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The Expressive Gaze Model:  
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“The eyes are the most important part of 
an expression, and must be drawn with 
extreme care. Any jitter or false move … 

destroys both communication and believability.”1—
Frank Thomas and Ollie Johnston

Early animators realized that the eyes are an 
important aspect of the human face regarding 
the communication and expression of emotion. 
They also found that properly animating believ-
able, emotionally expressive gaze is extremely dif-

ficult. If it’s done improperly, 
viewers will immediately notice, 
destroying the illusion of life the 
animators were striving for.

This problem becomes even 
more difficult with interactive 
virtual characters—computer-
controlled characters in a vir-
tual environment that interact 
with each other and human us-
ers through conversation. Un-
like hand-animated characters, 
interactive virtual characters 
must function in the virtual en-
vironment and interact with hu-
man users in real time. This also 

entails gazing at arbitrary targets as they appear in 
the environment.

For example, modern video game environments, 
such as World of Warcraft or Oblivion, have thou-
sands of computer-controlled nonplayer characters 
with which users can interact. Producing hand-
generated animations for each of these characters 
consumes large amounts of time and money that 
would often be better spent improving other game 
aspects.

To address this issue, we present the Expressive 
Gaze Model (EGM), a method that enables vir-
tual characters to generate believable gaze shifts 
that communicate a desired emotional expres-
sion. We define a believable, emotionally expres-
sive gaze as an eye, head, or torso movement that 
places the forward vector of the virtual charac-
ter’s eyes on a new target while portraying be-
haviors that cause a human viewer to attribute 
a desired emotional expression to that character, 
in a way that doesn’t damage the viewer’s sus-
pension of disbelief.

The Expressive Gaze Model
The EGM is a hierarchical framework with two 
main components: a library of Gaze Warping 
Transformations (GWTs) and a procedural model 
of eye movement.

The library is generated from motion capture,2 
procedural animation,3 or hand animation. Using 
this library, users can produce gaze shifts portray-
ing any low-level gaze behavior in the library. The 
eye movement model similarly uses a small num-
ber of physical behaviors to generate varieties of 
eye movement and integrate them with the GWT-
based movement.

Eye movement by itself is highly stereotypical 
and contains little emotional content. It also func-
tions on a different timescale from that of head 
or torso movement, with different constraints. So, 
we model eye movement differently from head and 
torso movement but constrain the relationship be-
tween them.

The EGM doesn’t determine what the animated 
character should look at or what the correct emo-
tional response is to a given situation. Instead, it 

The Expressive Gaze Model 
is a hierarchical framework 
for composing simple 
behaviors into emotionally 
expressive gaze shifts for 
virtual characters. Its primary 
components are the Gaze 
Warping Transformation, 
which generates emotionally 
expressive head and torso 
movement in a gaze shift, and 
an eye movement model.
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produces individual gaze shifts to which a human 
viewer can attribute emotional content.

Figure 1 shows how we use the EGM to produce 
a gaze shift. First, we perform two motion capture 
sessions. The first is of a shift that contains physical 
behaviors, such as a bowed head, explicitly intended 
to convey emotional information. The other is of an 
emotionally neutral gaze shift, which contains no 
physical behaviors beyond those needed to change 
targets. Both sessions start and end gazing at the 
same targets as each other. From these, we derive 
a GWT representing the behaviors performed dur-
ing the emotionally expressive gaze. Then, we apply 
that GWT to a new emotionally neutral gaze shift, 
which can start and end gazing at different targets.

This results in a new partial gaze shift, consist-
ing of head and torso movement that gazes at a 
new target but displays the expressive behaviors 
portrayed in the original emotionally expressive 
gaze shift. Next, the eye movement model auto-
matically layers appropriate eye behavior onto the 
partial gaze shift. This produces the motion data 
for an emotionally expressive gaze shift, which we 
then render. The final result is a gaze shift that 
displays a desired set of expressive gaze behaviors 
toward an arbitrary target.

For a look at other research on modeling gaze, 
see the “Related Work on Modeling Gaze” sidebar.

The Gaze Warping Transformation
The GWT is a lightweight combination of temporal-
scaling and spatial-transformation parameters 
derived from the papers “Motion Warping”4 and 
“Emotion from Motion.”5 Basically, it’s a represen-
tation of the difference between two gaze shifts. By 
taking any two gaze shifts, we can derive a GWT 
from the difference between them, such that apply-
ing it to one gaze shift produces the other gaze shift.

Data Description
For this work, we recorded the motion data using 
Ascension’s Flock of Birds (FOB) technology. FOB 
uses the movement of sensors through a magnetic 
field to measure six degrees of freedom (DOF)—
the x, y, and z positions and the roll, pitch, and 
yaw angles—at 60 Hz. We attached three sensors 
to an actor, one at the side of the head, one at the 
base of the neck, and one at the base of the spine.

The FOB collects motion data as a set of time-
series data points. Each of the three electromag-
netic sensors records a time stamp, the sensor’s 
position in (x, y, z) coordinates, and the sensor’s 
orientation as an Euler angle.

To perform motion capture of gaze shifts, we 
placed targets around the motion capture area at 

approximately 10-degree intervals, and the actor 
gazed from one specified target to another.

We segmented the sets of captured data into indi-
vidual gaze shifts, which we defined as at most one 
major head movement, one major torso movement, 
and one major eye movement. We segmented the 
data on the basis of the points in time when the 
head is stationary in the direction with the larg-
est angular displacement. This is because the head 
usually performs the easiest-to-distinguish and 
highest-amplitude movements.
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Figure 1. The Expressive Gaze Model (EGM). This image shows the 
process the EGM uses to generate an emotionally expressive gaze shift.

A lthough much research has focused on modeling gaze in 
interactive virtual characters, such as that of Sooha Park Lee 

and her colleagues,1 little of it addresses expressing emotion 
through gaze. However, Atsushi Fukayama and his colleagues 
demonstrated that a human viewer would attribute emotion and 
personality to an animated pair of disembodied eyes solely on 
the basis of the direction and patterns of gaze shifts.2 In addition, 
considerable research on animating facial expressions has used 
the eyes’ shape to portray emotions.3

Unlike both these approaches, our research doesn’t address 
the gaze target or the shape of the eyes and the immediately 
surrounding face. Instead, we focus on how to use the rest of the 
body—the head and torso—to express emotion during a gaze 
shift and how to integrate the eyes with that movement.
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Deriving the GWT
The GWT is a point-to-point transformation that 
transforms one gaze shift’s keyframes into an-
other gaze shift’s keyframes. Consequently, each 
gaze shift’s keyframes must align. (For a discus-
sion of keyframes and alignment, see the side-
bar “Motion Curves and Keyframes.”) If they don’t 
align, a transformation derived from a specific 
point in time in one gaze shift might be applied to 
a noncorresponding point in time in another gaze 
shift, leading to visible artifacts in the resulting 
animations.

Given the motion data from the emotionally 
expressive and emotionally neutral gaze shifts, we 
derive the GWT by first obtaining the two gaze 
shifts’ keyframes. We then find a set of point-
to-point warping parameters4 that converts the 
keyframes of the motion curve representing each 
DOF in the emotionally neutral animation into 
the keyframes of the motion curve for the cor-
responding DOF in the emotionally expressive 
movement.

Algorithm 1 shows the GWT derivation algo-
rithm. (For all the algorithms mentioned in this 
article, see the related sidebar at the end of this 
article.) For a mathematical depiction of the GWT, 
see the sidebar “Mathematically Defining the Gaze 
Warping Transformation.”

Applying the GWT
The process of applying the GWT is similar, begin-
ning with motion data of an emotionally neutral 
gaze shift. We obtain this shift’s keyframes (as 
described in the sidebar “Motion Curves and Key-
frames”) and apply the GWT transformation pa-
rameters to each of them, as shown in Algorithm 2 
and the sidebar “Mathematically Defining the Gaze 
Warping Transformation.” Finally, we use cubic in-
terpolation to produce motion curves from the re-
sulting transformed keyframes and then use these 
motion curves to drive an animated character’s gaze.

The Eye Movement Model
The EGM’s eye movement model6 is based pri-
marily on the visual-neuroscience literature. This 
model ensures that our characters perform real-
istic eye movement during animated gaze shifts.

Types of Eye Movement
R. John Leigh and David Zee’s overview of visual 
neuroscience identified several functional classes of 
eye movement.7 Those relevant to this research are

■■ saccades, which are rapid, highly stereotyped eye 
movements toward a specific target, and

■■ vestibular and optokinetic movements, which 
maintain visual fixation during head movement.

We captured the motion data from Ascension’s Flock 
of Birds technology as a set of motion curves in a 

Biovision Hierarchy (BVH) format. In this representation, 
each degree of freedom (DOF) of the animated character 
has its own 2D motion curve, with the animation’s frame 
number as the x-axis and the DOF’s magnitude as the 
y-axis. To derive Gaze Warping Transformations (GWTs) 
from these motion curves, we first derived the keyframe 
representation of the motion data.

Keyframes can be viewed as a sparse representation of 
motion curves. A motion curve’s keyframes are a subset of the 
animation frames in the motion curve such that interpolating 
between the keyframes can reconstruct the original motion.

To find a gaze shift’s keyframes, we aligned that shift 
with a “stereotypical” gaze shift. We found the stereo-
typical gaze shift by averaging 33 emotionally neutral 
gaze shifts that were scaled to the same length of time 
and transformed to begin at the same initial state. We 
then placed keyframes on this gaze shift to minimize the 
least-squared error between the original movement and a 
cubic-spline interpolation across the keyframes. We used 
six keyframes for each gaze shift, but modeling more com-
plex gaze behavior might require more keyframes, even 
up to the full set of collected data.

To align the gaze shifts, we used an algorithm (derived 
from the paper “Emotion from Motion”1) that aligns the 
curves of two animations or motion capture sessions on 
the basis of the ratio of movement that has occurred by a 
specific frame to that which occurs throughout the entire 
curve. To find the values for alignment, we used

f̂ t

t

t( ) =
( )

( )

=

=

∑

∑

v

v

t

t

t

t

0

0

end
,	
� (1)

where v(t) is the head’s 3D velocity vector. We used this 
vector to approximate the movement of the entire body 
because the head movement is usually of higher amplitude 
than that of the torso during a gaze shift.

For each animation frame, we used this formula to 
calculate the frame alignment value, or how much of the 
movement in that gaze shift has occurred by that frame. 
For example, 0 percent of the total movement in the gaze 
shift will have occurred by the first frame, whereas 100 
percent of the total movement will have occurred by the 
last frame. Each frame in between receives a monotoni-
cally increasing value between 0 and 1.

Motion Curves and Keyframes
  



	 IEEE Computer Graphics and Applications� 65

In addition, Leigh and Zee discussed how head 
and eye movement can be combined through sac-
cades and the vestibulo-occular reflex (VOR). So, 
our model employs saccades and VOR movement 
to implement combined eye-head saccades.

We represent eye movement with two DOF rep-
resenting the eyes’ horizontal and vertical orien-
tation. Both orientations range from +45 to -45 
degrees, with the horizontal increasing to the right 
and the vertical increasing upward. In both cases, 
0 degrees is straight ahead. Although the mechani-
cal limits of human eye movement are closer to 
±55 degrees, evidence shows that neural limits 
saturate eye movement starting at ±45 degrees. 
The same motion curve drives both eyes, mean-
ing that the eyes maintain a parallel orientation. 
Adding the eyes’ ability to converge on a target 
complicates the problem but would increase the 
generated gaze shifts’ realism.

Our representation of the gaze targets consists of a 
local (pitch and yaw) angular coordinate system that 
represents the horizontal and vertical rotations that 
must be applied to the neck joint for the character’s 
head to directly face the target. The origin centers on 
the character’s neck joint; (0, 0) represents a target 
directly in front of the character’s face.

Figures 2 through 5 show how we represent eye 
movements for each type of gaze shift. The gaze-

angle curve represents the gaze’s target, combin-
ing eye and head orientation. The eye-angle curve 
represents the angle of the eyes within their orbit. 
The head-angle curve represents the head’s angle 
relative to its initial position.

Saccades
Figure 2 shows the motion curves for a stereotypi-
cal saccade in 1D and an animated figure show-
ing the saccade’s beginning and ending. Saccadic 
movements’ size, speed, and duration are closely 
related. As the amplitude increases, so do the 
speed and duration. This relationship is called the 
main sequence relationship and defines ranges for 
standard saccades. In a normal human, saccade 
duration is linearly related to the amplitude for 
eye movements under 50 degrees. A saccade will 
rarely be longer than 100 ms, approximately four 
to five animation frames. Eye movement outside 
these ranges is either nonsaccadic or an abnormal 
saccade, often symptomatic of pathology.7

Accordingly, we represent saccadic movement 
(see Algorithm 3) as a rotation to the desired target, 
with additional considerations. We approximate 
the main sequence relationship as a linear relation 
between the amplitude and the number of frames 
the saccade takes to execute. For each 10 degrees of 
amplitude, we add one intermediate frame, limit-
ing us to approximately four to five frames. Then, 
linear interpolation between the start and end posi-
tions determines the eye’s intermediate orientation 
across these frames. So, velocity and duration aren’t 

We determined the keyframes by choosing 
those frames with the same alignment value 
as the keyframes on the standard gaze shift 
(see Algorithm 7 in the “Algorithms” sidebar 
at the end of the main article). For example, if 
a keyframe from the standard gaze shift had a 
0.2 alignment value, we selected the frames in 
other gaze shifts with a 0.2 value as the cor-
responding keyframes. Once we had the set of 
keyframes from both the emotionally expres-
sive and the emotionally neutral gaze shifts, 
we derived the GWT.

Given this set of keyframes based on the 
head orientation, we obtained the keyframes 
for every other DOF by simply selecting the 
frames that occur at the same time as those in 
this set of keyframes.
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Figure 2. A stereotypical saccade. Motion curves for a 
30-degree saccade showing head, eye, and combined 
eye and head gaze as generated by our model.
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directly controlled but are implicitly determined by 
the amplitude, obeying a relationship similar to the 
main sequence relationship in a human. The sac-
cade generation algorithm assumes that the head is 
stationary during the saccade. For combined head 
and eye movement, the eye movement model uses 
the eye-head saccade, which we describe later.

The VOR
Figure 3 shows the motion curve for a head move-
ment with the VOR and an animated character 
demonstrating the VOR movement. Because the 
VOR is nonsaccadic, it’s not subject to the main 
sequence relationship, allowing slower eye rota-
tion to match the head rotation. We implement 
VOR eye movement by counter-rotating the eyes 
to the head (see Algorithm 4).

Eye-Head Combined Movement
We model two similar versions of the combined 
eye-head saccade (see Figures 4 and 5), although 

the same algorithm (see Algorithm 5) can generate 
both movements.

For either version, we first generate head and torso 
movement using GWTs. Then, the eye movement is 
automatically layered on the head movement using 
the representation of both saccades and the VOR. 
For eye-head saccades of less than 45 degrees, we 
determine the eye position by generating a ste-
reotypical saccade to the target once the head has 
turned more than 1 degree away from its starting 
location (see Figure 4a). Once the eyes have reached 
their target, the VOR will keep them on target as 
the head slowly turns toward it.7 The images above 
the graph in Figure 4a show the character at the 
beginning of the movement, just after the saccade 
has occurred and the VOR is taking control of the 
eye movement, and at the end of the gaze shift.

We model an eye-head saccade of greater than 
±45 degrees slightly differently (see Figure 5a). In 
this case, we determine the eyes’ position by per-
forming a saccade to 45 degrees once the head has 

We derive the Gaze Warping Transformation (GWT) 
from the difference between the keyframes of two an-

imation curves, u(t) and v(t), respectively defined as the sets 
of (frame, value) pairs (uti, ui) and (vti, vi).1 We represent the 
GWT as an m * n set of (ci, bi) pairs, where m is the number 
of degrees of freedom (DOF) in the animated body and n is 
the number of keyframes in the animation. Each (ci, bi) pair 
then represents the difference between the keyframes (uti, 
ui) and (vti, vi) (see Algorithm 1 in the ”Algorithms” sidebar).

In each pair of the GWT, ci is a time-scaling factor that 
represents the temporal difference between two keyframes, 
whereas bi is a spatial-offset parameter that represents the 
difference between the spatial values of the two keyframes. 
We calculate ci from the keyframes of u and v (see Figure A):
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We calculate bi from the spatial values of u and v (see 
Figure A):

bi = ui - vi.

Because the GWT is a point-wise transformation of the 
keyframes, we perform these operations for each keyframe 
of every motion curve of the gaze shift.

Similarly, given the keyframes of an animation curve 
v(t), with m DOF and n keyframes, a GWT consisting of an 
m * n sized set of (ci, bi) pairs can transform v(t) into a new 
gaze shift u(t) (see Algorithm 2). For each keyframe, we use 
ci to derive the temporal interval between two adjacent 

keyframes uti and uti–1 of u, on the basis of the interval 
between the corresponding keyframes vti and vti–1 of v:

uti = uti–1 + ci (vti − vti–1).

We then use bi to determine the amplitude of keyframe ui 
of u from the corresponding keyframe vi of v:

ui = bi + vi.
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Mathematically Defining the Gaze Warping Transformation
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turned more than 1 degree away from its starting 
location. The eyes will then remain in that orienta-
tion, relative to the head, until the head has rotated 
enough that the eyes are on target. At that time, 
the VOR takes effect, and the eyes remain on target 
until the head movement ends. The images above 
the graph in Figure 5a show the gaze’s initial posi-
tion, the gaze at the end of the 45-degree saccade, 
and the gaze shift’s terminal position. Although 
slight differences exist between the motion curves 
provided here and those from actual humans (see 
Figures 4b and 5b), these differences are unlikely to 
be visible to an observer.

Implementation
Our view of an emotionally expressive gaze is that 
of a mapping between

■■ a space of physical behaviors that can be per-
formed while gazing and

■■ a space of possible emotions that can be attrib-
uted to a gaze shift displaying those behaviors.

We’ve used the EGM to examine three ways to ex-
plore these spaces.

First, we used the EGM to explore only the gaze 
behavior, demonstrating its capability to per-
form nonemotional gaze shifts. Second, we ex-
plored a point-to-point mapping between emotion 
and behavior by having an actor portray specific 
emotional states through gaze shifts. Finally, we 
examined a more piecemeal approach to generat-
ing gazes, composing low-level gaze behaviors and 
seeing how gaze shifts displaying these composi-
tions portray emotion.

Generating Nonemotional Gazes
To develop a GWT-based library for portraying non-
emotional gaze shifts, we used motion data con-
sisting of an actor facing straight ahead and then 
turning to gaze at targets until the actor’s face was 
oriented toward them. We placed targets around 
the actor horizontally and vertically at 10-degree 
intervals from -90 degrees to 90 degrees, with 0 
degrees being directly in front of the actor. This re-
sulted in data for 37 gaze shifts: 18 horizontal gaze 
shifts, 18 vertical gaze shifts, and one capture of 
the actor gazing at the target directly in front.

To obtain the library from this data, we derived 
the GWTs between each of the 36 horizontal and 
vertical gaze shifts and the stationary straight-
ahead gaze. Then, to generate a gaze shift to a 
desired target, we used our gaze generation algo-
rithm (see Algorithm 6). In this algorithm, we first 
calculate the distance the head must rotate from 

its initial position to achieve the gaze target. We 
then find the GWTs with the closest magnitude to 
this distance for the pitch and yaw axes.

We then scale these GWTs so that they’ll rotate 
the head the desired amount, and we apply them 
to the stationary straight-ahead gaze. We inter-
polate the resulting keyframes and apply inverse 
kinematics to the resulting motion curve. Finally, 
we layer eye movements on these motion curves, 
which then drive an animated character.

Generating Emotional Gazes
Using the nonverbal-behavior research literature, 
animation literature, and acting literature, we de-
fined a set of emotions and a set of behaviors pos-
sibly portrayed by these emotions. We asked our 
actor to gaze from a target directly in front of her 
to one 60 degrees to her right, while performing 
these behaviors in a manner that expressed the de-
sired emotion. We derived GWTs from these gaze 
shifts and layered them onto neutral gaze shifts.

Although we performed no formal human-subject 
evaluation, the methodology replicated the per-
formed behaviors in gaze shifts to new targets. 
However, the head’s vertical orientation (pitch) is a 
strong emotional signal that interfered with other 
behaviors being displayed. Keeping the pitch within 
an approximately ±10-degree band would minimize 
its interference with the desired emotional signal.

Additionally, this method only lets the EGM gen-
erate gazes displaying individual emotional states. 
It also requires motion capture data for each emo-
tional state, some of which might be more dif-
ficult for an actor to portray than others. Finally, 
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Figure 3. The vestibulo-ocular reflex (VOR). Motion 
curves for a 30-degree head movement with VOR 
showing head, eye, and combined eye and head gaze 
as generated by our model.
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it doesn’t predict the attribution of emotion to 
behaviors outside these specific emotional states.

Generating Behavior-Based Combinatorial Gazes
As an alternative to point-to-point mapping be-
tween gaze behavior and emotion, we tried to map 
between a set of low-level gaze behaviors derived 
from the nonverbal-behavior literature and a space 
of emotions that these behaviors could portray. To 
do this, we first collected motion data for eight 
expressive gaze behaviors:

■■ head tilted upwards,
■■ head unbowed,
■■ head bowed,
■■ torso unbowed,
■■ torso bowed,
■■ faster velocity,

■■ moderate velocity, and
■■ slower velocity.

Although we could model many additional gaze 
behaviors using the GWT (for example, wider 
variations of posture), this limited set gave us a 
starting point.

For each head and torso behavior, we collected 
data from three movements. In these movements, 
the actor first gazed at the target directly in front 
and then rotated the gaze toward a target 30 de-
grees to the right. The first movement transitioned 
from a neutral posture to a posture displaying the 
behavior. The second movement began and ended 
with the behavior being displayed. The third move-
ment started with the behavior being displayed 
and ended in a neutral posture.

This let us develop characters that can “enter” 
an emotional state by performing a gaze shift that 
transitions from an emotionally neutral shift to 
one displaying emotional behavior. The character 
can then perform multiple gaze shifts within that 
emotion. Finally, the character can “exit” the emo-
tion and transfer back to an emotionally neutral 
state. For example, collecting a bowed-head behavior 
required four movements, during each of which the 
actor gazed from one target to the other. During 
the first movement, the actor began with an un-
bowed head and ended with it bowed. For the sec-
ond, the actor began and ended the movement with 
a bowed head, keeping it bowed the entire time. For 
the third movement, the actor began with a bowed 
head and ended with it unbowed. Finally, the ac-
tor performed a neutral gaze shift with the head 
unbowed. From this motion data, we derived GWTs 
and produced animations from them.

Using these animations, we performed an em-
pirical study to develop the mapping between 
emotion and behavior.9 The results show that 
these low-level gaze behaviors, when annotated 
with emotional values and composed in accor-
dance with those values, display the composed 
emotions within certain constraints. Besides pro-
viding the mapping, the study demonstrated the 
GWT’s utility as a research tool beyond generating 
animations and pointed out future research areas.

All the animations used in our study, as well 
as many other animations produced using the 
EGM, are at http://people.ict.usc.edu/~blance/
AnimationGallery/AnimationGallery.html.

The Current EGM Approach’s Benefits  
and Limitations
The GWT isn’t fundamentally necessary to the 
EGM. The library of gaze movements could consist 
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Figure 4. An eye-head saccade within the eye motor limit. (a) Motion 
curves for the character’s head, eyes, and combined eye and head gaze 
as generated by our model. (b) Motion curves for the head (h), eyes 	
(e), and combined eye and head gaze (g) for an actual human.8 (Figure 
4b source: Taylor & Francis Group, used with permission.)
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of other representations of motion styles, such as 
those that M. Alex O. Vasilescu presented.10 How-
ever, we use this GWT representation because it 
provides several benefits.

Behavior Layering
As a representation of emotionally expressive gaze 
behavior, GWTs can be used to transform gaze shifts 
to arbitrary targets, layering the desired behaviors on 
top of the new gaze shift. This lets us generate gaze 
shifts expressing the desired behavior to arbitrary 
targets while requiring motion capture of only the 
gaze shift expressing the desired behavior.

Compositionality
We can also compose gaze behaviors by applying 
multiple GWTs representing different behaviors to 
a single gaze shift. In this way, we can generate a 
wider variety of gaze shifts with a smaller library 
of motion data. We can also explore the relation-
ship between gaze behavior and the attribution of 
emotion to gaze.9

However, not all behavior compositions result in 
expressive gaze shifts that display all the composed 
behaviors, and not all behavior compositions pre-
dictably portray emotion. Developing a set of ex-
pressive, easily composable gaze behaviors, similar 
to the MPG-4 Facial Animation Parameters stan-
dard, and mapping between them and emotional 
expression remain interesting research areas.

Additional Advantages
In addition, because GWT construction doesn’t 
depend on anatomy, we can add joints and DOFs 
to the GWT representation as needed. GWTs also 
don’t depend on animation data representation. 
This lets us determine them from or apply them to 
different sources of animation data, such as motion 
capture, handcrafted animation, or even procedural 
animation, as long as we can obtain the keyframes 
or motion curves from the animation system.

Limitations
However, because we based the GWT on simple geo-
metric transformations, our approach has several 
limitations. The most immediate is that animations 
generated using simple techniques such as this might 
have artifacts that require inverse kinematics to ad-
dress.4 In addition, the GWT currently doesn’t repre-
sent periodic behavior, such as a nodding head, nor 
does it represent patterns of multiple gaze shifts.

The eye movement model also includes some as-
sumptions that need addressing. The primary as-
sumption is that the target doesn’t move during 
the generation of a gaze shift.

However, we can overcome these limitations by 
basing the EGM in a robust character animation 
system.3

An Example Application
We could apply our approach to a computer-
controlled nonplayer character in an interactive role-
playing game. Consider a character with a simple 
emotion model consisting of two states: neutral and 
sad. The player interacts with the character through 
selecting responses in a dialogue tree, which can 
push the character between emotional states.

The character needs a gaze model that lets the 
character look at targets in the environment. The 
character also needs one emotional gaze behavior—
specifically, a bowed head—with three collected 
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Figure 5. An eye-head saccade beyond the eye motor limit. (a) Motion 
curves for the character’s head, eyes, and combined eye and head gaze 
as generated by our model. (b) Motion curves for the head (h), eyes 	
(e), and combined eye and head gaze (g) for an actual human.8 (Figure 
5b source: Taylor & Francis Group, used with permission.)
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Algorithms
  

Input:
  //Motion curves for an emotional gaze shift
  //One curve for each degree of freedom:
    Emotional[DOF][frames],
  //Motion curves for a nonemotional gaze shift
  //One curve for each degree of freedom:
    Neutral[DOF][frames],
Output:
  //Gaze Warping Transformation:
    GWT[DOF][keyframes][c,b];

//Obtain keyframes from both movements
//as described in block 1
emotionKeys[DOF][keyframes][frame,value]=
  keys(Emotional);
neutralKeys[DOF][keyframes][frame,value]=
  keys(Neutral);

//calculate GWT spatial offset parameter “b”
//and assemble GWT from “b” and “c” parameters
FOR EACH DOF:D
  FOR EACH keyframe:i
    IF i==0
      GWT[D][i][c]=1;
    ELSE
      GWT[D][i][c]=(emotionKeys[D][i][frame]-
        emotionKeys[D][i-1][frame])/
        (neutralKeys[D][i][frame]-
        neutralKeys[D][i-1][frame]);
    END IF
    GWT[D][i][b]=emotionKeys[D][i][value]-
      neutralKeys[D][i][value];
  END FOR
END FOR

RETURN GWT

Algorithm 1. The Gaze Warping Transformation (GWT) derivation 

algorithm. Given motion data of two gaze shifts, this algorithm 

extracts the parameters to convert the keyframes of one of these gaze 

shifts to the keyframes of the other.

Input:
  //GWT Derived from an emotional gaze shift
  //Two parameters (c,b) for each keyframe
  //in each degree of freedom:
    GWT[DOF][keyframes][c,b],
  //Motion curves for a nonemotional gaze shift
  //One curve for each degree of freedom:
    Neutral[DOF][frames],
Output:
  //Motion curves describing head and torso
  //movement for an emotional gaze shift:
    PartialGaze[DOF][frames];

//Obtain keyframes from nonemotional gaze
//As described in block 1
neutralKeys[DOF][keyframes][frame,value]=keys 
  (Neutral);

//Apply the GWTs to the keyframes from the
//nonemotional gaze
FOR EACH DOF:D
  FOR EACH keyframe:i
    //Apply GWT scaling parameter “c”
    IF i==0
      GazeKeys[D][i][frame]=1;
    ELSE
    GazeKeys[D][i][frame]=neutralKeys[D][i][frame]
      *GWT[D][i][c];
    END IF
    //Apply GWT spatial offset parameter “b”
	 GazeKeys[D][i][value]=neutralKeys[D][i][value]
      +GWT[D][i][b];
  END FOR
END FOR

RETURN PartialGaze

Algorithm 2. The GWT application algorithm. Given a GWT and a 

gaze shift, this algorithm will generate a new gaze shift that displays 

the behaviors represented in the GWT.

Input:
  //Orientation motion curves for the head:
    Head[roll,yaw,pitch][frames],
  //Orientation of the gaze target in head-local
  //rotation coordinates:
    Target[yaw,pitch],
  //Number of frame to begin Saccade:
    saccadeTime;
  //Current Eye Orientation:
    Eye[yaw,pitch];
Output:
  //Eye Rotation motion curves:
    EyeOutput[yaw,pitch][frames];

//Calculate the distance the eyes have
//to rotate from their initial position to
//achieve the target
eyeTarget[yaw]=Target[yaw]-Eye[yaw];
eyeTarget[pitch]=Target[pitch]-Eye[pitch];

//Calculate length of time to perform saccade.
//One frame for each 10 degrees of eye rotation.
saccadeLength=distance(Eye,eyeTarget)/10;
saccadeEnd=saccadeTime+saccadeLength;

//Produce the output motion curves
FOR EACH frame:t

  //if the frame is before the saccade
  //keep eye gazing at original target
  IF t<saccadeTime
    EyeOutput[yaw][t]=Eye[yaw];
    EyeOutput[pitch][t]=Eye[pitch];

  //if the frame is after the saccade
  //keep eye gazing at final target
  ELSE IF t>=saccadeTime+saccadeLength
    EyeOutput[yaw][t]=eyeTarget[yaw];
    EyeOutput[pitch][t]=eyeTarget[pitch];

  //if the frame is during the saccade, linearly
  //interpolate between (saccade beginning,eye
  //position) and (saccade end,target)
  ELSE
    EyeOutput[yaw][t]=
      lerp((saccadeTime,Eye[yaw]),
           (saccadeEnd,eyeTarget[yaw]),
            t-saccadeTime);
    EyeOutput[pitch][t]=
      lerp((saccadeTime,Eye[pitch]),
           (saccadeEnd,eyeTarget[pitch]),
            t-saccadeTime);
  END IF
END FOR

RETURN EyeOutput

Algorithm 3. The saccade generation algorithm. Given the initial orientation, gaze target orientation, and time to begin the gaze shift, this 

algorithm generates a saccade to look from the initial position to the target.
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Input:
  //Orientation motion curves for the head:
    Head[roll,pitch,yaw][frames],
  //Orientation of the gaze target in head-local
  //rotation coordinates:
    Target[yaw,pitch],
  //Current Eye Orientation:
    Eye[yaw,pitch];
Output:
  //Eye Rotation motion curves:
    EyeOutput[yaw,pitch][frames];

//Calculate the distance the eyes have
//to rotate from their initial position to
//achieve the target
eyeTarget[yaw]=Target[yaw]-Eye[yaw];
eyeTarget[pitch]=Target[pitch]-Eye[pitch];

//Calculate length of time to perform saccade.
saccadeLength=distance(Eye,eyeTarget)/10;

//Calculate frame number when the head has rotated
//1 degree from initial position, to begin the saccade
WHILE HeadRotation<1
  currentFrame+=1;
  HeadRotation=abs(distance(
    Head[currentFrame],Head[0]));
END WHILE
saccadeBegin=currentFrame;
saccadeEnd=saccadeBegin+saccadeLength;
currentFrame=saccadeEnd;

//Use VOR to keep eyes on initial target before
//saccade begins
EyeOutput[yaw,pitch][0 to saccadeBegin]=
  VOR(Head[][0 to saccadeBegin],Eye);

//generate saccade

EyeOutput[yaw,pitch][saccadeBegin to saccadeEnd]=
  saccade(Head[][saccadeBegin to saccadeEnd],
          Target,saccadeBegin,Eye);

//After the saccade, if the eyes are not on target
//then keep the eyes at the maximum. The head
//will rotate until the eyes are on target.
WHILE EyeOutput[currentFrame]!=eyeTarget
  EyeOutput[yaw][currentFrame]=45;
  EyeOutput[pitch][currentFrame]=45;
  //Update the distance the eyes have to rotate
  //to achieve the target
  eyeTarget[yaw]=(Target[yaw]-
    Head[yaw][currentFrame])-
    EyeOutput[yaw][currentFrame-1];
  eyeTarget[pitch]=(Target[pitch]-
    Head[pitch][currentFrame])–
    EyeOutput[pitch][currentFrame-1];
  currentFrame++;
END WHILE
onTarget=currentFrame;

//Use VOR to keep eyes on final target until
//Head finishes movement
EyeOutput[yaw,pitch][onTarget to lastFrame]=
  VOR(Head[][onTarget to lastFrame],
    Eye[][onTarget]);

RETURN EyeOutput

Algorithm 5. The combined eye-head saccade generation algorithm. Given the animation curves for head movement, initial eye orientation, 

and gaze target orientation, this algorithm generates eye movement for a combined eye-head saccade.

Input:
  //Orientation motion curves for the head:
    Head[roll,pitch,yaw][frames],
  //Current Eye Orientation:
    Eye[yaw,pitch];
Output:
  //Eye Rotation motion curves:
    EyeOutput[yaw,pitch][frames];

//initialize Output
EyeOutput[yaw][0]=Eye[yaw];
EyeOutput[pitch][0]=Eye[pitch];

//Rotate the eye in the opposite direction of the

//head, keeping the eye gazing at the same target
FOR EACH frame:t
  IF t>0
    EyeOutput[yaw][t]=EyeOutput[yaw][t-1]-
      (Head[yaw][t]-Head[yaw][t-1]);
    EyeOutput[pitch][t]=EyeOutput[pitch][t-1]-
      (Head[pitch][t]–Head[pitch][t-1]);
  END IF
END FOR

RETURN EyeOutput

Algorithm 4. The VOR generation algorithm. Given animation curves for head movement and initial eye orientation, this algorithm generates 

an eye movement curve displaying the VOR.
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GWTs for that behavior. The first bows the head 
during a gaze shift, the second keeps the head 
bowed during the gaze shift, and the third raises 
the head back to neutral.

Suppose as the player moves through the dialog 
tree, he or she selects a response that pushes the 
character into the “sad” state. The next gaze shift 
uses the first GWT to bow the character’s head 

while the character gazes. As the player continues 
interacting with the character, the character’s head 
continues to be bowed. If new players approach, the 
character also gazes at them with a bowed head.

When the user selects a response that pushes 
the character back to the neutral emotional state, 
the third GWT raises the character’s head back to 
neutral on the next gaze shift. While the character 

Algorithms (cont.)
Input:
  //Motion curves for the gaze shift to obtain
  //keyframes from. One curve of length frames for
  //each degree of freedom:
    Gaze[DOF][frames];
  //Stereotypical Keyframe Alignment Values. One
  //alignment value for each keyframe:
    SKAV[keyframes];
Output:
  //Keyframes of the motion curve. One
  //(framenumber,value) pair for each keyframe for
  //each degree of freedom
    Keys[DOF][keyframes][key,value]

//Extract the head rotation curves from the gaze
Head[roll,pitch,yaw][frames]=
Gaze[HeadRoll,HeadPitch,HeadYaw][frames];

FOR EACH frame:t
  FOR EACH of roll,pitch,yaw:D
    //Calculate framewise velocity
    Vf[D][t]=(Head[D][t-1]+Head[D][t+1])/2;
  END FOR
  //Calculate overall velocity magnitude per frame
  V[t] = sqrt(square(Vf[roll][t])+
    square(Vf[pitch][t])+square(Vf[yaw][t]));
END FOR

//Calculate Denominator
Denom = sum(V[1 to length(V)]);

//Calculate Frame Alignment Values based on
//formula above
FOR each frame:t
  FAV[t]=sum(V[1 to t])/Denom;
END FOR

FOR EACH keyframe:i
  //Find frame number with the alignment 	
  //value closest to SKAV[i]
  FrameNumber[i]=nearestNeighbor(FAV,SKAV[i]);
END FOR

FOR EACH DOF:D
  FOR EACH keyframe:i
    Keyframes[D][i][frame]=FrameNumber[i];
    Keyframes[D][i][value]=
      Gaze[D][FrameNumber[i]]
  END FOR
END FOR

RETURN Keyframes;

Algorithm 7. The keyframe selection algorithm. Given the motion 

curves representing a gaze shift, this algorithm obtains the keyframes 

for that gaze shift.

Input:
  //Head orientation before the gaze shift:
    Head[yaw,pitch],
  //Eye orientation before the gaze shift:
    Eye[yaw,pitch],
  //Target orientation, in relation to the head
    Target[yaw,pitch],
  //Keyframes for straight-ahead gaze
    Ahead[DOF][keyframes][frame,value],
  //Gaze action: Saccade, VOR, or combined
  //Head/eye Gaze
    Action;
Output:
  //Motion curves for a gaze shift, including
  //head, torso, and eyes:
    Gaze[DOF][frames];

//determine how far the head has to rotate
Rotation[pitch]=Target[pitch]-Head[pitch];
Rotation[yaw]=Target[yaw]-Head[yaw];

//Select the nearest GWTs from the GWT library
PitchGWT=nearestNeighbor(Rotation[pitch],
                         GWTPitchLib);
YawGWT=nearestNeighbor(Rotation[yaw],GWTYawLib);

//Determine how much the GWTs have to be scaled
//by calculating the ratio between what the head
//needs to rotate to achieve the target, and how
//much the GWT will actually rotate the head
PitchScale=PitchGWT[HeadPitch][lastKeyframe]/
  Rotation[Pitch];
YawScale=YawGWT[HeadYaw][lastKeyframe]/
  Rotation[Yaw];

//Scale spatial offset parameter “b” in all
//degrees of freedom in the GWTs
FOR EACH DOF:D
  FOR EACH keyframe:i
    pitchGWT[D][i][b]*=PitchScale;
    yawGWT[D][i][b]*=YawScale;
  END FOR
END FOR

//Apply the GWTs to the straight-ahead gaze
GazeKeys=ApplyGWT(pitchGWT,Ahead);
GazeKeys=ApplyGWT(pitchGWT,GazeKeys);

//Interpolate keyframes using a cubic spline
PartialGaze=cubicInterpolate(GazeKeys);

//Add saccadic, VOR, or combined head/eye movement
//to the partial gaze shift based on Action input
Gaze=EyeModel(PartialGaze,Eye,Target,Action);

RETURN Gaze

Algorithm 6. The gaze generation algorithm. Given the initial 

orientation and gaze target orientation, this algorithm generates an 

appropriate gaze shift to the target.



	 IEEE Computer Graphics and Applications� 73

is in the neutral state, no GWTs are applied to the 
character’s further gaze shifts.

For additional information on applying the EGM 
to interactive virtual humans, see “Real-Time Ex-
pressive Gaze Animation for Virtual Humans.”3

We still have much work to do on the EGM. 
We’d like to integrate it with eye shape and 

other facial-expression components, such as those 
that Stephen Platt and Norman Badler described.11 
We’d also like to integrate it with a model based 
on expressing emotion through the gaze direction, 
such as Atsushi Fukayama and his colleagues de-
scribed.12 The EGM would also benefit from incor-
porating additional gaze movements such as the 
vergence movements that move the eyes indepen-
dently to focus on a target, and from incorporat-
ing control over the character’s pupil size.

Of course, gaze isn’t the only signifier of emo-
tion. Besides other aspects of the character’s non-
verbal behavior, contextual factors such as the 
environment, the character model, the relationship 
between individual characters or between charac-
ters and the user, and even the relative position 
between characters can affect the gaze’s expressive 
content. We explored the EGM in a very decontex-
tualized virtual environment, and it’s unclear how 
these contextual factors affect expressive gaze.

Finally, we’ll continue to use the EGM to further 
explore the composition of low-level gaze behav-
iors into expressive gaze shifts.�
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