
62	 July/August 2010	 Published by the IEEE Computer Society� 0272-1716/10/$26.00 © 2010 IEEE

Digital Human Faces

The Expressive Gaze Model:
Using Gaze to Express Emotion
Brent J. Lance ■ Army Research Laboratory

Stacy C. Marsella ■ University of Southern California

“The eyes are the most important part of
an expression, and must be drawn with
extreme care. Any jitter or false move …

destroys both communication and believability.”1—
Frank Thomas and Ollie Johnston

Early animators realized that the eyes are an
important aspect of the human face regarding
the communication and expression of emotion.
They also found that properly animating believ-
able, emotionally expressive gaze is extremely dif-

ficult. If it’s done improperly,
viewers will immediately notice,
destroying the illusion of life the
animators were striving for.

This problem becomes even
more difficult with interactive
virtual characters—computer-
controlled characters in a vir-
tual environment that interact
with each other and human us-
ers through conversation. Un-
like hand-animated characters,
interactive virtual characters
must function in the virtual en-
vironment and interact with hu-
man users in real time. This also

entails gazing at arbitrary targets as they appear in
the environment.

For example, modern video game environments,
such as World of Warcraft or Oblivion, have thou-
sands of computer-controlled nonplayer characters
with which users can interact. Producing hand-
generated animations for each of these characters
consumes large amounts of time and money that
would often be better spent improving other game
aspects.

To address this issue, we present the Expressive
Gaze Model (EGM), a method that enables vir-
tual characters to generate believable gaze shifts
that communicate a desired emotional expres-
sion. We define a believable, emotionally expres-
sive gaze as an eye, head, or torso movement that
places the forward vector of the virtual charac-
ter’s eyes on a new target while portraying be-
haviors that cause a human viewer to attribute
a desired emotional expression to that character,
in a way that doesn’t damage the viewer’s sus-
pension of disbelief.

The Expressive Gaze Model
The EGM is a hierarchical framework with two
main components: a library of Gaze Warping
Transformations (GWTs) and a procedural model
of eye movement.

The library is generated from motion capture,2
procedural animation,3 or hand animation. Using
this library, users can produce gaze shifts portray-
ing any low-level gaze behavior in the library. The
eye movement model similarly uses a small num-
ber of physical behaviors to generate varieties of
eye movement and integrate them with the GWT-
based movement.

Eye movement by itself is highly stereotypical
and contains little emotional content. It also func-
tions on a different timescale from that of head
or torso movement, with different constraints. So,
we model eye movement differently from head and
torso movement but constrain the relationship be-
tween them.

The EGM doesn’t determine what the animated
character should look at or what the correct emo-
tional response is to a given situation. Instead, it

The Expressive Gaze Model
is a hierarchical framework
for composing simple
behaviors into emotionally
expressive gaze shifts for
virtual characters. Its primary
components are the Gaze
Warping Transformation,
which generates emotionally
expressive head and torso
movement in a gaze shift, and
an eye movement model.

	 IEEE Computer Graphics and Applications� 63

produces individual gaze shifts to which a human
viewer can attribute emotional content.

Figure 1 shows how we use the EGM to produce
a gaze shift. First, we perform two motion capture
sessions. The first is of a shift that contains physical
behaviors, such as a bowed head, explicitly intended
to convey emotional information. The other is of an
emotionally neutral gaze shift, which contains no
physical behaviors beyond those needed to change
targets. Both sessions start and end gazing at the
same targets as each other. From these, we derive
a GWT representing the behaviors performed dur-
ing the emotionally expressive gaze. Then, we apply
that GWT to a new emotionally neutral gaze shift,
which can start and end gazing at different targets.

This results in a new partial gaze shift, consist-
ing of head and torso movement that gazes at a
new target but displays the expressive behaviors
portrayed in the original emotionally expressive
gaze shift. Next, the eye movement model auto-
matically layers appropriate eye behavior onto the
partial gaze shift. This produces the motion data
for an emotionally expressive gaze shift, which we
then render. The final result is a gaze shift that
displays a desired set of expressive gaze behaviors
toward an arbitrary target.

For a look at other research on modeling gaze,
see the “Related Work on Modeling Gaze” sidebar.

The Gaze Warping Transformation
The GWT is a lightweight combination of temporal-
scaling and spatial-transformation parameters
derived from the papers “Motion Warping”4 and
“Emotion from Motion.”5 Basically, it’s a represen-
tation of the difference between two gaze shifts. By
taking any two gaze shifts, we can derive a GWT
from the difference between them, such that apply-
ing it to one gaze shift produces the other gaze shift.

Data Description
For this work, we recorded the motion data using
Ascension’s Flock of Birds (FOB) technology. FOB
uses the movement of sensors through a magnetic
field to measure six degrees of freedom (DOF)—
the x, y, and z positions and the roll, pitch, and
yaw angles—at 60 Hz. We attached three sensors
to an actor, one at the side of the head, one at the
base of the neck, and one at the base of the spine.

The FOB collects motion data as a set of time-
series data points. Each of the three electromag-
netic sensors records a time stamp, the sensor’s
position in (x, y, z) coordinates, and the sensor’s
orientation as an Euler angle.

To perform motion capture of gaze shifts, we
placed targets around the motion capture area at

approximately 10-degree intervals, and the actor
gazed from one specified target to another.

We segmented the sets of captured data into indi-
vidual gaze shifts, which we defined as at most one
major head movement, one major torso movement,
and one major eye movement. We segmented the
data on the basis of the points in time when the
head is stationary in the direction with the larg-
est angular displacement. This is because the head
usually performs the easiest-to-distinguish and
highest-amplitude movements.

Motion capture
of emotionally

expressive
gaze shift

Motion capture
of emotionally

neutral
gaze shift

Gaze Warping
Transformation
representing
emotional
expression

New
emotionally

neutral
gaze shift

– + + Animated
gaze shift

Procedural
eye

movement

Figure 1. The Expressive Gaze Model (EGM). This image shows the
process the EGM uses to generate an emotionally expressive gaze shift.

A lthough much research has focused on modeling gaze in
interactive virtual characters, such as that of Sooha Park Lee

and her colleagues,1 little of it addresses expressing emotion
through gaze. However, Atsushi Fukayama and his colleagues
demonstrated that a human viewer would attribute emotion and
personality to an animated pair of disembodied eyes solely on
the basis of the direction and patterns of gaze shifts.2 In addition,
considerable research on animating facial expressions has used
the eyes’ shape to portray emotions.3

Unlike both these approaches, our research doesn’t address
the gaze target or the shape of the eyes and the immediately
surrounding face. Instead, we focus on how to use the rest of the
body—the head and torso—to express emotion during a gaze
shift and how to integrate the eyes with that movement.

References
	 1.	 S.P. Lee, J.B. Badler, and N.I. Badler, “Eyes Alive,” ACM Trans. Graphics,

vol. 21, no. 3, 2002, pp. 637–644.

	 2.	 A. Fukayama et al., “Messages Embedded in Gaze of Interface Agents—

Impression Management with Agent’s Gaze,” Proc. 2002 SIGCHI Conf.

Human Factors in Computing Systems (SIGCHI 02), ACM Press, 2002,

pp. 41–48.

	 3.	 S.M. Platt and N.I. Badler, “Animating Facial Expressions,” ACM Siggraph

Computer Graphics, vol. 15, no. 3, 1981, p. 252.

Related Work on Modeling Gaze

64	 July/August 2010

Digital Human Faces

Deriving the GWT
The GWT is a point-to-point transformation that
transforms one gaze shift’s keyframes into an-
other gaze shift’s keyframes. Consequently, each
gaze shift’s keyframes must align. (For a discus-
sion of keyframes and alignment, see the side-
bar “Motion Curves and Keyframes.”) If they don’t
align, a transformation derived from a specific
point in time in one gaze shift might be applied to
a noncorresponding point in time in another gaze
shift, leading to visible artifacts in the resulting
animations.

Given the motion data from the emotionally
expressive and emotionally neutral gaze shifts, we
derive the GWT by first obtaining the two gaze
shifts’ keyframes. We then find a set of point-
to-point warping parameters4 that converts the
keyframes of the motion curve representing each
DOF in the emotionally neutral animation into
the keyframes of the motion curve for the cor-
responding DOF in the emotionally expressive
movement.

Algorithm 1 shows the GWT derivation algo-
rithm. (For all the algorithms mentioned in this
article, see the related sidebar at the end of this
article.) For a mathematical depiction of the GWT,
see the sidebar “Mathematically Defining the Gaze
Warping Transformation.”

Applying the GWT
The process of applying the GWT is similar, begin-
ning with motion data of an emotionally neutral
gaze shift. We obtain this shift’s keyframes (as
described in the sidebar “Motion Curves and Key-
frames”) and apply the GWT transformation pa-
rameters to each of them, as shown in Algorithm 2
and the sidebar “Mathematically Defining the Gaze
Warping Transformation.” Finally, we use cubic in-
terpolation to produce motion curves from the re-
sulting transformed keyframes and then use these
motion curves to drive an animated character’s gaze.

The Eye Movement Model
The EGM’s eye movement model6 is based pri-
marily on the visual-neuroscience literature. This
model ensures that our characters perform real-
istic eye movement during animated gaze shifts.

Types of Eye Movement
R. John Leigh and David Zee’s overview of visual
neuroscience identified several functional classes of
eye movement.7 Those relevant to this research are

■■ saccades, which are rapid, highly stereotyped eye
movements toward a specific target, and

■■ vestibular and optokinetic movements, which
maintain visual fixation during head movement.

We captured the motion data from Ascension’s Flock
of Birds technology as a set of motion curves in a

Biovision Hierarchy (BVH) format. In this representation,
each degree of freedom (DOF) of the animated character
has its own 2D motion curve, with the animation’s frame
number as the x-axis and the DOF’s magnitude as the
y-axis. To derive Gaze Warping Transformations (GWTs)
from these motion curves, we first derived the keyframe
representation of the motion data.

Keyframes can be viewed as a sparse representation of
motion curves. A motion curve’s keyframes are a subset of the
animation frames in the motion curve such that interpolating
between the keyframes can reconstruct the original motion.

To find a gaze shift’s keyframes, we aligned that shift
with a “stereotypical” gaze shift. We found the stereo-
typical gaze shift by averaging 33 emotionally neutral
gaze shifts that were scaled to the same length of time
and transformed to begin at the same initial state. We
then placed keyframes on this gaze shift to minimize the
least-squared error between the original movement and a
cubic-spline interpolation across the keyframes. We used
six keyframes for each gaze shift, but modeling more com-
plex gaze behavior might require more keyframes, even
up to the full set of collected data.

To align the gaze shifts, we used an algorithm (derived
from the paper “Emotion from Motion”1) that aligns the
curves of two animations or motion capture sessions on
the basis of the ratio of movement that has occurred by a
specific frame to that which occurs throughout the entire
curve. To find the values for alignment, we used

f̂ t

t

t() =
()

()

=

=

∑

∑

v

v

t

t

t

t

0

0

end
,	
� (1)

where v(t) is the head’s 3D velocity vector. We used this
vector to approximate the movement of the entire body
because the head movement is usually of higher amplitude
than that of the torso during a gaze shift.

For each animation frame, we used this formula to
calculate the frame alignment value, or how much of the
movement in that gaze shift has occurred by that frame.
For example, 0 percent of the total movement in the gaze
shift will have occurred by the first frame, whereas 100
percent of the total movement will have occurred by the
last frame. Each frame in between receives a monotoni-
cally increasing value between 0 and 1.

Motion Curves and Keyframes

	 IEEE Computer Graphics and Applications� 65

In addition, Leigh and Zee discussed how head
and eye movement can be combined through sac-
cades and the vestibulo-occular reflex (VOR). So,
our model employs saccades and VOR movement
to implement combined eye-head saccades.

We represent eye movement with two DOF rep-
resenting the eyes’ horizontal and vertical orien-
tation. Both orientations range from +45 to -45
degrees, with the horizontal increasing to the right
and the vertical increasing upward. In both cases,
0 degrees is straight ahead. Although the mechani-
cal limits of human eye movement are closer to
±55 degrees, evidence shows that neural limits
saturate eye movement starting at ±45 degrees.
The same motion curve drives both eyes, mean-
ing that the eyes maintain a parallel orientation.
Adding the eyes’ ability to converge on a target
complicates the problem but would increase the
generated gaze shifts’ realism.

Our representation of the gaze targets consists of a
local (pitch and yaw) angular coordinate system that
represents the horizontal and vertical rotations that
must be applied to the neck joint for the character’s
head to directly face the target. The origin centers on
the character’s neck joint; (0, 0) represents a target
directly in front of the character’s face.

Figures 2 through 5 show how we represent eye
movements for each type of gaze shift. The gaze-

angle curve represents the gaze’s target, combin-
ing eye and head orientation. The eye-angle curve
represents the angle of the eyes within their orbit.
The head-angle curve represents the head’s angle
relative to its initial position.

Saccades
Figure 2 shows the motion curves for a stereotypi-
cal saccade in 1D and an animated figure show-
ing the saccade’s beginning and ending. Saccadic
movements’ size, speed, and duration are closely
related. As the amplitude increases, so do the
speed and duration. This relationship is called the
main sequence relationship and defines ranges for
standard saccades. In a normal human, saccade
duration is linearly related to the amplitude for
eye movements under 50 degrees. A saccade will
rarely be longer than 100 ms, approximately four
to five animation frames. Eye movement outside
these ranges is either nonsaccadic or an abnormal
saccade, often symptomatic of pathology.7

Accordingly, we represent saccadic movement
(see Algorithm 3) as a rotation to the desired target,
with additional considerations. We approximate
the main sequence relationship as a linear relation
between the amplitude and the number of frames
the saccade takes to execute. For each 10 degrees of
amplitude, we add one intermediate frame, limit-
ing us to approximately four to five frames. Then,
linear interpolation between the start and end posi-
tions determines the eye’s intermediate orientation
across these frames. So, velocity and duration aren’t

We determined the keyframes by choosing
those frames with the same alignment value
as the keyframes on the standard gaze shift
(see Algorithm 7 in the “Algorithms” sidebar
at the end of the main article). For example, if
a keyframe from the standard gaze shift had a
0.2 alignment value, we selected the frames in
other gaze shifts with a 0.2 value as the cor-
responding keyframes. Once we had the set of
keyframes from both the emotionally expres-
sive and the emotionally neutral gaze shifts,
we derived the GWT.

Given this set of keyframes based on the
head orientation, we obtained the keyframes
for every other DOF by simply selecting the
frames that occur at the same time as those in
this set of keyframes.

Reference
	 1.	 K. Amaya, A. Bruderlin, and T. Calvert, “Emotion

from Motion,” Proc. Conf. Graphics Interface

1996, Canadian Information Processing Soc.,

1996, pp. 222–229.

30º

25º

20º

15º

10º

5º

0º

–5º

Head angle
Eye and gaze angle

Figure 2. A stereotypical saccade. Motion curves for a
30-degree saccade showing head, eye, and combined
eye and head gaze as generated by our model.

66	 July/August 2010

Digital Human Faces

directly controlled but are implicitly determined by
the amplitude, obeying a relationship similar to the
main sequence relationship in a human. The sac-
cade generation algorithm assumes that the head is
stationary during the saccade. For combined head
and eye movement, the eye movement model uses
the eye-head saccade, which we describe later.

The VOR
Figure 3 shows the motion curve for a head move-
ment with the VOR and an animated character
demonstrating the VOR movement. Because the
VOR is nonsaccadic, it’s not subject to the main
sequence relationship, allowing slower eye rota-
tion to match the head rotation. We implement
VOR eye movement by counter-rotating the eyes
to the head (see Algorithm 4).

Eye-Head Combined Movement
We model two similar versions of the combined
eye-head saccade (see Figures 4 and 5), although

the same algorithm (see Algorithm 5) can generate
both movements.

For either version, we first generate head and torso
movement using GWTs. Then, the eye movement is
automatically layered on the head movement using
the representation of both saccades and the VOR.
For eye-head saccades of less than 45 degrees, we
determine the eye position by generating a ste-
reotypical saccade to the target once the head has
turned more than 1 degree away from its starting
location (see Figure 4a). Once the eyes have reached
their target, the VOR will keep them on target as
the head slowly turns toward it.7 The images above
the graph in Figure 4a show the character at the
beginning of the movement, just after the saccade
has occurred and the VOR is taking control of the
eye movement, and at the end of the gaze shift.

We model an eye-head saccade of greater than
±45 degrees slightly differently (see Figure 5a). In
this case, we determine the eyes’ position by per-
forming a saccade to 45 degrees once the head has

We derive the Gaze Warping Transformation (GWT)
from the difference between the keyframes of two an-

imation curves, u(t) and v(t), respectively defined as the sets
of (frame, value) pairs (uti, ui) and (vti, vi).1 We represent the
GWT as an m * n set of (ci, bi) pairs, where m is the number
of degrees of freedom (DOF) in the animated body and n is
the number of keyframes in the animation. Each (ci, bi) pair
then represents the difference between the keyframes (uti,
ui) and (vti, vi) (see Algorithm 1 in the ”Algorithms” sidebar).

In each pair of the GWT, ci is a time-scaling factor that
represents the temporal difference between two keyframes,
whereas bi is a spatial-offset parameter that represents the
difference between the spatial values of the two keyframes.
We calculate ci from the keyframes of u and v (see Figure A):

c
ut ut
vt vt

i
i i

i i
=

−
−

−

−

1

1
.

We calculate bi from the spatial values of u and v (see
Figure A):

bi = ui - vi.

Because the GWT is a point-wise transformation of the
keyframes, we perform these operations for each keyframe
of every motion curve of the gaze shift.

Similarly, given the keyframes of an animation curve
v(t), with m DOF and n keyframes, a GWT consisting of an
m * n sized set of (ci, bi) pairs can transform v(t) into a new
gaze shift u(t) (see Algorithm 2). For each keyframe, we use
ci to derive the temporal interval between two adjacent

keyframes uti and uti–1 of u, on the basis of the interval
between the corresponding keyframes vti and vti–1 of v:

uti = uti–1 + ci (vti − vti–1).

We then use bi to determine the amplitude of keyframe ui
of u from the corresponding keyframe vi of v:

ui = bi + vi.

Reference
	 1.	 B. Lance and S.C. Marsella, “Emotionally Expressive Head

and Body Movement during Gaze Shifts,” Intelligent Virtual

Agents, LNCS 4722, 2007, pp. 72–85.

Mathematically Defining the Gaze Warping Transformation

(vti–1,vi–1)

(vti,vi)

0
80

85

90

95

100

105

110

115

120

125

130

10 20 30 40 50 60 70 80
Time (no. of animation frames)

A
ng

le
 (

d
eg

re
es

)

(uti–1,ui–1)
(ut

i
,u

i
)

b(ti) = z = ui –vi

c(ti) = x/y =
uti – uti–1

vti – vti–1

x

y z

Figure A. Calculating parameters c and b, which are the temporal and

spatial difference between two adjacent keyframes (uti, ui) and (vti, vi).

	 IEEE Computer Graphics and Applications� 67

turned more than 1 degree away from its starting
location. The eyes will then remain in that orienta-
tion, relative to the head, until the head has rotated
enough that the eyes are on target. At that time,
the VOR takes effect, and the eyes remain on target
until the head movement ends. The images above
the graph in Figure 5a show the gaze’s initial posi-
tion, the gaze at the end of the 45-degree saccade,
and the gaze shift’s terminal position. Although
slight differences exist between the motion curves
provided here and those from actual humans (see
Figures 4b and 5b), these differences are unlikely to
be visible to an observer.

Implementation
Our view of an emotionally expressive gaze is that
of a mapping between

■■ a space of physical behaviors that can be per-
formed while gazing and

■■ a space of possible emotions that can be attrib-
uted to a gaze shift displaying those behaviors.

We’ve used the EGM to examine three ways to ex-
plore these spaces.

First, we used the EGM to explore only the gaze
behavior, demonstrating its capability to per-
form nonemotional gaze shifts. Second, we ex-
plored a point-to-point mapping between emotion
and behavior by having an actor portray specific
emotional states through gaze shifts. Finally, we
examined a more piecemeal approach to generat-
ing gazes, composing low-level gaze behaviors and
seeing how gaze shifts displaying these composi-
tions portray emotion.

Generating Nonemotional Gazes
To develop a GWT-based library for portraying non-
emotional gaze shifts, we used motion data con-
sisting of an actor facing straight ahead and then
turning to gaze at targets until the actor’s face was
oriented toward them. We placed targets around
the actor horizontally and vertically at 10-degree
intervals from -90 degrees to 90 degrees, with 0
degrees being directly in front of the actor. This re-
sulted in data for 37 gaze shifts: 18 horizontal gaze
shifts, 18 vertical gaze shifts, and one capture of
the actor gazing at the target directly in front.

To obtain the library from this data, we derived
the GWTs between each of the 36 horizontal and
vertical gaze shifts and the stationary straight-
ahead gaze. Then, to generate a gaze shift to a
desired target, we used our gaze generation algo-
rithm (see Algorithm 6). In this algorithm, we first
calculate the distance the head must rotate from

its initial position to achieve the gaze target. We
then find the GWTs with the closest magnitude to
this distance for the pitch and yaw axes.

We then scale these GWTs so that they’ll rotate
the head the desired amount, and we apply them
to the stationary straight-ahead gaze. We inter-
polate the resulting keyframes and apply inverse
kinematics to the resulting motion curve. Finally,
we layer eye movements on these motion curves,
which then drive an animated character.

Generating Emotional Gazes
Using the nonverbal-behavior research literature,
animation literature, and acting literature, we de-
fined a set of emotions and a set of behaviors pos-
sibly portrayed by these emotions. We asked our
actor to gaze from a target directly in front of her
to one 60 degrees to her right, while performing
these behaviors in a manner that expressed the de-
sired emotion. We derived GWTs from these gaze
shifts and layered them onto neutral gaze shifts.

Although we performed no formal human-subject
evaluation, the methodology replicated the per-
formed behaviors in gaze shifts to new targets.
However, the head’s vertical orientation (pitch) is a
strong emotional signal that interfered with other
behaviors being displayed. Keeping the pitch within
an approximately ±10-degree band would minimize
its interference with the desired emotional signal.

Additionally, this method only lets the EGM gen-
erate gazes displaying individual emotional states.
It also requires motion capture data for each emo-
tional state, some of which might be more dif-
ficult for an actor to portray than others. Finally,

35º

25º

15º

5º

–5º

–15º

–25º

–35º

Head angle
Gaze angle
Eye angle

Figure 3. The vestibulo-ocular reflex (VOR). Motion
curves for a 30-degree head movement with VOR
showing head, eye, and combined eye and head gaze
as generated by our model.

68	 July/August 2010

Digital Human Faces

it doesn’t predict the attribution of emotion to
behaviors outside these specific emotional states.

Generating Behavior-Based Combinatorial Gazes
As an alternative to point-to-point mapping be-
tween gaze behavior and emotion, we tried to map
between a set of low-level gaze behaviors derived
from the nonverbal-behavior literature and a space
of emotions that these behaviors could portray. To
do this, we first collected motion data for eight
expressive gaze behaviors:

■■ head tilted upwards,
■■ head unbowed,
■■ head bowed,
■■ torso unbowed,
■■ torso bowed,
■■ faster velocity,

■■ moderate velocity, and
■■ slower velocity.

Although we could model many additional gaze
behaviors using the GWT (for example, wider
variations of posture), this limited set gave us a
starting point.

For each head and torso behavior, we collected
data from three movements. In these movements,
the actor first gazed at the target directly in front
and then rotated the gaze toward a target 30 de-
grees to the right. The first movement transitioned
from a neutral posture to a posture displaying the
behavior. The second movement began and ended
with the behavior being displayed. The third move-
ment started with the behavior being displayed
and ended in a neutral posture.

This let us develop characters that can “enter”
an emotional state by performing a gaze shift that
transitions from an emotionally neutral shift to
one displaying emotional behavior. The character
can then perform multiple gaze shifts within that
emotion. Finally, the character can “exit” the emo-
tion and transfer back to an emotionally neutral
state. For example, collecting a bowed-head behavior
required four movements, during each of which the
actor gazed from one target to the other. During
the first movement, the actor began with an un-
bowed head and ended with it bowed. For the sec-
ond, the actor began and ended the movement with
a bowed head, keeping it bowed the entire time. For
the third movement, the actor began with a bowed
head and ended with it unbowed. Finally, the ac-
tor performed a neutral gaze shift with the head
unbowed. From this motion data, we derived GWTs
and produced animations from them.

Using these animations, we performed an em-
pirical study to develop the mapping between
emotion and behavior.9 The results show that
these low-level gaze behaviors, when annotated
with emotional values and composed in accor-
dance with those values, display the composed
emotions within certain constraints. Besides pro-
viding the mapping, the study demonstrated the
GWT’s utility as a research tool beyond generating
animations and pointed out future research areas.

All the animations used in our study, as well
as many other animations produced using the
EGM, are at http://people.ict.usc.edu/~blance/
AnimationGallery/AnimationGallery.html.

The Current EGM Approach’s Benefits
and Limitations
The GWT isn’t fundamentally necessary to the
EGM. The library of gaze movements could consist

–5º

0º

5º

10º

15º

20º

25º

30º

35º

Head angle
Gaze angle
Eye angle

(a)

(b)

Figure 4. An eye-head saccade within the eye motor limit. (a) Motion
curves for the character’s head, eyes, and combined eye and head gaze
as generated by our model. (b) Motion curves for the head (h), eyes 	
(e), and combined eye and head gaze (g) for an actual human.8 (Figure
4b source: Taylor & Francis Group, used with permission.)

	 IEEE Computer Graphics and Applications� 69

of other representations of motion styles, such as
those that M. Alex O. Vasilescu presented.10 How-
ever, we use this GWT representation because it
provides several benefits.

Behavior Layering
As a representation of emotionally expressive gaze
behavior, GWTs can be used to transform gaze shifts
to arbitrary targets, layering the desired behaviors on
top of the new gaze shift. This lets us generate gaze
shifts expressing the desired behavior to arbitrary
targets while requiring motion capture of only the
gaze shift expressing the desired behavior.

Compositionality
We can also compose gaze behaviors by applying
multiple GWTs representing different behaviors to
a single gaze shift. In this way, we can generate a
wider variety of gaze shifts with a smaller library
of motion data. We can also explore the relation-
ship between gaze behavior and the attribution of
emotion to gaze.9

However, not all behavior compositions result in
expressive gaze shifts that display all the composed
behaviors, and not all behavior compositions pre-
dictably portray emotion. Developing a set of ex-
pressive, easily composable gaze behaviors, similar
to the MPG-4 Facial Animation Parameters stan-
dard, and mapping between them and emotional
expression remain interesting research areas.

Additional Advantages
In addition, because GWT construction doesn’t
depend on anatomy, we can add joints and DOFs
to the GWT representation as needed. GWTs also
don’t depend on animation data representation.
This lets us determine them from or apply them to
different sources of animation data, such as motion
capture, handcrafted animation, or even procedural
animation, as long as we can obtain the keyframes
or motion curves from the animation system.

Limitations
However, because we based the GWT on simple geo-
metric transformations, our approach has several
limitations. The most immediate is that animations
generated using simple techniques such as this might
have artifacts that require inverse kinematics to ad-
dress.4 In addition, the GWT currently doesn’t repre-
sent periodic behavior, such as a nodding head, nor
does it represent patterns of multiple gaze shifts.

The eye movement model also includes some as-
sumptions that need addressing. The primary as-
sumption is that the target doesn’t move during
the generation of a gaze shift.

However, we can overcome these limitations by
basing the EGM in a robust character animation
system.3

An Example Application
We could apply our approach to a computer-
controlled nonplayer character in an interactive role-
playing game. Consider a character with a simple
emotion model consisting of two states: neutral and
sad. The player interacts with the character through
selecting responses in a dialogue tree, which can
push the character between emotional states.

The character needs a gaze model that lets the
character look at targets in the environment. The
character also needs one emotional gaze behavior—
specifically, a bowed head—with three collected

–20º

0º

20º

40º

60º

80º

100º

Head angle
Gaze angle
Eye angle

(a)

(b)

Figure 5. An eye-head saccade beyond the eye motor limit. (a) Motion
curves for the character’s head, eyes, and combined eye and head gaze
as generated by our model. (b) Motion curves for the head (h), eyes 	
(e), and combined eye and head gaze (g) for an actual human.8 (Figure
5b source: Taylor & Francis Group, used with permission.)

70	 July/August 2010

Digital Human Faces

Algorithms

Input:
 //Motion curves for an emotional gaze shift
 //One curve for each degree of freedom:
 Emotional[DOF][frames],
 //Motion curves for a nonemotional gaze shift
 //One curve for each degree of freedom:
 Neutral[DOF][frames],
Output:
 //Gaze Warping Transformation:
 GWT[DOF][keyframes][c,b];

//Obtain keyframes from both movements
//as described in block 1
emotionKeys[DOF][keyframes][frame,value]=
 keys(Emotional);
neutralKeys[DOF][keyframes][frame,value]=
 keys(Neutral);

//calculate GWT spatial offset parameter “b”
//and assemble GWT from “b” and “c” parameters
FOR EACH DOF:D
 FOR EACH keyframe:i
 IF i==0
 GWT[D][i][c]=1;
 ELSE
 GWT[D][i][c]=(emotionKeys[D][i][frame]-
 emotionKeys[D][i-1][frame])/
 (neutralKeys[D][i][frame]-
 neutralKeys[D][i-1][frame]);
 END IF
 GWT[D][i][b]=emotionKeys[D][i][value]-
 neutralKeys[D][i][value];
 END FOR
END FOR

RETURN GWT

Algorithm 1. The Gaze Warping Transformation (GWT) derivation

algorithm. Given motion data of two gaze shifts, this algorithm

extracts the parameters to convert the keyframes of one of these gaze

shifts to the keyframes of the other.

Input:
 //GWT Derived from an emotional gaze shift
 //Two parameters (c,b) for each keyframe
 //in each degree of freedom:
 GWT[DOF][keyframes][c,b],
 //Motion curves for a nonemotional gaze shift
 //One curve for each degree of freedom:
 Neutral[DOF][frames],
Output:
 //Motion curves describing head and torso
 //movement for an emotional gaze shift:
 PartialGaze[DOF][frames];

//Obtain keyframes from nonemotional gaze
//As described in block 1
neutralKeys[DOF][keyframes][frame,value]=keys
 (Neutral);

//Apply the GWTs to the keyframes from the
//nonemotional gaze
FOR EACH DOF:D
 FOR EACH keyframe:i
 //Apply GWT scaling parameter “c”
 IF i==0
 GazeKeys[D][i][frame]=1;
 ELSE
 GazeKeys[D][i][frame]=neutralKeys[D][i][frame]
 *GWT[D][i][c];
 END IF
 //Apply GWT spatial offset parameter “b”
	 GazeKeys[D][i][value]=neutralKeys[D][i][value]
 +GWT[D][i][b];
 END FOR
END FOR

RETURN PartialGaze

Algorithm 2. The GWT application algorithm. Given a GWT and a

gaze shift, this algorithm will generate a new gaze shift that displays

the behaviors represented in the GWT.

Input:
 //Orientation motion curves for the head:
 Head[roll,yaw,pitch][frames],
 //Orientation of the gaze target in head-local
 //rotation coordinates:
 Target[yaw,pitch],
 //Number of frame to begin Saccade:
 saccadeTime;
 //Current Eye Orientation:
 Eye[yaw,pitch];
Output:
 //Eye Rotation motion curves:
 EyeOutput[yaw,pitch][frames];

//Calculate the distance the eyes have
//to rotate from their initial position to
//achieve the target
eyeTarget[yaw]=Target[yaw]-Eye[yaw];
eyeTarget[pitch]=Target[pitch]-Eye[pitch];

//Calculate length of time to perform saccade.
//One frame for each 10 degrees of eye rotation.
saccadeLength=distance(Eye,eyeTarget)/10;
saccadeEnd=saccadeTime+saccadeLength;

//Produce the output motion curves
FOR EACH frame:t

 //if the frame is before the saccade
 //keep eye gazing at original target
 IF t<saccadeTime
 EyeOutput[yaw][t]=Eye[yaw];
 EyeOutput[pitch][t]=Eye[pitch];

 //if the frame is after the saccade
 //keep eye gazing at final target
 ELSE IF t>=saccadeTime+saccadeLength
 EyeOutput[yaw][t]=eyeTarget[yaw];
 EyeOutput[pitch][t]=eyeTarget[pitch];

 //if the frame is during the saccade, linearly
 //interpolate between (saccade beginning,eye
 //position) and (saccade end,target)
 ELSE
 EyeOutput[yaw][t]=
 lerp((saccadeTime,Eye[yaw]),
 (saccadeEnd,eyeTarget[yaw]),
 t-saccadeTime);
 EyeOutput[pitch][t]=
 lerp((saccadeTime,Eye[pitch]),
 (saccadeEnd,eyeTarget[pitch]),
 t-saccadeTime);
 END IF
END FOR

RETURN EyeOutput

Algorithm 3. The saccade generation algorithm. Given the initial orientation, gaze target orientation, and time to begin the gaze shift, this

algorithm generates a saccade to look from the initial position to the target.

	 IEEE Computer Graphics and Applications� 71

Input:
 //Orientation motion curves for the head:
 Head[roll,pitch,yaw][frames],
 //Orientation of the gaze target in head-local
 //rotation coordinates:
 Target[yaw,pitch],
 //Current Eye Orientation:
 Eye[yaw,pitch];
Output:
 //Eye Rotation motion curves:
 EyeOutput[yaw,pitch][frames];

//Calculate the distance the eyes have
//to rotate from their initial position to
//achieve the target
eyeTarget[yaw]=Target[yaw]-Eye[yaw];
eyeTarget[pitch]=Target[pitch]-Eye[pitch];

//Calculate length of time to perform saccade.
saccadeLength=distance(Eye,eyeTarget)/10;

//Calculate frame number when the head has rotated
//1 degree from initial position, to begin the saccade
WHILE HeadRotation<1
 currentFrame+=1;
 HeadRotation=abs(distance(
 Head[currentFrame],Head[0]));
END WHILE
saccadeBegin=currentFrame;
saccadeEnd=saccadeBegin+saccadeLength;
currentFrame=saccadeEnd;

//Use VOR to keep eyes on initial target before
//saccade begins
EyeOutput[yaw,pitch][0 to saccadeBegin]=
 VOR(Head[][0 to saccadeBegin],Eye);

//generate saccade

EyeOutput[yaw,pitch][saccadeBegin to saccadeEnd]=
 saccade(Head[][saccadeBegin to saccadeEnd],
 Target,saccadeBegin,Eye);

//After the saccade, if the eyes are not on target
//then keep the eyes at the maximum. The head
//will rotate until the eyes are on target.
WHILE EyeOutput[currentFrame]!=eyeTarget
 EyeOutput[yaw][currentFrame]=45;
 EyeOutput[pitch][currentFrame]=45;
 //Update the distance the eyes have to rotate
 //to achieve the target
 eyeTarget[yaw]=(Target[yaw]-
 Head[yaw][currentFrame])-
 EyeOutput[yaw][currentFrame-1];
 eyeTarget[pitch]=(Target[pitch]-
 Head[pitch][currentFrame])–
 EyeOutput[pitch][currentFrame-1];
 currentFrame++;
END WHILE
onTarget=currentFrame;

//Use VOR to keep eyes on final target until
//Head finishes movement
EyeOutput[yaw,pitch][onTarget to lastFrame]=
 VOR(Head[][onTarget to lastFrame],
 Eye[][onTarget]);

RETURN EyeOutput

Algorithm 5. The combined eye-head saccade generation algorithm. Given the animation curves for head movement, initial eye orientation,

and gaze target orientation, this algorithm generates eye movement for a combined eye-head saccade.

Input:
 //Orientation motion curves for the head:
 Head[roll,pitch,yaw][frames],
 //Current Eye Orientation:
 Eye[yaw,pitch];
Output:
 //Eye Rotation motion curves:
 EyeOutput[yaw,pitch][frames];

//initialize Output
EyeOutput[yaw][0]=Eye[yaw];
EyeOutput[pitch][0]=Eye[pitch];

//Rotate the eye in the opposite direction of the

//head, keeping the eye gazing at the same target
FOR EACH frame:t
 IF t>0
 EyeOutput[yaw][t]=EyeOutput[yaw][t-1]-
 (Head[yaw][t]-Head[yaw][t-1]);
 EyeOutput[pitch][t]=EyeOutput[pitch][t-1]-
 (Head[pitch][t]–Head[pitch][t-1]);
 END IF
END FOR

RETURN EyeOutput

Algorithm 4. The VOR generation algorithm. Given animation curves for head movement and initial eye orientation, this algorithm generates

an eye movement curve displaying the VOR.

72	 July/August 2010

Digital Human Faces

GWTs for that behavior. The first bows the head
during a gaze shift, the second keeps the head
bowed during the gaze shift, and the third raises
the head back to neutral.

Suppose as the player moves through the dialog
tree, he or she selects a response that pushes the
character into the “sad” state. The next gaze shift
uses the first GWT to bow the character’s head

while the character gazes. As the player continues
interacting with the character, the character’s head
continues to be bowed. If new players approach, the
character also gazes at them with a bowed head.

When the user selects a response that pushes
the character back to the neutral emotional state,
the third GWT raises the character’s head back to
neutral on the next gaze shift. While the character

Algorithms (cont.)
Input:
 //Motion curves for the gaze shift to obtain
 //keyframes from. One curve of length frames for
 //each degree of freedom:
 Gaze[DOF][frames];
 //Stereotypical Keyframe Alignment Values. One
 //alignment value for each keyframe:
 SKAV[keyframes];
Output:
 //Keyframes of the motion curve. One
 //(framenumber,value) pair for each keyframe for
 //each degree of freedom
 Keys[DOF][keyframes][key,value]

//Extract the head rotation curves from the gaze
Head[roll,pitch,yaw][frames]=
Gaze[HeadRoll,HeadPitch,HeadYaw][frames];

FOR EACH frame:t
 FOR EACH of roll,pitch,yaw:D
 //Calculate framewise velocity
 Vf[D][t]=(Head[D][t-1]+Head[D][t+1])/2;
 END FOR
 //Calculate overall velocity magnitude per frame
 V[t] = sqrt(square(Vf[roll][t])+
 square(Vf[pitch][t])+square(Vf[yaw][t]));
END FOR

//Calculate Denominator
Denom = sum(V[1 to length(V)]);

//Calculate Frame Alignment Values based on
//formula above
FOR each frame:t
 FAV[t]=sum(V[1 to t])/Denom;
END FOR

FOR EACH keyframe:i
 //Find frame number with the alignment 	
 //value closest to SKAV[i]
 FrameNumber[i]=nearestNeighbor(FAV,SKAV[i]);
END FOR

FOR EACH DOF:D
 FOR EACH keyframe:i
 Keyframes[D][i][frame]=FrameNumber[i];
 Keyframes[D][i][value]=
 Gaze[D][FrameNumber[i]]
 END FOR
END FOR

RETURN Keyframes;

Algorithm 7. The keyframe selection algorithm. Given the motion

curves representing a gaze shift, this algorithm obtains the keyframes

for that gaze shift.

Input:
 //Head orientation before the gaze shift:
 Head[yaw,pitch],
 //Eye orientation before the gaze shift:
 Eye[yaw,pitch],
 //Target orientation, in relation to the head
 Target[yaw,pitch],
 //Keyframes for straight-ahead gaze
 Ahead[DOF][keyframes][frame,value],
 //Gaze action: Saccade, VOR, or combined
 //Head/eye Gaze
 Action;
Output:
 //Motion curves for a gaze shift, including
 //head, torso, and eyes:
 Gaze[DOF][frames];

//determine how far the head has to rotate
Rotation[pitch]=Target[pitch]-Head[pitch];
Rotation[yaw]=Target[yaw]-Head[yaw];

//Select the nearest GWTs from the GWT library
PitchGWT=nearestNeighbor(Rotation[pitch],
 GWTPitchLib);
YawGWT=nearestNeighbor(Rotation[yaw],GWTYawLib);

//Determine how much the GWTs have to be scaled
//by calculating the ratio between what the head
//needs to rotate to achieve the target, and how
//much the GWT will actually rotate the head
PitchScale=PitchGWT[HeadPitch][lastKeyframe]/
 Rotation[Pitch];
YawScale=YawGWT[HeadYaw][lastKeyframe]/
 Rotation[Yaw];

//Scale spatial offset parameter “b” in all
//degrees of freedom in the GWTs
FOR EACH DOF:D
 FOR EACH keyframe:i
 pitchGWT[D][i][b]*=PitchScale;
 yawGWT[D][i][b]*=YawScale;
 END FOR
END FOR

//Apply the GWTs to the straight-ahead gaze
GazeKeys=ApplyGWT(pitchGWT,Ahead);
GazeKeys=ApplyGWT(pitchGWT,GazeKeys);

//Interpolate keyframes using a cubic spline
PartialGaze=cubicInterpolate(GazeKeys);

//Add saccadic, VOR, or combined head/eye movement
//to the partial gaze shift based on Action input
Gaze=EyeModel(PartialGaze,Eye,Target,Action);

RETURN Gaze

Algorithm 6. The gaze generation algorithm. Given the initial

orientation and gaze target orientation, this algorithm generates an

appropriate gaze shift to the target.

	 IEEE Computer Graphics and Applications� 73

is in the neutral state, no GWTs are applied to the
character’s further gaze shifts.

For additional information on applying the EGM
to interactive virtual humans, see “Real-Time Ex-
pressive Gaze Animation for Virtual Humans.”3

We still have much work to do on the EGM.
We’d like to integrate it with eye shape and

other facial-expression components, such as those
that Stephen Platt and Norman Badler described.11
We’d also like to integrate it with a model based
on expressing emotion through the gaze direction,
such as Atsushi Fukayama and his colleagues de-
scribed.12 The EGM would also benefit from incor-
porating additional gaze movements such as the
vergence movements that move the eyes indepen-
dently to focus on a target, and from incorporat-
ing control over the character’s pupil size.

Of course, gaze isn’t the only signifier of emo-
tion. Besides other aspects of the character’s non-
verbal behavior, contextual factors such as the
environment, the character model, the relationship
between individual characters or between charac-
ters and the user, and even the relative position
between characters can affect the gaze’s expressive
content. We explored the EGM in a very decontex-
tualized virtual environment, and it’s unclear how
these contextual factors affect expressive gaze.

Finally, we’ll continue to use the EGM to further
explore the composition of low-level gaze behav-
iors into expressive gaze shifts.�

Acknowledgments
We thank Bosco Tjan, Karen Liu, Skip Rizzo, W. Lewis
Johnson, Mei Si, Sharon Carnicke, Marcus Thiebaux,
Andrew Marshall, Jina Lee, and Tiffany Cole for their
invaluable assistance in this research. This research was
supported partly by an appointment to the US Army
Research Laboratory Postdoctoral Fellowship Program
administered by Oak Ridge Associated Universities
through a contract with the US Army Research Labo-
ratory, and partly by the US Army Research, Develop-
ment, and Engineering Command. The content doesn’t
necessarily reflect the US government’s position or
policy, and no official endorsement should be inferred.

References
	 1.	 F. Thomas and O. Johnston, Disney Animation: The

Illusion of Life, Abbeville Press, 1981.
	 2.	 B. Lance and S.C. Marsella, “Emotionally Expressive

Head and Body Movement during Gaze Shifts,”
Intelligent Virtual Agents, LNCS 4722, 2007, pp. 72–85.

	 3.	 M. Thiebaux, B. Lance, and S.C. Marsella, “Real-Time
Expressive Gaze Animation for Virtual Humans,”
Proc. 8th Int’l Conf. Autonomous Agents and Multi-
agent Systems (AAMAS 09), vol. 1, Int’l Foundation
for Autonomous Agents and Multiagent Systems,
2009, pp. 321–328.

	 4.	 A. Witkin and Z. Popovic, “Motion Warping,” Proc.
Siggraph, ACM Press, 1995, pp. 105–108.

	 5.	 K. Amaya, A. Bruderlin, and T. Calvert, “Emotion from
Motion,” Proc. Conf. Graphics Interface 1996, Canadian
Information Processing Soc., 1996, pp. 222–229.

	 6.	 B. Lance and S.C. Marsella, “A Model of Gaze for the
Purpose of Emotional Expression in Virtual Embodied
Agents,” Proc. Autonomous Agents and Multi-agent
Systems (AAMAS 08), Int’l Foundation for Autonomous
Agents and Multiagent Systems, 2008, pp. 199–206.

	 7.	 R.J. Leigh and D.S. Zee, The Neurology of Eye
Movements, Oxford Univ. Press, 2006.

	 8.	 T. Uemura, Y. Arai, and C. Shimazaki, “Eye-Head
Coordination during Lateral Gaze in Normal Subjects,”
Acta Oto-Laryngologica, vol. 90, no. 1, 1980, pp. 191–198.

	 9.	 B. Lance and S.C. Marsella, “Glances, Glares, and
Glowering: How Should a Virtual Human Express
Emotion through Gaze?” J. Autonomous Agents and
Multi-agent Systems, vol. 20, no. 1, 2009, pp. 50–69.

	10.	 M.A.O. Vasilescu, “Human Motion Signatures: Anal
ysis, Synthesis, Recognition,” Proc. 2002 Int’l Conf.
Pattern Recognition (ICPR 02), IEEE CS Press, 2002,
pp. 456–460.

	11.	 S.M. Platt and N.I. Badler, “Animating Facial
Expressions,” ACM Siggraph Computer Graphics, vol.
15, no. 3, 1981, p. 252.

	12.	 A. Fukayama et al., “Messages Embedded in Gaze
of Interface Agents—Impression Management with
Agent’s Gaze,” Proc. 2002 SIGCHI Conf. Human
Factors in Computing Systems (SIGCHI 02), ACM
Press, 2002, pp. 41–48.

Brent J. Lance is a computer scientist at the Army Re-
search Laboratory at the Aberdeen Proving Grounds.
His research interests are virtual reality and affective
computing. Lance has a PhD in computer science from
the University of Southern California. Contact him at
blance@ict.usc.edu.

Stacy C. Marsella is a research associate professor of
computer science at the University of Southern Cali-
fornia and the Associate Director for Social Simulation
Research and codirector for the Computational Emotion
Group, both at the USC Institute for Creative Tech-
nologies. He heads projects on virtual humans, social
simulation, emotions, and theory of mind. Marsella
has a PhD in computer science from Rutgers Univer-
sity. Contact him at marsella@ict.usc.edu; www.ict.
usc.edu/~marsella.

