
Picocenter: Supporting long-lived, mostly-idle
applications in cloud environments

Motivation

Related Work

Design

Evaluation

Picocenter
End-users wish to run long-lived but mostly-idle (LLMI) apps
 E.g., web/email servers, distributed social networks

But running them in today’s cloud (e.g., AWS) is inefficient:
 User pays for an entire VM, even when the app is idle
 Provider reserves resources for idle VMs
 Idle apps need not stay in memory

Options for running LLMI apps in cloud today:
 Sharing VMs with users (Privacy and accounting challenges)
 PaaS, such as AppEngine (Limited programming environment)

Goal: Support LLMI apps in cloud environments
 Pay-by-usage billing, not charge by time
 Swap idle apps off to secondary storage

A hosting infrastructure designed to support LLMI apps
 Can be deployed on top of today’s cloud
 Run today’s apps efficiently (e.g., Nginx, Python apps)

Key challenge: VM is not designed for fast swapping

Solution: Process-based model for computation consolidation

Extend Picoprocess [NSDI’13] for LLMI apps in the cloud
 Fine-grained control of paging, networking and timer
 Transparent checkpoint and restore

ActiveSet: predictive page fetching
 Prefetch active working pages
 Predictive page loading based on packet metadata

Hardware virtualization (e.g., Xen, KVM)
 Performance and management overhead of running OS

Operating system containers (e.g., Docker, BSD jail)
 Bound to particular hosting operating system kernel

Process or VM migration
 Heavy operations; inspect kernel or hardware states

Each app runs inside its own picoprocess
 Fetched from cold storage on DNS request
 Moved back to cold storage when not active

The Hub: Manages DNS mappings and app assignments

The Workers: Host picoprocesses and provide NAT network

We built a proof-of-concept implementation
 Deployed on AWS (Ravello) and local cluster

How fast can Picocenter swap picoprocesses?
 On the order of 100 ms, even for large working sets
 Cost for loading from S3 is dominated by network latency
 ActiveSet optimization provides a significant speedup

Hub WorkerClient Cloud Storage

DNS Lookup

IP address

TCP SYN

TCP SYN/ACK

Revive application

Fetch ActiveSet pages

DNS Lookup

IP address

TCP SYNA
ct

iv
e

ap
pl

ic
at

io
n

In
ac

ti
ve

 a
pp

lic
at

io
n 0

 500

 1000

 1500

 2000

 2500

 3000

 1 10 100 1000 10000

Ti
m

e
(m

s)

Application Working Set Size (KB)

S3 - No ActiveSet
S3 - ActiveSet

Local Local cluster

Hub

Worker

Tenants Clients

SubmitDomain
name of app DNS lookupAssigned

worker IP

Cloud storage (e.g., S3)

...

Assign app

Notify
 of s

wap out

Swap apps
in and out

NAT

KVM instance

Running app
KVM instance

Running app
KVM instance

Running app

App assignments DNS entries

App memory
image

App memory
image

app

App memory
image

Interact with apps

Liang Zhang
Northeastern University

liang@ccs.neu.edu

Frank Cangialosi
University of Maryland

frank@cs.umd.edu

Alan Mislove
Northeastern University
amislove@ccs.neu.edu

Dave Levin
University of Maryland

dml@cs.umd.edu

Theophilus Benson
Duke University

tbenson@cs.duke.edu

