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Abstract. Gestures during spoken dialog play a central role in human commu-
nication. As a consequence, models of gesture generation are a key challenge
in research on virtual humans, embodied agents capable of face-to-face interac-
tion with people. Machine learning approaches to gesture generation must take
into account the conceptual content in utterances, physical properties of speech
signals and the physical properties of the gestures themselves. To address this
challenge, we proposed a gestural sign scheme to facilitate supervised learning
and presented the DCNF model, a model to jointly learn deep neural networks
and second order linear chain temporal contingency. The approach we took re-
alizes both the mapping relation between speech and gestures while taking ac-
count temporal relations among gestures. Our experiments on human co-verbal
dataset shows significant improvement over previous work on gesture prediction.
A generalization experiment performed on handwriting recognition also shows
that DCNFs outperform the state-of-the-art approaches.

1 Introduction

Embodied conversational agents (ECAs) are virtual characters capable of engaging
face-to-face interaction with human and play an important role in many applications
such as human-computer interaction [6] and social skills training [29]. A key chal-
lenge in building an ECA is giving them the ability to use appropriate gestures while
speaking, as users are sensitive to whether the gestures of an ECA are consistent with its
speech [11]. This challenge is also true for social robotic platforms [30]. Such co-verbal
gestures [36] must coordinate closely with the prosody and verbal content of the spoken
utterance. Manual development of an agent’s gestures is typically a tedious process of
manually handcrafting gestures and assigning them to the agent’s utterances. A data-
driven approach that learns to predict and generate co-verbal gestures is a promising
alternative to such manual approaches.

However, the prediction and generation of co-verbal gestures presents a difficult,
novel machine learning challenge in that it must span and couple multiple domains:
the conceptual content in the utterance, utterance prosody and the physical domain of
gestural motions. The coupling between these domains has several complex features.
There is a tight coupling between gesture motion, the evolving the content of the utter-
ance as well as the prosody of speech. This coupling is the product of the information
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Fig. 1: The overview of our framework for predicting co-verbal gestures. Our Deep Conditional
Neural Field (DCNF) model predicts gestures by integrating verbal and acoustic while preserving
the temporal consistency.

conveyed through both speech and gestures [4] that may be shared at a hidden, ab-
stract level [25] which relates utterance content and physical gestures. These properties
suggest that generating gestures from speech can exploit a representation that takes into
account this relation between form and function (what the gesture conveys) and a model
capable of modeling the deep and temporal relationship between speech and gestures.
Additionally, speech and gesture are closely coupled in time, which raises its own chal-
lenges since gestures are physical motions with tight temporal and spatial constraints if
the motion is to look natural.

In this paper, we introduce a deep, temporal model to realize the prediction of ges-
tures from verbal content and prosody of the spoken utterance. The structure of the
entire framework is shown in Figure 1. Our model, called deep conditional neural field
(DCNF), is an extension of previous work [10, 13] that combines the advantages of deep
neural network for mapping complex relation and an undirected second-order linear-
chain for modeling the temporal coordination of speech and gestures. We also propose
a gesture representation scheme that takes advantage of previous literature that relates
the form and communicative function of gestures [18, 4, 24].

We assess our framework by evaluating the prediction accuracy on actual co-verbal
gesture prediction data involving dyadic interviews, showing that our model outper-
forms state-of-the-art approaches.
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2 Related Work

Data-driven approaches to generate co-verbal gestures for intelligent embodied agent
have received increasing attention in gesture research. [32] took the co-generation per-
spective in which the framework synthesizes both speech and gestures based on the de-
termined utterance during the conversation. [27] addressed modeling individual gesture
styles through analyzing the relation in the data between extracted utterance informa-
tion and a person’s gestures. Our technique can be applied to predict this information,
and their approaches can then be applied to accomplish the gesture generation process.
[19] also took the co-generation perspective and focused on modeling individual styles
on iconic gestures to improve human-agent communication.

Some of the previous work focused on realizing the relation between prosody and
motion dynamics [23, 22, 8]. By using only prosody as input, these models do not re-
quire speech content analyses but are limited to the subset of gestures that correlate
closely to prosody, for example, a form of rhythmic gesture called beats. Our approach
goes beyond prosody to realize a mapping from the utterance content to more expressive
gestures and can be integrated to extend existing work to generate animations beyond
beat gestures.

Alternatives to data-driven machine learning approaches are the handcrafted rule-
based approaches [21, 7, 24, 1]. These exploit expert knowledge on speech and gestures
to specify the mapping from utterance features to gestures. While earlier works based on
this approach have focused on addressing the mapping relation between only linguistic
features and gestures [21, 7], recent work [24] has also addressed how to use acoustic
features to help gesture determination.

Realizing a mapping from speech to gestures involves learning a model that relates
two sequences, the speech input sequence and the gesture output sequence. Recent ad-
vances in neural networks toward modeling the two sequence problems apply recurrent
neural networks (RNNs) [33] and its extension, long short-term memory (LSTM) net-
work [16]. The RNN-based architecture is designed to address problems in which the
input and output time series can have different lengths and are correlated as whole se-
quences but may not have a strong correlation at the frame-by-frame level. The resulting
model utilizes less of the structure in the data and make predictions by maximizing only
the distribution of targeting sequences. On the other hand, our approach utilizes the fine-
grained synchronization between observed and predicting sequences and also learns the
global conditional distributions of both sequences to further improve the prediction ac-
curacy.

Previous approaches in deep learning that utilize the synchronized structure of two
sequences trained separately a deep neural network and a linear-chain graphical model.
For example, in speech recognition [26] the common approach is to train deep learning
with individual frames and then applies hidden Markov models (HMMs) with the hid-
den states. Our approach learns both the deep neural network and temporal contiguity of
CRFs with a joint likelihood. There are previous works that adopt similar perspective on
extending CRFs with deep structure [38, 10] and show improvement over a single-layer
CRFs or CRFs combined with a shallow layer of neural network [28]. Our experiments
show improvement over these approaches.
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To our knowledge, this work is the first to introduce a gesture representation scheme
that relates the form and communicative function of gestures and a deep, temporal
model capable of realizing the relation between speech and the proposed gesture rep-
resentation. [8] adopt the concept of unsupervised training of deep belief net [35], but
without an effective gesture representation and a supervised training phase the learning
task is much more challenging and therefore has been limited to realizing the rela-
tion between prosody and rhythmic movement. Our proposed model goes beyond prior
work [10, 13] by combining the advantages of deep neural network for mapping com-
plex relation with an undirected second-order linear-chain for modeling the temporal
coordination of speech and gestures.

3 Predicting Co-Verbal Gestures

Predicting co-verbal gestures brings together many core domains of artificial intelli-
gence, including the conceptual content in the utterance, utterance prosody and the
physical domain of gestural motions. A common function of the parallel use of speech
and gesture is to convey meaning in which gesture plays the complementary or supple-
mentary role [14], and gestures may help to convey complex representations through
expressing complementary information about abstract concepts [25]. Realizing this re-
lation between speech and gesture requires realizing the hidden abstract concept. To
build a successful predictive model it is important to first create a formal representa-
tion of its output label, the co-verbal gestures. Based on this idea, we exploit gestural
signs [4] which summarize the functions and forms of co-verbal gestures to allow the
predictions of gestures from speech signals, including utterance content and prosody. In
particular, we focus on gesture categories that can be more reliably predicted from the
utterance content and prosody: abstract deictic, metaphoric, and beat gestures. Abstract
deictic gestures are pointing movements that indicate an object, a location, or abstract
things which are not physically present in the current surroundings. Metaphoric ges-
tures exhibit abstract concept as having physical properties. Beat gestures are rhythmic
actions synchronized with speech and they tend to correlate more with prosody as op-
posed to utterance content. This ignores those gestures that convey information that
is uncoupled or distinct from the utterance content and prosody [5] in the sense that
learning would require additional information to predict the gestural signs.

We design our dictionary of gestural signs based on previous literature in ges-
tures [18, 4, 24] and the three gesture categories, and then calculated their occurrences
in a motion capture data [12] which records co-verbal gestures performed during face-
to-face conversations to filter out those that rarely appeared. The final set of gestural
signs has size of 14, and the list and their descriptions are shown in Table 1. This
discrete set of co-verbal gestures was selected to include considerable coverage while
keeping a clear distinction between gesture labels to make learning feasible. An im-
portant challenge for predicting gestural signs is to model the temporal coordination
between speech and gestural signs. A state-of-the-art work [22] applies conventional
conditional random fields (CRFs) for learning co-verbal gesture predictions. The limi-
tation of conventional CRFs is that it requires defining functions for modeling the cor-
relation between input signals and labels, and manually defining these functions that



Predicting Co-verbal Gestures: A Deep and Temporal Modeling Approach 5

may express the relation between high-dimensional speech signals and gestures is no
trivial task. Thus, we argue instead to use a deep model to learn this complex relation.

Gestural signs Description
Rest Resting position of both hands.
Palm face up Lift hands, rotate palms facing up or a little bit inward, and hold for a while.
Head nod Head nod without arm gestures.
Wipe Hands start near (above) each other and move apart in a straight motion.
Whole Move both hands along outward arcs with palms facing forward.
Frame Both hands are held some inches apart, palms facing each other, as if some-

thing is between hands.
Dismiss Hand throws to the side in an arc as if chasing away.
Block Hand is positioned in front of the speaker, palm toward front.
Shrug Hands are opened in an outward arc, ending in a palm-up position, usually

accompanied by a slight shrug.
More-Or-Less The open hand, palm down, swivels around the wrist.
Process Hand moves in circles.
Deictic.Other Hand is pointing toward a direction other than self.
Deictic.Self Points to him/herself.
Beats Beats.

Table 1: A formalized representation of co-verbal gestures for computational prediction.

4 Deep Conditional Neural Fields

In this section, we formally describe the Deep Conditional Neural Field (DCNF) model
which combines state-of-the-art deep learning techniques with the temporal modeling
capabilities of CRFs for predicting gestures from utterance content and prosody (see
Figure 2). The prediction task takes the transcript of the utterance, part-of-speech tags of
the transcript, and prosody features of the speech audio as input x = {x1, x2, . . . , xN},
and learn to predict a sequence of gestural signs y = {y1, y2, . . . , yN} in which the
sequence has length N . At each time step t, the gestural sign yt is contained in the set
of our gestural sign dictionary yt 2 Y defined in the previous section (see Table 1) ,
and the input xt is a feature vector xt 2 Rd where d corresponds to the number of input
features (see next section for a detailed description of our input features).

Following the formalism of [10] and [13], the DCNF extends previous models to
follow a 2

nd-order Markov assumption and is defined as:
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Fig. 2: The structure of our DCNF framework. The neural network learns the nonlinear relation
between speech features and gestural signs. The top layer is a second-order undirected linear-
chain which takes the output of the neural network as input and model the temporal relation
among gestural signs. Both the top undirected chain and deep neural networks are trained jointly.
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where ai represents the output at ith neural network layer, ✓wi represents the connection
weights between ith and i + 1th layers, and h is the activation function. This work
applies the logistic function (1/1 + exp(�a✓

w
)) as the activation function4. Readers

can refer to [10, 13] for more background about the combination of CRFs and neural
networks.

4 We have experimented with both the logistic and the rectified linear (max(a✓w, 0)) functions
with similar results. Because of space constraints, we are focusing on the logistic function.
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Prediction Given a sequence x and parameters learned from the training data, the
prediction process of DCNFs predicts the most probable sequence y⇤:

y⇤ = argmax

y
P (y|x; ✓g1 , ✓g2 , ✓f , ✓w)

= argmax
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To estimate the probability of each label of frame t, the neural networks take the input
xt and forward the value through the network to generate fi, the undirected linear chain
performs forward-backward belief propagation to calculate the values of gk and gl, and
the potential of each label is the weighted summation of g1, g2, f and the probability of
each label is its normalized potential.

Learning To prevent the overfitting of DCNFs, the model has a regularization term for
all parameters and we define our objective function as follows:

L(✓) =
NX

t=1

logP (yt|xt;✓)�
1

2�

2
k✓k2,

in which ✓ denotes the set of model parameters and � corresponds to regularization
coefficients. The regularization term on training the deep neural networks encourages
the weight decay which reduce the complexity increase of the network connections
along the parameter updates. We applied stochastic gradient descent for training DCNFs
with a degrading learning rate to encourage the convergence of the parameter updates5.

To also help prevent co-adaptation of network parameters which result overfitting,
we apply the dropout technique [17] to change the feed-forward results of fi(xt, ✓

w
)

in the training phase. By performing dropout, at the feed-forward phase the output of
each hidden node has a probability of being disabled. Consequently the output of hid-
den nodes in the training phase is different from that of the testing phase. The dropout
nodes are re-sampled at every feed-forward process. This stochastic behaviors encour-
age hidden nodes to model distinct patterns and therefore further prevent the overfitting.
The dropout technique is not applied during the testing phase.

Gradient calculation To learn our model parameters, we derived the gradient of our
objective function with respect to ✓

g1
, ✓

g2
, ✓

f
, ✓

w. We derive ✓g1 , ✓g2 , ✓f following pre-
vious work on CRFs [20], and derive ✓

w with backpropagation [10, 13]. Backpropa-
gation decomposes the gradient at each layer as the product of an error term � with

5 The full derivation of the gradient was omitted because of space constraint.
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we can decompose the gradient term and derive
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ỹ
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where DCNF propagates �m�1 to the lower layers so that it can calculate the gradient
of these layers. One thing to notice is that the gradient is calculated with âm�1 instead
of am�1 due to the influence of dropout.

5 Experiments

Our main experiment is designed to evaluate the performance of our DCNF model
on co-verbal gesture prediction from verbal content and prosody. The following sub-
section presents our dataset, gesture annotation, input features, baseline models and
methodology. To help assess the generalization of our DCNF, we evaluated the perfor-
mance with a well-studied handwriting recognition (optical character recognition) task
[34].

5.1 Co-verbal Gesture Prediction Experiments

The dataset consists of 15 videos which in total represent more than 9 hours of inter-
actions taken from a large-scale study focusing on semi-structured interviews [15]. Our
experiment focused on predicting the interviewee’s gestures from his/her utterance con-
tent and prosody. All the videos were segmented and transcribed using the ELAN tool
[3]. Each transcription was reviewed for accuracy by a senior transcriber.
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Data segmentation The data is segmented into sequences based on the speaking pe-
riod. The segmentation can be due to a long pause or the interviewer asked a question.
Each frame in the sample data is defined to be 1 second of the conversations. Some of
the sequences contained only a very short sentence in which the interviewee replied to
the question of the interviewer with a short answer such as “yes/no”. We removed all
sentences that are less than 3 seconds. The resulting dataset has total 637 sequences
with average length of 47.54 seconds.

Gestural sign annotation In the annotation process, we first trained the annotators
with the definition of all gestural signs and showed a few examples for each gestural
sign. The annotator then used the ELAN tool, looked at the behavior of the participants
only when they are speaking, and marked the beginning and the ending time of gestural
signs in the video. There will be at most one gestural sign at any time in the data. The
annotation results were inspected to analyze the accuracy and insure the annotator had
well understood the definition of gestural signs.

Linguistic features Linguistic features encapsulate the utterance content and help de-
termine the corresponding gestures. The extracted data has 5250 unique words, but most
of them are unique to a few speakers. To make the data more general, we remove words
that happen fewer than 10 times among all the 15 videos, and the resulting number of
unique words is down to 817. We represent features as a binary values so that features
will be set to 1 when the corresponding linguistic features appear in the corresponding
time frame, and 0 otherwise. The linguistic features at the previous time frame and the
next time frame are also helpful. In particular, a gesture can for example, proceeds its
corresponding linguistic features. Therefore, when a linguistic feature appears at a time
frame, its appearance will also be marked in the previous and the next time frame.

The data collection process extracted text from the transcript and also ran a part-of-
speech tagger [2] to determine the grammatical role of each word. POS tags are encoded
at the word level and are automatically aligned with the speech audio through using the
analyzing tools of FaceFX.

Prosodic features In terms of prosody, the data extracted the following audio features:
normalized amplitude quotient (NAQ), peak slope, fundamental frequency (f0), energy,
energy slope, spectral stationarity [31]. The sampling rate is 100 samples per second.
All prosodic features within the same time frame are concatenated into one feature
vector. As the time frame is 1 second and the sampling rate is 100 in our dataset, all 100
samples are concatenated into one feature vector as the prosodic features for that time
frame. The extraction process also determines whether the speaker is speaking based
on f0, and for the periods in the speech that identified as not speaking all audio features
are set to zero.

Baseline models Our experiments compared DCNFs with models representing state-
of-the-art approaches. We include CRFs, which is applied in the state-of-the-art work
[22] on gesture prediction, for comparisons. We also compared with the second-order
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CRFs. Additionally, we include support vector machines (SVMs) and random forests,
two effective machine learning models. The SVM is an approach that applies kernel
techniques to help find better separating hyperplanes in the data for classifications. The
random forest is an ensemble approach which learns a set of decision trees with boot-
strap aggregating for classification. Both approaches have a good generalization in prior
work. Additionally, two existing works that combine CRFs and neural networks, CNF
[28] and NeuroCRF [10], are evaluated in the experiment. The experiment also eval-
uated the performance of DCNFs without using the sequential relation learned from
CRFs (denoted as DCNF-no-edge).

Methodology The experiments use the holdout testing method to evaluate the perfor-
mance of gesture predictions in which the data is separated into training, validation, and
testing sets. We trained DCNFs with three hidden layers each with 256 hidden nodes
and set the initial learning rate to 0.1 with 0.0003 degrading rate at each iteration. The
choice of these hyperparameters are determined based on the validation results. The
final result is the performance on the testing set. Each videos in the co-verbal gesture
dataset corresponds to a different interviewee. We chose the first 8 interviewees (total
clip length correspond to 50.86% of the whole dataset) as the training set, 9 through 12

interviewees (23.18% of the whole dataset) as the validation set, and last 3 interviewees
(25.96% of the whole dataset) as the testing set.

Results The results are shown in Table 2. Both the DCNF and DCNF-no-edge models
outperform other models. The performance similarity of DCNFs with and without edge
features suggest that the major improvement comes from the exploitation of deep archi-
tecture. In fact, models that rely mainly on sequential relation show significantly lower
performance, suggesting the bottleneck on co-verbal gesture prediction lies in the real-
ization of the complex relation between speech and gesture. The results are unexpected,
as based on the work of McNeill, Calbris and others [4, 25], it is reasonable to expect
temporal dependencies. Calbris talks of ideation units and rhythmic-semantic units that
span multiple gestures, for example. The fact that our models could not exploit tem-
poral dependencies may due to that some of the the gestural signs defined in this task
obscure the temporal dependency. For example, some gestural signs that express seman-
tic meanings more specifically can break this kind of temporal correlation. Take wipe
as an example, when someone does a wipe, it does not indicate much about whether a
frame or a shrug will follow. Given that these are co-speech gestures, if a dependency at
this aggregate/abstract level would to occur at the gesture level, it suggest that the same
constraint should co-exist at the language level. However, since a speaker can reorder
or compose different phrases, it is essentially common for a speaker to alter the verbal
content and the underlying gestural behaviors. On the other hand, other subsets of ges-
tural signs might reveal stronger dependencies, for example ones comprising rhetorical
structures like enumeration and contrasts, or gestural signs tied to the establishment of
a concept such as a container gesture showing a collection of ideas, followed by oper-
ations on the concept, such as adding or removing ides/items from the container. Even
in these cases, there is the question of whether the features currently being used make
it feasible to learn such dependencies. In addition to these fundamental difficulty on
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formulating the temporal relation, another possible reason is that the data collected in
this task may still be too limited for learning the temporal relation.

Models Accuracy(%)
CRF [22] 27.35
CRF second-order 28.15
SVM 49.17
Random forest 32.21
CNF [28] 48.33
NeuroCRF [10] 48.68
DCNF-no-edge 59.31
DCNF (our approach) 59.74

Table 2: Results of co-verbal gesture prediction.

5.2 Handwriting recognition

To access the generality of DCNFs, we also applied it to a standard hand writing recog-
nitions dataset [34]. This dataset contains a set of (total 6877) handwriting words col-
lected from 150 human subjects with average length of around 8 characters. The pre-
diction targets are lower-case characters, and since the first character is capitalized, all
the first characters in the sequences are removed. Each word was segmented into char-
acters and each character is rasterized into 16 by 8 images. We applied 10-fold cross
validation (9 folds for training and 1 fold for testing) to evaluate the performance of
our DCNF model and compare the results with other models. We trained DCNFs with
three hidden layers each with 128 hidden nodes and set initial learning rate to 0.2 with
0.0003 degrading rate at each iteration. The choice of these hyperparameters are also
determined based on the validation results

Baseline models In addition to the models compared in the gesture prediction task,
this experiment also compared with the state-of-the-art result previously published us-
ing the structured prediction cascade (SPC) [37]. The SPC is inspired by the idea of the
classifier cascade (for example, boosting) to increase the speed of the structured predic-
tion. The process starts filtering possible states at 0-order and then gradually increase
the orders with considering only the remaining states. While the complexity of a con-
ventional graphical model grows exponentially with the order, SPC’s pruning approach
reduces the complexity significantly and therefore allows applying higher order mod-
els. The approach is the state-of-the-art results on the handwriting recognition task. The
comparison results of DCNFs with SPC, along with other existing models, are shown
in Table 3

Results In this handwriting recognition task DCNF shows improvement over published
results. Compared to the gesture prediction task, the mapping from input to prediction
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Models Accuracy(%)
CRF 85.8
CRF second-order 93.32
SVM 86.15
Random forest 96.97
CNF 91.11
NeuroCRF [10] 95.44
DCNF-no-edge 97.21
Structured prediction cascades [37] 98.54
DCNF (our approach) 99.15
Table 3: Results of handwriting recognition. Both the results of NeuroCRF and Structured pre-
diction cascades are adopted from the original reported values.

targets is easier to realize in this task, and therefore the sequential information provides
an influential improvement, as shown by the improvement of DCNF over DCNF-no-
edge. We have also applied [10, 13] on the task and the results are similar to DCNF-no-
edge.

6 Conclusion

Gesture generation presents a novel challenge to machine learning: prediction of ges-
tures must take into account the conceptual content in utterances, physical properties
of speech signals and the physical properties of the gestures themselves. To address
this challenge, we proposed a gestural sign scheme to facilitate supervised learning and
presented the DCNF model, a model to jointly learn deep neural networks and second-
order linear chain temporal contingency. Our approach can realize both the mapping
relation between speech and gestures and the temporal relation among gestures. Our
experiments on human co-verbal dataset shows significant improvement over previ-
ous work on gesture prediction. A generalization experiment performed on handwriting
recognition also shows that DCNFs outperform the state-of-the-art approaches.

Our framework predict gestural signs from speech, and by combining with existing
gesture generation system, for example [9], the overall framework can be applied to an-
imate virtual characters’ gestures from speech. The framework relies only on linguistic
and prosodic features that could be derived from speech in real-time, thus allowing for
real-time gesture generation for virtual character.
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