
Liang Zhang†§                    Fangfei Zhou†§                    Alan Mislove†                     Ravi Sundaram†

†Northeastern University         §Student

Maygh:  Building a CDN from client web browsers

Motivation Maygh
Web has enabled information exchange at massive scale
 E.g., News (NYT), OSNs (Facebook), Content sharing (Flickr)

Result:  Popular sites must serve significant amounts of content

Options for serving popular web sites:
 1. Serve on your own (purchase machines, etc)
 2.  Pay CDNs (Akamai, etc)
 3. Pay cloud computing services (S3/EC2, etc) 

All options result in significant monetary costs for operator

How do popular sites afford these costs?
 1. User subscriptions  (small user base)
 2. Advertising  (third parties, privacy concerns)

Limited choice of business models limits sites that can exist
 What about sites that do not fit into either business model?

Goal:  Alternate way for popular web sites to distribute content
 Recruit web clients visiting site to help out

Others have explored client-assisted web content distribution

Browser plug-ins  
 FireCoral, Swarm plug-in

Client-side software
 Akamai’s NetSession, PPLive

But, both require user to install and  run/activate
 Plug-ins can only serve other plug-in users
 Existing approaches have somewhat unclear incentives

Example:  AdBlock Plus installed on only 4.2% of FireFox users
 With much more clear incentives for users to install

Build a drop-in content distribution system for web content
 Serves as a dynamically built CDN; content always available from origin

Want to make it work with today’s sites, browsers
 Do not require users to do anything different

Key challenge: Browsers not designed to communicate directly
 RTMFP (Flash) or WebRTC (W3C) for browser-to-browser communication

Implemented Maygh using RTMFP
 Also have proof-of-concept WebRTC implementation

How much additional latency is there?

Fetch 50 KB objects from other peer
 First/Subsequent loading time with RTMFP and WebRTC 
 RMTFP has protocol overhead; WebRTC is sufficiently fast

How much bandwidth can Maygh save?

Obtain one-week of Akamai image access logs from etsy.com
 205 M requests, 5.7 M IP addresses
 Simulate Maygh deployment; 75% 95th-percentile reduction
 

Using Maygh
1.  Include Maygh JavaScript
 <script src=”maygh.js”>

2.  Change mechanism for loading content
 <img id="pic-id" src=”http://www.foo.com/...”/>

 with
 <img id="pic-id"/> 
 <script>
  maygh.load("pic-hash", "pic-id");
 </script>

Add coordinator:  Middlebox run by website operators
 1.  Serves as a directory for content
  Keeps track of content in user’s browsers

 2.  Allows browsers to establish direct connections
  Supports NAT traversal using STUN with RTMFP/WebRTC

With Maygh, browsers connect to coordinator, download content from others
 Can scale multiple coordinators to support 1000s requests/second

Design

Related Work

Evaluation

Client-side Maygh library implemented in JavaScript (ActionScript for RTMFP)
 Use LocalStorage to persistently store content

All content is static, identified by content-hash
 Prevents forgery of content by malicious users

 

Accessed from

 

Accessed from

 

Accessed from

Served fromServed fromServed from
MayghMayghMaygh

LAN (Boston) Cable (Boston) DSL (New Orl.)

LAN (Boston)

Cable (Boston)

229 / 87 ms
72 / 16 ms

618 / 307 ms
364 / 120 ms

1314 / 707 ms
544 / 354 ms

771 /283 ms
284 / 57 ms

702 / 314 ms
577 / 107 ms

1600 / 837 ms
765 / 379 ms

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  20  40  60  80  100  120

C
D

F

Five-Minute Average Bandwidth (Mb/s)

Normal
10% Plug-in

Maygh

Web Server

HTML IMG

Web Server

HTML

IMG

Coordinator

today                                        with maygh


