
Picocenter: Supporting long-lived, mostly-idle
applications in cloud environments

Liang Zhang* James Litton‡ Frank Cangialosi‡

Theophilus Benson§ Dave Levin‡ Alan Mislove*
*Northeastern University ‡University of Maryland §Duke University

Open-source
alternatives

iRedMail

iRedMail

Service oriented applications: long-lived

For single user or small group: mostly-idle

Long-lived, mostly-idle (LLMI) applications

How do users run LLMI applications in cloud?

Running LLMI applications in cloud

➤ Platform as a Service (PaaS)

➤ Limited programming environment

➤ Limited network protocol support

➤ Infrastructure as a Service (IaaS)

➤ User manages OS and software stack

➤ Can be expensive to run

4

Can we run LLMI applications in cloud efficiently?

Azure Functions

This talk

➤ Goal: support LLMI applications in cloud environments

➤ Requirements:

➤ Run wide variety of applications

➤ Run efficiently so that we can dramatically lower cost

➤ Be deployable in the cloud today

➤ Picocenter

➤ Be able to run lots of LLMI applications in cloud

➤ Swap idle application to cloud storage

➤ Swap in application quickly when it is being requested

5

Related work

➤ Application running environment

➤ Operating system containers

➤ Dedicated runtime

➤ Swapping

➤ Pre-paging and migration

➤ Checkpoint and restore

➤ Picocenter

➤ First attempt to leverage them for LLMI apps running in the cloud

6

BSD Jail

BLCR

Embassies

DMTCP

JettisonVirtual Machine migration

Outline

➤ Introduction

➤ Design

➤ Evaluation

➤ Conclusion

7

Running LLMI applications in Picocenter

8

PICOCENTER

{	init:					,		
		port:	[80]}

{DNS: “liang-nginx.picocenter.com”}

Running LLMI applications in Picocenter

9

PICOCENTER

DNS: liang-nginx.picocenter.com

IP: 52.91.124.236

GET /index.html

Picocenter internals

10

PICOCENTER

Hub

Worker 1

Worker 2

liang-nginx.picocenter.com

DNS: lia
ng-nginx.picocenter.com

IP: w
orker-1

GET /index.html

liang-nginx: 12

GET /index.html

DNS: lia
ng-nginx.picocenter.com

IP: w
orker-2

Swapping strategies

11

Worker

Full checkpoint

Worker

Reactive page faulting

page fault

Slow start due to download of all pages

Fast processing time because all pages are fetched

Not all pages are necessary

Only need page meta info to start

page fault

Slow processing due to page fetching on page faults

Minimum pages for application processing

Can we combine the best of both strategies?

ActiveSet

➤ ActiveSet: Predict pages that are needed for the request

➤ Reduce total download size

➤ Minimize round trips of page faults

➤ Page prediction: most recently used

➤ Future: prediction based on ports, ML on page faults
12

Worker

Implementation

➤ LLMI application runs in a process-like environment

➤ Use Linux container (LXC)

➤ ActiveSet

➤ Modified CRIU to map page to files

➤ Catch page faults with FUSE

13

Outline

➤ Introduction

➤ Design

➤ Evaluation

➤ Conclusion

14

Evaluation

➤ How quickly can Picocenter revive real-world processes from cloud storage?

➤ How does the ActiveSet technique help to reduce application reviving time?

➤ How does Picocenter perform with a challenging real-world application?

➤ What is the estimate cost of running applications in Picocenter

15

Please refer to the paper

How quickly can Picocenter revive real-world processes from cloud storage?

➤ Host Picocenter with ActiveSet in Amazon Virginia (VA) datacenter

➤ hot: application is alive; warm: swap in from disk; cold: swap in from cloud

➤ Client requests from Virginia (VA), Oregon (OR), Frankfurt (DE) or Tokyo (JP)

➤ Results

➤ Restore overhead: ~120 ms for warm and ~220 ms for cold

➤ Overhead can be dwarfed by the end-to-end performance of the protocol itself

16

Process request
(Application)

Restore
(CRIU)

Download
(S3)

VA OR DE JP VA OR DE JP VA OR DE JP

Process request
(Application)

Restore
(CRIU)

Download
(S3)

VA OR DE JP VA OR DE JP VA OR DE JP

Process request
(Application)

Restore
(CRIU)

Download
(S3)

VA OR DE JP VA OR DE JP VA OR DE JP

Process request
(Application)

Restore
(CRIU)

Download
(S3)

VA OR DE JP VA OR DE JP VA OR DE JP

Process request
(Application)

Restore
(CRIU)

Download
(S3)

VA OR DE JP VA OR DE JP VA OR DE JP

How quickly can Picocenter revive real-world processes from cloud storage?

➤ Host Picocenter with ActiveSet in Amazon Virginia (VA) datacenter

➤ hot: application is alive; warm: swap in from disk; cold: swap in from cloud

➤ Client requests from Virginia (VA), Oregon (OR), Frankfurt (DE) or Tokyo (JP)

➤ Results

➤ Restore overhead: ~120 ms for warm and ~220 ms for cold

➤ Overhead can be dwarfed by the end-to-end performance of the protocol itself

Process request
(Application)

Restore
(CRIU)

Download
(S3)

VA OR DE JP VA OR DE JP VA OR DE JP

17

Process request
(Application)

Restore
(CRIU)

Download
(S3)

VA OR DE JP VA OR DE JP VA OR DE JP

How does the ActiveSet technique help to reduce application reviving time?

➤ Control experiment on ActiveSets

➤ Total memory is configured to 64 MB

➤ Vary the working set size between 4 KB and 8 MB

➤ Download pages in blocks; each block has 32 pages

➤ ActiveSet technique significantly outperforms the baseline approaches

18

 0.1

 1

 1 10 100 1000 10000

La
te

nc
y

(s
)

Application Working Set Size (KB) (M)

Reactive paging only
Full checkpoint

ActiveSet

 KB

Conclusion

➤ Picocenter: a new approach for cloud computation

➤ Support long-lived, mostly-idle (LLMI) applications

➤ Swap ilde application to cloud storage

➤ Provide process-like environment

➤ Swap in real world applications in under 250 ms

➤ Open source: https://github.com/leoliangzhang/Picocenter

19

Thank you!

Questions?

liang@ccs.neu.edu

https://github.com/leoliangzhang/Picocenter

