
Design and Implementation for Checkpointing of Distributed Resources

using Process-level Virtualization

Kapil Arya

Mesosphere, Inc.

San Francisco, CA, USA

kapil@mesosphere.io

Rohan Garg∗

Northeastern University

Boston, MA, USA

rohgarg@ccs.neu.edu

Artem Y. Polyakov

Mellanox Technologies

Sunnyvale, CA, USA

artemp@mellanox.com

Gene Cooperman†

Northeastern University

Boston, MA, USA

gene@ccs.neu.edu

Abstract—System-level checkpoint-restart is a critical technol-
ogy for long-running jobs in high-performance computing. Yet,
only two approaches to checkpointing MPI applications continue
to survive in wide use today. One approach is to use the kernel
module-based BLCR in combination with an MPI checkpoint-
restart service particular to the MPI implementation in use.
Unfortunately, this lacks support for some important Linux
system services such as SysV IPC (e.g., shared memory objects).
A second approach has been to use the original 2009 DMTCP
implementation (herein referred to as DMTCP-09) for trans-
parent, system-level checkpointing. Unfortunately, DMTCP-09
lacked support for checkpointing many of the necessary features
found by MPI in a modern batch environment. These include:
ssh; the InfiniBand network; process migration (restarting an
MPI application on different cluster nodes); and modified file
path prefixes on restart (typically due to a changing current
directory, mount points, library paths, etc.).

This work presents DMTCP-PV, a new user-space transparent
checkpointing system based on the concept of process virtu-
alization. This approach separately models the state of each
local or distributed subsystem while decoupling it from the core
checkpointing engine. By separating these concerns, a domain
expert can extend checkpointing into a new domain without
any knowledge of the core checkpointing engine. This allowed
DMTCP-PV to address the deficiencies noted above and many
others. It is shown that the runtime overhead of DMTCP-PV is
generally less than 1%, and the checkpointing time is dominated
by the time to write an image file to stable storage.

Index Terms—checkpoint-restart, virtualization, fault toler-
ance, DMTCP

I. INTRODUCTION

Checkpoint-restart is a critical technology for fault tolerance

and long-running jobs in high-performance computing. This

work argues for the need for system-level checkpointing that

transparently adapts to the many existing and emerging dis-

tributed resources. Examples of such distributed resources that

are not easily checkpointed include ssh and shared memory

segments (both BSD-style shared memory and system V

shared memory objects), and virtualization of the various

existing and emerging network constructs: TCP sockets, In-

finiBand, Cray GNI, Intel Omni-Path Architecture (OPA), etc.

For more moderately sized HPC clusters, both users and

administrators face a more immediate need for transparent,

∗ This work was partially supported by the National Science Foundation
under Grant ACI-1440788.

† This work was partially supported by the IDEX “Chaire d’attractivité”
program of the Université Fédérale Toulouse Midi-Pyrénées under Grant 2014-
345.

system-level checkpointing. For users, there is the dilemma of

what to do if a computation will run for days or weeks, since

a typical batch reservation slot has a limit of 24 hours. For

administrators, there is the dilemma of what to do when an

administrator must bring down a cluster for system mainte-

nance. One can stop accepting jobs in a 24-hour batch queue

at least 24 hours prior to system shutdown. But this limits

the flexibility and throughput of a smoothly running computer

center.

The current state of the art in system-level checkpointing

of MPI in batch environments has many deficiencies (see

Section I-A). We are not arguing that the other approaches

to checkpointing, such as BLCR, CRIU and ZapC, could not

be extended to support the requirements for distributed check-

pointing for modern MPI implementations. Rather, we argue

only that those competing approaches would require additional

specialized routines for each new distributed construct.

Here, we describe DMTCP-PV (Distributed MultiThreaded

CheckPointing with Process Virtualization), a novel check-

pointing system based on a layered software model. The use

of layers reflects many of the same layers found in the design

of a typical operating system. However, it also includes some

higher layers that reflect user-space system services, such as

ssh, InfiniBand, and an interface with the batch queue, which

is typically SLURM (see Figure 3). The principles of this

work have served as a foundation for several widely used

checkpointing applications. (See Section II-C.)

DMTCP-PV can be compared with the original 2009 im-

plementation of DMTCP, described in [1] and herein referred

to as DMTCP-09. DMTCP-09 was based on a single, mono-

lithic checkpointing model, as is the case for all preceding

checkpointing packages.

In process virtualization, virtualization of system ids (such

as pids, mount points, file and socket ids, etc.) occurs entirely

in user space within the application process. The goal of

process virtualization is to decouple the specialized expertise

of the checkpointing package developers from the domain

expertise of distributed resources. One uses a simple virtualiza-

tion model and API to write resource-specific code concerning

the checkpointing and restoration of the state of a relevant

subsystem. The process virtualization model is introduced in

Section II and described in detail in Section IV.

2016 IEEE International Conference on Cluster Computing

2168-9253/16 $31.00 © 2016 IEEE

DOI 10.1109/CLUSTER.2016.55

402

The contributions of this work are:

1) the principles of a simple, uniform computational model

for checkpoint-restart based on process virtualization;

and

2) examples that support some resources (external agents)

that could not previously be checkpointed using earlier

monolithic checkpoint systems;

A. Alternative checkpointing approaches for HPC

Application-level checkpointing has been employed by

many users instead of system-level checkpointing, due to the

difficulty of using system-level checkpoint-restart at many

sites. This has two problems in comparison with transparent,

system-level checkpointing. First, it does not decouple applica-

tion expertise from checkpointing expertise. Each time a mod-

ule of a large application is enhanced, an application developer

familiar with the application must update the checkpointing

routine to take account of the modified state in the updated

module. (However, see [2] for a mixed-level approach to

mediate this burden.) Second, application-level checkpointing

is typically executed only at the end of a computation phase.

Hence, when an administrator wishes to bring down the cluster

for system maintenance without the ability to trigger a system-

level checkpoint, applications may be terminated well after

their last checkpoint. In that case, any work since the last

checkpoint will be lost.

Another alternative for checkpointing of parallel or dis-

tributed computations over InfiniBand has been the use of

an MPI checkpoint-restart service [3], [4], [5] in combination

with BLCR [6], [7]. At this time, the primary example in

common use is the MPICH checkpoint-restart service [8]

(Nemesis channel for InfiniBand) for support of BLCR. The

MPI implementations derived from MPICH (e.g, MVAPICH2

and Intel MPI) inherit this support. (As an example of the

difficulty of this approach, the Open MPI developers have

temporarily dropped support for their independent, BLCR-

based checkpoint-restart service as of version 1.7 of Open MPI

due to a lack of a maintainer for that code [9].)

Finally, PGAS has been defined as a key element in the

path to exascale computing [10]. Hence, checkpointing of

PGAS is critical. PGAS languages [11] are often implemented

on top of MPI, which then require shared memory objects.

Many MPI implementations (e.g., MVAPICH2 and Open MPI)

have added support for hybrid computations such as those

using both MPI and OpenSHMEM [12]. Unfortunately, since

BLCR does not support shared memory objects, the current

MPI checkpoint-restart services also do not support these

implementations. See Section VIII(a) for a further discussion.

B. Organization of paper

Section II motivates the need for a model of process

virtualization with a simple example concerning process ids. In

particular, Section II-C describes some successes of DMTCP-

PV using this model. Section III discusses the basic require-

ments for checkpointing distributed resources while Section IV

presents a process virtualization based mechanism for check-

pointing such resources. Sections V and VI present SSH and

batch-queue plugins that are critical to checkpointing in a

modern batch system. Section VII presents the performance.

Section VIII summarizes the related work, and Section IX

presents the conclusion.

II. USER-SPACE PROCESS VIRTUALIZATION

Often, application processes violate an implicit closed-world

assumption, in that, they must interact either with privileged

external agents (e.g., ssh daemons) or even external hardware

(e.g., the HCA adapter for InfiniBand). We refer to the

interface between the “core” of the process and the external

agents/subsystems as an application surface (see Figure 1).

Process
Application

External
Resource

real names

Application
Surface

Application

Surface

virtual names

Translation layer

Fig. 1: Application surface of a running process. The virtual

names lie inside the application surface, whereas the real

names lie outside the surface.

When restarting from a checkpoint image, the recreated

objects derived from external systems/services may not be

the same as their pre-checkpoint version. This is due to the

changing execution environment across a checkpoint-restart

boundary.

User-space process virtualization finds a surface that is

at least as large as the application surface, such that any

virtualized view of an object lies inside this surface and

any real view lies outside this surface. On restart, it links

the recreated objects with their virtualized view inside the

application surface. Thus, the application view of the objects

does not change across checkpoint and restart.

In Subsection II-A, a simple example of process virtualiza-

tion is presented, with the goal of describing the core ideas. In

Subsection II-C, a brief overview is given of several successes

using this type of process virtualization. With this motivation,

the programming model for process virtualization is presented

in Section IV.

A. Process Virtualization: A simple example with pids

As discussed in the introduction, restoring pids is the first

challenge of checkpoint-restart that distinguishes the different

approaches. In a process virtualization approach, pids are

virtualized by creating a virtualization layer between the

process and the O/S kernel. The virtualization layer hides

403

User Process
PID: 4000

User Process
PID: 4001

Virt. PID Real PID

4000 2652
4001 3120

Translation Table

getpid()26524000

kill(4001, 9) KERNEL

4001
Sending signal 9
to pid 31203120

Fig. 2: Process virtualization for pids. The application binary

is inside the application surface, however, libc and the kernel

are outside the application surface.

the real pid (assigned by the kernel) from the user process

and instead assigns it a virtual pid. Further, it maintains a

translation table for translating between virtual and real pids as

shown in Figure 2. Finally, at the time of restart, the translation

table is updated with the real pids that were assigned to the

restarted processes by the O/S kernel. This is achieved by

having each process share its real pid with the peer processes

through a publish/subscribe mechanism.

A virtualization layer at this application surface can be

created using function wrappers. The application always calls

the wrapper function, which will eventually call the “real”

function inside libc. DMTCP-PV allows for composition

of plugins: if two plugins contain wrappers for the same

functions, the two wrappers are nested. This is the key to

supporting virtualization layers.

Listing 1 illustrates such a wrapper which translates the

virtual pid passed by an application to a real pid. In this

example, the user has also chosen to make the wrapper

an atomic transaction, by disabling checkpoints during its

execution.

WRAPPER int kill(pid_t pid, int sig) {

disable_ckpt();

real_pid = virt_to_real(pid);

int ret = REAL_kill(real_pid, sig);

enable_ckpt();

return ret;

}
�

Listing 1: A function wrapper for pid virtualization

B. Finding an application surface

There can be more than one possible application surface.

Typically one chooses an application surface close to a well-

known API for the sake of stability and maintainability.

Recall that a typical application interacts with the execution

environment through various libraries. For example, the libc

runtime library provides access to the kernel resources, a

device driver library provides access to the underlying device

hardware, and so on. Thus, one can imagine virtualizing a

resource by intercepting the relevant library calls. A wrapper

around any call to the API updates both the virtual and the

real view in a consistent manner. This allows us to inspect and

modify the behavior of the underlying subsystem as seen by

the application.

Choosing the application surface at a library API layer

demonstrates a caller-virtualized approach, where we virtual-

ize at the call site of the unprivileged caller. This is in contrast

to the more common case of virtualizing at the site of the

callee (callee-virtualized). For example, in an O/S container,

pid virtualization takes place within the kernel.

The callee-virtualized mechanism may seem like the ideal

solution since being close to the resource being virtualized

gives us a better handle over the involved components. For

example, the pid namespace in the Linux kernel solves the

pid virtualization problem by keeping a translation table inside

the kernel. However, the callee-virtualized approach fails for

resources involving multiple hosts (e.g., network, InfiniBand)

without a coordination protocol. The caller-virtualized ap-

proach, on the other hand, allows us to get similar results

by virtualizing at the application surface to decouple the ap-

plication process from the external subsystem. This eliminates

the need to modify the callee or the user application.

C. Systems based on DMTCP-PV

DMTCP-PV is freely available through http://dmtcp.

sourceforge.net and https://github.com/dmtcp. DMTCP-PV

has been used as part of the HPC environment at the Center for

Computational Research of the University at Buffalo, a large

HPC center supporting 8,000 CPU cores, and integration with

the SLURM resource manager is undergoing testing. DMTCP-

PV also provides its own process virtualization module for

SLURM launch and restart scripts. In this way, an end user

may use checkpointing with SLURM batch jobs on an MPI

implementation of their choice even though SLURM had not

previously been configured to work with DMTCP.

Next, we provide some intuition on how process virtu-

alization has been used in several critical technologies for

using MPI in a batch environment. The following section then

presents an overview of the process virtualization model, itself.

A more complete description of ssh is found in Section V.

The key here is that checkpointing an ssh connection requires

one to recreate a connection to a remote ssh daemon on restart.

The ssh daemon is a privileged agent. Hence, the ssh plugin in

DMTCP-PV is decoupled from the core of DMTCP-PV. The

ssh plugin uses only the domain expertise concerning how the

file descriptors for stdin/stdout/stderr are transmitted through

the ssh daemon.

The details of support for the RC (reliable connection) mode

for InfiniBand are covered in [13]. DMTCP-PV currently

also supports UD (unreliable datagram mode). Modern MPI

implementations require UD. The plugin now virtualizes a

remote LID, which refers to an InfiniBand HCA adapter on

a remote node. In fact, it is required to virtualize a pair

consisting of an LID and a remote queue pair.

IP addresses are virtualized in a standard way, but they

also require the publish/subscribe feature of DMTCP-PV (see

Section IV) in order to correctly virtualize the remote IP

addresses known to an application on restart. It was the lack

404

of virtualization of IP addresses in DMTCP-09 that prevented

the earlier DMTCP-09 from restarting an MPI application on

a new set of nodes. Path prefixes are virtualized in a plugin

that adds a wrapper function around every system call in the

C runtime library (libc) that refers to a pathname.

III. CHECKPOINTING DISTRIBUTED RESOURCES

Distributed applications often have resources that are shared

between multiple processes. Further, some resources such

as file descriptors and SysV IPC objects are visible only

within a compute node whereas resources such as socket

and InfiniBand connections are visible over multiple nodes.

Capturing and restoring the state while keeping a consistent

virtualized view of a given shared resource is a non-trivial

problem. Here we discuss the steps required to successfully

checkpoint/restart distributed resources.

A. Checkpoint-leader election

In a distributed computation, resources may be shared

explicitly (e.g., the dup() system call creates a duplicate file

descriptor) or implicitly (by creating a child process; the child

process gets a copy of all the file-descriptors, shared memory

etc. automatically). However, only one of the several processes

should be allowed to save/restore the state of the underlying

resource. This is required for two reasons: (i) for some

resources, part of the state to be checkpointed can be read only

once. This is the case with data in kernel buffers or network

data; and (ii) if multiple processes recreate the resource during

restart, it may no longer be shared. In some situations, it is

impossible to recreate a resource (e.g. sockets) by multiple

processes, while in other cases, recreating a resource multiple

times is permitted but results in incorrect behavior (e.g. same

file can be opened by multiple processes resulting in loss of

semantics).

B. Capture local and global state

A checkpoint-leader deploys domain-specific techniques to

capture the state of an underlying resource. For example, the

state of node-local resources such as open file handles, can

be captured by querying the kernel. In the case of a network

socket, one needs to save the in-flight network data by draining

the network buffers as shown by [1]. Similarly, one has to

drain various completion queues for capturing the state of

InfiniBand connection as shown by [13]. The captured state is

then checkpointed as part of process memory.

C. Recreate/restore resource state

On restart, the checkpoint-leader must recreate a

semantically-equivalent copy of a given resource from

the checkpointed state. For example, to restore a file handle,

a new file descriptor is created and the file offset is restored

to the pre-checkpoint state. For global resources such as

socket connections, the peer processes need to exchange the

current network addresses in order to recreate a new socket

connection. Once the socket is recreated, the in-flight data is

restored by pushing data back onto the network socket.

D. Update the virtualized view

As discussed in Section II-A, on restart, the virtual to real

name mappings need to be updated to reflect the current

names. Without it, a process will try to reach the underlying

resource using the pre-checkpoint names.

E. Re-share resource

Once the shared resource has been recreated, it must be re-

shared with peer processes. The kernel-based implementations

can directly modify the kernel data structures of the target pro-

cesses. DMTCP-09 shared the resources by restoring shared

resources in a parent process and then forking child peer

processes. This poses an inherent problem if the combined

resources exceed the resource limit of a single process.

IV. DESIGN AND IMPLEMENTATION

A real-world application typically contains several types of

interdependent distributed resources. In order to successfully

checkpoint a distributed computation, one has to look at two

axes of coordination: a horizontal coordination for check-

pointing of a single distributed resource type (as discussed in

the previous section); and vertical coordination for handling

interdependent resources in a single process.

In this section, we present an architecture based on the

idea of virtualization layers where each extra software layer is

used to virtualize a resource at a lower layer. We then discuss

the techniques that enable seamless horizontal coordination

at every layer. This allows for a simple, intuitive program-

ming model for extending the checkpointing system to adapt

to a new external resource/subsystem. The concept follows

the well-developed principle of using layers to develop and

manage the complex code of a large operating system kernel.

Fork/Exec Plugin

Pid/Tid Plugin

File Plugin

Socket Plugin

Single Process Checkpointer

SSH Plugin

Batch−Queue Plugin

InfiniBand Plugin

R
es

um
e/

R
es

ta
rt

C
he

ck
po

in
t

Fig. 3: Virtualization layers in a distributed computation

A. Vertical coordination using a plugin architecture

DMTCP-PV uses a plugin architecture to implement the

layers. Each plugin is implemented as a dynamic library and

405

corresponds to a single virtualization layer and is responsible

for checkpointing relevant resources at that layer. Figure 3

illustrates some of the plugins/layers in a distributed compu-

tation. Note that the layers may not require a total order. The

total ordering in Figure 3 is an artifact of the dynamic library

implementation.

In the current implementation, it is up to the end user

to specify the ordering of virtualization layers upon each

computation. Enhancements are possible, such as fields within

each dynamic layer that specify “provides” and “requires”

(e.g., requires: pid; provides: infiniband). It can be further

automated by using library inspection tools to lookup symbols

to determine a potential ordering constraint between layers.

1) Event callbacks: There are three important events in a

checkpointing system: checkpoint time; resume time (resum-

ing the original process after writing a checkpoint image); and

restart time (restarting a computation as a new process from

a checkpoint image file).

A straightforward approach is to have each virtualization

layer register three callback functions for the three events

(checkpoint, resume, and restart). On checkpoint, the callback

functions are then called in order of the layers from top to

bottom (since saving a higher layer may require calls to system

services at a lower layer). On resume or restart, the callback

functions are called in the opposite order, from bottom to top

(since re-building a higher layer after restart may require the

use of system services from a lower layer).

Remark: The first callback for the topmost layer takes place

after the core checkpointing system has quiesced all user

threads of the process to prevent them from making any

changes to the computation state.

B. Horizontal coordination using barriers and publish/sub-

scribe

While event callbacks provide a way to coordinate between

multiple virtualization layers in a single process, a barrier

allows for coordination between multiple processes at the

virtualization layer corresponding to a single resource type.

The proposal here is to integrate the two techniques with a

publish/subscribe interface to checkpoint a distributed com-

putation across multiple hosts, or multiple processes that use

several types of interdependent resources.

In the unified model, each virtualization layer must still

register for the three standard events (checkpoint, resume,

and restart). But instead of registering for a single callback

function, one registers several sub-callbacks with a barrier

between two consecutive sub-callbacks.

We use a stateless centralized coordinator process to im-

plement barriers. The coordinator also maintains a key-value

database for providing publish/subscribe services. A virtu-

alization may use the publish/subscribe service during the

sub-callbacks for distributed coordination. Listing 2 uses this

unified model to implement checkpoint-leader election.

In a more complex example, similar techniques are used

to discover current addresses of a remote peer for restoring

sub_callback1() {

for each id in file_id_list:

publish(id, getpid());

}

sub_callback2() {

for each id in file_id_list:

if (subscribe(id) &=& getpid):

// We are ckpt leader;

ckpt(id)

}

Listing 2: Checkpoint leader election with the unified model.

socket connection during restart. During checkpoint, each peer

process publishes a (local socket-address, socket-id) pair and

subscribes to <remote socket-address> for a given socket and

saves the <socket-id> of the remote peer. On restart, each

peer publishes a (socket-id, current-socket-address) pair and

subscribes for the <remote socket-id> to receive the current

socket-address of the remote process.

Remark: Note that the “ids” play a critical role in publish/sub-

scribe and hence it is important to avoid any conflicts. There

are several mechanisms to achieve this such as reading from

/dev/random or the libuuid library.

1) Local and global barriers: As an optimization, barriers

and publish/subscribe service are provided with two levels of

scope: node-local and global. Node-local service is used for

plugins that need to share information among processes on

the same compute node (e.g., pid, file handles, etc.). Global

service is needed for plugins related to distributed applications

(e.g., socket, InfiniBand, etc.).

C. Discussion

Here we discuss two potential limitations of the wrapper-

based process virtualization approach. It should be noted

that the authors or the users of DMTCP-PV haven’t yet

experienced these limitations. Finally, the current design of

plugin architecture supports well behaving and cooperating

plugins only. Faulty/buggy plugins are not supported either.

a) Inline system calls: Wrapper mechanism can catch

library function calls only. If some code makes system calls

using inline assembly, the call won’t be wrapped and the

artifact related to the system call will not be virtualized or

save-restored. A potential solution is to modify the application

source code, replacing the inline assembly with a library

function. Another solution is to use tools like PIN [14] which

can dynamically instrument the binary and replace the inline

assembly with desired function calls.

b) Certain assembly instruction: RDTSC is an assembly

instruction used to read the time stamp counter. If one were to

virtualize the clock, it would be necessary to replace RDTSC

with some library function call. As with inline system calls,

one can recompile the binary or use PIN.

V. CHECKPOINTING SSH

Recall that Secure Shell (SSH) allows two processes to

securely communicate over an insecure network. The SSH

daemon (sshd) is a privileged process. Checkpointing it by

406

an unprivileged user process is not possible since the user

cannot recreate sshd on restart. Further, if shared connections

are enabled, multiple connections to the remote host will share

the same sshd process.

In order to checkpoint an SSH session, we need to find an

application surface that would allow us to decouple the SSH

daemon from the application processes. Further, the SSH client

communicates with the SSH daemon process over a socket and

shares some state such as session-id with the daemon. Thus,

both sshd and the SSH client also needs to be outside the

application surface.

app2app1

socket
SSH client

(ssh)

st
di

o

SSH server
(sshd)

st
di

o

virt_ssh virt_sshd

st
di

o

st
di

o

Node2Node1

Fig. 4: Virtualizing an SSH connection. The SSH client and

server processes are not checkpointed.

a) Launching remote process under checkpoint control:

In order to keep both ssh and sshd processes outside the

application surface, the SSH plugin intercepts the exec call to

create two helper processes, virt_ssh and virt_sshd, when

establishing the ssh connection as shown in Figure 4. These

helper processes are inside the application surface and are

checkpointed and restarted as part of the computation.

b) Checkpoint: At the time of checkpoint (see Figure 4),

only processes app1, app2, virt_ssh, and virt_sshd are

checkpointed. The ssh and sshd process are not under check-

point control and are not checkpointed. Further, the virt_ssh

and virt_sshd directly “drain” any in-flight network data

that has not yet reached its destination. Thus, they act as

buffers to hold network data prior to resume or restart. To

guarantee that all of the in-flight messages have reached their

destination, a “magic cookie” is sent across the write-end of

each connection. The read-end is then polled until the arrival

of magic cookie. A more elaborate solution would involve

keeping account of the number of bytes sent and received for

each connection. The virt_ssh and virt_sshd processes can

then exchange this information out-of-band to find the status

of in-flight data.

c) Restart: During restart, we need to reestablish the

ssh connection between virt_ssh and virt_sshd. Since the

application processes may be restarted on a different set of

compute nodes, the virt_ssh processes must discover the

current network address of virt_sshd process using publish-

subscribe. It then launches a helper process on the remote

node to reestablish the ssh connection. Finally, virt_ssh and

virt_sshd processes write the previously drained network data

to the corresponding pipes before resuming the computation.

VI. CHECKPOINTING IN BATCH ENVIRONMENT

In high-performance computing, jobs to be run on clusters

are typically submitted to a batch queue, and then executed

on a cluster. Software components in this environment include:

(i) an MPI library for inter-process communication; (ii) batch

queue utilities (e.g., SLURM, Torque PBS, or LSF); (iii) a

process manager (e.g., PMI or Hydra); and (iv) a low-latency

network (e.g., InfiniBand, the Cray Aries interconnect, or the

Intel Omni-Path Architecture (OPA)). Fault tolerance is an

essential consideration for long-running HPC applications. In

this section, we address the difficulties in checkpointing a

distributed computation running in a batch environment.

A. MPI library

The vendor’s MPI library is viewed as entirely within the

application surface. Thus, any interposition of library calls

will be done at a lower layer. This has the advantage of

providing a solution that is independent of the particular MPI

implementation.

B. Batch-queue utilities

Normally, an MPI application is launched through batch

queue utilities. Scripts are developed based on the batch queue

utility (e.g., for SLURM, Torque PBS, or LSF).

C. Resource manager

A resource manager provides the distributed application

with a list of nodes and adjusts the standard output and error

file descriptors to point to the log files. The application has no

control over which nodes are allocated. In this case, the appli-

cation surface includes the entire distributed application along

with the MPI libraries and excludes the resource manager.

Since the resource manager is in charge of communication

among the distributed MPI processes, it presents a situation

analogous to that of SSH.

a) Checkpoint: In particular, the resource manager

launches user programs through: tm_spawn in the case of

TORQUE PBS [15]; lsb_launch() in the case of Load Sharing

Facility (LSF) [16]; and the standalone srun and sbatch

commands in the case of SLURM [17]. The current work sup-

ports the TORQUE and SLURM resource managers (with and

without the PMI interface). Similar to SSH, the batch-queue

layer intercepts these calls to inject a call to dmtcp_launch to

bring the remote process under checkpoint control.

b) Restart: At the time of restart, the resource manager

considers the restarting application a new job that is unrelated

to any previous jobs. Thus, it allocates a new set of compute

nodes (which may be different from the original set). The

batch queue layer must remap the restarting processes onto

the new set of nodes. The socket layer then takes care of

reconnecting socket connections between processes, resulting

in a transparent restart.

c) Communication between an MPI application and the

external Process Management Interface (PMI): Most modern

MPI implementations use or support the Process Management

Interface (PMI) [18]. The PMI model comprises three entities:

407

the MPI library, the PMI library and the process manager. As

mentioned earlier, the MPI library lies within the application

surface. The PMI library and the external process manager

both lie outside the application surface.

Currently there are several implementations of process man-

ager entities, including the standalone Hydra package [19], and

the PMI server of the SLURM resource manager. SLURM

requires an MPI process to communicate with the privileged

SLURM job step daemon, which is not under checkpoint

control. In this case, the batch queue plugin finalizes the PMI

session before checkpointing and recreates it afterward.

D. Changing mount points

In a batch environment, a computation might be restarted

on a different set of nodes which might have different

mount points for users home/work directories. We need to

translate between the pre-checkpoint mount points and the

current mount points for a successful restart. As discussed

in Section II-C, a path virtualization plugin translates paths

remembered by the application into correct paths as per the

new mount points.

VII. PERFORMANCE AND EVALUATION

For evaluating performance, four types of experimental data

is provided: the scalability of DMTCP-PV (Section VII-B; the

overhead for the SSH and Batch-queue virtualization layers

(Section VII-C); the overhead for single-host applications

(Section VII-D); and overhead of wrappers (Section VII-E).

Finally, a programming model should also be measured ac-

cording to the burden on the programmer. We use the number

of lines of code in each plugin as a proxy for the programming

burden in Table I.

Plugin Lines Wrappers Plugin Lines Wrappers
of code of code

Batch Queue 1,715 13 Socket 2,156 17
SSH 1,021 3 KVM 749 2
InfiniBand 2,500 34 SysV IPC 1,154 14
IB2TCP 1,000 31 Tun/Tap 351 3

∗: Uses additional 899 lines of shared common code.

TABLE I: Statistics for various plugins.

A. Experimental setup

In this performance evaluation, the scalability experiments

were conducted on Stampede [20] at TACC (Texas Advanced

Computing Center). Stampede is currently the #10 super-

computer on the Top500 list [21]. Each computer node at

Stampede has 16 cores, consisting of a dual-CPU Xeon ES-

2680 configuration with 32 GB of RAM. Experiments use the

Lustre parallel filesystem version 2.5.5 on Stampede.

The overhead runs testing the SSH virtualization layer were

conducted on a cluster at the Massachusetts Green High-

Performance Computing Center (MGHPCC). We reserved

eight nodes with Intel Xeon E5-2650 CPUs running at 2 GHz.

Each node was dual-CPU, for a total of 16 cores per node.

The operating system was RedHat Enterprise Linux 6.4 with

Linux kernel version 2.6.32.

� � � �� �� �� ��� ��� ����	��

���������������

	

�		

�		

�		

�		

�			

��		

��		

��		

��		

�
��

�
��
�
��

�
�

�
��

��
��

�
�
�
�!
�" #$��%��&�'�(

#$�%��&�'�(

Fig. 5: Runtime overhead on NAS LU benchmark with

DMTCP-PV. The numbers are averaged over three runs. LU

class C was used for 2, 4, and 8 MPI ranks. LU class D was

used for 16, 32, 64, and 128 MPI ranks. LU class E was used

for the runs with 256 and higher MPI ranks.

The batch queue layer evaluation was conducted on a cluster

with nodes equipped with two Intel Xeon CPUs running at

2.60 GHz for a total of 16 cores per node. The operating sys-

tem was Scientific Linux 6.4 with Linux kernel version 2.6.32.

All single host application benchmarks, except MATLAB,

were conducted on a dual-core Intel i7-2640M laptop com-

puter with 8 GB RAM and Intel 320 series solid state disk

running OpenSUSE 13.1 with Linux kernel 3.11.6. The MAT-

LAB test was carried out on a 16-core 1.80 GHz Opteron

Processor 8346 HE (4 quad-core sockets) with 128 GB RAM

and 7200RPM hard disk drive running Ubuntu 13.04 with

kernel 3.8.0-19-generic.

The NAS parallel benchmarks [22] were used to test scal-

ability. Note that a given class, such as class E, represents

a fixed problem size independently of the number of MPI

processes.

B. Scalability

The NAS LU benchmark running under MVAPICH-2.0 was

used to measure the scalability of DMTCP-PV. In particular,

we measure the runtime overhead, the checkpoint overhead,

and the restart overhead as we scale up. We also measure the

cost of the barriers used by the different virtualization layers,

including the cost to write to and read from stable storage.

Figure 5 shows that the average runtime overhead imposed

by DMTCP-PV. It is less than 1% in most cases. For a given

number of MPI ranks, six runs were conducted – three under

DMTCP-PV and three without DMTCP-PV – on the same set

of nodes. The average overhead goes up to 1.9% in the case

of LU.E.256, which we attribute to system noise.

Checkpoint times for the NAS LU benchmark are shown in

Figure 6a. Five successive checkpoints were taken for a given

number of MPI ranks on the same set of nodes. In the case

of LU.E.256, we observe a large variation in the checkpoint

time. We speculate that this was due to the congestion on the

backend network and Lustre when the runs were conducted.

408

� � � �� �� �� ��� ��� ����	��

���������������

)�	

	

�	

�	

�	

�	

�	

&
*
�
��

�
�
��

��
��
�

�
�!
�"

+,&

+,%

+,-

(a) Checkpoint times

� � � �� �� �� ��� ��� ����	��

���������������

�		

�		

�		

�		

�			

&
*
�
��

�
�
��

��
��
.�

��
�
 �
�
 �

��
��

�!
�

/
"

+,&

+,%

+,-

(b) Uncompressed checkpoint image sizes

� � � �� �� �� ��� ��� ����	��

���������������

)�	

	

�	

�	

�	

�	

�		

��	

��	

�
�
��

�
 �
��
��

�
�!
�"

+,&

+,%

+,-

(c) Restart times

Fig. 6: Checkpoint/restart times along with checkpoint size for NAS LU benchmark with DMTCP-PV. For a given number of

MPI ranks, five successive checkpoints and restarts were done. LU class C was used for 2, 4, and 8 MPI ranks. LU class D

was used for 16, 32, 64, and 128 MPI ranks. LU class E was used for the runs with 256 and higher MPI ranks.

� � � � �
�������0�

	

�

�	

��

�	

��

�	

��

�	

��

�
��

�
��
�
�#

 �
��

��
��

��
��
��

�!
�"

(a) Time to write checkpoint file
for LU.E.256.

� � � � �
�������0�

	

�

�	

��

�	

�
��

�
��
�
�
�
�
1
��

��
��
��
��

�!
�"

(b) Time to read checkpoint file
for LU.E.1024.

Fig. 7: Time to write/read checkpoint file to/from stable

storage. Each marker (indicated by “X”) represents a single

checkpoint file. LU.E.NNN implies NNN processes and so

NNN checkpoint files. The upper horizontal edge of a box

represents the first quartile (Q1). The lower horizontal edge

of the box represents the third quartile (Q3). The horizontal

line inside the box represents the median. The horizontal lines

(whiskers) outside the box mark 1.5 times the interquartile

range (IQR = Q3-Q1) beyond Q1 and Q3. The dots beyond

the horizontal lines represent the outliers.

Figure 6b shows checkpoint image size of each process for

the NAS LU benchmark at different scales. In the case of LU,

the image size for a given class size decreases with scale since

the total data across all processes is fixed.

The restart times for the NAS LU benchmark are shown in

Figure 6c. The average restart time roughly increases with the

amount of checkpointing data read from the disk.

The InfiniBand plugin publishes key-value data at the time

of restart. The data is then used to virtualize the InfiniBand

queue-pairs for the application. The average key-value data

published to the central checkpointing coordinator for each

process varies from 401 bytes to 427 bytes.

a) Sources of checkpoint overhead: To quantify the con-

tribution of different sources to the checkpointing overhead,

we note the time taken by each process to write its checkpoint

image to the disk and to execute the checkpointing barriers (as

described in Section IV).

Figure 7a shows the distribution of the times to write a

checkpoint image file to the disk reported by each of the

256 processes for the NAS LU.E.256 benchmark. The x-axis

shows the distribution for five successive checkpoints, as seen

in figure 6a. Note the unusually high times of 43 seconds

and 30 seconds taken by some processes during the second

and the fifth checkpoints. The straggling processes raise the

overall checkpoint time of the entire computation.

For the second checkpoint for the NAS LU.E.256 bench-

mark, we observe that the time spent by a process waiting at a

checkpointing barrier is less than 1 millisecond for all barriers.

The time taken to execute a barrier is less than a microsecond.

This shows that the time to checkpoint is dominated by the

time to write to the disk.

b) Sources of restart overhead: Next, to quantify the

contribution of different sources to the restart overhead, we

note the time taken by each process to read its checkpoint

image from the disk and the time taken by each process to

execute the different restart-resume barriers.

Figure 7b shows the distribution of the time to read a

checkpoint image from the disk reported by each of the 1024

processes for the NAS LU.E.1024 benchmark. The x-axis

shows the distribution for five different restarts, as seen in

Figure 6c.

We pick the worst of the five runs, run #1, for further

analysis. We observe that a process can wait up to 26.3 seconds

at each global barrier. The global barriers are used by the

InfiniBand plugin on restart to propagate a consistent view of

the state across all the restarted processes. Although, the state

of the system published by the plugin (represented by the total

key-value data at the central coordinator) is less than 410KB,

the congestion on the network results in a high cost.

C. Runtime overhead for SSH and batch-queue plugins

a) SSH virtualization layer over TCP/IP: MPICH ver-

sion 3.1 was run on the NAS MPI benchmarks to evaluate

the performance of the SSH virtualization layer. When used

outside a resource manager, MPICH uses SSH by default to

launch daemons and jobs on remote nodes. The InfiniBand

409

network was not sued for these tests. The experiments were

run by launching mpiexec itself under checkpoint control. The

SSH layer ensured that the remote processes launched under

SSH by MPICH were launched under DMTCP-PV checkpoint

control.

For both native and checkpoint-enabled runs, each case was

repeated five times in the shorter experiments for the sake of

reproducibility, and three times for those experiments taking

more than ten minutes. The median result of each case is

reported. As shown in Table II, the runtime overhead is often

close to zero with the highest overhead being 1.5%. In some

cases, the performance with the SSH layer was measured as

slightly better than running natively without the SSH layer.

This is attributed to random interference of other jobs during

the experiments.

Bench- Native w/ SSH Overhead Ckpt Rst
mark (s) layer (s) (%) (s) (s)

CG.C.8 52.21 52.75 1.0 0.24 0.92
CG.C.16 96.36 96.82 0.4 0.74 0.56
CG.C.32 209.91 211.64 0.8 1.34 0.17
CG.C.64 1839.89 1834.93 0.0 1.59 0.25
LU.C.8 132.30 130.59 0.0 1.43 0.92
LU.C.16 80.30 81.57 1.5 0.57 0.16
LU.C.32 68.49 68.11 0.0 0.58 0.22
LU.C.64 71.26 70.91 0.0 0.60 0.21

TABLE II: Runtime overhead while using SSH layer

b) Batch-queue and InfiniBand virtualization layers:

NAS benchmarks running under Open MPI were used to

measure the runtime overhead of checkpoint-enabled runs with

the batch queue layer. The experiments used the SLURM

resource manager and ran over InfiniBand.

Table III presents the runtime overhead of the checkpoint-

enabled runs with the batch queue (BQ) layer. Similarly to the

case of the SSH layer, the overhead of the batch queue layer

is often zero with the highest overhead being 1.4%.

Benchmark Native (s) w/ BQ layer Overhead (%)

CG.C.8 37.8 37.8 0.2
CG.C.32 9.5 9.4 0.0
CG.C.64 6.1 6.2 1.4
CG.D.128 106.3 106.9 0.5
LU.C.8 150.9 151.6 0.4
LU.C.64 28.0 27.9 0.0
LU.D.128 242.8 242.8 0.0

TABLE III: Runtime overhead with batch queue layer

D. Single-host application benchmarks

Table IV shows the runtime overhead of several applications

when running with checkpointing support. The checkpoint and

restart times along with checkpoint image sizes are also shown.

The applications are:

• Schedbench and syncbench are two micro-benchmarks

from EPCC OpenMP Microbenchmarks V2.0 [23].

• The Regex-dna benchmark [24] matches DNA 8-mers

and substitute nucleotides for IUB codes. The algorithm

was implemented in three programs written in Javascript,

Application Execution Time (s) Ckpt Rst Ckpt
Benchmarks Native w/ ckpt Overhead time time size

(%) (s) (s) (MB)

OpenMP-schedbench 9.5 9.5 0.4 0.075 0.058 42
OpenMP-syncbench 7.1 7.1 0.0 0.073 0.059 42
Regex-dna (Javascript) 7.8 7.9 1.2 0.519 0.273 877
Regex-dna (Java) 14.2 14.3 0.7 1.357 0.357 1160
Regex-dna (Python) 16.3 16.4 0.6 0.371 0.230 632
MATLAB (LINPACK) 21.8 22.1 1.3 3.343 0.786 1318

TABLE IV: Checkpoint-restart times for various benchmarks.

As we can see, the checkpoint restart times correspond to the

checkpoint image size and are thus reflect the dominance of

memory write operation.

Java and Python. The programs were passed 100 MB of

data through stdin.

• The MATLAB LINPACK benchmark [25] carries out

the LINPACK benchmark using MATLAB’s “backslash”

operator.

These applications were run with the socket, file, event,

SysV IPC, timer, pid, and malloc virtualization layers present.

For most virtualization layers, the runtime overhead is negli-

gible and thus, the overhead was not measured for individual

virtualization layers.

DMTCP-PV did not employ its default dynamic compres-

sion on the fly in creating the checkpoint images. How-

ever, DMTCP-PV always skips writing of zero pages to the

checkpoint image. One could reduce the checkpoint image

size further with DMTCP-PV compression (-gzip), but at

the cost of increased checkpoint times and slightly increased

restart times. The increase in checkpoint-restart times in using

the gzip on-the-fly compression directly reflects the cost of

compressing the image.

One could further decrease the checkpoint times sig-

nificantly by using DMTCP-PV options such as forked-

checkpointing — a forked process uses the copy-on-write

mechanism to create the checkpoint image in the background

while the actual process resumes computation. Similarly,

restart times can be improved by using demand-paging of

memory areas via the mmap system call, instead of reading

in the entire checkpoint image at once.

For lightly loaded computers, the checkpoint and restart

times may sometimes be close to zero. This can be attributed

to caching in the buffers maintained by the operating system.

Thus, the checkpoint cost has the potential to be close to the

cost of memory-to-memory copy.

Note that while forked-checkpointing and buffer caches

improve checkpoint times, there is an inherent danger of a

node failure before the entire checkpoint image has been

persisted to a stable storage. Thus, these techniques should

be avoided if the application requires checkpoint images to be

valid before continuing the execution.

E. Micro benchmarks

a) Wrapper overhead: To measure the overhead imposed

by the wrapper functions in different virtualization layers, we

410

conducted an experiment with a program that opens and closes

the “/dev/null” device in a loop. We measure the time taken

to execute a million open and close calls with and without

DMTCP-PV.

We observed that it takes 65 microseconds on average to

execute each open call under DMTCP-PV. The overhead is

dominated by the string comparison functions used in the

open wrapper functions to virtualize filepaths. Note that this

cost is amortized over the runtime of a process as shown in

Sections VII-B and VII-C.

b) scp: To measure the overhead imposed by the SSH

virtualization layer, we conducted a single experiment of

transferring a 5 GB file over scp to the same host. We chose

the destination to be the same as the source to eliminate noise

due to network congestion. We ran the scp command natively

and under DMTCP-PV. We did not observe any statistically

significant difference in the throughput.

VIII. RELATED WORK

Egwutuohaet al. [26] provide a survey of various

checkpoint-restart implementations as of 2013. However, in

practice, today, BLCR [6], [7] is the only other widely used

implementation of transparent, system-level checkpoint-restart

for MPI.

a) BLCR and MPI-based checkpoint-restart services:

BLCR supports only single-node standalone checkpointing. In

particular, it does not support checkpointing of TCP sockets,

InfiniBand connections, open files, or SysV shared memory

objects.

The commonly used MPI implementations today either use

DMTCP-PV for transparent, system-level checkpointing or

else support a checkpoint-restart service that employs BLCR.

As stated in Section I-A, most of those MPI implementations

are derived from MPICH and Open|MPI. As mentioned in

Section I-A, the MPICH-derived implementations typically use

the BLCR checkpointing support over InfiniBand, as provided

by MPICH’s Nemesis-IB channel (Nemesis channel with

InfiniBand support). (MVAPICH had also developed an earlier

BLCR-based checkpoint-restart service [5], but Nemesis-IB

appears to be the preferred mechanism at this time.)

Open MPI has temporarily dropped support for the BLCR-

based checkpoint-restart service due to a current lack of a

maintainer. Quoting from the Open MPI website:

“The checkpoint/restart support was last released as

part of the v1.6 series. The v1.7 series and the

Open MPI master do not support this functionality

. . .. This feature is looking for a maintainer.” [9]

Note that the current dependence of MPI checkpoint-restart

services on BLCR implies that the MPI mechanisms do not

support checkpointing of shared memory. Quoting from the

BLCR User’s Guide:

“However, certain applications are not supported be-

cause they use resources not restored by BLCR: . . .

Applications which use System V IPC mechanisms

including shared memory, semaphores and message

queues.” [27]

Further, although BLCR is actively maintained, it is no

longer under active development. This can be seen by ob-

serving that there have been just two minor releases over the

last five years [28]: BLCR-0.8.4 (released Aug., 2011); and

BLCR-0.8.5 (released Jan., 2013).

The lack of BLCR support for shared memory affects the

use of OpenSHMEM [29] in HPC. Both MVAPICH2 (under

the name MVAPICH2-X) and Open MPI support the hybrid

MPI+OpenSHMEM model, but their BLCR-based checkpoint-

restart services are unable to checkpoint under that model due

to limitations of BLCR.

This has implications for checkpointing PGAS languages,

such as UPC (Unified Parallel C/C++) [30], which are im-

plemented on top of shared memory abstractions and are

often based on top of MPI. PGAS will be a key technol-

ogy for programmability in the exascale generation [10]. If

the software stack relies on PGAS over MPI over BLCR,

checkpointing will not be possible, since support for System V

shared memory objects is lacking.

b) DMTCP-09: DMTCP-09 operates solely in user-space

and can checkpoint MPI in a non-batch environment, but the

computation cannot be restarted transparently on a different

set of nodes. Support for restarting on a different set of nodes

and SSH are critical for modern batch systems. The lack

of virtualization support prevents it from supporting various

mechanism such as interprocess communication via signals

(requires pid virtualization) and SysV IPC objects (also re-

quires virtualization). DMTCP-09’s checkpoint-leader election

is limited to resources associated with file descriptors (due to

the use of fcntl system call). Thus, it cannot checkpoint other

shared resources such as SysV IPC objects and BSD/POSIX-

style shared-memory regions. Further, the lack programmable

barriers and publish/subscribe makes it harder to implement

and maintain support for new shared resources that require

horizontal coordination for checkpointing.

DMTCP-PV [31], on the other hand, doesn’t have any of

these limitations as demonstrated by the support for check-

pointing InfiniBand [13], network of virtual machines [32],

and 3-D graphics [33] as discussed in Section II-C.

c) CRIU, ZapC and CRUZ: CRIU and ZapC/CRUZ rep-

resent two other checkpointing approaches. However, neither

package supports the broad set of distributed resources needed

for a modern MPI implementation. However, neither is usually

used in checkpointing for HPC. CRIU [34] leverages Linux

namespaces for transparently checkpointing containers on a

single host, but lacks support for distributed computations.

ZapC [35] and CRUZ [36] were earlier efforts to support

distributed checkpointing, by modifying the kernel to inserting

hooks into the network stack using netfilter to translate source

and destination addresses. ZapC and CRUZ are no longer in

active use. They were designed to virtualize primarily two

resources: process ids and IP network addresses. They did not

support SSH, InfiniBand, System V IPC, or POSIX timers, all

of which are commonly used in modern MPI implementations.

411

IX. CONCLUSION

A novel concept of process virtualization in user space

has been introduced, which unifies events, barriers, and pub-

lish/subscribe. The events, barriers and publish/subscribe are

used at the time of checkpoint-restart. Interposition through

wrapper functions is also used. It is distinguished from older

approaches by no longer requiring a monolithic approach to

checkpoint-restart. Plugins implement layers in a manner anal-

ogous to typical implementations of operating systems. Several

successes using process virtualization are also reviewed. These

successes demonstrate the novel ability to checkpoint the state

of an external privileged agent (e.g., an ssh daemon) and

external hardware (e.g., the HCA adapter for InfiniBand). The

new approach is shown to have extremely low overhead.

ACKNOWLEDGMENT

We would like to thank Alex Garthwaite, Jérôme Vienne

and anonymous reviewers for their thoughtful comments and

feedback on this work.

REFERENCES

[1] J. Ansel, K. Arya, and G. Cooperman, “DMTCP: Transparent check-
pointing for cluster computations and the desktop,” in 23rd IEEE Intl.

Parallel and Distributed Processing Symposium, 2009, pp. 1–12.

[2] G. Bronevetsky, R. Fernandes, D. Marques, K. Pingali, and P. Stodghill,
“Recent advances in checkpoint/recovery systems,” in 20th Int. Parallel

and Distributed Processing Symposium. IEEE, 2006, pp. 8–15.

[3] J. Hursey, J. M. Squyres, T. I. Mattox, and A. Lumsdain, “The design
and implementation of checkpoint/restart process fault tolerance for
Open MPI,” in Proceedings of the 21st IEEE International Parallel and

Distributed Processing Symposium (IPDPS) / 12th IEEE Workshop on

Dependable Parallel, Distributed and Network-Centric Systems. IEEE
Computer Society, March 2007.

[4] J. Hursey, T. I. Mattox, and A. Lumsdaine, “Interconnect agnostic
checkpoint/restart in Open MPI,” in Proceedings of the 18th ACM

international Symposium on High performance Distributed Computing,
ser. HPDC ’09. New York, NY, USA: ACM, 2009, pp. 49–58.

[5] Q. Gao, W. Yu, W. Huang, and D. K. Panda, “Application-transparent
checkpoint/restart for MPI programs over InfiniBand,” in Int. Conf. on

Parallel Processing, (ICPP’06). IEEE, 2006, pp. 471–478.

[6] J. Duell, P. Hargrove, and E. Roman, “The design and implementation
of berkeley Lab’s Linux checkpoint/restart (BLCR),” Lawrence Berkeley
National Laboratory, Tech. Rep. LBNL-54941, 2003.

[7] P. Hargrove and J. Duell, “Berkeley Lab Checkpoint/Restart (BLCR)
for Linux clusters,” Journal of Physics Conference Series, vol. 46, pp.
494–499, Sep. 2006.

[8] MPICH team, “Checkpointing implementation - MPICH,” Sep. 2010,
https://wiki.mpich.org/mpich/index.php/Checkpointing_implementation
, https://wiki.mpich.org/mpich/index.php/Checkpointing.

[9] Open MPI team, “Does Open MPI support checkpoint and restart of
parallel jobs (similar to LAM/MPI)?” accessed May, 2016, https://www.
open-mpi.org/faq/?category=ft#cr-support.

[10] W. Gropp, “MPI at exascale: Challenges for data structures and algo-
rithms,” in Recent Advances in Parallel Virtual Machine and Message

Passing Interface: 16th European PVM/MPI Users’ Group Meeting, ser.
Lecture Notes in Computer Science 5759. Springer-Verlag, Sep. 2009,
pp. 3–3.

[11] PGAS, “PGAS — Partitioned Global Address Space languages,” ac-
cessed May, 2016, http://www.pgas.org/.

[12] B. Chapman, T. Curtis, S. Pophale, S. e. Poole, J. Kuehn, C. Koelbel,
and L. Smith, “Introducing OpenSHMEM: SHMEM for the PGAS
Community,” in Proceedings of the Fourth Conference on Partitioned

Global Addres s Space Programming Model, ser. PGAS ’10. New
York, NY, USA: ACM, 2010, pp. 2:1–2:3.

[13] J. Cao, K. Arya, and G. Cooperman, “Transparent checkpoint-restart
over InfiniBand,” in Proc. of ACM Symp. on High-Performance Parallel

and Distributed Computing (HPDC’14). ACM Press, 2014.

[14] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi,
“Pinpointing representative portions of large Intel Itanium programs
with dynamic instrumentation,” in Proc. of 37th Annual IEEE/ACM

International Symposium on Microarchitecture, Portland, Oregon, 2004,
pp. 81–92.

[15] G. Staples, “Torque resource manager,” in Proceedings of the 2006

ACM/IEEE Conference on Supercomputing, ser. SC ’06. New York,
NY, USA: ACM, 2006. [Online]. Available: http://doi.acm.org/10.1145/
1188455.1188464

[16] S. Zhou, X. Zheng, J. Wang, and P. Delisle, “Utopia: a load sharing fa-
cility for large, heterogeneous distributed computer systems,” Software:

practice and Experience, vol. 23, no. 12, pp. 1305–1336, 1993.
[17] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux

utility for resource management,” in 9th International Workshop on Job

Scheduling Strategies for Parallel Processing. Springer, 2003, pp. 44–
60.

[18] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, J. Krishna, E. Lusk,
and R. Thakur, “PMI: A scalable parallel process-management interface
for extreme-scale systems,” in Proc. of the 17th European MPI Users’

Group Meeting Conference on Recent Advances in the Message Passing

Interface, 2010, pp. 31–41.
[19] Hydra team, “Hydra process management framework.” [Online].

Available: http://wiki.mcs.anl.gov/mpich2/index.php/Hydra_Process_
Management_Framework

[20] “TACC Stampede user guide - TACC user portal,” https://portal.tacc.
utexas.edu/user-guides/stampede, accessed Apr., 2016, 2016.

[21] “TOP500 supercomputer sites,” http://top500.org/lists/2015/11/, Nov.
2015.

[22] NASA Advanced Supercomputing Division, “NAS parallel bench-
marks,” http://www.nas.nasa.gov/publications/npb.html, accessed May,
2016.

[23] J. M. Bull and D. O’Neill, “A microbenchmark suite for OpenMP 2.0,”
ACM SIGARCH Computer Architecture News, vol. 29, no. 5, pp. 41–48,
2001.

[24] Regex-dna, “The computer language benchmarks game,” Feb. 2015.
[Online]. Available: http://benchmarksgame.alioth.debian.org/

[25] J. Burkardt, “The LINPACK benchmark using MATLAB’s backslash,”
accessed May, 2016, http://people.sc.fsu.edu/~jburkardt/m_src/linpack_
bench_backslash/linpack_bench_backslash.html.

[26] I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen, “A survey of
fault tolerance mechanisms and checkpoint/restart implementations for
high performance computing systems,” The Journal of Supercomputing,
vol. 65, no. 3, pp. 1302–1326, Sep. 2013.

[27] BLCR team, “Berkeley Lab Checkpoint/Restart (BLCR) user’s
guide,” accessed May, 2016, https://upc-bugs.lbl.gov/blcr/doc/html/
BLCR_Users_Guide.html.

[28] ——, “Berkeley Lab Checkpoint/Restart for Linux
(BLCR) downloads,” accessed May, 2016, http://crd.lbl.
gov/departments/computer-science/CLaSS/research/BLCR/
berkeley-lab-checkpoint-restart-for-linux-blcr-downloads/.

[29] OpenSHMEM team, “Openshmem,” accessed May, 2016, http://
openshmem.org/site/Links#imp.

[30] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E. Brooks,
and K. Warren, “Introduction to UPC and language specification,”
IDA Center for Computing Sciences, Technical Report CCS-TR-99-157,
1999, http://upc.lbl.gov/publications/upctr.pdf.

[31] K. Arya, “User-space process virtualization in the context of checkpoint-
restart and virtual machines,” Ph.D. dissertation, Northeastern Univer-
sity, 2014.

[32] R. Garg, K. Sodha, Z. Jin, and G. Cooperman, “Checkpoint-restart for a
network of virtual machines,” in Proc. of 2013 IEEE Computer Society

Int. Conf. on Cluster Computing. IEEE Press, 2013, 8 pages, electronic
copy.

[33] S. Kazemi Nafchi, R. Garg, and G. Cooperman, “Transparent
checkpoint-restart for hardware-accelerated 3D graphics,” http://arxiv.
org/abs/1312.6650v2, arXiv, Tech. Rep., 2014.

[34] CRIU team, “CRIU,” accessed May, 2016, http://criu.org/.
[35] O. Laadan, D. Phung, and J. Nieh, “Transparent checkpoint-restart of

distributed applications on commodity clusters,” in Cluster Computing,

2005. IEEE International, Sep. 2005, pp. 1–13.
[36] G. Janakiraman, J. Santos, D. Subhraveti, and Y. Turner, “Cruz:

Application-transparent distributed checkpoint-restart on standard oper-
ating systems,” in International Conference on Dependable Systems and

Networks, 2005. DSN 2005. Proceedings, Jun. 2005, pp. 260–269.

412

