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Abstract. The ability to gesture is key to realizing virtual characters
that can engage in face-to-face interaction with people. Many applica-
tions take an approach of predefining possible utterances of a virtual
character and building all the gesture animations needed for those ut-
terances. We can save effort on building a virtual human if we can con-
struct a general gesture controller that will generate behavior for novel
utterances. Because the dynamics of human gestures are related to the
prosody of speech, in this work we propose a model to generate gestures
based on prosody. We then assess the naturalness of the animations by
comparing them against human gestures. The evaluation results were
promising, human judgments show no significant difference between our
generated gestures and human gestures and the generated gestures were
judged as significantly better than real human gestures from a different
utterance.

1 Introduction

A virtual human’s non-verbal behavior is one of the main criterion that enriches
the human-agent interaction. Users are sensitive to whether the gestures of a
virtual human are consistent with its speech [9], and therefore a conversational
virtual human should be animated based on its speech. One approach to achieve
this is by using pre-defined human speech and creating specific motions for each
sentence. Often in this case virtual human systems use hand-crafted animations
or animations generated by capture technology [1,2]. However, neither of these
methods scale well with the length of the dialogue and the effort required to
generate new animations becomes significant.

Another approach is to use the text of the speech and construct mappings
between features of the text and gestures. For example, [7] and [15] use the
syntactic and semantic structure of the speech text along with additional domain
knowledge and map them to various gestures. There is also work [18] that uses
semi-automated data-driven approach that applies machine learning techniques
on textual features and domain knowledge.



However, the aforementioned approaches do not consider the prosodic fea-
tures in the verbal speech. In human conversations, the same speech spoken in
different manners can express different meanings and much of this difference is
conveyed through prosody. In addition, studies show that kinematic features of
a speaker’s gestures such as speed and acceleration are usually correlated with
the prosody of the speech [23].

The goal of this work is to present an automated gesture generation process
that maps features of speech to gestures, including prosodic features. There has
been previous work that uses prosody information to generate gestures [6, 19,
17,16]. The approach taken in [17,16] selects animation segments from motion
database based on audio input, and synthesizes these selected animations into
the gesture animation. Since the approach uses existing motions, the gestures it
produces are constrained by those that existed in the motion database.

In this work, we propose a gesture generator that produces conversation ani-
mations for virtual humans conditioned on prosody. The generator is built based
on hierarchical factored conditional restricted Boltzmann machines (HFCRBMs)
[8] with some modification. The model derives features describing human gesture
and constrains animation generations to be within the gesture feature space. The
method defines the role of prosody as a motion transition controller and learns
this relation from the training data. The training data contains audio and mo-
tion capture data of people having conversations, and the model learns detailed
dynamics of the gesture motions. After training, the gesture generator can be
applied to generate animations with recorded speech for a virtual human. Our
generator is not designed to learn all kinds of gestures but rather motions related
to prosody like rhythmic movements. Gestures tied to semantic information like
iconic gestures, pantomimes, deictic, and emblematic gestures are not considered
in this work.

An evaluation of our approach with human subjects showed that the rating of
animations generated by our learned generator from the audio of an utterance is
similar to the original motion capture data and their difference is not statistically
significant. Both cases are significantly better than using the motion capture data
from a different utterance.

The contribution of this work is three-fold.

— We propose a model that learns speech-to-gesture generation.

— The model provides a way to derive features describing human gestures which
helps gesture generations.

— Our gesture generator suggests that prosody provides information about mo-
tion movement that makes a prosody-based approach feasible for generating
a subclass of arm-gestures.

The remainder of the paper is organized as follows. Section 2 contains a
review of related works, Section 3 explains our gesture generator, and Section 4
presents the experimental results. The conclusion is summarized in Section 5.



2 Related work

To generate gestures, BEAT [7] analyzes the syntactic relation between the sur-
face text and gestures. The input text is parsed into a tree structure containing
information such as clauses, themes/rhemes, objects, and actions. Using this
information and a knowledge base containing additional information about the
world, BEAT then maps them to a set of gestures. The Nonverbal Behavior
Generator (NVBG) [15] extends this framework by making a clearer distinction
between the communicative intent embedded in the surface text (e.g. affirma-
tion, intensification, negation, etc.) and the realization of the gestures. This
design allows NVBG to generate gestures even without a well-defined knowledge
base. Stone et al. [20] proposed a framework to extract utterances and gesture
motions from recorded human data then generate animations by synthesizing
these utterances and motion segments. This framework includes an authoring
mechanism to segment utterances and gesture motions then a selection mecha-
nism to compose utterances and gestures. Neff et al. [18] made a comprehensive
list of mappings between gesture types and their relations with semantic tags
and derived the transition probability of motions from the sample data. The
framework captures the details of human motion and preserves the gesture style
of each performer, which can be generalized to generate gestures with various
forms of input.

One major drawback of the text-based generation approaches [7,15] lies in
the limited expressiveness. With this approach, it is not easy to represent detailed
information of human motions with meta-description, especially with respect to
the dynamics of joint movement. The same dialogue can be spoken with different
speed and prosody for which the gesture motions have to be synchronized well
with to make the behavior natural.

Audio-based motion generations has been addressed for manipulating facial
expression [5], and similar approach has been extended to generate gestures [17].
A common idea of previous works is to collect a set of animation segments, de-
fine an objective function to model the relation between utterances and motions
and the sequential relation among motions, and synthesize gesture animation
via optimizing the objective function. The Hidden Markov models (HMM) fit
this design, and it has been applied to generate head motion [6,19] and arm ges-
tures [17]. The HMM-based approach directly associates motions with prosodic
features and tends to overfit for learning arm gestures [17]. Thus, [16] proposed
to combine conditional random fields (CRFs) with HMMs. HMMs first model
the transitions of motions, and CRFs then learns the relation between utter-
ances and hidden states of HMMs. The framework maps prosody to animations
through CRFs and HMMs, and applies Markov Decision Processes to synthe-
size animations. Previous works generate gestures via synthesizing animation
segments, so the generated animations are limited to animation segments in the
motion database. Our system explicitly generates animation frame-by-frame and
does not have this limitation.
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Fig. 1: The architecture of the generation process. Gesture generators take past
motion frames and generate next motion frame conditioned on pitch, intensity,
and correlation values.

3 Gesture generator

The gesture generator takes past motion frames and generates the next mo-
tion frame conditioned on pitch, intensity and correlation audio features. The
prosodic features of pitch and intensity influence how the generator creates ani-
mation, and the correlation parameters indicate how strong that influence is and
how much the gesture motion should be correlated with those prosody features.
The correlation parameters provide a handle for users to tune the motion of
virtual human: the higher the correlation parameters, the more the velocity and
acceleration of motions will be correlated with pitch and intensity. On generat-
ing the next motion frame, gesture generator not only takes into account the
audio feature of current time but also audio features of previous and future time
frames. The architecture of entire framework is shown in Fig. 1.

Our framework does not incorporate semantic or syntactic information of
the accompanying speech. As we noted in the introduction, semantic content
as well as prosody of the utterance correlates with human gestures. Gestures
like iconic or deictic gestures carry specific semantic content of the dialogue like
abstract depiction of actions, object, or orientations. The space of these kinds of
semantic content is large, and therefore a gesture generator requires a rich set of
knowledge to map general utterances to gestures. However, our current dataset
is small comparing to the entire space of semantic content, and the knowledge
for mapping these kinds of semantic content to gestures is sparse. Thus, in our
current work we excluded the mapping between semantic content and gestures
but limited our focus to prosody-based gesture generation, in which the gestures
we address is similar to the idea of motor gesture [13]. Prosody and motion
correspond to emphasis, and both of them can exhibit the emotional state of
the speaker. We explore the capability of prosody for gesture generation in this
work and take semantic content of utterances as an important channel for future
extension.

We use motion capture and audio data of human conversations to learn the
gesture generator’s mapping of prosody to gesture animations. This data must
first be processed before it can be used for training. Specifically, we defined a



criterion to extract motion segments containing gestures. We analyzed motion
data to identify gesture motions and non-gesture motions, and determine what
y-coordinate value of wrists best separates these two sets. Motion frames having
at least one wrist’s y-coordinate higher than this value are defined as gestures.
This rule is then applied to extract gesture motions. Among valid motion frames,
only the animation segments with length longer than 2 seconds are kept. After
the valid motion frames are identified, the corresponding audio features are ex-
tracted. The time constraint on data selection will exclude gestures with short
period of time. The rationale for defining this constraint is that in our data
analysis most of gestures performed in less than 2 seconds are often either iconic
gestures or gestures unrelated to utterances, and neither cases are gestures we
want to learn. In the motion capture data most of gestures stay for a long period
of time.

The extraction process identifies the data containing gestures, and there are
two cases that we need to manually exclude from the training data. The first case
is the semantic-related gestures. Our current gesture generators use prosody fea-
tures for motion generation, and prosody features do not preserve the semantic
content of the dialogue. Therefore, any semantic-based gestures will mislead the
model training and have to be excluded from the data. The second case is non-
gesture motion data. Sometimes actors are adjusting their motion capture suit,
scratching, or performing an initialization posture which is required for motion
capture calibration. We analyzed the extracted motions and excluded these two
cases to get final data set.

3.1 Requirements for building gesture generators

A common approach of previous work is to generate gesture motions via synthe-
sizing existing motion segments [17,16]. The gesture generator we are building
is a generative function that takes previous motion frames and audio features
as input and then outputs motion frames. In other words, the gesture generator
learns the relation between previous motion frames, audio features, and the cur-
rent motion frame, and uses this relation to generate animations. The benefit of
this design is that the gesture generator can generalize better to novel speech
and create new gestures, in contrast to the previous approach which is limited
to existing motion segments. The potential problem of this design is that it runs
the risk of generating unnatural gestures. The domain of motion frames is joint
rotation, and if the generative function learns the motion generation with this
domain, then the output of the function is too unconstrained — it can be any
joint rotation.

Thus, on building a generative function for gesture generator, a key challenge
is to prevent the generation of unnatural gestures. Human gestures move only
within certain space and contain certain patterns, so instead of learning the
function within an unconstrained space of joint rotation, it will be more effective
to learn gesture generation in the constrained gesture motion. For this reason, our
gesture generator detects features of gesture motion, represents gestures in terms
of motion features, and learns gesture generation with this new representation



system. With the domain constrained in gesture feature space, gesture generators
have a better chance of producing natural motions.

Another challenge comes from the mapping between audio features and mo-
tion frames. Both an audio feature vector and a motion frame are real value
vectors with high dimension, and the space of possible values is large. A gesture
generation is a mapping between two sequences of these vectors, and the under-
lying relation is complex. This brings a requirement for a gesture generator to
learn a function that captures this complex relation.

In sum, there are three things a gesture generator has to be capable of learn-
ing: gesture motion features, temporal relation of gesture motions, and the re-
lation between audio features and gesture motions. Hierarchical factored condi-
tional restricted Boltzmann machines (HFCRBMS) [8] is a learning model that
matches this criterion. It is an extension of deep belief networks (DBNs) [11] that
can deal with sequential data. We applied some modification to HFCRBMs to
build the gesture generator. Following sections introduce DBNs and components
of modified HFCRBM:s.

3.2 Background of modified HFCRBM

The DBN stacks multiple layers of Restricted Boltzmann Machines (RBMs) to
construct a multi-level neural network. A multi-level neural network is known
to be able to represent a complex function, but it usually suffers from long
convergence time and getting trapped into local optimum easily. The way DBN
builds neural networks can significantly reduce the convergence time and improve
the performance.

The major philosophy behind the design of DBN is to learn a better feature
representation for the task. In most of cases, the original representation of the
data is not the best way to describe the data and we will prefer to define some
features to represent the data. For example, in the object detection task we may
prefer to represent an image with edge features than a pixel vector. The DBN
applies an unsupervised learning algorithm to initialize its network connection,
and the algorithm performs a feature detection process. With the unsupervised
learning process, each layer of a DBN acts as a feature detector, and the DBN
uses this hierarchical structure to learn features that can model the input-output
relation of the given task. The DBN was proposed to learn static data in which
the sequential information is not considered in the model. The HFCRBM ex-
tends the DBN to consider sequential information. Following sections describe
components related to HFCRBMs and modified HFCRBMs: CRBMs, RCRBMs,
and FCRBMs.

CRBMs and RCRBMs. The conditional Restricted Boltzmann Machine
(CRBM) [22], as shown in Fig. 2a, is a artificial neural network with a binary
hidden layer and multiple visible layers taking time-series data as input. The net-
work between the hidden layer h and the visible layers v is a complete bipartite
graph in which links between h and v; is similar to a Hopfield net [12]. The struc-
ture differs from Hopfield net in that there are no links between visible nodes
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Fig.2: (a) A CRBM with order 2 where vs denote visible layers, ¢ represent index
in time, and h is the hidden layer. (b) A RCRBM with order 2. (¢) A FCRBM
with order 2 where f denotes feature layer, y represent labels, and triangles
represent factored multiplications.

and they are connected indirectly through hidden nodes. Both h and v; have
directed links from visible layers for past visible data vs_1,v¢_2,...,v;_, where
n denotes the order of the model. This network takes past data z;_,, ...x;_1 as
input for v;_,, ...v;_1 and output x; at v;, and uses the output error to update
the connection weights. After training connection weights with time-series data,
the model can predict future data with given data sequence. We can take current
output data z; to form a new input sequence z;_,y1 ...z for the model and
generate next data x;11. By doing so, the model can iteratively generate a long
sequence of data based on a short initial sequence. Reduced CRBMs (RCRBMs),
as shown in Fig. 2b, are CRBMs without the lateral links between visible layers.
RCRBMs generate data sequence with the same process of CRBMs, but since
there are no lateral links between visible layers the output of v; depends only on
the links with the hidden layer.

Factored conditional restricted Boltzmann machines. CRBMs capture
the transition dynamic of the time series data in an unsupervised way. They gen-
erate data sequence based on only the information of past visible data. In some
applications, we would like to use annotation information to help recognition
and generation. Taylor & Hinton proposed factored conditional restricted Boltz-
mann machine with contextual multiplicative interaction (we will simply call it
FCRBM in the following text for clarity) which extends CRBMs to output data
conditioned on annotated information [21]. The architecture of the FCRBM is
shown in Fig. 2c. The FCRBM preserves the original structure of the CRBM,
and adds additional input layer for annotated information, the label layer. One
major difference in structure is that there are no direct links between layers,
and they connect indirectly through factor nodes. All factor nodes have directed
connections from the label layer, and through the label layer the annotated in-
formation play the role of gating values propagating within network. In this
design, FCRBMs output current data based on given data sequence conditioned
on annotated information, and update connection weights based on output error.
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Fig.3: The difference between the original HFCRBM and our modification lies
in the bottom level model.

3.3 Modified HFCRBM

The modified HFCRBMs stacks FCRBMs on top of CRBMs to formulate a
temporal model based on features identified by CRBMs. This is different from the
original HFCRBM which stacks FCRBMs on top of RCRBMs. The architecture
of the two models are shown in Fig. 3. The original HFCRBM was applied to
learn walking motions with different styles [8]. The labels used in that work
are style labels. To generate a motion with specific style the generation process
has to be manipulated using style labels, so RCRBMs are necessary. On the
other hand, in our case the gesture generation does not need to be completely
manipulated with respect to labels (audio features) and can depend more on past
visible data, namely previous gesture motions. Thus, the lateral links in CRBMs
are beneficial for gesture generators, and we replace RCRBMs with CRBMs in
HFCRBMs.

The modified HFCRBM satisfies our three requirements for gesture genera-
tion in that the bottom CRBM learns the features of gesture motions, and the
top FCRBM learns the temporal relation of gestures and its relation between
audio features. In the following paragraphs we will call the modified HFCRBMs
as HFCRBMs for simplicity.

We have also added a sparse coding criterion to the unsupervised learning
(training CRBMs) step because in our initial investigations it further improves
the accuracy of gesture generation. Different from [14] as they only update the
bias term of the hidden layer for encouraging sparsity, we also update the con-
nection weight of CRBMs. The objective function regarding the sparsity term
is expressed with cross entropy between the desired and actual distributions of
the hidden layer as described in [10].

3.4 Training and generation

The training process of our gesture generator is shown in Fig 4. The gesture
generator first performs unsupervised learning on motion data to identify fea-
tures which better represent the temporal pattern of human motion. After these
features are identified with CRBMs, HFCRBMs represent motion data using
these features, and take data sequences represented with new features to train
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Fig.4: The training process of modified HFCRBMs for gesture generators. (a)
The CRBMs of the modified HFCRBM is trained with motion sequence z to find
feature representation. The gray-filled node represents output node of the model,
and the connection weight is updated based on the output error compared with
the training data. (b) After training CRBMs, the data goes bottom-up to train
top layer FCRBMs. The network generate output conditioned on audio features,
and update connection weights based on prediction error. In this step the links of
CRBMs as shown in light gray color are fixed, and only the connection weights
of FCRBMs are updated.

top-layer FCRBMs. FCRBMs take data sequence as input and learn to gener-
ate data at the next time frame conditioned on audio features. After training
FCRBMs, HFCRBMs learn to generate gesture motion based on audio features.

The HFCRBM-based gesture generator requires two input: an initial gesture
motion and a sequence of audio features. The initial gesture motion is a required
input for the visible layer v of HFCRBMs. A designer can specify what the initial
gesture of an avatar is preferred through this motion sequence, or can set them to
all zero vectors for simplicity. The sequence of audio features are data extracted
from given utterance, and is the input to the label layer of HFCRBMs. The
HFCRBM takes its output as part of the input data of next generation step,
and the entire generation process will output a sequence of motion with the
same length as the audio data. The resulting data is the gesture motion for
given utterances.

3.5 Smoothing

The motion sequence generated by HFCRBMs can contain some noise and the
difference between frames may be greater than natural gestures. Although each
motion frame is still a natural gesture and this kind of noise is rare in the



output, users are sensitive to the discontinuity of the animation and a short un-
natural motion can ruin the entire animation. Therefore, after gesture motions
are generated, an additional smoothing process is performed on the output result.
The smoothing process computes the wrist position of each generated frame,

and calculate the acceleration of wrist movement. If the wrist acceleration of
one motion frame exceeds some threshold, we reduce the acceleration via mod-
ifying the joint rotation velocity of that motion frame to be closer to the ve-
locity of previous joint rotations. The new motion frame at time ¢ is computed
by:

r=0.2

xp =1y

while (wrist acceleration of z}) > threshold and r < 1 do

af =1 —=r)(we — 20y + 3 _o) + 201y — T,
r+=0.1

end while
where z’ is smoothed motion frame, and x is original output motion frame.
The threshold is chosen as the maximum wrist acceleration value of the human
gesturing motion observed from the motion capture data. The equation inside
the while-loop is adjusting the velocity of current frame to an interpolation
between the original velocity and the velocity of its previous frame, and z} is
the resulting new motion frame corresponding to the smoothed velocity. The
smoothness criterion, wrist acceleration, is computed based on the translation
of the wrist joints, while the values x within update equation are values of joint
rotations. For a motion frame at time ¢ that does not exceed the acceleration
threshold, it is smoothed as:

zp = 0.8z + (¥4_y + Te41) /15 + (Ty_p + T442) /30

4 Experiments

We evaluated the quality of our generated gestures by comparing the gestures it
generates for utterances with the original motion capture for those utterances as
well as using motion capture from different utterances. In the experiment, our
data is the dataset used for the study of human sensitivity for conversational
virtual human [9]. The dataset contains audio and motion of groups of people
having conversations. There are two groups in the dataset, male and female
group, and each group has three people. There are two types of conversations,
debate and dominant speaker, and each type has five topics. We used the debate
conversation data of male group for experiments. The motion capture data con-
tains the skeleton of subjects and the recorded joints movement are a vector with
69 degree of freedom. Since this work focus mainly on arm gestures, we removed
leg, spine, and head movement from the data. Elements containing all zeros in
the joint rotation vectors are also removed. After removing these elements, the
resulting joint rotation vector has 21 degree of freedom.

We extracted pitch and intensity values from audio using Praat [4]. The
values of pitch and intensity ranged from zero to hundreds. To normalize pitch



Fig. 5: The video we used for evaluation. We use a simple skeleton to demonstrate
the gesture instead of mapping the animation to a virtual human to prevent other
factors that can distract participants.

and intensity values to help model learning, the pitch values are adjusted via
taking log(z + 1) — 4 and setting negative values to zero, and the intensity
values are adjusted via taking log(xz) — 3. The new pitch values range 0 to 2.4,
and the new intensity values range 0 to 1.4. The log normalization process also
correspond to human’s log perception property.

In the training of modified HFCRBMs, both the hidden layer of CRBMs
and FCRBMs have 300 nodes. The correlation parameters of each time frame
is computed as the correlation of prosody sequence and motion sequence with a
window of +1/6 seconds. The audio features for gesture generators at each time
frame also has a window of +1/6 seconds. We trained the model with the audio
and motion capture data of one actor, and use the other actor’s speech as a test
case to generate a set of gesture animations. We applied the criterion described
in Section 3 to extract training and testing data, and there are total 1140 frames
(38 seconds) of training data and 1591 frames (53 seconds) of testing data. Since
testing data does not have correlation values, we sample correlation parameters
from training data to simulate a pseudo-random values. We applied the same
criterion as for training data to extract prosody and pseudo-random correlation
to compose audio features for testing data.

4.1 Evaluation

We used our gesture generator to generate gesture animations with testing data,
and to evaluate the quality of generated animations, we compare them with two
gesture animations:

— The original motion capture data of the testing data.
— The motion capture data of the test case actor with respect to other utter-
ance.

For the second case, we used the same extraction techniques described in Section
3 to derive motion capture and audio data. We hypothesize that the gesture
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Fig. 6: Average rating for gesture animations. Dashed lines indicate two sets are
not significantly different, solid lines indicate two sets are significantly different.

animations generated by our model will be significantly better than the motion
capture data from different utterances, and the difference between generated
animation and actual human gestures will not be significant.

We displayed the three animations side-by-side, segmented them to the same
length, and rendered them into videos accompanied with original audio. One
example frame of our video is shown in Fig. 5. There are total of 14 clips with
length 2 to 7 seconds. The relative horizontal position of Original, Generated,
and Unmatched cases is different and balanced between clips (e.g. Original is
on the left 5 times, middle 5 times, and right 4 times). The presentation of
clips to participants was randomized. An example video can be found in [3].
In this example video, the left one is the motion capture data with respect to
different utterance, the middle one is the original gesture, and the right one is
the generated gestures. Since the motion capture data with respect to different
utterances is real human motion, participants can not tell the difference simply
based on whether the motion is natural; they have to match the motion with
speech to do the evaluation. We recruited 20 participants with ages ranging from
around 25 to 55. All participants are familiar with computer animations, and
some of them are animators for virtual human or experts on human gestures. We
asked participants to rank which gesture animation in the video best matches
the speech.

We performed balanced one-way ANOVA on the ranking results and the
analysis result suggests that at least one sample is significantly different than
the other two. We then applied Student t-test to test our specific hypotheses. The
evaluation results are shown in Fig. 6. On the number of being ranked first, the
difference between the original gesture motion and the generated gesture motion
is not significant, and both them are significantly better than the unmatched
gesture motion. We applied another study via assigning 2 point for ranked-first
cases and 1 point for ranked-second cases, and calculated the overall score of each
motion. Hypothesis testing show that the generated motion is not different from
the original motion, and they are both significantly better than the unmatched
gestures. This result implies that the movement of generated gesture animations
are natural, and the dynamics of motions are consistent with utterances.



5 Conclusions

We have proposed a method for learning prosody-based motion generators for
virtual human with recorded speech. Specifically, we modified HFCRBMs to
build a model that learns the temporal relation of human gesture and the rela-
tion between prosody and motion dynamics. The model is trained with motion
capture and audio data of human conversations to formulate an audio-based ges-
ture generator. Gesture generators learned to generate motion frames based on
previous gesture motions and prosody information, and are applied to produce
gesture animations using another set of speech audio. Evaluation results showed
that the produced gestures were significantly better than using human gestures
corresponding to different utterances, and there was no significant difference be-
tween produced animation and actual human gestures used in the conversations.
This work lays a foundation toward building a comprehensive gesture generator.
The next step is to explore speech information other than prosody and include
other categories of gestures like iconic and deictic gestures to improve the gesture
generator.
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