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Abstract

Decision-theoretic models have become increas-
ingly popular as a basis for solving agent and multiagent
problems, due to their ability to quantify the complex un-
certainty and preferences that pervade most nontrivial
domains. However, this quantitative nature also compli-
cates the problem of constructing models that accurately
represent an existing agent or multiagent system, lead-
ing to the common question, “Where do the numbers
come from?” In this work, we present a method for ex-
ploiting knowledge about the qualitative structure of a
problem domain to automatically derive the correct quan-
titative values that would generate an observed pattern of
agent behavior. In particular, we propose the use of piece-
wise linear functions to represent probability distributions
and utility functions with a structure that we can then ex-
ploit to more efficiently compute value functions. More
importantly, we have designed algorithms that can (for ex-
ample) take a sequence of actions and automatically
generate a reward function that would generate that be-
havior within our agent model. This algorithm allows us to
efficiently fit an agent or multiagent model to observed be-
havior. We illustrate the application of this framework
with examples in multiagent modeling and social simula-
tion, using decision-theoretic models drawn from the al-
phabet soup of existing research (e.g., MDPs, POMDPs,
Dec-POMDPs, Com-MTDPs).

1. Introduction

Decision-theoretic models have become increasingly
popular in agent and multiagent domains. Markov Deci-
sion Processes (MDPs) [9] and Partially Observable MDPs
(POMDPs) [6] provide powerful frameworks for represent-
ing and solving single-agent planning problems. Multiagent
researchers have begun extending these frameworks to ad-
dress problems of coordination and teamwork [1, 4, 10].

These frameworks can quantify the expected perfor-
mance of policies of agent behavior, and their ability to find
provably optimal policies provides a natural basis for mod-
eling a rational agent.

However, the application of these frameworks to real-
world problems is often difficult, not least because of their
prohibitive computational complexity [1, 8, 10]. Further-
more, the quantitative nature of these decision-theoretic
frameworks also complicates the problem of constructing
the models in the first place. The large parameter space en-
compassed by an MDP-based model’s specification of the
world dynamics, observability, preferences, etc. leads to the
common question, “Where do the numbers come from?”

We can begin to address these difficulties by exploiting
the structure that exists in typical agent domains. Our hy-
pothesis in this work is that the use of piecewise linear func-
tions to represent probability distributions and utility func-
tions provides a valuable structure, without sacrificing much
generality. We demonstrate the application of this frame-
work in representing domain examples taken from multia-
gent modeling and social simulation.

The linearity properties of our representation can poten-
tially form the basis for a suite of algorithms that can exploit
this linearity in solving (multi)agent problems. This paper
presents two such algorithms that we have developed and
implemented. The first addresses the complexity of evaluat-
ing the expected reward derived by a particular policy of be-
havior. While this computational cost is prohibitive in gen-
eral, the piecewise linear structure of our agent model sup-
ports an algorithm that can compile a value function into a
decision tree for rapid policy evaluation.

As a second demonstration of this framework, we have
also implemented algorithms that can take a sequence of
actions and automatically generate a reward function that
would generate that behavior within our agent model. This
algorithm allows us to efficiently fit an agent or multiagent
model to observed behavior. Our method exploits knowl-
edge about the qualitative structure (in the form of our
piecewise linearity) of a problem domain to automatically



derive the correct quantitative values that would generate
an observed pattern of agent behavior.

Section 2 presents the relevant details of the MDP-based
frameworks that motivate this work, as well as two illus-
trative domains that we use as running examples through-
out this paper. Section 3 uses these two examples to present
our decision tree representation of piecewise linear func-
tions for use in MDP-based frameworks. Section 4 presents
an algorithm that exploits this representation to compile an
agent model for the efficient evaluation of policy values.
Section 5 presents an algorithm that exploits this represen-
tation to fit an agent model’s reward function to observed
behavior. Section 6 concludes with some discussion of the
implications of our methodology and opportunities for fu-
ture applications and extensions.

2. Problem Statement

Our methodology has applications for many decision-
theoretic (multi)agent frameworks, starting with MDPs [9],
which we denote as tuples, �����������	��

� , where � is the state
space, � the action space, � the transition probability func-
tion, and 
 the reward function. The Partially Observable
MDP (POMDP) [6, 11] extends the MDP framework to in-
clude a function, � , that represents the distribution over the
agent’s possible observations. Thus, each agent maintains a
belief state, � , that summarizes its observations so far.

The Decentralized POMDP (Dec-POMDP) [1] can rep-
resent multiple agents in a partially observable environ-
ment, where each agent makes independent observations
and decisions, but whose actions have potentially dependent
effects on the environment. The Communicative Multiagent
Team Decision Problem (Com-MTDP) [10] extends the
Dec-POMDP to explicitly model communication and the
belief state space of the agents. We use the Com-MTDP’s
illustrative domain from this previous work as an example
throughout this paper. This domain models the flight of two
helicopters through enemy territory. The uncertainty about
the enemy’s location, as well as the partial observability,
leads to critical tradeoffs between the cost of exchanging
messages and the urgency in reaching their destination.

A social simulation using a Com-MTDP-based multia-
gent system provides our other example. The agents rep-
resent different people and groups in a classroom, with a
teacher analyzing their simulated behavior to understand the
causes and cures for school violence. One agent represents
a bully, and another represents the student who is the typi-
cal victim of the bully’s violence. A third agent represents
the group of onlookers, who encourage the bully’s exploits
by, for example, laughing at the victim as he is beaten up.
A final agent represents the class’s teacher trying to main-
tain control of the classroom by doling out punishment in
response to the violence. Although each of these individu-

als has its own goals, we model each agent’s decision pro-
cess as a single-agent problem, where it assumes that all of
the other agents are following a fixed policy of behavior.

The application of these various frameworks to realis-
tic problems poses a variety of challenges. Regarding the
single-agent case, although the problems of finding optimal
policies for MDPs and POMDPs are in P and PSPACE, re-
spectively [8], their complexity is polynomial in the size of
the state space, which is in turn exponential in the number of
state features. The cost of the multiagent case is even more
prohibitive [1, 10], where the problem of finding optimal
policies is in NEXP and is thus provably non-polynomial.

Additional difficulties arise in trying to apply MDP-
based frameworks to the problem of modeling agents. The
large parameter space required by the quantitative specifica-
tion of the components of these models places a large bur-
den on the model designer. For example, in the school vio-
lence simulation domain, the typical user will be a teacher
who wishes to prevent the bully from picking on his vic-
tim. For example, some bullies may pick on the victim to
gain the positive reaction from their classmates, in which
case punishing the entire class may be an effective policy.
On the other hand, if the bully picks on the victim to lash
out at all of his classmates, then such a policy may only
encourage his violence. Thus, it would be valuable for a
teacher to identify the type of bully, which, in the context
of our decision-theoretic model, corresponds to identifying
the bully’s reward function. Unfortunately, the complex in-
terdependencies of an MDP-based agent model make it dif-
ficult to predict how modifying a particular parameter will
affect the resulting behavior.

It would greatly simplify the simulation setup task if the
system could automatically construct a fully parameterized
model of the bully based on readily available input, such as
observations of his behavior so far. This problem parallels
the larger research area of plan recognition. A detailed sur-
vey of the field is beyond the scope of this paper, but current
plan recognition techniques are unable to provide an auto-
matic mechanism for modeling an MDP-based agent. Re-
cent work in machine learning has provided promising re-
sults on learning reward functions from observed behavior
of MDP-based agents [2, 7]. However, these approaches re-
quire additional knowledge (e.g., basis functions, distribu-
tion over reward functions) that may not be readily available
and that would be difficult to understand and manipulate by
someone who is not an AI expert. We instead would like an
algorithm that accomplishes analogous tasks, but does so
using structures that are more transparent to a novice user.

3. Piecewise Linear Models

Therefore, there is a need for novel techniques that
can exploit structured problem domains to more efficiently



solve the modeling and planning tasks in decision-theoretic
frameworks. We can draw inspiration for possible solutions
from some related work in the literature. Work on learning
probabilistic networks has exploited the linearity of the pos-
terior distribution of interest in answering queries to auto-
matically adjust numerical weights to match the desired out-
put [3]. The approach relies on an ability to express a proba-
bilistic query response as a linear combination of the values
of nodes in the belief network. In addition, existing multia-
gent work has gained computation leverage by approximat-
ing an agent’s value function as a linear combination of ba-
sis functions [5]. Linearity is clearly a handy property that
one can exploit in many ways in solving agent problems.

Unfortunately, nontrivial agent domains present nonlin-
earities that prevent us from directly applying such tech-
niques. For example, in the Com-MTDP helicopter domain,
the agents receive a positive reward only upon reaching their
destination; they receive zero reward while en route. In the
school violence simulation, we can model the bully’s re-
ward as being proportional to the encouragement received
from his fellow classmates and negatively proportional to
the amount of punishment received from the teacher. How-
ever, the dynamics are nonlinear, as the policy of the teacher
is discontinuous in its specification of punishment upon ob-
serving an act of violence and no punishment otherwise.

We propose modeling agent-based systems with piece-
wise linear functions, represented as probabilistic decision
trees whose leaf nodes are matrices with constant weights.
Each decision tree partitions the state space, with the leaf
nodes containing the matrix relevant to the corresponding
subset of states. The decision tree branches represent sep-
aration by hyperplanes, so we are able to represent nonlin-
earities while still maintaining some desirable linear prop-
erties. The rest of this section describes and illustrates the
mechanism of this representation as it pertains to the com-
mon features of an MDP-based model specification.

3.1. System State Vectors

We start, as do most decision-theoretic models (such
as MDPs, POMDPs, Dec-POMDPs, Com-MTDPs), with a
state space, � , whose elements represent the possible states
of an agent’s world. It is often convenient to use a factored
representation, with each element of the state space being a
vector, �� , representing a combination of separate state fea-
tures. For example, in the helicopter Com-MTDP, the state
vector contained three elements: the state of the escort he-
licopter, transport helicopter, and the enemy radar. In the
school violence simulation, the state contains one element
for each entity, representing its relative “power” in the sce-
nario. We assume that we can represent such states as real-
valued column vectors.

However, the state of the world does not completely cap-
ture the state of the overall agent-based system, in that it
is not always sufficient for determining behavior and fu-
ture states. A common definition of the reward function, 
 ,
as defined in MDP-based models, is a mapping from both
state and action to a real value, which indicates that the re-
ward received by the agent(s) depends on the action(s) per-
formed in the time step. Thus, we must extend our state vec-
tor to include slots representing those actions.

For example, in the school violence simulation, the bully
derives a reward every time his classmates laugh along with
his antics. Therefore, there is a slot in the system state in-
dicating the presence (and possibly degree) of such encour-
agement. Likewise, in the helicopter Com-MTDP, there is
a communication cost incurred every time an agent sends a
message. We must therefore include a slot that indicates the
number of messages sent.

For the completely observable, single-agent MDP, the
world state and action are sufficient for determining the
behavior of the agent. However, in the partially observ-
able systems represented by POMDPs and Com-MTDPs,
an agent receives only an indirect observation of the true
world state and instead bases its policy decisions on its be-
lief state, � . For example, in the helicopter Com-MTDP, the
belief state of the transport helicopter consists of one bit of
information: has the enemy been destroyed or not? The be-
lief state of its escort also consists of one bit: does the trans-
port believe that the enemy is destroyed or not?

We denote the vector, �� , to represent the overall state of a
system of � agents. Thus, ������ �� ���	�
 �
���
� ���	�� � �� 
 �
���
� � �� � �
�
� ,
representing the world state, action selections, and belief
states, respectively. The final element is a constant factor
that provides for more flexible manipulation of the system
state vector, as we show in the following sections. Further-
more, given the typical nondeterminism in agent domains,
we are likely to have a probability distribution over system
states, � ���� �����
������ ��� , rather than a single vector.

In the Com-MTDP helicopter domain, each sys-
tem state vector, �� , accumulates the world state,
action indicators, and belief states as already de-
scribed, resulting in a vector of seven elements:� escort � transport � enemy � messages � transport-belief,
escort-belief ����� .

In the social simulation model of School violence,
the state vector includes the “power” levels of the en-
tities in the scenario, but it also includes boolean com-
ponents indicating the actions of those entities. In par-
ticular, one component is 1 if and only if the bully has
attacked the victim in the previous epoch. Another compo-
nent is 1 if and only if the onlookers laughed in response
to such an attack. Regarding the teacher’s action, one com-
ponent is 1 if and only if the teacher has punished the
bully. The resulting system state vector has seven elements:



� bully-power � victim-power � teacher-power � bully-violence,
onlookers-laugh � teacher-punish �
��� .

Notice that we can quickly recover important expecta-
tions from distributions over such state vectors. For exam-
ple, to compute the expected number of acts of violence
in the school violence example, we would simply compute
the sum: � � bully-violence� ������ ��� � �� � ���� � � where ���� � � in-
dicates the �	��
 element of the vector. We can perform an
analogous summation to compute the expected number of
messages sent in the helicopter domain.

3.2. Piecewise Linear Reward Functions

The reward function represents the preferences that an
agent has over states of the world and actions that change
those states. MDP-based models capture such preferences
as a deterministic function that returns a real value for each
combination of state of the world and the most recent ac-
tions performed by the agent(s). In some domains, the re-
ward function is a weighted sum of the values of the state
features. In such cases, we can model the reward function
as a row vector containing the weights, which we can then
multiply by our system state vector to return the reward re-
ceived in that state. Unfortunately, most agent domains do
not possess such linear reward functions.

Our hypothesis is that many agent domains have re-
ward functions that are linear in a piecewise fashion. In
other words, we model the reward as a decision tree par-
titioning the state space, with the leaf nodes represent-
ing the weighted combination applicable in that subset of
states. We partition the space with a set of hyperplanes,
where we define each plane, ��
 , as a set of weights, �� 
��� 
 
 � � 
�� �
���
� � � 
�� , and a threshold, ��
 . We can then define a
decision tree branch, ��
 , as a function over state vectors:

� 
 � �� ����� � 
�� ���� � if �� 
�� ���� � 
��
� � �� � if �� 
 � ���! �"
 (1)

The definition is recursive, so that if the state, �� , is to the
left (right) of the dividing hyperplane, we follow the corre-
sponding decision tree branch, � 
#� ( � 
# ). Leaf nodes re-
turn a unique value, rather than another node.

For a reward function, the leaf node value is a row vector,
which we can then multiply (dot product) with a state vec-
tor to compute a real value. In other words, if �  represents
the reward function and �� is the current state of the sys-
tem, then �  � �� � returns the row vector that represents the
reward weights for the relevant portion of the state space.
Thus, �� � �� � � �� represents the current reward received by
the agent(s). To simplify notation, we will write this expres-
sion as simply �� � �� when there is no confusion.

If an agent’s reward is proportional to the components
of our system state vector, then the reward decision tree,�  , is a single leaf node. For example, in the school vio-
lence simulation, the bully’s reward is proportional to his

power, negatively proportional to the power of the victim
and teacher, and proportional to the encouragement (e.g.,
laughter) elicited from his onlooking classmates. In other
words, �� returns a row vector, � $ 
 � $ � � $&% �(' � $*) �(' �('�� , for
some constant weights, $ 
�+ ' , $ � � ' , $&%,� ' , and $*) + ' .

Although most reward structures are not so linear, we
can represent many of them within our decision tree struc-
ture. We can easily represent achievement goals with such
a reward function structure. For example, in the helicopter
Com-MTDP, the agents receive a positive reward when
they reach the destination, but no reward while they are in
transit. Thus, the reward’s decision tree must first branch
on whether each helicopter has reached the destination.
The transport’s corresponding hyperplane, � , has weights,
�� � � ' ��� �(' �-' �-' �-' �('�� (i.e., a weight of 1 for the trans-

port’s position), and threshold, � �/. , where . is the
position of the destination. The left branch results in a
leaf node with only the communication cost as a reward
( � ' �(' �(' � $*0 �-' �-' �('�� ), while the right results in a leaf node
with the communication cost and the successful arrival re-
ward ( � ' �-' �(' � $10 �(' �(' � $&2 � ), for constants $*03� ' and $*2 + ' .

3.3. Piecewise Linear Dynamics

Agents typically base their decisions on some sort of
planning process that examines the possible future out-
comes of their actions. To represent the dynamics of the
state of the world, decision-theoretic models typically use
a transition probability function, � , that maps a state and an
action into a distribution over possible new states. We repre-
sent this transition probability function as a set of decision
trees, one for each action, with each decision tree return-
ing a transformational matrix that represents the dynamics
in the relevant portion of the state space. In other words,
we define a decision tree, � �4 , to represent the dynamics of
a combined action, �	 . We apply these dynamics in a sim-
ilar fashion to the reward function, so that if �� is the sys-
tem state at time 5 , then � �4 � �� �76 �� (again denoted in short-
hand as simply � �4 6 �� ) produces a system state that rep-
resents the world state and action indicators at time 598 � .
Section 3.4 discusses the projection of future belief states.

In the school violence simulation, we model acts of vi-
olence (or punishment) as generally decreasing the power
of the object of that action and increasing the power of the
actor. However, the effects change if the actor is less pow-
erful than the object of his/her violence. For example, in
the decision tree representing the dynamics when the bully
beats up his victim, there is a top-level branching hyper-
plane with weights � � �1: � �-' �-' �(' �(' �-' � and threshold ; + ' .
To the right of that branch, the bully is at least marginally
stronger than his victim, and he inflicts damage proportional
to his advantage, leading to the < 6 < matrix in Table 1.

The first row produces an increase in the bully’s power,
and the second a decrease in the victim’s. The third row



���������
�

1.1 -.1 0 0 0 0 0
-.2 1.2 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1

����������
�

Table 1. Dynamics matrix for bully’s act of vi-
olence toward his victim, when bully is the
more powerful.

leaves the teacher’s power unchanged. The fourth row ac-
tivates the indicator for bully-violence, while the next two
rows leave the indicators for onlookers-laugh and teacher-
punish off. The last row simply maintains the constant fac-
tor in the state vector. The matrix for the branch when the
bully is not more powerful than his victim is similar in struc-
ture, except that the numbers in the upper left � 6 � subma-
trix change so that the bully gets the worst of the fight.

In the helicopter Com-MTDP, the transport has two op-
tions for action: flying at a normal altitude and flying nap-
of-the-earth (NOE), which is slower but safer. The dynam-
ics decision tree for flying NOE branches when the heli-
copter reaches the destination, which we model as a hyper-
plane with weights �� � � ' �
� �-' �-' �(' �(' �-' � and threshold,� � . , where . is the destination. The right-hand side is
a leaf node that returns a matrix whose second row (cor-
responding to the transport’s position) is � ' ��� �(' �-' �-' �-' �('�� ,
so that the transport’s position remains unchanged upon
reaching the destination. The left-hand side branches a sec-
ond time on whether the helicopter has already been de-
stroyed (denoted by a negative state value). In particular,
we have a hyperplane with the same weights as above
( � ' ��� �-' �-' �-' �(' �('�� ), but with a threshold of 0. The left-
hand side again returns a matrix whose second row is� ' �
� �(' �(' �-' �-' �-'�� , so that the transport’s state remains un-
changed upon being shot down. The right-hand side returns
a < 6 < matrix whose second row is � ' �
� �(' �(' �-' �-' �-' �	��� . In
other words, if the transport has neither reached the destina-
tion nor been destroyed, it moves forward by 0.5. The dy-
namics for flying at a normal altitude are more complex,
because there is the additional risk of being detected by
the enemy radar. Thus, there is an additional branch test-
ing whether the radar has already been destroyed (again de-
noted by a negative state value).

In a multiagent domain, the dynamics of the agents’ ac-
tions have a cumulative effect on the state of the world. In
the two example domains we present here, we can model
the dynamics of the individual agents’ actions as indepen-
dent. Thus, we can define separate decision trees for each

agent’s actions. The decision tree representing the dynamics
of a combined action of the set of agents is then the sum of
the individual decision trees (Section 4.1 presents the algo-
rithm for computing such a sum). If the effect of the agents’
actions are not independent then we must define the deci-
sion trees for each combined action directly.

In addition, the dynamics of an agent’s world is some-
times nondeterministic. We can model such nondetermin-
ism by introducing chance nodes into our decision tree
structures, where each such chance node represents a prob-
abilistic branch according to some fixed distribution. How-
ever, for the purposes of the algorithms in Sections 4 and
5, we assume that the decision trees have only one proba-
bilistic branch and that it is the top node of the tree. We can
rewrite any tree with internal probabilistic branches as hav-
ing only a single such branch, but the number of branches
for that single top node will be exponential in the number
of internal probabilistic nodes.

3.4. Piecewise Linear Belief Update

In partially observable domains, the dynamics of our sys-
tem state vectors must also include the dynamics of the
agents’ belief states. For example, in the helicopter do-
main, when the escort helicopter destroys the enemy radar,
the transport helicopter observes the destruction with some
fixed probability, 
�� . Similarly, in an alternate formulation
of the school violence simulation, the teacher may not al-
ways observe the fight between the bully and the victim.

Each agent updates its belief state based on the observa-
tion it receives (as well as any messages sent, in the Com-
MTDP framework). For example, in the helicopter domain,
the transport believes the enemy radar has been destroyed
if it either observes the fact or if it receives such a message
from its escort. We can thus model the belief update as a de-
cision tree with a top-level probabilistic branch, with both
branches leading to < 6 < matrices whose entries are all 0,
except for the fifth row, which represents transport-belief.
With probability 
�� , we follow the left branch, where the
fifth row of the matrix is � ' �-' �-' �-' �(' �(' �
�
� , meaning that
the transport now believes the radar to be destroyed. With
probability � :

�� , we follow the right branch, where the
fifth row of the matrix is � ' �-' �-' �
� ��� �(' �-' � , meaning that the
transport definitely believes the radar to be destroyed if it
receives a message to that effect; otherwise, it maintains its
current level of belief.

The dynamics of the system depend on the actions cho-
sen by the agents. Following the convention of POMDP-
based frameworks, agents follow a policy, ���
��� � ,
which maps a belief state into an action. We can model
such policies as a decision tree, where the “leaves” are ac-
tually the root nodes of an action dynamics decision tree.
For example, the transport helicopter’s policy is to fly NOE
when it does not believe the enemy to be destroyed and to



fly at its normal altitude otherwise. This condition translates
into a hyperplane branch with weights � ' �(' �-' �-' �
� �(' �('�� and
threshold 1. The left branch leads to the decision tree model
of the dynamics for flying normally, while the left branch
leads to the decision tree model of the flying NOE dynam-
ics. In a multiagent scenario, we can create a decision tree,� �� , to represent the dynamics of the agents’ joint policy, �� ,
by adding up the decision trees corresponding to the indi-
vidual agent’s policies.

4. Compilation of Policy Evaluation

Once we have a piecewise linear model of our domain,
we can exploit its structure to design novel algorithms that
more efficiently compute the expected value of agent poli-
cies. Section 4.1 describes the basic computational manip-
ulations that allow us to combine multiple piecewise lin-
ear functions. Section 4.2 describes algorithms for pruning
these functions so as to maximize efficiency. Section 4.3
then applies these capabilities to create an algorithm for
more efficient forward projection of agent behavior.

4.1. Decision Tree Arithmetic

We have already described the method for performing a
dot product of a decision tree and a state vector. To perform
lookahead, we must sum rewards over a finite horizon. To
do so, we can follow Algorithm 1, which simply adds the
branches of one tree to all of the leaf nodes to the other, and
then adds the values on the leaf nodes together.

Algorithm 1 � 
 8 ���
1: if � 
 is leaf then
2: if � � is leaf then
3: return � 
 8 ���
4: else
5: return ��� � �-� 
 8 � �-� �-� 
 8 � �- �
6: else
7: return � � 
 �(� 
 � 8 � � �(� 
  8 � � �

We must also compute products of decision trees. For ex-
ample, we can represent the state dynamics over two time
steps as the square of our dynamics decision tree twice. Al-
gorithm 2 computes the product of two decision trees. It is
nearly identical to Algorithm 1, but there is the added wrin-
kle that multiplication modifies the branches of the first term
by scaling the state vector, so we must scale the weights on
our hyperplane accordingly.

4.2. Pruning Decision Trees

Addition and multiplication return decision trees with
many more branches than their input terms. In fact, the num-

Algorithm 2 � 
 6 � �
1: if ��� is leaf then
2: if � 
 is leaf then
3: return � 
�6 � �
4: else
5: return ��� 
 6 � � �-� 
 � 8 � � �-� 
  8 � � �
6: else
7: return � � � �-� 
 6 � �(� �-� 
 6 � �( �

ber of branches will increase exponentially with each oper-
ation. Fortunately, we can prune away many of the result-
ing branches as being either redundant or contradictory. For
example, if we add a decision tree, � 
 , with one branch-
ing hyperplane, � 
 , and a decision tree, � � , with one plane,� � , then Algorithms 1 and 2 will return a decision tree with
four leaf nodes, representing all combinations of branches
along the two planes. However, suppose � � � � 
 (i.e., � �� ,
if �� 
 � �� + � 
 then �� � � �� + � � ). Then the leaf node corre-
sponding to the combination �� + � 
�� �� � � � is impossi-
ble, and the branch at that point is irrelevant. It is also pos-
sible that the arithmetic operation produces branches that
are completely identical. This commonly occurs with prob-
abilistic branches where the operation has marginalized out
one of the probabilistic conditions. We can simply remove
the branch, thus merging the two equivalent branches to-
gether. We have implemented a pruning function that prunes
the results of Algorithms 1 and 2 as a post-processing step.
Although, this pruning has no effect in the worst case, we
have found it to be quite effective in practice.

4.3. Forward Projection

Now that we have algorithms capable of combining our
decision trees, we can examine the possibility of compiling
our domain-level specification into efficient representations
of a value function. We can define the value of a particular
policy, �� , over a finite horizon, � , as follows:

����� � � 	 �
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 ��� � 
 �� ��� � ����

�

����
�� �  6 � ���� � �� (2)

By the properties of our decision tree formulation and the
dot product, we can distribute the multiplication and addi-
tion as follows:
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	 �
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The summation within the brackets produces a decision tree
whose output is the cumulative reward. Significantly, it does
not depend on the current system state, �� , so we can there-
fore pre-compute it once. We thus effectively compile the
lookahead into a single decision tree, denoted ��� , which



we can then apply to different system states to compute the
expected value the agent(s) will achieve.

For example, in the original Com-MTDP work, the ex-
pected value of a policy was computed by repeatedly per-
forming lookahead from each of the possible starting states.
We have applied Equation 3 to the candidate policies to pro-
duce decision trees with only eight leaf nodes (correspond-
ing to the possible positions of the enemy radar). We can
then take our input prior probability distribution over the
possible enemy locations and compute the expected value
of a given policy by invoking its decision tree.

5. Fitting Agent Models

Recent work on belief networks has developed algo-
rithms for automatically modifying the network parameters
to achieve a desired query result [3]. The basis for these al-
gorithms is the insight that one can rewrite the query result
as a linear combination of the parameters to be adjusted.
While we cannot rewrite MDP-based agent behavior as a
linear combination of the parameters, our decision-tree rep-
resentation is linear at the leaf nodes. Therefore, it may be
possible to exploit piecewise linearity in our agent models
to develop automatic behavior fitting algorithms, analogous
to those for probabilistic networks.

We have developed one such algorithm, motivated by a
problem in our school violence simulation domain, where a
teacher wishes to identify the type of bully (i.e., his reward
function). In our model of the school violence scenario, we
assume that the bully derives a reward that is a weighted
sum of the relative power levels of himself, his victim, and
his teacher, as well as the amount of laughter elicited from
his classmates. To simplify the presentation, we first present
the fitting algorithm for such cases, where the reward deci-
sion tree, �  , is a leaf node. We then present the extension
to handle the more general case.

If �  is a leaf node, then we can redistribute the multi-
plication and addition of Equation 3 as follows:
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If we assume that we know a distribution over the possible
system states, �� , then we can evaluate everything but �  :
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Our goal is to find a �� such that the observed policy
of behavior (e.g., of the bully) has a higher value than all
of the other candidate policies. For the purposes of illustra-
tion, we begin with a model of the bully as having two such

policies of action: committing violence against his victim
( ��� ) or not doing so ( ����� ). If we observe the bully select-
ing the latter, we have the following constraint:
 �� �  � � �� �
	�� : �� ��� � ! ' (6)

If we denote the elements of the vectors, �  , �� � 	�� , and
�� � � as $ 
 , � 
 ��� , and � 
 � , respectively:
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There are obviously many reward weights that satisfy this
constraint, and a variety of methods can select a good so-
lution. For example, existing work uses a prior distribution
over reward functions to find the most likely solution [2].

However, we take a different approach, one that is anal-
ogous to that taken in tuning probabilistic networks [3]. We
assume that we start with an initial reward function that we
wish to modify in some minimal way to match the observed
behavior. Within our social simulation tool, we have default
models of the possible scenario individuals, and one such
model provides an appropriate starting reward function for
a classroom bully. If this reward function already matches
the observed behavior, then no change is necessary.

If, on the other hand, the current reward function vio-
lates the constraint in Equation 7, then we must modify the
reward weights accordingly. We have constructed a set of
heuristics aimed at finding a reasonable selection of changes
that would correct the error in reward. For example, the fit-
ting algorithm does not consider modifying a reward weight
so much that its sign changes. In other words, we assume
that the current reward structure is correct qualitatively, so
that if we believe that a particular feature is being maxi-
mized by the agent, we do not ever modify our model so
that the agent is minimizing it, and vice versa.

Our algorithm first considers modifying only a single re-
ward weight. For each current weight, $ 
 , we can instantly
compute a correcting change, 
 $ 
 , such that substituting$ 
 8�
 $ 
 into the original reward function will generate the
observed behavior:
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Our first heuristic modifies the $ 
 with the minimal 
 $ 
 ,
subject to the constraint forbidding a change of sign of $ 
 .
If no such $ 
 exists, then we can consider changing com-
binations of two weights. The algorithm for the case of a�� with branches follows a similar derivation. However,
the number of weights available increases with the number
of branches, as we could potentially adjust weights along
any of the leaf nodes of �  .



One can easily apply a distance metric on the reward
weights to find a more rigorously defined “closest” reward
function. However, we have implemented the current set of
heuristics so as to more naturally interact with a human user
(e.g., a teacher) in tuning the multiagent model. Thus, our
algorithm can also present users with the possible weight
changes and allow them to select the ones that seem most
appropriate. It is instructive to notice that we can also use
Equation 7 to analyze the sensitivity of the agent’s policy
to the specific weights on the reward function. This addi-
tional property of our algorithm is not surprising, given that
the analogous algorithm for tuning probabilistic networks
also supported such sensitivity analysis [3].

6. Discussion

We have a presented a novel representational framework
for expressing the quantitative specification of decision-
theoretic agent models as a set of piecewise linear functions
in the form of probability distributions over decision trees.
We have successfully encoded two example domains within
this representation, and we believe that our framework sup-
ports the encoding of many realistic domains. Furthermore,
common usage of piecewise linear functions as an approxi-
mation in other areas encourages us to think that the repre-
sentation will be useful even in domains that do not exactly
match its structural assumptions.

The decision tree representation also allows extension
into the underlying agent model itself. For example, MDP-
based models typically assume a deterministic reward func-
tion and agent policies, but there is no such limitation on
our representation itself. Therefore, there is potential for ex-
tending our algorithms to handle cases that lie beyond the
typical usage of these models.

The incentive behind modeling an agent domain in our
framework comes in the form of the novel algorithms that
one can then apply to common problems. We have provided
two illustrative examples of such algorithms that provide
efficient mechanisms for compiling policy evaluation and
for fitting reward functions to observed behavior. These al-
gorithms have proved useful in our two example domains,
but we believe a few simple extension will make them
even more powerful. For example, our pruning algorithm
is rather coarse, in that it makes very safe changes to the
decision tree. However, we can easily apply the many ap-
proaches in the decision tree literature for minimizing tree
complexity (e.g., balancing). Furthermore, our approach
to manipulating probabilities within these trees is through
brute-force enumeration. Cleverer manipulations will pro-
vide even more improvement in the efficiency of our deci-
sion trees and their manipulation.

Beyond the two algorithms we present in this work, we
believe that there is a wide range of possible algorithms that

can exploit the specific structure of our piecewise linear
framework. Both algorithms exploit the linearity property
in the same way: they isolate a single feature (state in the
case of compilation, reward in fitting) and then combine all
of the other features into a single decision tree. By isolating
different features in the same way, we can potentially gen-
erate additional algorithms to solve the corresponding agent
problems. In addition, as suggested in Section 5, these algo-
rithms can, at the same time, provide a sensitivity analysis
over the parameter space. Thus, we believe that the struc-
tured framework of our piecewise linear models will form
the basis for a valuable suite of algorithms that will expand
the applicability of decision-theoretic agent methodologies
to real-world domains.
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