strongly correlated with

negative affect, while an upright trunk was associated with positive affect, which is

the reverse of these findings. Finally, this work does not replicate our previous results

showing velocity being highly associated with arousal [14].

There are, however, several possible explanations for these differences. One expla-

nation for this is that the “bowed” torso movement used in this work is not viewed as a
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bowed movement per se by the subjects. Instead, it is perhaps viewed as an “approach”

behavior, where the character is moving towards an object or another person. For ex-

ample, Carney [4] demonstrated that “leans forward towards other” was perceived as a

dominant nonverbal behavior. Another possibility is that the dynamics of these move-

ments changed the perception of the movement when compared to Coulson’s [5] static

postures, or de Meijer’s [18] movements.

The lack of agreement with our own prior results [14] is somewhat more disconcert-

ing. The problem here is twofold. First, the rating scales used for the Arousal dimension

did not perform very well. Second, the differences between the low, medium, and high

velocities in the videos used for this experiment were much lower than those we used

previously [14]. These factors likely account for the discrepancy.

It should also be pointed out that several strong assumptions were made during

the course of this study, and that improved mappings between emotion and behav-

ior may be obtained by relaxing these assumptions. The first assumption is that the

mapping between categorical emotions and PAD space is correct, or even that a con-

sistent mapping exists. As such, improved mappings between emotion and behavior

could be obtained by utilizing an alternate mapping between categorical emotions and

dimensional emotions, or by forgoing a categorical model of emotion entirely.

Another assumption made is that gaze behaviors affect the attribution of emotion

independently from each other. In other words, it is assumed that adding any specific

behavior to a gaze shift will affect the attribution of emotion to that gaze shift in the

same way regardless of any other behaviors the gaze shift portrays. Improved emo-

tion/behavior mappings may be obtained by relaxing this assumption and examining

how each gaze behavior affects the attribution of emotion to the other gaze behaviors

displayed in a gaze shift, as well as for the gaze shift as a whole.

Finally, a rigorously defined set of low-level behaviors used for expressive gaze

would be very valuable to this type of research. While a space of gaze behaviors was

determined for this study, there are other possible ways to structure this space that may

provide better results. As Pasch and Poppe [22] note, there is no agreed-upon physical

parameterization for static posture studies, much less the more complex problem of

movement during gaze.
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