
Verifying an Open Compiler
Using Multi-Language Semantics:

Technical Report

James T. Perconti and Amal Ahmed

Northeastern University

This document contains:

– The paper that appears in ESOP’14.
– An appendix giving a more detailed explanation of the logical relation.
– The complete definitions and proofs for our FCA model.

Verifying an Open Compiler
Using Multi-Language Semantics

James T. Perconti and Amal Ahmed

Northeastern University

Abstract. Existing verified compilers are proved correct under a closed-world
assumption, i.e., that the compiler will only be used to compile whole programs.
We present a new methodology for verifying correct compilation of program
components, while formally allowing linking with target code of arbitrary prove-
nance. To demonstrate our methodology, we present a two-pass type-preserving
open compiler and prove that compilation preserves semantics. The central novelty
of our approach is that we define a combined language that embeds the source,
intermediate, and target languages and formalizes a semantics of interoperability
between them, using boundaries in the style of Matthews and Findler. Compiler
correctness is stated as contextual equivalence in the combined language.
Note to reader: We use blue, red, and purple to typeset terms in various lan-
guages. This paper will be difficult to follow unless read/printed in color.

1 Introduction
There has been remarkable progress on formally verified compilers over the last few
years, with researchers proving the correctness of increasingly sophisticated compilers
for increasingly realistic languages. The most well known instance of this is the Comp-
Cert compiler [1, 2] which uses the Coq proof assistant to both implement and verify
a multi-pass optimizing compiler from C to PowerPC, ARM, and x86 assembly, prov-
ing that the compiler preserves semantics of source programs. Several other compiler-
verification efforts have successfully followed CompCert’s lead and basic methodology,
for instance, focusing on multithreaded Java [3], just-in-time compilation [4], and C
with relaxed memory concurrency [5].

Unfortunately, these projects prove compiler correctness under a closed-world as-
sumption, that is, assuming that the verified compiler will always compile whole pro-
grams. Despite the immense effort put into verification, the compiler correctness the-
orem provides no guarantees about correct compilation of components. This whole-
program assumption is completely unrealistic since most software systems today are
comprised of many components written in different languages compiled to a common
target, as well as runtime-library routines that may be handwritten in the target lan-
guage. We need compiler correctness theorems applicable to the way we actually use
these compilers.

Formally verifying that components are compiled correctly—often referred to as
compositional compiler correctness—is a challenging problem. A key difficulty is that,
in the setting of compiling components, it is not clear how to even state the compiler cor-
rectness theorem. CompCert’s compiler correctness theorem is easy to state thanks to
the whole program assumption: informally, it says that if a source program PS compiles
to a target program PT , then running PS and PT results in the same trace of observable

events. The same sort of theorem does not make sense when we compile a component
eS to a component eT : we cannot “run” a component since it is not a complete program.

Intuitively, we want the compiler correctness theorem to say that if a component eS
compiles to eT , then some desired relationship eS ' eT holds between eS and eT . The
central question is: how do we formally specify eS ' eT ? To answer this question, we
must consider how the compiled component is actually used: it needs to be linked with
some e′T , creating a whole program that can be run. Informally, the compiler correctness
theorem should guarantee that if we link eT with e′T , then the resulting target-level
program should correspond to the source component eS linked with e′T . But, formally
speaking, how can one link a source component with a target component and what
are the rules for running the resulting source-target hybrid? These questions demand
a semantics of interoperability between the source and target languages. We give our
semantics of interoperability as a multi-language operational model. We then define
eS ' eT as a contextual equivalence in that model.

There are two other important issues to consider when evaluating a compositional
compiler correctness theorem and its supporting formalism. The first is the degree of
horizontal compositionality that the model allows, that is, which target components e′T
may formally be linked with a compiled component. At the lower end of the horizontal
compositionality spectrum are fully abstract compilers. Full abstraction states that the
compiler both preserves and reflects contextual equivalence. Hence, a fully abstract
compiler preserves all of the source language’s abstractions, and compiled components
are only allowed to link with components that can be expressed in the source language.

But real systems often link together components from multiple languages with dif-
ferent guarantees and different expressive power. We are particularly interested in sup-
porting interoperability between parametric typed languages like ML and low-level
languages like C. Thus, full abstraction is often too restrictive. To support the whole
programs that we actually run, the compiler correctness theorem should formally sup-
port linking with as large a class of programs as possible, and in particular, should not
require an e′T to have been compiled from the same source language as eT .

Abandoning full abstraction in favor of greater horizontal compositionality does not
require giving up all the guarantees of the source language. The compiler and its ver-
ification framework can be designed to preserve the source-level equivalences that are
critically needed without forbidding all foreign behavior. To show that different levels
of abstraction preservation are possible, we will deliberately pick a target language that
is more expressive than the source and design our compiler so that it is not fully ab-
stract. Our focus in this paper is on how to preserve the representation independence
and information hiding guarantees provided by type abstraction in our source language.

The second important issue for a compiler correctness framework is that we want
to be able to verify multi-pass compilers. For example, if we have a two-pass compiler
that compiles a source component eS to an intermediate-language component eI to a
target component eT , we should be able verify each pass separately, showing eS ' eI
and eI ' eT , and then compose these results to get a correctness theorem for the whole
compiler saying eS ' eT . This is typically referred to as vertical compositionality.

We will show that our approach of using a multi-language operational model suc-
ceeds at both horizontal and vertical compositionality. In particular, we validate our

methodology by applying it to a two-pass type-preserving compiler. The compiler deals
with three languages: our source language F (System F with existential and recursive
types), an intermediate language C (the target of a typed closure conversion pass), and
our target language A (the target of a heap allocation pass).1 The target language A
allows tuples and closures to live only on the heap and supports both mutable and im-
mutable references. Our closure conversion pass translates F components of type τ to
C components of type τC , where τC denotes the type translation of τ . The subsequent
allocation pass translates C components of type τ to A components of type τA, where
τA is the type translation of τ .

To define the semantics of interoperability between these languages, we embed them
all into one language, FCA, and add syntactic boundary forms between each pair of ad-
jacent languages, in the style of Matthews and Findler [7] and of Ahmed and Blume [8].
For instance, the term CFτ (eF) allows an F component eF of type τ to be used as a C
component of type τC , while τFC(eC) allows a C component eC of translation type
τC to be used as an F component of type τ . Similarly, we have boundary forms AC
and CA for the next language pair. Non-adjacent languages can interact by stacking up
boundaries: for example,FC(CA eA) (abbreviatedFCA(eA)) allows an A component
eA to be embedded in an F term.
FCA Design Principles Our goal is for the FCA interoperability semantics to give us
a useful specification of when a component in one of the underlying languages should
be considered equivalent to a component in another language. We realize that goal by
following three principles.

First, we define the operational semantics of FCA so that the original languages are
embedded into FCA unchanged: running an FCA program that’s written solely in one of
the embedded languages is identical to running it in that language alone. For instance,
execution of the A program eA proceeds in exactly the same way whether we use the
operational semantics of A or the augmented semantics for FCA.

Next, we ensure that the typing rules are similarly embedded: a component that con-
tains syntax from only one underlying language should typecheck under that language’s
individual type system if and only if it typechecks under FCA’s type system.

The final property we need is boundary cancellation, which says that wrapping
two opposite language boundaries around a component yields the same behavior as the
underlying component with no boundaries. For example, any eF : τ must be contextually
equivalent to τFC(CFτeF), and any eC : τC must be equivalent to CFτ (τFCeC).
Compiler Correctness We state the correctness criterion for our compiler as a contex-
tual equivalence. For each pass of the compiler from a source S to a target T , where S
and T interoperate via boundaries ST and T S , define our source-target relationship by

eS ' eT
def
= eS ≈ctx

FCA
τST (eT) : τ.

We prove that if eS : τ compiles to eT , then eS ' eT . Since contextual equivalence
is transitive, our framework achieves vertical compositionality immediately: it is easy
to combine the two correctness proofs for the individual compiler passes, giving the
overall correctness result that if eF compiles to eA, then eF ' eA, or

eF ≈ctx
FCA

τFCA(eA) : τ .

1 We have extended our F to A compiler with a code-generation pass to an assembly language,
much like Morrisett et al.’s stack-based TAL [6]. We will report on that work in a future paper.

Reasoning About Linking Our approach enjoys a strong horizontal compositionality
property: we can link with any target component e′

A that has an appropriate type, with
no requirement that e′

A was produced by any particular means or from any particular
source language. Specifically, if eF expects to be linked with a component of type τ ′ and
compiles to eA, then eA will expect to be linked with a component of type ((τ ′)C)A. If
e′

A has this type, then using our compiler correctness theorem, we can conclude that
(eF

τ ′
FCA(e′

A)) ≈ctx FCA(eA e′
A),

or equivalently,
ACF (eF

τ ′
FCA(e′

A)) ≈ctx eA e′
A.

The right-hand side of this equality is exactly the A program we ultimately want to run,
and the left-hand side is an FCA program that models that program.
Contributions Our main contributions are our methodology and that we have proven
correctness for an open multi-pass compiler. We have designed a multi-language seman-
tics that lets us state a strong compiler-correctness theorem, and to prove the theorems,
we have developed a logical relation for proving contextual equivalences between FCA
components. The most significant technical challenges were related to interoperability
between languages with type abstraction, specifically, in designing the multi-language
semantics so it preserves type abstraction between languages (§5), and in designing
the parts of the logical relation that model the handling of type abstraction in a multi-
language setting (§9).

Due to space constraints, we elide various technical details and omit proofs. All
definitions, lemmas, and proofs are spelled out in full detail in Appendix B.

2 Related Work: Benton-Hur Approach
Before beginning our technical development, we compare our methodology to the only
prominent existing approach to compositional compiler correctness.

To eliminate the closed-world assumption, Benton and Hur [9] advocate setting up a
logical relation between the source and target languages, specifying when a source term
semantically approximates target code and vice versa. We will refer to a logical rela-
tion that relates terms from two different languages as a cross-language logical relation.
The relation is defined by induction on source-language types. Benton and Hur verified
a compiler from the simply-typed λ-calculus with recursion [9]—and later, from Sys-
tem F with recursion [10]—to an SECD machine, proving that if source component
eS compiles to target code eT , then eS and eT are logically related. Later, Hur and
Dreyer [11] used essentially the same approach to prove correctness of a compiler from
an idealized ML to assembly.

However, the Benton-Hur (henceforth, BH) approach suffers from serious draw-
backs in both vertical and horizontal compositionality. First, the cross-language frame-
work does not scale to a multi-pass compiler. Both Benton-Hur and Hur-Dreyer handle
only a single pass. To achieve vertical compositionality in the BH style, one would
have to define separate cross-language logical relations relating the source and target
of each compiler pass, and then prove that the logical relations compose transitively
in order to establish that the correctness of each pass implies correctness for the entire
compiler. But this kind of transitive composition of cross-language logical relations has
been an open problem for some time. (We’ll discuss recent work towards addressing
this problem in §11.)

The second drawback to the BH approach is its limited horizontal compositionality.
Consider the situation where a verified compiler from language S to language T is used
to compile a source component eS to some target code eT . The BH compiler correctness
theorem tells us that eS and eT are logically related. We wish to link the compiled code
eT with some other target code e′T and verify the resulting program. To do this using the
BH framework, we must now come up with a source-level component e′S and show that
it is logically related to e′T . This is an onerous requirement: while it may be reasonable
to come up with e′S when the given e′T is very simple, it seems almost impossible when
e′T consists of hundreds of lines of assembly! Further, if e′T is compiled from some
other source language R, it may not even be possible to write down an e′S in language
S that is related to e′T .

Technically speaking, the BH approach does support linking with any target code
that can be proved logically related to a source component. But it cannot support link-
ing with any components that are not expressible in the source language. And we con-
tend that even for the theoretically-allowed cases, in practice the approach is limited
to allowing linking between only very simple components or components that were all
compiled from the same source language.

Overcoming BH Limitations By reasoning about components in the FCA setting, we
can overcome both limitations of the BH framework. We have already pointed out that
our framework admits vertical compositionality thanks to the transitivity of contextual
equivalence.

For the second limitation of the BH approach, consider a target component e′
A.

While the BH approach would need to find a related source component to fit e′
A into

their framework, we only need to find an FCA component that looks like a source com-
ponent. Specifically, we can use e′

A itself in a source context by wrapping it in appro-
priate boundaries:FCA(e′

A).

3 The Languages

We begin our technical development with a few notes on typesetting and notational con-
ventions. We typeset the terms, types, and contexts of our various languages as follows:

– F (System F) in a blue sans-serif font;
– C (Closure conversion) in a red bold font with serifs;
– A (Allocation) in a purple sans-serif bold font.

For each of our languages, we will use the metavariable e for components and t for
terms. In the first two languages, F and C, terms and components coincide, but the
distinction will be meaningful in language A. Similarly, all languages use τ for types,
v for values, E for evaluation contexts, and C for general contexts. We write fv(e)
to denote the free term variables of e and ftv(e) (or ftv(τ)) to denote the free type
variables of e (or of type τ). We use a line above a syntactic element to indicate a list of
repeated instances of this element, e.g., α = α1, . . . , αn for n ≥ 0. When the arities of
different lists are required to match up in a definition or inference rule, these constraints
will usually be obvious from context. Whenever two environments (e.g. ∆ or Γ or Ψ)
are joined by a comma, this should be interpreted as a disjoint union.

τ ::= α | unit | int | ∀[α].(τ)→ τ | 〈τ〉 | ∃α.τ | µα.τ
e ::= t
t ::= x | () | n | t p t | if0 t t t | λ[α](x : τ).t | t [τ] t | 〈t〉 | πi(t) | pack〈τ,t〉 as∃α.τ
| unpack 〈α, x〉 = t in t | foldµα.τ t | unfold t

p ::= + | − | ∗
v ::= () | n | λ[α](x : τ).t | 〈v〉 | pack〈τ,v〉 as∃α.τ | foldµα.τ v
E ::= [·] | E p t | v p E | if0 E t t | E [τ] t | v [τ] v E t | . . .

e 7−→ e′ E[λ[α](x : τ).t [τ ′] v] 7−→ E[t[τ ′/α] [v/x]] . . .

∆; Γ ` e : τ where ∆ ::= · |∆, α and Γ ::= · | Γ, x : τ

τ ::= α | unit | int | ∀[α].(τ)→ τ | 〈τ〉 | ∃α.τ | µα.τ
e ::= t

t ::= x | () | n | t p t | if0 t t t | λ[α](x : τ).t | t [] t | t[τ] | 〈t〉 | πi(t)

| pack〈τ,t〉 as∃α.τ | unpack 〈α, x〉 = t in t | foldµα.τ t | unfold t
p ::= + | − | ∗
v ::= () | n | λ[α](x : τ).t | 〈v〉 | pack〈τ,v〉 as∃α.τ | foldµα.τ v | v[τ]

E ::= [·] | . . . | E [] t | v [τ] v E t | E[τ] | . . .

e 7−→ e′ E[λ[α](x : τ).t [τ ′] v] 7−→ E[t[τ ′/α] [v/x]] . . .

∆;Γ ` e : τ where ∆ ::= · |∆, α and Γ ::= · | Γ, x: τ

α;x: τ ` t : τ ′

∆;Γ ` λ[α](x : τ).t :∀[α].(τ)→ τ ′
∆;Γ ` t :∀[].(τ)→ τ ′ ∆;Γ ` t : τ

∆;Γ ` t [] t : τ ′

∆;Γ ` t :∀[β, α].(τ)→ τ ′ ∆ ` τ0
∆;Γ ` t[τ0] :∀[α].(τ [τ0/β])→ τ ′[τ0/β]

. . .

τ ::= α | unit | int | ∃α.τ | µα.τ | ref ψ | boxψ
ψ ::= ∀[α].(τ)→ τ | 〈τ, . . . , τ〉
e ::= (t,H)

t ::= x | () | n | t p t | if0 t t t | ` | t [] t | t[τ] | pack〈τ,t〉 as ∃α.τ | unpack 〈α, x〉 = t in t

| foldµα.τ t | unfold t | ralloc 〈t〉 | balloc 〈t〉 | read[i] t | write t [i]← t

p ::= + | − | ∗
v ::= () | n | pack〈τ,v〉 as ∃α.τ | foldµα.τ v | ` | v[τ]

E ::= (Et, ·) Et ::= [·] | . . . | balloc 〈v, Et, t〉 | . . .
h ::= λ[α](x : τ).t | 〈v, . . . , v〉 H ::= · | H, ` 7→ h

〈H | e〉 7−→ 〈H′ | e′〉 Reduction Relation (selected cases)

〈H | (t, (H′, ` 7→ h)〉 7−→ 〈H, `′ 7→ h | (t[`′/`],H′[`′/`])〉 if `′ 6∈ dom(H)

〈H | E[` [τ ′] v]〉 7−→ 〈H | E[t[τ ′/α][v/x]]〉 if H(`) = λ[α](x : τ).t

Ψ ` h :ψ where Ψ ::= · | Ψ, ` : refψ | Ψ, ` : boxψ

Ψ ` H :Ψ′ which implies dom(Ψ) ∩ dom(Ψ′) = ∅
Ψ;∆;Γ ` e : τ where ∆ ::= · | ∆, α and Γ ::= · | Γ, x : τ

Ψ ` H :Ψ′ (Ψ,Ψ′);∆;Γ ` t : τ

Ψ;∆;Γ ` (t,H) : τ
. . .

Ψ;∆;Γ ` t : τ

Ψ;∆;Γ ` balloc 〈t〉 : box 〈τ〉
Ψ;∆;Γ ` t : box 〈τ0, . . . τi . . . , τn〉

Ψ;∆;Γ ` read[i] t : τi

Fig. 1. Definition of F (top), C (middle), and A (bottom)

Source Language Our source language F is System F with recursive types, existential
types, and tuples. The syntax of types and terms in F is shown in Figure 1 (top). We
combine type- and term-level abstractions of arbitrary arity into a single binding form
∀[α].(τ)→ τ ′, abbreviating ∀[].(τ)→ τ ′ as τ → τ ′. We define a small-step operational
semantics for F (written e 7−→ e′) using evaluation contexts E to lift the primitive reduc-
tions to a standard left-to-right call-by-value semantics for the language. The reduction
rules are standard; we show only the application rule.

F’s typing judgment has the form ∆; Γ ` e : τ . The type environment ∆ tracks the
type variables in scope. The value environment Γ tracks the term variables in scope
along with their types τ , which must be well formed under ∆ (written ∆ ` τ and
defined as ftv(τ) ⊆ ∆). The typing rules are standard and hence omitted.

Intermediate Language Our intermediate language C, shown in Figure 1 (middle), is
nearly identical to F, with two exceptions. First, since this language is the target of
closure conversion, functions are not allowed to contain free type or term variables.
Second, we allow the partial application of a function to a type. Hence, C terms include
t[τ] and we consider v[τ] to be a value.

The reduction relation e 7−→ e′ is identical to that of F, and the typing judgment
∆;Γ ` e : τ differs only in the rules for abstraction and application which are shown
in the figure. Note that the body of a C function must typecheck in an environment that
contains only the function’s formal arguments.

Target Language Our target A must serve as a target for heap allocation. Its design
is similar to the language λA from [12]. Since we are compiling a source language
without mutable references, it would suffice for A to provide only immutable references
to functions and tuples that must now live on the heap. However, to provide a concrete
illustration of the ability to link with target code that cannot be expressed in the source
language, we augment A with mutable references to tuples.

The language A is shown in Figure 1 (bottom). Functions in A are stored only in
immutable cells on the heap, while tuples are stored in heap cells that can be either
mutable or immutable. We use ψ for the types of these heap values h. Mutable and
immutable references have types ref ψ and boxψ, respectively. The terms ralloc 〈t〉
and balloc 〈t〉—which allocate mutable and immutable cells, respectively—each allo-
cate a new location ` and initialize it to the given tuple. The instructions read[i] ` and
write ` [i]← v respectively read from and write the value v to the i-th slot in the tuple
(of length n) stored at `, assuming 0 ≤ i < n. The type system ensures that writes are
only performed on mutable tuples.

Unlike F and C, the syntax of A distinguishes components e from terms t. A com-
ponent e pairs a term t with a heap fragment H. H can contain functions and tuples that
t may use by referring to locations in H. Intuitively, we need this notion of components
because a bare term t is not as expressive as C component. In particular, A does not
provide any way to dynamically allocate a location and initialize it to a function. We
discuss how the compiler produces components with heap fragments in §4.

Heap fragments are assigned heap types Ψ. A heap fragment may reference lo-
cations that are to be linked in by another component, so the judgment Ψ ` H : Ψ′

includes an external heap type Ψ as an environment used in assigning H the type Ψ′.
Here, Ψ′ must provide types for exactly the locations in H. Each h in H must typecheck

under the disjoint union of the two heap types (Ψ,Ψ′). Similarly, a component (t,H)
can reference both external locations and those bound by H, that is, locations in the
domain of either the external heap type Ψ or of H.

Our operational semantics for A is a relation between configurations 〈H | e〉. Any
code or data in the internal heap fragment of component e must be loaded into memory
before it can be run. We formally capture this with a reduction rule that “loads” a com-
ponent by merging its internal heap fragment with the external heap. When loading a
component (t,H), we must rename the locations bound in H so that they do not conflict
with the external heap. After the loading step, the term component t can be evaluated
using standard reduction rules.

The structure of A components also entails a small change to the structure of eval-
uation contexts, which are defined in two layers: contexts E expect components e, and
term contexts Et expect terms t. Terms are plugged into term contexts in the obvious
way. Plugging a component-level evaluation context E = (Et, ·) with a component e is
defined by (Et, ·)[(t,H)] = (Et[t],H)

4 The Compiler
Compiling F to C Closure conversion collects a function’s free term variables in a
tuple called the closure environment that is passed as an additional argument to the
function, thus turning the function into a closed term. The closed function is paired
with its environment to create a closure. The basic idea of typed closure conversion
goes back to Minamide et al. [13], whom we follow in using an existential type to
abstract the type of the environment. This ensures that two functions with the same
type but different free variables still have the same type after closure conversion: the
abstract type hides the fact that the closures’ environments have different types.

We must also rewrite functions to take their free type variables as additional argu-
ments. However, instead of collecting these types in a type environment as Minamide et
al. do, we follow Morrisett et al. [12] and directly substitute the types into the function.
Like the latter, we adopt a type-erasure interpretation, which means that since all types
are erased at run time the substitution of types into functions has no run-time effect.

Our closure-conversion pass compiles F terms of type τ to C terms of type τC .
Figure 2 (top) presents the type translation τC and some of the compilation rules. Since
this is closure conversion, the only interesting parts are those that involve functions.
The omitted rules are defined by structural recursion on terms.
Compiling C to A Our second compiler pass combines hoisting of functions with ex-
plicit allocation of tuples. It takes a C component (that is, just a C term t) of type τ ,
and produces an A term t as well as a heap fragment H with all the hoisted functions.
The component (t,H) is the overall output, and has type τA under an empty exter-
nal heap. The heap fragment generated by the compiler does not contain tuples: the
compiler translates C tuples by generating balloc expressions, not by putting them in
a static heap fragment. The type translation and interesting parts of the term translation
are shown in Figure 2 (bottom).

5 F and C Interoperability
5.1 The Basics
We now present a formal semantics for interoperability between F and C. For now,
we define a combined language FC; in §6, we will extend this to FCA. Our FC multi-

τC Type Translation

αC = α unitC = unit intC = int ∀[α].(τ)→ τ ′C = ∃β.〈(∀[α].(β, τC)→ τ ′C), β〉
∃α.τC = ∃α.τC µα.τC = µα.τC 〈τ1, . . . , τn〉C = 〈τ1C, . . . , τnC〉

∆; Γ ` e : τ e Compiler (implies ∆C; ΓC ` e : τC)

x : τ ∈ Γ

∆; Γ ` x : τ x ∆; Γ ` () : unit () ∆; Γ ` n : int n

y1, . . . , ym = fv(λ[α](x : τ).t) β1, . . . , βk = ftv(λ[α](x : τ).t)

∆, α; Γ, x : τ ` t : τ ′ t τenv = 〈(Γ(y1))C, . . . , (Γ(ym))C〉
v = λ[β, α](z : τenv, x: τC).(t[π1(z)/y1] · · · [πm(z)/ym])

∆; Γ ` λ[α](x : τ).t : ∀[α].(τ)→ τ ′

pack〈τenv,〈v[β], 〈y〉〉〉 as∃α′.〈(∀[α].(α′, τC)→ τ ′C), α′〉

∆; Γ ` t0 :∀[α].(τ1)→ τ2 t0 ∆ ` τ ∆; Γ ` t : τ1[τ/α] t

∆; Γ ` t0 [τ] t : τ2[τ/α] unpack 〈β, z〉 = t0 in π1(z) [τC]π2(z), t

τA Type Translation

αA = α unitA = unit intA = int ∀[α].(τ)→ τ ′A = box∀[α].(τA)→ τ ′A

∃α.τA = ∃α.τA µα.τA = µα.τA 〈τ1, . . . , τn〉A = box 〈(τ1A), . . . (τn
A)〉

∆;Γ ` e : τ (t,H : Ψ) Compiler (implies · ` H :Ψ, and ·;∆A;ΓA ` (t,H) : τA)

x: τ ∈ Γ

∆;Γ ` x : τ (x, · : ·) ∆;Γ ` () :unit ((), · : ·)
· · ·

α;x: τ ` t : τ ′ (t,H : Ψ)

∆;Γ ` λ[α](x : τ).t :∀[α].(τ)→ τ ′

(`, (H, ` 7→ λ[α](x : τA).t) : (Ψ, ` : box∀[α].(τA)→ τ ′A))

∆;Γ ` t1 : τ1 (t1,H1 : Ψ1) · · · ∆;Γ ` tn : τn (tn,Hn : Ψn)

∆;Γ ` 〈t1, . . . , tn〉 : 〈τ1, . . . , τn〉
(balloc 〈t1, . . . , tn〉, (H1, . . . ,Hn) : (Ψ1, . . . ,Ψn))

Fig. 2. Compiler from F to C (top) and from C to A (bottom)

language system embeds the languages F and C so that both languages have natural
access to foreign values (i.e., values from the other language). In particular, we want
F components of type τ to be usable as C components of type τC , and vice versa. To
allow cross-language communication, FC extends the original F and C with syntactic
boundaries, written τFC e (C inside, F outside) and CFτe (F inside, C outside).

The interesting cases in the semantics of boundaries are those that handle universal
and existential types. These must be defined carefully to ensure that type abstraction
is not broken as values pass between languages. First, though, we explain the general
principles of our boundary semantics by looking at the cases for simple types and their
translations.

CF Boundary Semantics A term CFτe has type τC if e has type τ . To evaluate this
boundary term, FC’s operational semantics require first that e be reduced to a value v
(using F reduction rules). Then a type-directed meta-function is applied to v, yielding
a value in C of type τC (written CFτ (v) = v). An important restriction on this meta-
function, which we call the value translation, is that it is only defined for closed values.
This is sufficient for our needs because it is used only by the FC operational semantics,
and substitution-based reduction relations are defined only for closed programs. We
can still write FC programs with free variables appearing under boundaries, but by the
time we evaluate the boundary term, we will have supplied values for all of these free
variables.

At base types, value translation is easy: for example, translating a value n of type
int yields the same integer in C, n. Most of the other types are translated simply by
structural recursion.

The interesting case is the case for function types. Consider the translation of a
value v of type τ → τ ′. As per the type translation, this should produce a value of type
∃β.〈((β, τC)→ τ ′C), β〉. Since v is closed, we can simply use unit for the type β
of the closure environment:

CFτ→ τ ′
(v) = pack〈unit,〈v, ()〉〉 as∃β.〈((β, τC)→ τ ′C), β〉

We must still construct the underlying function v for this closure, which we can do
using boundary terms and the original function v:

v = λ(z : unit, x: τC).CFτ
′
(v τFC x).

The function we build simply translates its argument from C to F, applies v to the
translated argument, and finally translates the result back into C.

The full translation rule for functions must also handle type arguments and requires
some additional machinery, which we will discuss momentarily.

FC Boundary Semantics The term τFC e has type τ when e has type τC . As before,
to evaluate a boundary term, we first evaluate the component under the boundary, this
time to a value v. Then we apply a value translation τFC(v) = v that yields an F value
v of type τ . Again, this translation is only defined for closed values of translation type.

Let us consider the type τ → τ ′ again. A closure v of type (τ → τ ′)C must be
translated to an F function that first translates its argument from F to C, then unpacks
the closure v and applies the code to its environment and the translated argument, and
finally translates the result back from C to F:

τ→ τ ′
FC(v) = λ(x : τ).τ

′
FC(unpack 〈β, y〉 = v in π1(y) π2(y) CFτ x)

In both function cases, notice that the direction of the conversion (and the boundary
used) reverses for function arguments.

5.2 Handling Abstract Types
Now that we have established the general structure of boundary rules, we come to the
interesting cases, those for abstract types.

FC Type Abstraction Consider the type ∀[α].(α)→ α. Since αC = α, the translation
of this type is

(∀[α].(α)→ α)C = ∃β.〈(∀[α].(β, α)→ α), β〉.

If we naively try to extend the function case of the value translation given above, we get
the following:

∀[α].(α)→ αFC(v) = λ[α](x :α).αFC(unpack 〈β, y〉 = v in π1(y) [αC]π2(y) CFαx)

Note that we have not expanded αC in the application produced by this translation. It
would expand to a C type variable α, but we cannot allow this, because that α would
be unbound! What we really want is that when α is instantiated with a concrete type τ ,
the positions inside language C where that type is needed receive τC .

We resolve this by making two changes to our system: first, we add a type dαe
(which may be read as “α suspended in C”) that allows an F type variable to appear
in a C type. The F type variable α needs to be translated, but the translation is delayed
until α is instantiated with a concrete type. We enforce this semantics in the definition
of type substitution: dαe[τ/α] = τC .

Second, we adjust the type translation to turn F type variables into suspended type
variables instead of C type variables. We call this modified version of the type transla-
tion the boundary type translation, and notate it by τ 〈C〉. Formally, the rule for type
variables in the compiler’s type translation is replaced by the rule α〈C〉 = dαe in
the boundary type translation. We only want to suspend free type variables, so when
we translate a type that contains bound variables, we need to restore the behavior of
the compiler’s type translation when we translate the binding position. We can do this
using a substitution, e.g., (∃α.τ)〈C〉 = ∃α.(τ 〈C〉[α/dαe]). Thus the boundary type
translation preserves the binding structure of the type to which it is applied.

With these two changes, we can correct the example above by replacing the appear-
ance of αC with α〈C〉, and we get a sensible translation from C to F for values of type
(∀[α].(α)→ α)C .

CF Type Abstraction Next, consider translating values of type ∀[α].(α)→ α from F into
C. Once again, the existing machinery is not quite sufficient. Here is a naive attempt:

CF∀[α].(α)→ α(v) = pack〈unit,〈v, ()〉〉 as (∀[α].(α)→ α)〈C〉

where v = λ[α](z : unit, x:α).CFα(v [α]αFCx).

This time, we have translated the binder for α into a C binder forα, but we are left with
free occurrences of α in the result! This is not a suitable translation, as we must produce
a closed value. Note that the boundary terms in the body of v expect to be annotated
with a type that translates to α.

To fix this problem, we introduce a lump type L〈τ 〉 that allows us to pass C values to
F terms as opaque lumps. The introduction form for the lump type is the boundary term
L〈τ〉FCe, and the elimination form is CFL〈τ〉e. A pair of opposite boundaries at lump
type cancel, to yield the underlying C value. We extend the boundary type translation
by defining L〈τ 〉〈C〉 = τ .

Now the three free occurrences of α in v can be replaced with L〈α〉, yielding a
well-typed translation.

Summary With the additional tools of lumps, suspensions, and the boundary type trans-
lation, we have now developed everything needed for the FC multi-language system.
Figure 3 presents more of the details, including the complete value translations.

τ ::= · · · | L〈τ 〉
t ::= · · · | τFC e

v ::= · · · | L〈τ〉FCv
E ::= · · · | τFC E

τ ::= · · · | dαe
t ::= · · · | CFτ e
v ::= · · ·
E ::= · · · | CFτE

τ ::= τ | τ
e ::= e | e
v ::= v | v
E ::= E | E

∆ ::= · | ∆,α | ∆,α
Γ ::= · | Γ, x : τ | Γ,x: τ

τ〈C〉 Boundary Type Translation

∀[α].(τ)→ τ ′〈C〉 = ∃β.〈
(
∀[α].(β, τ〈C〉[α/dαe])→ τ ′〈C〉[α/dαe]

)
, β〉

α〈C〉 = dαe unit〈C〉 = unit int〈C〉 = int ∃α.τ〈C〉 = ∃α.(τ〈C〉[α/dαe])
µα.τ〈C〉 = µα.(τ〈C〉[α/dαe]) 〈τ〉〈C〉 = 〈τ〈C〉〉 L〈τ 〉〈C〉 = τ

Type Substitution: dαe[τ/α] = τ〈C〉

∆;Γ ` e : τ Include F and C rules, with environments replaced by ∆;Γ

∆;Γ ` e : τ〈C〉

∆;Γ ` τFC e : τ

∆;Γ ` e : τ

∆;Γ ` CFτ e : τ〈C〉

CFτ (v) = v Value Translation CFunit(()) = () CFint(n) = n CFL〈τ〉(L〈τ〉FCv) = v

CF∀[α].(τ)→ τ ′
(v) = pack〈unit,〈v, ()〉〉 as (∀[α].(τ)→ τ ′)〈C〉

where v = λ[α](z : unit, x: τ〈C〉[α/dαe]).CFτ
′[L〈α〉/α](v [L〈α〉] τ [L〈α〉/α]FCx)

CF∃α.τ (pack〈τ ′,v〉 as∃α.τ) = pack〈τ ′〈C〉,v〉 as ∃α.τ〈C〉 where CFτ [τ
′/α](v) = v

CFµα.τ (foldµα.τv) = foldµα.τ〈C〉v where CFτ [µα.τ/α](v) = v

CF〈τ1, . . . , τn〉(〈v1, . . . , vn〉) = 〈v1, . . . , vn〉 where CFτi(vi) = vi

τFC(v) = v Value Translation unitFC(()) = () intFC(n) = n L〈τ〉FC(v) = L〈τ〉FCv
∀[α].(τ)→ τ ′

FC(v) = λ[α](x : τ).τ
′
FC(unpack 〈β, y〉 = v in π1(y) [dαe]π2(y), CFτ x)

∃α.τFC(pack〈τ ′,v〉 as ∃α.τ〈C〉) = pack〈L〈τ ′〉,v〉 as∃α.τ where τ [L〈τ
′〉/α]FC(v) = v

µα.τFC(foldµα.τ〈C〉 v) = foldµα.τ v where τ [µα.τ/α]FC(v) = v

〈τ1, . . . , τn〉FC(〈v1, . . . , vn〉) = 〈v1, . . . , vn〉 where τiFC(vi) = vi

e 7−→ e′ Include F and C rules, replacing eval. contexts E, E with E.
CFτ (v) = v

E[CFτ v] 7−→ E[v]

τFC(v) = v τ 6= L〈τ 〉
E[τFCv] 7−→ E[v]

Fig. 3. FC multi-language system (extends F and C from Figure 1)

The syntax of FC simply combines the syntax of F with that of C, and adds bound-
aries, lumps, and suspensions. The type judgment combines the type rules for F and
C, but with the environments replaced by environments that can contain variables from
both languages. We also add rules to typecheck boundary terms.

The cases of the value translations we have not yet covered mostly proceed by struc-
tural recursion, but note that the cases for existential types need to make use of lumps
and suspensions (the suspensions are introduced by the boundary type translation) in
ways that are dual to the function cases.

The reduction relation combines the reduction rules from F and C and adds rules for
boundaries. The boundary reduction rules use the value translations to produce a value
in the other language.

τ ::= · · · | L〈τ〉
t ::= · · · | τCA e

v ::= · · · | L〈τ〉CA v
E ::= · · · | τCA E

τ ::= · · · | dαe | dαe
t ::= · · · | ACτe
v ::= · · ·
Et ::= · · · | ACτE

τ ::= · · · | τ
e ::= · · · | e
v ::= · · · | v
E ::= · · · | E

∆ ::= · · · | ∆,α
Γ ::= · · · | Γ, x : τ

τ 〈A〉 Boundary Type Translation

∀[α].(τ)→ τ ′〈A〉 = box ∀[α].(τ 〈A〉[α/dαe])→ τ ′〈A〉[α/dαe]

α〈A〉 = dαe . . . L〈τ〉〈A〉 = τ dαe〈A〉 = dαe

Type Substitution: dαe[τ/α] = (τ〈C〉)〈A〉 dαe[τ/α] = τ 〈A〉

Ψ;∆;Γ ` e : τ Include A rules and add Ψ to existing rules

Ψ;∆;Γ ` e : τ 〈A〉

Ψ;∆;Γ ` τCA e : τ

Ψ;∆;Γ ` e : τ

Ψ;∆;Γ ` ACτe : τ 〈A〉

ACτ (v,H) = (v,H′) Value Translation (selected cases) ACunit((),H) = ((),H)

AC∀[α].(τ)→ τ ′
(v,H) = (`, (H, ` 7→ h))

where h = λ[α](x : τ 〈A〉[α/dαe]).ACτ
′[L〈α〉/α]v [L〈α〉] τ [L〈α〉/α]CA x

AC〈τ〉(〈v〉,H1) = (`, (Hn+1, ` 7→ 〈v〉)) where ACτi(vi,Hi) = (vi,Hi+1)

τCA(v,H) = (v,H′) Value Translation (selected cases) unitCA((),H) = ((),H)

∀[α].(τ)→ τ ′
CA(v,H) = (λ[α](x : τ).τ

′
CA(v [dαe]ACτx),H)

〈τ〉CA(`,H1) = (〈v〉,Hn+1) where H1(`) = 〈v〉 and τiCA(vi,Hi) = (vi,Hi+1)

〈H | e〉 7−→ 〈H′ | e′〉 Lift FC rules to new config.; replace E with E

ACτ (v,H) = (v,H′)

〈H |E[ACτv]〉 7−→ 〈H′ |E[v]〉

τCA(v,H) = (v,H′) τ 6= L〈τ〉
〈H |E[τCA v]〉 7−→ 〈H′ |E[v]〉

Fig. 4. FCA multi-language system (extends Figures 1 and 3)

6 C and A Interoperability
The extensions to FC for interoperability with A are given in Figure 4. The principles
discussed in the development of FC still apply, but here we need to handle the presence
of the heap. Specifically, since functions and tuples in A are contained in the heap,
the value translations need access to the program’s memory. Going from C to A, the
value translation may allocate new memory for functions and tuples; going from A to C
requires looking up the contents of locations and translating those contents to functions
or tuples in C. Thus, we pass the current memory as an argument to the translations,
and return a memory that may have had additional locations allocated. Memory cells
allocated by boundaries are always immutable.

Aside from this change, the extension for the new language mostly follows what we
did for FC: we augment the syntax with boundaries between C and A, a lump type L〈τ 〉
for opaquely embedding A values into C, and suspensions of type variables into A. Note
that we need the boundary type translation from C to A to handle both C type variables
α and suspended F type variables dαe. Thus A has both dαe and dαe as suspension
types. The boundary type translation τ 〈A〉 works similarly to τ 〈C〉. The figure shows

C ::= [·] | C p t | · · · | λ[α](x : τ).C | · · · | τFCC
C ::= [·] | · · · | λ[α](x : τ).C | · · · | CFτC | τCAC
C ::= (Ct,H) | (t,CH)
Ct ::= [·] | · · · | ACτC CH ::= CH, ` 7→ h | H, ` 7→ λ[α](x : τ).Ct

C ::= C | C | C

C[e] Context Plugging (A cases shown)

(Ct,H)[e] =

{
(Ct[t], (H,H′)) e = (t,H′) ∧ Ct contains no language boundaries
(Ct[e],H) otherwise

(t,CH)[e] =

{
(t, (CH[t

′],H′)) e = (t′,H′) ∧ CH contains no language boundaries
(t,CH[e]) otherwise

[·][t] = t (Ct p t)[e] = (Ct[e]) p t · · ·

(CH, ` 7→ h)[e] = (CH[e]), ` 7→ h

(H, ` 7→ λ[α](x : τ).Ct)[e] = H, ` 7→ λ[α](x : τ).(Ct[e])

` C : (Ψ;∆;Γ ` τ) (Ψ′;∆′;Γ ′ ` τ ′) Context Typing (omitted)

Contextual Equivalence

Ψ;∆;Γ ` e1 ≈ctx e2 : τ
def
= Ψ;∆;Γ ` e1 : τ ∧ Ψ;∆;Γ ` e2 : τ ∧
∀C,H,Ψ′, τ ′. ` C : (Ψ;∆;Γ ` τ) (Ψ′; ·; · ` τ ′) ∧ ` H :Ψ′

=⇒ (〈H | C[e1]〉↓ ⇐⇒ 〈H | C[e2]〉↓)

Fig. 5. General Contexts & Contextual Equivalence for FCA

the function case and the cases involving lumps and suspensions. The type judgment
merges the A type rules with the FC type rules, but where the latter are modified to
add the extra environment Ψ, and adds type rules for boundaries. Finally, the reduction
relation for FCA lifts the FC reductions to use the configuration from A, with a program
heap. We also add the reduction rules from A and a pair of boundary reduction rules
that utilize the value translations.

7 Compiler Correctness
As mentioned in §1, we state compiler correctness in terms of FCA contextual equiva-
lence. Below, we formally define contextual equivalence for FCA components and then
present our compiler correctness theorems. We discuss how to prove these theorems in
§9 and give a longer discussion and the full proofs in the appendices.

7.1 FCA Contextual Equivalence
A general context C is an FCA component with a hole. A component e can be plugged
into the context only if it is from the same language as the hole. Since contexts can
contain boundaries, e need not be from the same language as the outermost layer of C.
The syntax of general contexts is given in Figure 5 (top). Contexts for F and C forms are
standard. In A, we need contexts to be able to have their hole in either the term part of a
component, or in the body of a function contained in the heap fragment. So in addition
to contexts C that produce components, we have context forms Ct and CH that produce
terms and heap fragments, respectively.

When plugging an A component (t,H) into a context C, the heap fragment H is
placed at the innermost component-level layer of C—that is, at the language boundary
closest to the hole—and merged with the heap fragment already in that position. To
formalize this, the A portion of the definition of plugging a component into a context is
given in Figure 5 (middle). The definition of plugging for F and C contexts is standard.

Given this notion of general contexts, contextual equivalence for FCA is standard
(see Figure 5, bottom). It says that two components e1 and e2 are contextually equiva-
lent under environments Ψ, ∆, Γ and at type τ if the following hold: First, both com-
ponents must typecheck under Ψ, ∆, Γ at type τ . Second, if C is a context that expects
to be given a component that typechecks under Ψ, ∆, Γ at type τ , and produces a re-
sulting program that is closed but expects to be run with a heap of type Ψ′, then C[e1]
and C[e2] have the same termination behavior when we run them with any initial heap
H that has type Ψ′.

7.2 Compiler Correctness
We can now state our main result: compiler-correctness theorems for both passes of our
compiler.

Theorem 1 (Closure Conversion is Semantics-Preserving). If α; x : τ ′ ` e : τ e,
then ·;α; x : τ ′ ` e ≈ctx τFC(e[dαe/α] [CFτ ′

x/x]) : τ .

Theorem 2 (Allocation is Semantics-Preserving). If α;x: τ ′ ` e : τ (t,H : Ψ),
then ·;α;x: τ ′ ` e ≈ctx τCA(t[dαe/α] [ACτ ′

x/x],H) : τ .

The formal theorems are essentially as we described our compiler correctness re-
sults in §1, with only one additional subtlety: we need to perform a substitution so that
the free variables of the original component match those of the compiled component.
Recall that the compiler turns free type and term variables α and x into type and term
variables α and x from the next language, whereas FCA needs the binding structure of
components to be preserved, including free variables being in the language prescribed
by the type environments ∆ and Γ . To get the free variables of the two components
back into sync, we substitute suspended type variables for translated type variables, and
we substitute boundary terms for translated term variables. Note that we do not need to
perform a substitution in the heap fragment produced by the allocation pass, since heap
values must be closed anyway.

We could equivalently have stated these theorems with the substitution on the other
side, and the environments correspondingly translated; e.g.

·;αC; x : τ ′C ` e[L〈α〉/α] [τ̂ ′FCx/x] ≈ctx τ̂FC e : τ̂ ,

where τ̂ = τ [L〈α〉/α] and τ̂ ′ = τ ′[L〈α〉/α].
It also does not matter which side the boundary term is placed on: boundary cancel-

lation lemmas allow us to prove as a corollary that, for example,

·;α; x : τ ` CFτ e ≈ctx e[dαe/α] [CFτ ′
x/x] : τ〈C〉.

Since we want to ensure that type variables in the environment remain tied to their
free occurrences in the result type, this version of the theorem uses the boundary type
translation τ 〈C〉 for the result type (instead of the compiler’s type translation τC).

Contextual equivalence is transitive, so we can easily chain these theorems together
to prove correctness for the full compiler:

Corollary 1 (Compiler Correctness). If α; x : τ ′ ` e : τ e e, then
·;α; x : τ ′ ` e ≈ctx τFCA(e[dαe/α][ACFτ ′

x/x]) : τ .

8 An Example
We can use our compiler correctness theorem to make statements about linking with
arbitrary A components, as long as they have translation type. In this section, we present
an example showing how our framework allows linking both with A components that
cannot be expressed in F, and with those that can. To keep our example concise, we use
variable substitution as a simple notion of linking.

Consider the component
e = (λg : unit→int. (g ()) ∗ (g ())) x,

where ·; ·; (x : unit→ int) ` e : int. In F alone, only divergent or constant functions can
have type unit→ int, but if we are compiling to A before linking, we could be given a
component that makes use of A’s mutable references.

Putting e through the first compiler pass, we get a C component that contains several
administrative reductions. The complete result of compilation is shown in Appendix B,
but for readability, we pretend that e compiles to
e = (λg :∃α.〈(α, unit)→int, α〉.(unpack 〈β, z〉 = g in (π1(z) π2(z) ()))

∗ (unpack 〈β, z〉 = g in (π1(z) π2(z) ()))) x,

which is equivalent to the actual result of compilation, and has exactly the same function
body as the closure produced by the compiler.

The second pass brings us to an A component e = (t,H), where t = ` x and
H = ` 7→ λg : ∃α.box 〈box (α, unit)→ int, α〉.

((unpack 〈β, z〉 = g in ((read[1] z) (read[2] z) ())) ∗
(unpack 〈β, z〉 = g in ((read[1] z) (read[2] z) ()))).

By compiler correctness, we know that
·; ·; (x : unit→ int) ` e ≈ctx intFCA(e[ACFunit → intx/x]) : int.

Equivalently,
·; ·; (x : τ) ` ACF int(e[unit → intFCA x/x]) ≈ctx e : int,

where τ = unit→int〈C〉〈A〉 = ∃α.box 〈box (α, unit)→ int, α〉.
Suppose we want to instantiate x with the following A component, which creates a

function that uses a mutable reference to return the number of times it has been called:

e′ = (pack〈ref int,balloc 〈`, ralloc 〈0〉〉〉 as τ,

` 7→ λ(x : ref int, z : unit). let y = read[1] x in let z = write x [1]← y + 1 in y + 1).

We would then have
·; ·; · ` ACF int(e[unit → intFCA e′/x]) ≈ctx e[e′/x] : int,

The right-hand side of this equivalence is exactly the pure-A program that we would ul-
timately run, and the left-hand side is an FCA program that models it. Note that on either
side of the equation, the function exported by e′ will be applied to the unit value twice,
returning 1 the first time and 2 the second time. An F function could not exhibit this
behavior. This demonstrates how our framework allows for linking with components
that are not expressible in F.

If we want instead to link with a different A component ê that was compiled from
an F component ê, we can still make the statement

·; ·; · ` ACF int(e[unit → intFCA ê/x]) ≈ctx e[ê/x] : int,

but we can also simplify this statement using our additional knowledge of ê. Our com-
piler correctness theorem tells us that

·; ·; · ` ACFunit → int ê ≈ctx ê : τ .

From this, we can infer that
·; ·; · ` ACF int(e[unit→intFCA(ACFunit→int ê)/x]) ≈ctx e[ê/x] : int.

Applying boundary cancellation yields
·; ·; · ` ACF int(e[ê/x]) ≈ctx e[ê/x] : int.

Now we are essentially equating the pure-A program with a pure-F program, since the
only multi-language element in this statement is the integer boundary at the outermost
level, which merely converts an n to n. This demonstrates that when we do have source-
language equivalents for all our target-level components, our framework allows us to
model target-level linking with source-level linking.

9 Proving Compiler Correctness
To prove the compiler correctness theorem, we design a step-indexed Kripke logical
relation as a sound and complete model of contextual equivalence in FCA. Our logical
relation extends that of Dreyer et al. [14] with the ability to handle multi-language type
abstraction. We give an overview of the logical relation and a more detailed discussion
of its novel features in Appendix A. In this section, we briefly discuss the high-level
ideas behind our model’s novel elements.

A logical-relations model provides a relational value interpretation of each type
τ . This relation, which we denote VJτK, specifies when two values of type τ should
be considered related or equivalent. When τ has free type variables, an environment
ρ holds arbitrary relational interpretations for those abstract types. The relations in ρ
capture the invariants of different instantiations of polymorphic values, which allows us
to prove parametricity properties.

The interpretation VJαKρ is defined by just looking up ρ(α). To prove important
properties of VJτKρ for all types, we must ensure those properties hold in the α case
by constraining the relations we can put into ρ to require these properties to hold up-
front. Interpretations that satisfy these properties are called candidates or admissible
relations.

In our multi-language setting, the two key properties we need to require for admis-
sibility are boundary cancellation and the bridge lemma. The bridge lemma states that,
given a pair of values v1 and v2 related according to the interpretation VJτKρ, the CFτ

translations of those values must be related according to VJτ 〈C〉Kρ. Similarly, given val-
ues v1 and v2 related according to VJτ 〈C〉Kρ, their τFC translations must be related
according to VJτKρ. (We also require the analogous properties for the second pass.)

The type translation of α is dαe, so in order for the bridge lemma to hold at type α,
we need a suitable definition of VJdαeKρ, which necessarily will depend on ρ(α). One
naı̈ve definition we tried is the set of translations of values from ρ(α), roughly:

VJdαeKρ = {(v1,v2) | (v1, v2) ∈ ρ(α) ∧ CF(vi) = vi}.

While this definition does let us prove the bridge lemma at type α, it does not satisfy
boundary cancellation: if v1 and v2 are related according to this definition of VJdαeKρ,
it is not necessarily the case that CA(AC(v1)) and v2 are related.

All the ways we tried to define VJdαeKρ by a simple formula in terms of ρ(α)
failed for similar reasons. Instead of giving a uniform definition, we took the viewpoint
that if the properties of ρ(α) must be given a priori, then the particular relations with
those properties that instantiate VJαKρ and VJdαeKρ should be given a priori as well.
Specifically, in our model, an interpretation ρ(α) not just given by a relation on F val-
ues, but by a triple containing the relation on F values, a relation on C values to serve
as its “translation” and instantiate VJdαeKρ, and a relation on A values to instantiate
VJdαeKρ. Similarly, an interpretation ρ(α) is given by a pair containing a C-level rela-
tion and an A-level relation. For ρ(α), since A is the target language, only one relation
is needed.

This strategy moves the burden for defining the “translations” of candidate relations
to the places in our proof development where individual candidates are needed. But in
all these places, there is some specific information available about the relation, so it was
not difficult to construct them.

10 Discussion and Future Work
Software is composed from components written in different languages because different
languages are suited to different tasks. We have provided a novel methodology for ver-
ifying open, multi-pass compilers, one that yields a stronger theorem than any existing
work, allowing target-level linking with components of arbitrary provenance regardless
of whether the component can be expressed in the source language compiled by the
verified compiler.

Adding Compiler Passes Adding more intermediate languages to our compiler pipeline
requires extending the multi-language model with new boundary forms and translation
rules, and extending the logical relation with new clauses. Our aim is that the proof
structure should be as modular as possible, so that the major lemmas and the correct-
ness proof for one compiler pass can be completed independently of the rest of the
pipeline. Presently, since our admissible relations design requires relations from mul-
tiple languages, we have a small number of places where a proof about one pass is
affected by the other languages and passes. We hope to improve our proof engineering
so that proofs for existing passes are unaffected when the compiler pipeline is changed.

Compiling to Assembly We have extended our compiler with a code-generation pass
that translates A components to a stack-based typed assembly language, T. The latter
is similar to Morrisett et al.’s stack-based TAL [6] but with a type system that tracks
more information. Informally, the T type system allows us to track calls and returns of
semantic “functions” that may span multiple basic blocks, and to determine the “return
type” of such functions. With this information, we are able to give a formal definition of
contextual equivalence for T that makes distinctions about assembly at an appropriate
level of granularity. That is, we relate assembly language components comprised of any
number of basic blocks, rather than relating individual basic blocks. An equivalence
relation based on individual blocks would be too fine grained; for instance, it would
be unable to relate two components with an unequal number of basic blocks that may

have been produced by compiling two equivalent source terms. We are working on the
proofs for this pass and will report on it in a future paper.

Mutable References Consider adding mutable references to F and C. For the first com-
piler pass, we would extend the type translation with (ref τ)C = ref τC . When defining
interoperability at type ref τ , it doesn’t make sense to convert an F location ` into a fresh
C location ` (and vice versa) since it would lead to duplication of mutable cells in the
interoperating languages and these would be impossible to keep in sync. One solution is
to treat a wrapped location (e.g., ref τFC`) as a value form. Operations on these wrapped
locations can be performed by reduction rules such as these:

!(ref τFC`) 7−→ τFC(!`) (ref τFC`) := v 7−→ unitFC(` := CFτ v),

where !v is a dereference and v := v′ is an assignment. Passing references between C
and A can be done analogously. While these interoperability semantics are straightfor-
ward, we expect to find nontrivial challenges in designing a logical relation to properly
handle the wrapped-location value forms they introduce.

Supporting Realistic Interoperability We are particularly interested in supporting target-
level interoperability between a language with parametric polymorphism such as ML
and languages without type abstraction such as Scheme or C. For instance, given a
generic tree library compiled from ML, we want to allow code compiled from Scheme
or C to be able to use the library but ensure that such use cannot invalidate ML’s para-
metricity guarantees by inspecting values that have abstract type on the ML side. In this
paper, we have shown how to preserve ML’s parametricity guarantees part-way through
the compiler. Going forward we wish to develop a gradually typed assembly language
that, following Matthews and Ahmed [15], uses dynamic sealing on the untyped side to
enforce parametricity guarantees provided by type abstraction on the typed side.

11 Related Work
The literature on compiler verification spans over four decades but is mostly limited
to whole-program compilation; we refer the reader to the bibliography by Dave [16]
for compilers for first-order languages, and to Chlipala [17] for compilers for higher-
order functional languages. We have already discussed the existing work [9, 11] on
compositional compiler correctness in §2. Here we focus on other closely related work.

Dreyer et al. have recently been working on Relational Transition Systems (RTS’s) [18]
that may provide an alternative cross-language specification technique that is designed
to make it possible to prove transitivity. Regardless, it is still not easy to do: see their
technical report [19] where they prove transitivity for their single-language RTS system
for an idealized ML. It is a non-trivial task to do this for multiple cross-language RTS’s.
Additionally, even if the RTS approach proves effective for verifying a multi-pass com-
piler, it still does not address the problem of linking with a component e′T for which
there is no related source-level e′S .

The design of our multi-language system builds on that of Ahmed and Blume [8],
who developed a boundary-based multi-language system embedding the source (STLC)
and target (System F) of CPS translation. Ahmed and Blume did not have type abstrac-
tion in the source language, which meant that they did not have to make use of lumps
or suspensions, nor design a logical relation to handle these. Our semantics preserva-
tion proof is analogous to theirs. However, since they were interested in fully abstract

CPS translation, they designed their type translation to disallow linking compiled code
with target components whose behavior cannot be expressed at the source level. The
additional work that they do to prove full abstraction provides a roadmap for how to
extend our methodology to prove full abstraction in a setting where the type translation
enforces it.

Tov and Pucella [20] design a multi-language semantics for interoperation between
a language with an affine type system and a conventional language, where both lan-
guages support polymorphism. Their semantics allows only closed terms to appear un-
der boundaries, which allows them to use slightly simpler machinery than our lumps
and suspensions. But this restriction means that their model would not admit a state-
ment like our compiler correctness theorem, since we use a boundary to relate source
and target components that may have free variables.
Acknowledgements We would like to thank Nick Benton, whose views on composi-
tional compiler correctness have been an inspiration to us. In particular, our thinking
has been influenced by Benton and Hur’s introduction [10], which eloquently lays out
desirable features of a compiler correctness specification. We would also like to thank
Aaron Turon for helpful feedback on an earlier version of this paper. This research was
supported by the National Science Foundation (grant CCF-1203008).

References

1. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler with
a proof assistant. In: ACM Symposium on Principles of Programming Languages (POPL),
Charleston, South Carolina. (January 2006)

2. Leroy, X.: A formally verified compiler back-end. Journal of Automated Reasoning 43(4)
(2009) 363–446

3. Lochbihler, A.: Verifying a compiler for Java threads. In: European Symposium on Pro-
gramming (ESOP). (March 2010)

4. Myreen, M.O.: Verified just-in-time compiler on x86. In: ACM Symposium on Principles of
Programming Languages (POPL), Madrid, Spain. (January 2010)

5. Sevcik, J., Vafeiadis, V., Nardelli, F.Z., Jagannathan, S., Sewell, P.: Relaxed-memory con-
currency and verified compilation. In: ACM Symposium on Principles of Programming
Languages (POPL), Austin, Texas. (2011)

6. Morrisett, G., Crary, K., Glew, N., Walker, D.: Stack-based typed assembly language. Journal
of Functional Programming 12(1) (2002) 43–88

7. Matthews, J., Findler, R.B.: Operational semantics for multi-language programs. In: ACM
Symposium on Principles of Programming Languages (POPL), Nice, France. (January 2007)
3–10

8. Ahmed, A., Blume, M.: An equivalence-preserving CPS translation via multi-language se-
mantics. In: International Conference on Functional Programming (ICFP), Tokyo, Japan.
(September 2011) 431–444

9. Benton, N., Hur, C.K.: Biorthogonality, step-indexing and compiler correctness. In: Inter-
national Conference on Functional Programming (ICFP), Edinburgh, Scotland. (September
2009)

10. Benton, N., Hur, C.K.: Realizability and compositional compiler correctness for a polymor-
phic language. Technical Report MSR-TR-2010-62, Microsoft Research (April 2010)

11. Hur, C.K., Dreyer, D.: A Kripke logical relation between ML and assembly. In: ACM Sym-
posium on Principles of Programming Languages (POPL), Austin, Texas. (January 2011)

12. Morrisett, G., Walker, D., Crary, K., Glew, N.: From System F to typed assembly language.
ACM Transactions on Programming Languages and Systems 21(3) (May 1999) 527–568

13. Minamide, Y., Morrisett, G., Harper, R.: Typed closure conversion. In: ACM Symposium
on Principles of Programming Languages (POPL), St. Petersburg Beach, Florida. (January
1996) 271–283

14. Dreyer, D., Neis, G., Birkedal, L.: The impact of higher-order state and control effects on
local relational reasoning. Journal of Functional Programming 22(4&5) (2012) 477–528

15. Matthews, J., Ahmed, A.: Parametric polymorphism through run-time sealing, or, theorems
for low, low prices! In: European Symposium on Programming (ESOP). (March 2008) 16–
31

16. Dave, M.A.: Compiler verification: A bibliography. ACM SIGSOFT Software Engineering
Notes 28(6) (2003)

17. Chlipala, A.: A verified compiler for an impure functional language. In: ACM Symposium
on Principles of Programming Languages (POPL), Madrid, Spain. (January 2010)

18. Hur, C.K., Dreyer, D., Neis, G., Vafeiadis, V.: The marriage of bisimulations and Kripke
logical relations. In: ACM Symposium on Principles of Programming Languages (POPL),
Philadelphia, Pennsylvania. (January 2012)

19. Hur, C.K., Dreyer, D., Neis, G., Vafeiadis, V.: The marriage of bisimulations and kripke
logical relations. Technical report, Max Planck Institute for Software Systems (MPI-SWS)
(January 2012)

20. Tov, J.: Stateful contracts for affine types. In: European Symposium on Programming
(ESOP). (March 2010)

A Multi-Language Logical Relation
Our compiler correctness theorems are stated in terms of FCA contextual equivalence,
but proving contextual equivalences directly can be hard or even intractable due to the
quantification over all contexts C in the definition of ≈ctx . We prove our compiler-
correctness theorems by way of a logical relations model of FCA.

Specifically, we design a step-indexed, biorthogonal, Kripke logical relation, which
extends the standard Kripke logical relations design (such as that of Dreyer et al. [14])
with the ability to handle multi-language type abstraction. We prove that logical equiv-
alence is sound and complete for contextual equivalence, and then we are able to prove
our compiler correctness theorems in terms of logical equivalence. In this appendix, we
discuss the novel aspects of our logical relation and the major steps needed to complete
these proofs. We elide many non-novel details of the construction. Full definitions are
given in Appendix B.
Overview of the Logical Relation The basic idea of logical relations is to define an
equivalence relation on program terms by induction on the structure of their types. For
instance, two functions are related at the type τ1 → τ2 iff relatedness of their arguments
at type τ1 implies relatedness of their results at type τ2; two tuples of length n are related
at type 〈τ1, . . . , τn〉 iff their i-th components (for all 1 ≤ i ≤ n) are related at type τi;
etc.

In the presence of state, one has to make use of Kripke logical relations, which are
indexed by possible worlds W . Kripke logical relations are needed when relatedness
only holds under certain conditions; possible worlds allow us to capture these conditions
and specify constraints on how the conditions may evolve over time. Our worldsW will
specify constraints on heaps; we write (H1,H2) :W when the heaps H1 and H2 satisfy
W . For instance, two locations `1 and `2 should only be related at type boxψ if: they
actually exist in any heaps that satisfy the current world W ; if they contain heap values
related at type ψ; and if W specifies that they are immutable cells—whose contents
will remain unchanged in all future worlds W ′ that are accessible from W (written
W ′ wW , where w is pronounced “extends”). An important property of Kripke logical
relations is monotonicity, which says that relatedness of two values in world W implies
relatedness in all future possible worlds W ′ accessible from W .

Finally, step-indexed logical relations allow one to easily deal with features that
lead to “circularities” in the construction of semantic models, e.g., recursive types and
mutable references to functions. The idea is roughly to define the logical relation by
induction on a natural number that, intuitively, corresponds to the number of steps of
computation for which two programs behave in a related manner.

The important pieces of our logical relation are given in Figures 6 and 7. The big
picture is that we define a value relation VJτK that relates closed values at type τ , a
continuation relation KJτK that relates closed continuations (evaluation contexts) with
a hole of type τ , and a term relation EJτK that relates closed terms at type τ . Each of
these relations is indexed by a world W and we build each of these relations out of
well-typed values, continuations, and terms, as captured by the “Atom” definitions at
the top of Figure 6. We then generalize the definition to open terms (written Ψ;∆;Γ `
e1 ≈ e2 : τ).

Our worlds are structured as W ::= (k,Ψ1,Ψ2, Θ), where k is the number of
computation steps we have left, Ψ1 and Ψ2 are the heap types that any H1, H2 must

TermAtom[τ1, τ2] = { (W, e1, e2) |W ∈World ∧
W.Ψ1; ·; · ` e1 : τ1 ∧ W.Ψ2; ·; · ` e2 : τ2 }

ValAtom[τ1, τ2] = { (W, v1, v2) ∈ TermAtom[τ1, τ2] }
ContAtom[τ1, τ2] [τ ′1, τ

′
2] = {(W,E1, E2) |W ∈World ∧

∃Ψ1,Ψ2. ` Ei : (W.Ψi; ·; · ` τi) (Ψi; ·; · ` τ ′i)}
TermAtom[τ]ρ = TermAtom[ρ1(τ), ρ2(τ)]

ValAtom[τ]ρ = ValAtom[ρ1(τ), ρ2(τ)]

ContAtom[τ]ρ [τ ′]ρ′ = ContAtom[ρ1(τ), ρ2(τ)] [ρ′1(τ
′), ρ′2(τ

′)]

VJunitKρ = { (W, (), ()) ∈ ValAtom[unit]ρ }
VJintKρ = { (W, n, n) ∈ ValAtom[int]ρ }
VJαKρ = ρ(α).ϕF

VJ∀[α].(τ)→ τ ′Kρ= { (W, v1, v2) ∈ ValAtom[∀[α].(τ)→ τ ′]ρ |
∀W ′ wW. ∀VR ∈ FValRel. ∀v′

1, v
′
2. (W

′, v′
1, v

′
2) ∈ VJτKρ[α 7→ VR]

=⇒ (W ′, v1 [VR.τ1] v′
1, v2 [VR.τ2] v′

2) ∈ EJτ ′Kρ[α 7→ VR] }
VJ∃α.τKρ = {(W, pack〈τ1,v1〉 as ρ1(∃α.τ), pack〈τ2,v2〉 as ρ2(∃α.τ))

∈ ValAtom[∃α.τ]ρ |
∃VR ∈ FValRel.

VR.τ1 = τ1 ∧ VR.τ2 = τ2 ∧ (W, v1, v2) ∈ VJτKρ[α 7→ VR] }
VJµα.τKρ = { (W, foldρ1(µα.τ)

v1, foldρ2(µα.τ)
v2) ∈ ValAtom[µα.τ]ρ |

(W, v1, v2) ∈ BVJτ [µα.τ/α]Kρ }
VJ〈τ1, . . . , τn〉Kρ = { (W, 〈v11, . . . , v1n〉, 〈v21, . . . , v2n〉) ∈ ValAtom[〈τ1, . . . , τn〉]ρ |

∀j ∈ {1, . . ., n}. (W, v1j, v2j) ∈ VJτjKρ }
VJL〈τ 〉Kρ = { (W, ρ1(L〈τ〉)FCv1,

ρ2(L〈τ〉)FCv2) ∈ ValAtom[L〈τ 〉]ρ |
(W,v1,v2) ∈ VJτ Kρ }

VJαKρ = ρ(α).ϕC VJdαeKρ = ρ(α).ϕC

VJL〈τ〉Kρ = {(W, ρ1(L〈τ〉)CA v1,
ρ2(L〈τ〉)CA v2) ∈ ValAtom[L〈τ〉]ρ |

(W, v1, v2) ∈ VJτ Kρ}
VJαKρ = ρ(α).ϕA VJdαeKρ = ρ(α).ϕA VJdαeKρ = ρ(α).ϕA

Fig. 6. FCA Logical Relation

KJτKρ= { (W,E1, E2) ∈ ContAtom[τ]ρ [τ ′]ρ′ | ∀W ′, v1, v2.

W ′ wpub W ∧ (W ′, v1, v2) ∈ VJτKρ =⇒ (W ′, E1[v1], E2[v2]) ∈ O }
EJτKρ = { (W, e1, e2) ∈ TermAtom[τ]ρ | ∀E1, E2.

(W,E1, E2) ∈ KJτKρ =⇒ (W,E1[e1], E2[e2]) ∈ O }
O = { (W, e1, e2) | ∀(H1,H2) :W. (〈H1 | e1〉↓ ∧ 〈H2 | e2〉↓) ∨

(running(W.k, 〈H1 | e1〉) ∧ running(W.k, 〈H2 | e2〉) }

DJ·K = { ∅ }
DJ∆,αK = { ρ[α 7→ VR] | ρ ∈ DJ∆K ∧ VR ∈ FValRel }
DJ∆,αK = { ρ[α 7→ VR] | ρ ∈ DJ∆K ∧ VR ∈ CValRel }
DJ∆,αK = { ρ[α 7→ VR] | ρ ∈ DJ∆K ∧ VR ∈ AValRel }
HJ·K = World

HJΨ, ` : boxψK = HJΨK ∩ {W ∈World | (W, `, `) ∈ VJboxψK∅ }
HJΨ, ` : refψK = HJΨK ∩ {W ∈World | (W, `, `) ∈ VJref ψK∅ }
GJ·Kρ = { (W, ∅) | W ∈World }
GJΓ, x : τKρ = { (W,γ[x 7→ (v1, v2)]) | γ ∈ GJΓ Kρ ∧ (W, v1, v2) ∈ VJτKρ }

Ψ;∆;Γ ` e1 ≈ e2 : τ
def
= Ψ;∆;Γ ` e1 : τ ∧ Ψ;∆;Γ ` e2 : τ ∧
∀W,ρ, γ. W ∈ HJΨK ∧ ρ ∈ DJ∆K ∧ (W,γ) ∈ GJΓ Kρ

=⇒ (W,ρ1(γ1(e1)), ρ2(γ2(e2))) ∈ EJτKρ
Fig. 7. FCA Logical Relation (Continued)

have if they are to satisfy W , and Θ is a sequence of islands that specify invariants
on disjoint parts of the heap. We will leave further details of worlds and islands to the
online technical report, except to say that we reserve the first island for tracking all the
immutable cells in the two heaps. We abstract the process of adding immutable cells to
this island by using an operation W � (H1,H2) (“box-plus” for adding boxes to W).

The standard practice is for each of the above relations V ,K, E on τ to be parametrized
by a mapping ρ that provides relational interpretations for the free type variables in τ .
For now, assume that ρ maps type variables α to triples VR ::= (τ1, τ2, ϕ), where τ1
and τ2 are the types used to instantiate α on the left and right sides, respectively, and ϕ
is a relation between values of those types, that is, a subset of ValAtom[τ1, τ2]. We will
explain shortly why this structure is not quite what we need, but it suffices to explain
the general principles of the logical relation. We write ρ1 for the substitution that in-
stantiates each α ∈ dom(ρ) with the corresponding τ1, and ρ2 for the substitution that
instantiates αs with τ2s.

We briefly walk through the F cases of the value relation, which are shown in Fig-
ure 6. Values of base type are related if they are the same value. Values are related at
type α if they are in the relational interpretation of α, ρ(α).ϕ (For now, ignore the su-
perscript on ϕ in the figure). Functions are related if, at any point in the future, applying
them to related arguments will yield related results. Packages are related at existential
type if there exists some interpretation VR of the abstract type under which their bodies

are related. Values of recursive type are related if unfolding the recursion yields values
that are related after expending a step (denoted by the B operator). Tuples are related if
all their components are related. And finally, lumps are related if the underlying values
are related.

We elide most of the cases of VJτKρ for C and A types. The only difficult case is the
case for suspended type variables, which we will return to shortly.

In the term relation EJτKρ, two terms are related if running them in related contin-
uations gives related observations. Two continuations are related in KJτKρ if whenever
we are given related values in some future world (under a restricted notion of public
future worlds; see Dreyer et al.), then running the continuations with those values gives
us related observations. This technique of defining the term relation E by appealing to
a continuation relation K is referred to as biorthogonality or >>-closure, and it yields
a logical relation that is complete with respect to contextual equivalence.

Under the relation O, two closed terms give us related observations in world W if,
when we run them in two heaps that satisfy W, either they both terminate, or they are
both still running after k steps, where k is the number of steps allowed by W .

Finally, our notion of logical equivalence (bottom of Figure 6) lifts EJτKρ to open
terms. It says that e1 and e2 are related if, given a world (which must satisfy the heap
type Ψ), a mapping ρ (which must satisfy some properties to be discussed shortly), and
a pair of substitutions γ (where the values being substituted must be related), we get
related components by closing off e1 and e2 with ρ and γ.
Admissible Relations Thus far, we have avoided discussion of what properties an inter-
pretation VR of a type variable α must satisfy to be considered admissible. Usually,
these requirements stem from any lemmas that we need about VJτKρ: Since τ = α is a
base case, these properties need to hold for any interpretation of α.

In our setting, the two properties we need are boundary cancellation and the bridge
lemmas. We have already discussed boundary cancellation, but we give an alternate
statement of it in terms of VJτKρ, which must be proved on the way to proving the
version stated in §1:

Lemma 1 (FC-CF Boundary Cancellation).
If (W, v1, v2) ∈ VJτKρ and τFC(CFτ (v2)) = v′2, then (W, v1, v

′
2) ∈ VJτKρ.

Statements of boundary cancellation for the other pairs of opposite boundaries are sim-
ilar.

The bridge lemmas state that if two values are related at a given type, then their
translations are related at translation type. Or, in the other direction, if two values are
related at translation type, their backward translations are related at the corresponding
source type. These lemmas are needed to prove soundness of the logical relation for
contextual equivalence. One of the cases of the bridge lemma is as follows:

Lemma 2 (FC Bridge Lemma).
If (W,v1,v2) ∈ VJτ 〈C〉Kρ, τFC(v1) = v′1, and τFC(v2) = v′2,
then (W, v′1, v

′
2) ∈ VJτKρ.

We need to build in requirements that any relations we put into ρ satisfy boundary
cancellation and the bridge lemmas. We will do this in layers, defining sets of relations
that enforce progressively more of these properties.

ValRel[τ1, τ2] = {ϕF ⊆ ValAtom[τ1, τ2] | ∀(W, v1, v2) ∈ ϕF .
(∀W ′ wW. (W ′, v1, v2) ∈ ϕF) ∧
∀v′

1, v
′
2. (

τ1FC(CFτ1(v1)) = v′
1 =⇒ (W, v′

1, v2) ∈ ϕF) ∧
(τ2FC(CFτ2(v2)) = v′

2 =⇒ (W, v1, v
′
2) ∈ ϕF)}

ValRel[τ1, τ2] = {ϕC ⊆ ValAtom[τ1, τ2] | ∀(W,v1,v2) ∈ ϕC .
(∀W ′ wW. (W ′,v1,v2) ∈ ϕC) ∧
∀(H1,H2) :W. ∀v′

1,v
′
2,H

′
1,H

′
2.

(τ1CA(ACτ1(v1,H1)) = (v′
1,H1]H′

1) =⇒ (W � (H′
1, ·),v′

1,v2) ∈ ϕC) ∧
(τ2CA(ACτ2(v2,H2)) = (v′

2,H2]H′
2) =⇒ (W � (·,H′

2),v1,v
′
2) ∈ ϕC)}

ValRel[τ1, τ2] = {ϕA ⊆ ValAtom[τ1, τ2] | ∀(W, v1, v2) ∈ ϕA. ∀W ′ wW. (W ′, v1, v2) ∈ ϕA}

TransRelC [τ1, τ2] = {ϕC ∈ ValRel[τ1
〈C〉, τ2

〈C〉] | ∀(W,v1,v2) ∈ ϕC .
∀v′

1,v
′
2. (CFτ1(τ1FC(v1)) = v′

1 =⇒ (W,v′
1,v2) ∈ ϕC) ∧

(CFτ2(τ2FC(v2)) = v′
2 =⇒ (W,v1,v

′
2) ∈ ϕC)}

TransRelA[τ1, τ2] = {ϕA ∈ ValRel[τ1
〈A〉, τ2

〈A〉] | ∀(W, v1, v2) ∈ ϕA.
∀(H1,H2) :W. ∀v′

1, v
′
2,H

′
1,H

′
2.

(ACτ1(τ1CA(v1,H1)) = (v′
1,H1]H′

1) =⇒ (W � (H′
1, ·), v′

1, v2) ∈ ϕA) ∧
(ACτ2(τ2CA(v2,H2)) = (v′

2,H2]H′
2) =⇒ (W � (·,H′

2), v1, v
′
2) ∈ ϕA)}

CF(τ1, τ2, ϕF) = {(W,v1,v2) | (W, v1, v2) ∈ ϕF ∧ CFτ1(v1) = v1 ∧ CFτ2(v2) = v2}
if ϕF ∈ ValRel[τ1, τ2]

FC(τ1, τ2, ϕC) = {(W,v1,v2) | (W,v1,v2) ∈ ϕC ∧ τ1FC(v1) = v1 ∧ τ2FC(v2) = v2}
if ϕC ∈ TransRelC [τ1, τ2]

AC(τ1, τ2, ϕC) = {(W � (H′
1,H

′
2), v1, v2) | (H1,H2) :W ∧ (W,v1,v2) ∈ ϕC ∧

ACτ1(v1,H1) = (v1,H1]H′
1) ∧ ACτ2(v2,H2) = (v2,H2]H′

2)}
if ϕC ∈ ValRel[τ1, τ2]

CA(τ1, τ2, ϕA) = {(W, v1, v2) | (H1,H2) :W ∧ (W, v1, v2) ∈ ϕA ∧
τ1CA(v1,H1) = (v1,H1) ∧ τ2CA(v2,H2) = (v2,H2)}

if ϕA ∈ TransRelA[τ1, τ2]

FValRel = {VR = (τ1, τ2, ϕ
F , ϕC , ϕA) | ϕF ∈ ValRel[τ1, τ2] ∧

ϕC ∈ TransRelC [τ1, τ2] ∧ ϕA ∈ TransRelA[τ1
〈C〉, τ2

〈C〉] ∧
CF(τ1, τ2, ϕF) ⊆ ϕC ∧ FC(τ1, τ2, ϕC) ⊆ ϕF ∧
AC(τ1〈C〉, τ2〈C〉, ϕC) ⊆ ϕA ∧ CA(τ1〈C〉, τ2〈C〉, ϕA) ⊆ ϕC}

CValRel = {VR = (τ1, τ2, ϕ
C , ϕA) | ϕC ∈ ValRel[τ1, τ2] ∧

ϕA ∈ TransRelA[τ1, τ2] ∧ AC(τ1, τ2, ϕC) ⊆ ϕA ∧ CA(τ1, τ2, ϕA) ⊆ ϕC}
AValRel = {VR = (τ1, τ2, ϕ

A) | ϕA ∈ ValRel[τ1, τ2]}

Fig. 8. Admissible Relations

Boundary cancellation requirements are straightforward to state, but we must ac-
count for the fact that not every relation on C or A values relates terms of transla-
tion type. The first layer of our admissible relations definition, ValRel[τ1, τ2], requires
monotonicity and “forward” boundary cancellation, that is, the cases of boundary can-
cellation where we translate a value to a language further forward along the compiler
pipeline, and then back. This is given in the top part of Figure 8.

The second layer, TransRel, also requires backward boundary cancellation when it
is appropriate, that is, when we are viewing a particular relation ϕ as being a translation.
It is given in the second part of Figure 8.

Now we need to enforce the bridge lemmas. Since α〈C〉 = dαe, the base cases of
the bridge lemmas require us to show that the translations of elements of VJαKρ are
elements of VJdαeKρ. Therefore, we need to define not only our admissibility criterion
but also VJdαeKρ in such as way as to enable a proof of the bridge lemma.

Since dαe stands for the translation of whatever type instantiates α, it makes sense
to think of VJdαeKρ as the translation of the interpretation of α. This suggests a defini-
tion mirroring the bridge lemma itself:

VJdαeKρ = {(W,v1,v2 | CFρ1(α)(v1) = v′
1 ∧ CFρ2(α)(v2) = v′

2 ∧
(W, v1, v2) ∈ ρ(α).ϕ}

Indeed, the bridge lemmas hold under this definition. But with this solution, forward
boundary cancellation does not hold for VJdαeKρ. To see this intuitively, recall that
different sequences of translations produce syntactically distinct values, even starting
from the same value and ending up in the same language. Forward boundary cancel-
lation requires VJdαeKρ to be inhabited by values that were produced by translating
up from A after any other translations. Though we can appeal to boundary cancellation
properties of ρ(α).ϕ to cover many sequences of translations, the definition still only
allows values that were last translated down from F.

One strategy we explored to overcome this was to define VJdαeKρ as a closure of
the set above. But directly closing this set with respect to the boundary cancellation
operations we need disrupts the proof of the bridge lemma, and a more general closure
with respect to equivalence, such as >>-closure, fails because we need to use this
equivalence-closure before we have proven that applying opposite translations actually
produces equivalent values (since this property is exactly boundary cancellation).

Ultimately, instead of trying to do all the work in the definition of VJdαeKρ, we
take a different approach, and define the needed “translations” of each relation ϕ up-
front. We do this by changing the structure of VR to include not just one relation ϕ
on values in the language of the type variable whose interpretation is being given, but
also an additional relation in each language below that. Thus, interpretations of F type
variables contain relations ϕF , ϕC , and ϕA; interpretations of C type variables contain
relations ϕC and ϕA; and interpretations of A type variables contain only relations ϕA.
We require that these relations satisfy bridge properties between each other, as shown
in the bottom half of Figure 8. We define VJαKρ = ρ(α).ϕF , VJdαeKρ = ρ(α).ϕC ,
and the other variable and suspension cases of V similarly, as shown in Figure 6.

At the end of Appendix B, we give a simple example of proving a contextual equiv-
alence that demonstrates how we can construct these multiple-relation interpretations
such that all the needed properties are satisfied.

Verifying An Open Compiler Using Multi-Language Semantics:

Appendix B: Complete Definitions and Proofs

James T. Perconti Amal Ahmed

Contents

1 Source language: F 2

2 Closure-converted language: C 4

3 F + C 7

4 Language with explicit allocation: A 9

5 (F + C) + A 12

6 General Contexts and Contextual Equivalence 14

7 Logical Relation 20

8 Proofs: Basic Properties 26

9 Proofs: Boundary Cancellation 39

10 Proofs: Soundness and Completeness 53

11 Proofs: Compiler Correctness 80

12 Examples 102

1

1 Source language: F

τ ::= α | unit | int | ∀[α].(τ)→ τ | ∃α.τ | µα.τ | 〈τ〉
e ::= t

t ::= x | () | n | t p t | if0 t t t | λ[α](x : τ).t | t [τ] t | pack〈τ,t〉 as∃α.τ | unpack 〈α, x〉 = t in t | foldµα.τ t

| unfold t | 〈t〉 | πi(t)

p ::= + | − | ∗
v ::= () | n | λ[α](x : τ).t | pack〈τ,v〉 as∃α.τ | foldµα.τ v | 〈v〉
E ::= [·] | E p t | v p E | if0 E t t | E [τ] t | v [τ] v E t | pack〈τ,E〉 as∃α.τ | unpack 〈α, x〉 = E in t | foldµα.τ E

| unfold E | 〈v,E, t〉 | πi(E)

∆ ::= · | ∆, α

Γ ::= · | Γ, x : τ

1.1 Well-Formed Type ∆ ` τ

α ∈ ∆

∆ ` α ∆ ` unit ∆ ` int

∆, α ` τ ∆, α ` τ ′

∆ ` ∀[α].(τ)→ τ ′
∆, α ` τ
∆ ` ∃α.τ

∆, α ` τ
∆ ` µα.τ

∆ ` τ1 · · · ∆ ` τn
∆ ` 〈τ1, . . . , τn〉

1.2 Well-Formed Type Environment ∆ ` Γ

∆ ` ·
∆ ` Γ ∆ ` τ

∆ ` Γ, x : τ

1.3 Well-Typed Component ∆; Γ ` e : τ

x : τ ∈ Γ

∆; Γ ` x : τ ∆; Γ ` () : unit ∆; Γ ` n : int

∆; Γ ` t1 : int ∆; Γ ` t2 : int

∆; Γ ` t1 p t2 : int

∆; Γ ` t1 : int ∆; Γ ` t2 : τ ∆; Γ ` t3 : τ

∆; Γ ` if0 t1 t2 t3 : τ

∆, α; Γ, x : τ ` t : τ ′

∆; Γ ` λ[α](x : τ).t :∀[α].(τ)→ τ ′

∆; Γ ` t0 :∀[α].(τ1)→ τ2 ∆ ` τ ∆; Γ ` t : τ1[τ/α]

∆; Γ ` t0 [τ] t : τ2[τ/α]

∆; Γ ` t : τ [τ ′/α]

∆; Γ ` pack〈τ ′,t〉 as∃α.τ :∃α.τ

∆; Γ ` t1 :∃α.τ ∆, α; Γ, x : τ ` t2 : τ ′

∆; Γ ` unpack 〈α, x〉 = t1 in t2 : τ ′
∆; Γ ` t : τ [µα.τ/α]

∆; Γ ` foldµα.τ t :µα.τ

∆; Γ ` t :µα.τ

∆; Γ ` unfold t : τ [µα.τ/α]

∆; Γ ` t1 : τ1 · · · ∆; Γ ` tn : τn

∆; Γ ` 〈t1, . . . , tn〉 : 〈τ1, . . . , τn〉
∆; Γ ` t : 〈τ1, . . . , τn〉

∆; Γ ` πi(t) : τi

2

1.4 Reduction Relation e 7−→ e′

E[n1 p n2] 7−→ E[prim(p, n1, n2)]

E[if0 0 t1 t2] 7−→ E[t1]

E[if0 n t1 t2] 7−→ E[t2] n 6= 0

E[λ[α](x : τ).t [τ ′] v] 7−→ E[t[τ ′/α][v/x]]

E[unpack 〈α, x〉 = (pack〈τ ′,v〉 as∃α.τ) in t] 7−→ E[t[τ ′/α][v/x]]

E[unfold (foldµα.τ v)] 7−→ E[v]

E[πi(〈v1, . . . , vn〉)] 7−→ E[vi]

3

2 Closure-converted language: C

τ ::= α | unit | int | ∀[α].(τ)→ τ | ∃α.τ | µα.τ | 〈τ 〉
e ::= t

t ::= x | () | n | t p t | if0 t t t | λ[α](x : τ).t | t [] t | t[τ] | pack〈τ,t〉 as∃α.τ
| unpack 〈α, x〉 = t in t | foldµα.τ t | unfold t | 〈t〉 | πi(t)

p ::= + | − | ∗
v ::= () | n | λ[α](x : τ).t | pack〈τ,v〉 as ∃α.τ | foldµα.τ v | 〈v〉 | v[τ]

E ::= [·] | E p t | v p E | if0 E t t | E [] t | v [τ] v E t | E[τ] | pack〈τ,E〉 as ∃α.τ
| unpack 〈α, x〉 = E in t | foldµα.τ E | unfold E | 〈v,E, t〉 | πi(E)

∆ ::= · | ∆, α

Γ ::= · | Γ, x: τ

2.1 Well-Formed Type ∆ ` τ

This judgment is defined exactly as in F.

α ∈∆

∆ ` α ∆ ` unit ∆ ` int

∆, α ` τ ∆, α ` τ ′

∆ ` ∀[α].(τ)→ τ ′
∆, α ` τ
∆ ` ∃α.τ

∆, α ` τ
∆ ` µα.τ

∆ ` τ1 · · · ∆ ` τn
∆ ` 〈τ1, . . . , τn〉

2.2 Well-Formed Type Environment ∆ ` Γ

∆ ` ·
∆ ` Γ ∆ ` τ

∆ ` Γ, x: τ

2.3 Well-Typed Component ∆; Γ ` e : τ

The type rules for abstraction and application are the only rules that differ from F:

α; x: τ ` t : τ ′

∆; Γ ` λ[α](x : τ).t :∀[α].(τ)→ τ ′
∆; Γ ` t :∀[].(τ)→ τ ′ ∆; Γ ` t : τ

∆; Γ ` t [] t : τ ′

∆; Γ ` t :∀[β, α].(τ)→ τ ′ ∆ ` τ0
∆; Γ ` t[τ0] :∀[α].(τ [τ0/β])→ τ ′[τ0/β]

For completeness, here are the rules that are identical to F rules:

x: τ ∈ Γ

∆; Γ ` x : τ ∆; Γ ` () : unit ∆; Γ ` n : int

∆; Γ ` t1 : int ∆; Γ ` t2 : int

∆; Γ ` t1 p t2 : int

∆; Γ ` t1 : int ∆; Γ ` t2 : τ ∆; Γ ` t3 : τ

∆; Γ ` if0 t1 t2 t3 : τ

∆; Γ ` t : τ [τ ′/α]

∆; Γ ` pack〈τ ′,t〉 as ∃α.τ :∃α.τ

∆; Γ ` t1 :∃α.τ ∆, α; Γ, x: τ ` t2 : τ ′

∆; Γ ` unpack 〈α, x〉 = t1 in t2 : τ ′
∆; Γ ` t : τ [µα.τ/α]

∆; Γ ` foldµα.τ t :µα.τ

∆; Γ ` t :µα.τ

∆; Γ ` unfold t : τ [µα.τ/α]

∆; Γ ` t1 : τ1 · · · ∆; Γ ` tn : τn

∆; Γ ` 〈t1, . . . , tn〉 : 〈τ1, . . . , τn〉
∆; Γ ` t : 〈τ1, . . . , τn〉

∆; Γ ` πi(t) : τi

4

2.4 Reduction Relation e 7−→ e′

The reduction relation is also identical to that of F.

E[n1 p n2] 7−→ E[prim(p, n1, n2)]

E[if0 0 t1 t2] 7−→ E[t1]

E[if0 n t1 t2] 7−→ E[t2] n 6= 0

E[λ[α](x : τ).t [τ ′] v] 7−→ E[t[τ ′/α][v/x]]

E[unpack 〈α, x〉 = (pack〈τ ′,v〉 as ∃α.τ) in t] 7−→ E[t[τ ′/α][v/x]]

E[unfold (foldµα.τ v)] 7−→ E[v]

E[πi(〈v1, . . . , vn〉)] 7−→ E[vi]

5

2.5 Compiling F to C

2.5.1 Type Translation

αC = α ∀[α].(τ)→ τ ′C = ∃β.〈(∀[α].(β, τC)→ τ ′C), β〉
unitC = unit ∃α.τC = ∃α.τC

intC = int µα.τC = µα.τC

〈τ1, . . . , τn〉C = 〈τ1C, . . . , τnC〉

2.5.2 Compiler ∆; Γ ` e : τ e

If the compilation judgment holds, then it follows that ∆; Γ ` e : τ and ∆C; ΓC ` e : τC.
Most of the rules simply proceed by structural induction:

x : τ ∈ Γ

∆; Γ ` x : τ x ∆; Γ ` () : unit () ∆; Γ ` n : int n

∆; Γ ` t1 : int t1 ∆; Γ ` t2 : int t2

∆; Γ ` t1 p t2 : int t1 p t2

∆; Γ ` t1 : int t1
∆; Γ ` t2 : τ t2 ∆; Γ ` t3 : τ t3

∆; Γ ` if0 t1 t2 t3 : τ if0 t1 t2 t3

∆; Γ ` t : τ [τ ′/α] t

∆; Γ ` pack〈τ ′,t〉 as∃α.τ :∃α.τ pack〈τ ′C,t〉 as ∃α.τC

∆; Γ ` t1 :∃α.τ t1 ∆, α; Γ, x : τ ` t2 : τ ′ t2

∆; Γ ` unpack 〈α, x〉 = t1 in t2 : τ ′ unpack 〈α, x〉 = t1 in t2

∆; Γ ` t : τ [µα.τ/α] t

∆; Γ ` foldµα.τ t :µα.τ foldµα.τC t

∆; Γ ` t :µα.τ t

∆; Γ ` unfold t : τ [µα.τ/α] unfold t

∆; Γ ` t1 : τ1 t1 . . . ∆; Γ ` tn : τn tn

∆; Γ ` 〈t1, . . . , tn〉 : 〈τ1, . . . , τn〉 〈t1, . . . , t2〉

∆; Γ ` t : 〈τ1, . . . , τn〉 t

∆; Γ ` πi(t) : τi πi(t)

The interesting rules are those for functions and application. To compile a function λ[α](x : τ).t, we first
need to find its free type variables and term variables, and determine the type of the closure environment
we will build. We next compile the body of the function, and finally, we build a closure.

y1, . . . , ym = fv(λ[α](x : τ).t) β1, . . . , βk = ftv(λ[α](x : τ).t) τenv = 〈(Γ(y1))
C, . . . , (Γ(ym))C〉

∆, α; Γ, x : τ ` t : τ ′ t v = λ[β, α](z : τenv, x: τC).(t[π1(z)/y1] · · · [πm(z)/ym])

∆; Γ ` λ[α](x : τ).t :∀[α].(τ)→ τ ′ pack〈τenv,〈v[β], 〈y〉〉〉 as ∃α′.〈(∀[α].(α′, τC)→ τ ′C), α′〉

To compile an application, we must unpack the closure that will be produced in the function position,
and apply it to its environment as well as its original arguments.

∆; Γ ` t0 :∀[α].(τ1)→ τ2 t0 ∆ ` τ ∆; Γ ` t : τ1[τ/α] t

∆; Γ ` t0 [τ] t : τ2[τ/α] unpack 〈β, z〉 = t0 in π1(z) [τC]π2(z), t

6

3 F+C

τ ::= · · · | L〈τ 〉
t ::= · · · | τFC e

v ::= · · · | L〈τ〉FC v

E ::= · · · | τFCE

τ ::= · · · | dαe
t ::= · · · | CFτ e

E ::= · · · | CFτ E

τ ::= τ | τ
e ::= e | e

v ::= v | v

E ::= E | E

M ::= ·
∆ ::= · | ∆, α | ∆,α

Γ ::= · | Γ, x : τ | Γ,x: τ

To build a language of interoperability for F and C, we add boundary terms to both languages, lumps
to F types τ , and suspended F type variables to C types τ .

FC types, components, values, and evaluation contexts are just the union of F and C types, components,
values, and evaluation contexts. We add memory M to the syntax of FC for convenience later, when we
augment our multi-language for interoperability with languages that deal with memory. For now, M is just a
piece of syntax that does nothing. Type environments ∆ and Γ may contain a mixture of F and C variables.

3.1 Boundary Type Translation

α〈C〉 = dαe ∀[α].(τ)→ τ ′〈C〉 = ∃β.〈
(
∀[α].(β, τ 〈C〉[α/dαe])→ τ ′〈C〉[α/dαe]

)
, β〉

unit〈C〉 = unit ∃α.τ 〈C〉 = ∃α.(τ 〈C〉[α/dαe])
int〈C〉 = int µα.τ 〈C〉 = µα.(τ 〈C〉[α/dαe])

L〈τ 〉〈C〉 = τ 〈τ1, . . . , τn〉〈C〉 = 〈τ1〈C〉, . . . , τn〈C〉〉

3.2 Type Substutution

dαe[τ/α] = τ 〈C〉

3.3 Well-formed Type ∆ ` τ

Adapt the rules for ∆ ` τ and ∆ ` τ by changing the environments to ∆ (multilanguage environment
instead of a single-language environment), and add the following rules:

∆ ` τ
∆ ` L〈τ 〉

α ∈ ∆

∆ ` dαe

3.4 Well-Typed Terms ∆; Γ ` e : τ

Adapt the corresponding judgments for F and C by changing all the environments to the appropriate mul-
tilanguage environment, and add the following rules:

∆; Γ ` e : τ 〈C〉

∆; Γ ` τFC e : τ

∆; Γ ` e : τ

∆; Γ ` CFτ e : τ 〈C〉

7

3.5 Value Translation

CFunit((),M) = ((),M)

CFint(n,M) = (n,M)

CF∀[α].(τ)→ τ ′
(v,M) = (pack〈unit,〈v, ()〉〉 as (∀[α].(τ)→ τ ′)〈C〉,M)

where v = λ[α](z : unit, x: τ 〈C〉[α/dαe]).CFτ ′[L〈α〉/α] (v [L〈α〉] τ [L〈α〉/α]FC x)

CF∃α.τ (pack〈τ ′,v〉 as∃α.τ ,M) = (pack〈τ ′〈C〉,v〉 as ∃α.τ 〈C〉,M ′) where CFτ [τ ′/α](v,M) = (v,M ′)

CFµα.τ (foldµα.τ v,M) = (foldµα.τ 〈C〉 v,M ′) where CFτ [µα.τ/α](v,M) = (v,M ′)

CF〈τ1, . . . , τn〉(〈v1, . . . , vn〉,M) = (〈v1, . . . , vn〉,Mn+1)

where M1 = M and CFτi(vi,M i) = (vi,Mi+1)

CFL〈τ〉(L〈τ〉FC v,M) = (v,M)

unitFC((),M) = ((),M)
intFC(n,M) = (n,M)
∀[α].(τ)→ τ ′

FC(v,M) = (λ[α](x : τ).τ
′FC e,M)

where e = (unpack 〈β, y〉 = v in π1(y) [dαe]π2(y), CFτ x)
∃α.τFC(pack〈τ ′,v〉 as ∃α.τ 〈C〉,M)= (pack〈L〈τ ′〉,v〉 as∃α.τ ,M ′) where τ [L〈τ ′〉/α]FC(v,M) = (v,M ′)
µα.τFC(foldµα.τ 〈F〉 v,M) = (foldµα.τ v,M ′) where τ [µα.τ/α]FC(v,M) = (v,M ′)

〈τ1, . . . , τn〉FC(〈v1, . . . , vn〉,M) = (〈v1, . . . , vn〉,Mn+1)

where M1 = M and τiFC(vi,M i) = (vi,Mi+1)
L〈τ〉FC(v,M) = (L〈τ〉FC v,M)

3.6 Reduction Relation 〈M | e〉 7−→ 〈M ′ | e′〉

Lift the F and C reduction rules to the new configuration.

e 7−→ e′

〈M | E[e]〉 7−→ 〈M | E[e′]〉
e 7−→ e′

〈M | E[e]〉 7−→ 〈M | E[e′]〉

Also add the following rules for boundary forms:

CFτ (v,M) = (v,M ′)

〈M | E[CFτ v]〉 7−→ 〈M ′ | E[v]〉

τFC(v,M) = (v,M ′) τ 6= L〈τ 〉
〈M | E[τFC v]〉 7−→ 〈M ′ | E[v]〉

8

4 Language with explicit allocation: A

τ ::= α | unit | int | ∃α.τ | µα.τ | ref ψ | boxψ

ψ ::= ∀[α].(τ)→ τ | 〈τ, . . . , τ 〉
e ::= (t,H)

t ::= x | () | n | t p t | if0 t t t | ` | t [] t | t[τ] | pack〈τ,t〉 as∃α.τ | unpack 〈α, x〉 = t in t

| foldµα.τ t | unfold t | ralloc 〈t〉 | balloc 〈t〉 | read[i] t | write t [i]← t

p ::= + | − | ∗
v ::= () | n | pack〈τ,v〉 as∃α.τ | foldµα.τ v | ` | v[τ]

E ::= (Et, ·)
Et ::= [·] | Et p t | v p Et | if0 Et t t | Et [] t | v [] v Et t | Et[τ] | pack〈τ,Et〉 as∃α.τ

| unpack 〈α, x〉 = Et in t | foldµα.τ Et | unfold Et | ralloc 〈v,Et, t〉 | balloc 〈v,Et, t〉 | read[i] Et

| write Et [i]← t | write v [i]← Et

H ::= · | H, ` 7→ h

h ::= λ[α](x : τ).t | 〈v, . . . , v〉
Ψ ::= · | Ψ, ` : νψ

ν ::= ref | box

∆ ::= · | ∆, α

Γ ::= · | Γ, x : τ

We will frequently abuse notation by abbreviating (t, ·) as just t.

Also note that (Et, ·)[(t,H)]
def
= (Et[t],H).

4.1 Well-Formed Type ∆ ` τ

α ∈ ∆

∆ ` α ∆ ` unit ∆ ` int

∆, α ` τ
∆ ` ∃α.τ

∆, α ` τ
∆ ` µα.τ

∆ `ref ψ

∆ ` ref ψ

∆ `box ψ

∆ ` boxψ

4.2 Well-formed Heap Value Type ∆ `ν ψ

∆, α ` τ ∆, α ` τ ′

∆ `box ∀[α].(τ)→ τ ′

∆ ` τ1 · · · ∆ ` τn

∆ `ν 〈τ1, . . . , τn〉

4.3 Well-formed Heap Type ` Ψ

· `ν1 ψ1 · · · · `νn ψn

` `1 : ν1ψ1, . . . , `n : νnψn

4.4 Well-Formed Type Environment ∆ ` Γ

∆ ` ·
∆ ` Γ ∆ ` τ

∆ ` Γ, x : τ

4.5 Well-Typed Heap Value Ψ ` h :ψ

Ψ;α; x : τ ` t : τ ′

Ψ ` λ[α](x : τ).t :∀[α].(τ)→ τ ′
Ψ; ·; · ` v1 : τ1 · · · Ψ; ·; · ` vn : τn

Ψ ` 〈v1, . . . , vn〉 : 〈τ1, . . . , τn〉

9

4.6 Well-Typed Heap Fragment Ψ ` H : Ψ′

dom(Ψ) ∩ dom(Ψ′) = ∅ ` Ψ′ Ψ,Ψ′ ` h1 : Ψ′(`1) · · · Ψ,Ψ′ ` hn : Ψ′(`n)

Ψ ` {`1 7→ h1, . . . , `n 7→ hn} : Ψ′

4.7 Well-Typed Component Ψ; ∆; Γ ` e : τ

boxheap(Ψ)
def
= ∀(` : νψ) ∈ Ψ. ν = box

Ψ ` H : Ψ′ boxheap(Ψ) (Ψ,Ψ′); ∆; Γ ` t : τ

Ψ; ∆; Γ ` (t,H) : τ

x : τ ∈ Γ

Ψ; ∆; Γ ` x : τ Ψ; ∆; Γ ` () : unit

Ψ; ∆; Γ ` n : int

Ψ; ∆; Γ ` t1 : int Ψ; ∆; Γ ` t2 : int

Ψ; ∆; Γ ` t1 p t2 : int

Ψ; ∆; Γ ` t1 : int Ψ; ∆; Γ ` t2 : τ Ψ; ∆; Γ ` t3 : τ

Ψ; ∆; Γ ` if0 t1 t2 t3 : τ

` : refψ ∈ Ψ

Ψ; ∆; Γ ` ` : ref ψ

` : boxψ ∈ Ψ

Ψ; ∆; Γ ` ` : boxψ

Ψ; ∆; Γ ` t : box∀[].(τ)→ τ ′ Ψ; ∆; Γ ` t : τ

Ψ; ∆; Γ ` t [] t : τ ′
Ψ; ∆; Γ ` t : box∀[β, α].(τ)→ τ ′ ∆ ` τ0

Ψ; ∆; Γ ` t[τ0] : box ∀[α].(τ [τ0/β])→ τ ′[τ0/β]

Ψ; ∆; Γ ` t : τ [τ ′/α]

Ψ; ∆; Γ ` pack〈τ ′,t〉 as∃α.τ :∃α.τ
Ψ; ∆; Γ ` t1 :∃α.τ Ψ; ∆, α; Γ, x : τ ` t2 : τ ′

Ψ; ∆; Γ ` unpack 〈α, x〉 = t1 in t2 : τ ′

Ψ; ∆; Γ ` t : τ [µα.τ/α]

Ψ; ∆; Γ ` foldµα.τ t :µα.τ

Ψ; ∆; Γ ` t :µα.τ

Ψ; ∆; Γ ` unfold t : τ [µα.τ/α]

Ψ; ∆; Γ ` t : τ

Ψ; ∆; Γ ` ralloc 〈t〉 : ref 〈τ 〉

Ψ; ∆; Γ ` t : τ

Ψ; ∆; Γ ` balloc 〈t〉 : box 〈τ 〉
Ψ; ∆; Γ ` t : ref 〈τ1, . . . , τi, . . . , τn〉

Ψ; ∆; Γ ` read[i] t : τi

Ψ; ∆; Γ ` t : box 〈τ1, . . . , τi, . . . , τn〉
Ψ; ∆; Γ ` read[i] t : τi

Ψ; ∆; Γ ` t1 : ref 〈τ1, . . . , τi, . . . , τn〉 Ψ; ∆; Γ ` t2 : τi

Ψ; ∆; Γ ` write t1 [i]← t2 : unit

4.8 Reduction Relation 〈H | e〉 7−→ 〈H′ | e′〉

For purposes of our step-indexed logical relation, we consider the reduction rule that loads heap values from
a component’s heap fragment into the main program heap to take 0 reduction steps.

〈H | (t, (H′, ` 7→ h)〉 7−→0 〈(H, `′ 7→ h) | (t[`′/`],H′[`′/`])〉`′ 6∈ dom(H)

〈H | E[n1 p n2]〉 7−→ 〈H | E[prim(p, n1, n2)]〉
〈H | E[if0 0 t1 t2]〉 7−→ 〈H | E[t1]〉
〈H | E[if0 n t1 t2]〉 7−→ 〈H | E[t2]〉 n 6= 0

〈H | E[` [τ ′] v]〉 7−→ 〈H | E[t[τ ′/α][v/x]]〉 H(`) = λ[α](x : τ).t

〈H | E[unpack 〈α, x〉 = pack〈τ ′,v〉 as∃α.τ in t]〉 7−→ 〈H | E[t[τ ′/α][v′/x]]〉
〈H | E[unfold (foldµα.τ v)]〉 7−→ 〈H | E[v]〉
〈H | E[ralloc 〈v1, . . . , vn〉]〉 7−→ 〈H[` 7→ 〈v1, . . . , vn〉] | E[`]〉 ` /∈ H

〈H | E[balloc 〈v1, . . . , vn〉]〉 7−→ 〈H[` 7→ 〈v1, . . . , vn〉] | E[`]〉 ` /∈ H

〈H | E[read[i] `]〉 7−→ 〈H | E[vi]〉 H(`) = 〈v1, . . . , vn〉
〈H | E[write ` [i]← v]〉 7−→ 〈H[` 7→ 〈v1, . . . , v, . . . , vn〉] | E[()]〉

H(`) = 〈v1, . . . , vi, . . . , vn〉

10

4.9 Compiling C to A

4.9.1 Type Translation

αA = α ∀[α].(τ)→ τ ′A = box ∀[α].(τA)→ τ ′A

unitA = unit ∃α.τA = ∃α.τA

intA = int µα.τA = µα.τA

〈τ1, . . . , τn〉A = box 〈(τ1A), . . . (τn
A)〉

4.9.2 Compiler ∆; Γ ` e : τ (t,H : Ψ)

implies that ∆; Γ ` e : τ , · ` H : Ψ, and ·; ∆A; ΓA ` (t,H) : τA

x: τ ∈ Γ

∆; Γ ` x : τ (x, · : ·) ∆; Γ ` () : unit ((), · : ·) ∆; Γ ` n : int (n, · : ·)

∆; Γ ` t1 : int (t1,H1 : Ψ1) ∆; Γ ` t2 : int (t2,H2 : Ψ2)

∆; Γ ` t1 p t2 : int (t1 p t2, (H1,H2) : (Ψ1,Ψ2))

∆; Γ ` t1 : int (t1,H1 : Ψ1) ∆; Γ ` t2 : τ (t2,H2 : Ψ2) ∆; Γ ` t3 : τ (t3,H3 : Ψ3)

∆; Γ ` if0 t1 t2 t3 : τ (if0 t1 t2 t3, (H1,H2,H3) : (Ψ1,Ψ2,Ψ3))

α; x: τ ` t : τ ′ (t,H : Ψ)

∆; Γ ` λ[α](x : τ).t :∀[α].(τ)→ τ ′ (`, (H, ` 7→ λ[α](x : τA).t) : (Ψ, ` : box∀[α].(τA)→ τ ′A))

∆; Γ ` t0 :∀[].(τ1)→ τ2 (t0,H0 : Ψ0) ∆; Γ ` t : τ1 (t,H : Ψ)

∆; Γ ` t0 [] t : τ2 (t0 [] t, (H0,H) : (Ψ0,Ψ))

∆; Γ ` t :∀[β, α].(τ)→ τ ′ (t,H : Ψ) ∆ ` τ0
∆; Γ ` t[τ0] :∀[α].(τ [τ0/β])→ τ ′[τ0/β] (t[τ0

A],H : Ψ)

∆; Γ ` t : τ [τ ′/α] (t,H : Ψ)

∆; Γ ` pack〈τ ′,t〉 as ∃α.τ :∃α.τ (pack〈τ ′A,t〉 as∃α.τA,H : Ψ)

∆; Γ ` t1 :∃α.τ (t1,H1 : Ψ1) ∆, α; Γ, x: τ ` t2 : τ ′ (t2,H2 : Ψ2)

∆; Γ ` unpack 〈α, x〉 = t1 in t2 : τ ′ (unpack 〈α, x〉 = t1 in t2, (H1,H2) : (Ψ1,Ψ2))

∆; Γ ` t : τ [µα.τ/α] (t,H : Ψ)

∆; Γ ` foldµα.τ t :µα.τ (foldµα.τA t,H : Ψ)

∆; Γ ` t :µα.τ (t,H : Ψ)

∆; Γ ` unfold t : τ [µα.τ/α] (unfold t,H : Ψ)

∆; Γ ` t : 〈τ1, . . . τn〉 (t,H : Ψ)

∆; Γ ` πi(t) : τi (read[i] t,H : Ψ)

∆; Γ ` t1 : τ1 (t1,H1 : Ψ1) · · · ∆; Γ ` tn : τn (tn,Hn : Ψn)

∆; Γ ` 〈t1, . . . , tn〉 : 〈τ1, . . . , τn〉 (balloc 〈t1, . . . , tn〉, (H1, . . . ,Hn) : (Ψ1, . . . ,Ψn))

11

5 (F+C) +A

τ ::= · · · | L〈τ 〉
t ::= · · · | τCA e

v ::= · · · | L〈τ〉CA v

E ::= · · · | τCAE

τ ::= · · · | dαe | dαe
t ::= · · · | ACτ e

Et ::= · · · | ACτ E

τ ::= · · · | τ
e ::= · · · | e

v ::= · · · | v

E ::= · · · | E

M ::= H

Ψ ::= Ψ

∆ ::= · · · | ∆,α

Γ ::= · · · | Γ, x : τ

5.1 Boundary Type Translation

α〈A〉 = dαe ∀[α].(τ)→ τ ′〈A〉 = box ∀[α].(τ 〈A〉[α/dαe])→ τ ′〈A〉[α/dαe]
unit〈A〉 = unit ∃α.τ 〈A〉 = ∃α.(τ 〈A〉[α/dαe])

int〈A〉 = int µα.τ 〈A〉 = µα.(τ 〈A〉[α/dαe])
〈τ1, . . . , τn〉〈A〉 = box 〈(τ1〈A〉), . . . (τn〈A〉)〉

L〈τ 〉〈A〉 = τ dαe〈A〉 = dαe

5.2 Type Substutution

dαe[τ/α] = (τ 〈C〉)〈A〉 dαe[τ/α] = τ 〈A〉

5.3 Well-formed Type ∆ ` τ

∆ ` τ
∆ ` L〈τ 〉

α ∈ ∆

∆ ` dαe
α ∈ ∆

∆ ` dαe

5.4 Well-Typed Store `M : Ψ

· ` H : Ψ

` H : Ψ

5.5 Well-Typed Component Ψ; ∆; Γ ` e : τ

Add a store type to each of the previous languages’ typing rules, and add:

Ψ; ∆; Γ ` e : τ 〈A〉

Ψ; ∆; Γ ` τCA e : τ

Ψ; ∆; Γ ` e : τ

Ψ; ∆; Γ ` ACτ e : τ 〈A〉

12

5.6 Value Translation

ACunit((),M) = ((),M)

ACint(n,M) = (n,M)

AC∀[α].(τ)→ τ ′(v,M) = (`, (M, ` 7→ h))

where h = λ[α](x : τ 〈A〉[α/dαe]).ACτ ′[L〈α〉/α] v [L〈α〉] τ [L〈α〉/α]CA x

AC∃α.τ (pack〈τ ′,v〉 as ∃α.τ ,M) = (pack〈τ ′〈A〉,v〉 as∃α.τ 〈A〉,M ′)
where ACτ [τ

′/α](v,M) = (v,M ′)

ACµα.τ (foldµα.τ v,M) = (foldµα.τ 〈A〉 v,M ′) where ACτ [µα.τ/α](v,M) = (v,M ′)

AC〈τ1, . . . , τn〉(〈v1, . . . , vn〉,M) = (`, (Mn+1, ` 7→ 〈v1, . . . , vn〉))
where M1 = M and ACτi(vi,Mi) = (vi,Mi+1)

ACL〈τ〉(L〈τ〉CA v,M) = (v,M)

unitCA((),M) = ((),M)
intCA(n,M) = (n,M)
∀[α].(τ)→ τ ′CA(v,M) = (λ[α](x : τ).τ

′CA v [dαe]ACτ x,M)
∃α.τCA(pack〈τ ′,v〉 as∃α.τ 〈A〉,M)= (pack〈L〈τ ′〉,v〉 as ∃α.τ ,M ′)

where τ [L〈τ
′〉/α]CA(v,M) = (v,M ′)

µα.τCA(foldµα.τ 〈C〉 v,M) = (foldµα.τ v,M ′) where τ [µα.τ/α]CA(v,M) = (v,M ′)

〈τ1, . . . , τn〉CA(`,M) = (〈v1, . . . , vn〉,Mn+1) where M(`) = 〈v1, . . . , vn〉,
M1 = M, and τiCA(vi,Mi) = (vi,Mi+1)

L〈τ〉CA(v,M) = (L〈τ〉CA v,M)

5.7 Reduction Relation 〈M | e〉 7−→ 〈M ′ | e′〉

〈H | e〉 7−→ 〈H′ | e′〉
〈H | E[e]〉 7−→ 〈H′ | E[e′]〉

ACτ (v,M) = (v,M ′)

〈M | E[ACτ v]〉 7−→ 〈M ′ | E[v]〉

τCA(v,M) = (v,M ′) τ 6= L〈τ 〉
〈M | E[τCA v]〉 7−→ 〈M ′ | E[v]〉

13

6 General Contexts and Contextual Equivalence

C ::= [·] | C p t | t p C | if0 C t t | if0 t C t | if0 t t C | λ[α](x : τ).C | C [τ] t | t [τ] t C t | pack〈τ,C〉 as∃α.τ
| unpack 〈α, x〉 = C in t | unpack 〈α, x〉 = t in C | foldµα.τ C | unfold C | 〈t,C, t〉 | πi(C) | τFCC

C ::= [·] | C p t | t p C | if0 C t t | if0 t C t | if0 t t C | λ[α](x : τ).C | C [] t | t [] t C t | C[τ]

| pack〈τ,C〉 as ∃α.τ | unpack 〈α, x〉 = C in t | unpack 〈α, x〉 = t in C | foldµα.τ C

| unfold C | 〈t,C, t〉 | πi(C) | CFτ C | τCAC

C ::= (Ct,H) | (t,CH)

Ct ::= [·] | Ct p t | t p Ct | if0 Ct t t | if0 t Ct t | if0 t t Ct | Ct [] t | t [] t,Ct, t | Ct[τ]

| pack〈τ,Ct〉 as∃α.τ | unpack 〈α, x〉 = Ct in t | unpack 〈α, x〉 = t in Ct | foldµα.τ Ct | unfold Ct

| ralloc 〈t,Ct, t〉 | balloc 〈t,Ct, t〉 | read[i] Ct | write Ct [t]← t | write t [i]← Ct | ACτ C

CH ::= CH, ` 7→ h | H, ` 7→ λ[α](x : τ).Ct

C ::= C | C | C

6.1 Plug Function C[e]

[·][e] = e (pack〈τ,C〉 as∃α.τ)[e] = pack〈τ,(C[e])〉 as∃α.τ
(C p t)[e] = (C[e]) p t (unpack 〈α, x〉 = C in t)[e] = unpack 〈α, x〉 = (C[e]) in t

(t p C)[e] = t p (C[e]) (unpack 〈α, x〉 = t in C)[e] = unpack 〈α, x〉 = t in (C[e])

(if0 C t1 t2)[e] = if0 (C[e]) t1 t2 (foldµα.τ C)[e] = foldµα.τ (C[e])

(if0 t0 C t2)[e] = if0 t0 (C[e]) t2 (unfold C)[e] = unfold (C[e])

(if0 t0 t1 C)[e] = if0 t0 t1 (C[e]) (〈t,C, t′〉)[e] = 〈t, (C[e]), t′〉
(λ[α](x : τ).C)[e] = λ[α](x : τ).(C[e]) (πi(C))[e] = πi(C[e])

(C [τ] t)[e] = (C[e]) [τ] t (τFCC)[e] = τFC (C[e])

(t′ [τ] t C t)[e] = t′ [τ] t (C[e]) t

[·][e] = e (pack〈τ,C〉 as ∃α.τ)[e] = pack〈τ,(C[e])〉 as ∃α.τ
(C p t)[e] = (C[e]) p t (unpack 〈α, x〉 = C in t)[e] = unpack 〈α, x〉 = (C[e]) in t

(t p C)[e] = t p (C[e]) (unpack 〈α, x〉 = t in C)[e] = unpack 〈α, x〉 = t in (C[e])

(if0 C t1 t2)[e] = if0 (C[e]) t1 t2 (foldµα.τ C)[e] = foldµα.τ (C[e])

(if0 t0 C t2)[e] = if0 t0 (C[e]) t2 (unfold C)[e] = unfold (C[e])

(if0 t0 t1 C)[e] = if0 t0 t1 (C[e]) (〈t,C, t′〉)[e] = 〈t, (C[e]), t′〉
(λ[α](x : τ).C)[e] = λ[α](x : τ).(C[e]) (πi(C))[e] = πi(C[e])

(C [] t)[e] = (C[e]) [] t (CFτ C)[e] = CFτ (C[e])

(t′ [] t C t)[e] = t′ [] t (C[e]) t (τCAC)[e] = τCA (C[e])

(C[τ])[e] = (C[e])[τ]

(Ct,H)[e] =

{
(Ct[t], (H,H′)) e = (t,H′) ∧ Ct contains no language boundaries

(Ct[e],H) otherwise

(t,CH)[e] =

{
(t, (CH[t],H′)) e = (t,H′) ∧ CH contains no language boundaries

(t,CH[e]) otherwise

14

[·][t] = t (pack〈τ,Ct〉 as∃α.τ)[e] = pack〈τ,(Ct[e])〉 as∃α.τ
(Ct p t)[e] = (Ct[e]) p t (unpack 〈α, x〉 = Ct in t)[e] = unpack 〈α, x〉 = (Ct[e]) in t

(t p Ct)[e] = t p (Ct[e]) (unpack 〈α, x〉 = t in Ct)[e] = unpack 〈α, x〉 = t in (Ct[e])

(if0 Ct t1 t2)[e] = if0 (Ct[e]) t1 t2 (foldµα.τ Ct)[e] = foldµα.τ (Ct[e])

(if0 t0 Ct t2)[e] = if0 t0 (Ct[e]) t2 (unfold Ct)[e] = unfold (Ct[e])

(if0 t0 t1 Ct)[e] = if0 t0 t1 (Ct[e]) (ralloc 〈t,Ct, t′〉)[e] = ralloc 〈t, (Ct[e]), t′〉
(Ct [] t)[e] = (Ct[e]) [] t (balloc 〈t,Ct, t′〉)[e] = balloc 〈t, (Ct[e]), t′〉

(t′ [] t,Ct, t)[e] = t′ [] t, (Ct[e]), t (read[i] Ct)[e] = read[i] (Ct[e])

(Ct[τ])[e] = (Ct[e])[τ] (write Ct [i]← t)[e] = write Ct[e] [i]← t

(ACτ C)[e] = ACτ (C[e]) (write t [i]← Ct)[e] = write t [i]← Ct[e]

(CH, ` 7→ h)[e] = CH[e], ` 7→ h

(H, ` 7→ λ[α](x : τ).Ct)[e] = H, ` 7→ λ[α](x : τ).(Ct[e])

6.2 Well-Typed Context ` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ ′)

Ψ ⊆ Ψ′ ∆ ⊆ ∆′ Γ ⊆ Γ′

` [·] : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ)

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` int) Ψ′; ∆′; Γ′ ` t : int

` C p t : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` int)

Ψ′; ∆′; Γ′ ` t : int ` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` int)

` t p C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` int)

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` int) Ψ′; ∆′; Γ′ ` t1 : τ Ψ′; ∆′; Γ′ ` t2 : τ

` if0 C t1 t2 : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ)

Ψ′; ∆′; Γ′ ` t0 : int ` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ) Ψ′; ∆′; Γ′ ` t2 : τ

` if0 t0 C t2 : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ)

Ψ′; ∆′; Γ′ ` t0 : int Ψ′; ∆′; Γ′ ` t1 : τ ` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ)

` if0 t0 t1 C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ)

` C : (Ψ; ∆; Γ ` τ) (Ψ′; (∆′, α); (Γ′, x : τ) ` τ ′)
` λ[α](x : τ).C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` ∀[α].(τ)→ τ ′)

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` ∀[α].(τ1, . . . , τn)→ τ ′)

∆ ` τ Ψ′; ∆′; Γ′ ` t1 : τ1[τ/α] · · · Ψ′; ∆′; Γ′ ` tn : τn[τ/α]

` C [τ] t1 · · · tn : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ ′[τ/α])

Ψ′; ∆′; Γ′ ` t :∀[α].(τ1, . . . , τn)→ τ ′ ∆ ` τ
Ψ′; ∆′; Γ′ ` t1 : τ1[τ/α] · · · Ψ′; ∆′; Γ′ ` ti : τi[τ/α] ` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τi+1[τ/α])

Ψ′; ∆′; Γ′ ` ti+2 : τi+2[τ/α] · · · Ψ′; ∆′; Γ′ ` tn : τn[τ/α]

` t [τ] t1 · · · ti C ti+2 · · · tn : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ ′[τ/α])

15

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ [τ ′/α])

` pack〈τ ′,C〉 as∃α.τ : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` ∃α.τ)

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` ∃α.τ) Ψ′; ∆′, α; Γ′, x : τ ` t : τ ′

` unpack 〈α, x〉 = C in t : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` ∃α.τ)

Ψ′; ∆′; Γ′ ` t :∃α.τ ` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′, α; Γ′, x : τ ` τ ′)
` unpack 〈α, x〉 = t in C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ ′)

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ [µα.τ/α])

` foldµα.τ C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` µα.τ)

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` µα.τ)

` unfold C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ [µα.τ/α])

Ψ′; ∆′; Γ′ ` t1 : τ1 · · · Ψ′; ∆′; Γ′ ` ti : τi
` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τi+1) Ψ′; ∆′; Γ′ ` ti+2 : τi+2 · · · Ψ′; ∆′; Γ′ ` tn : τn

` 〈t1, . . . , ti,C, ti+2, . . . , tn〉 : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` 〈τ1, . . . , τn〉)

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` 〈τ1, . . . , τn〉)
` πi(C) : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τi)

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ 〈C〉)
` τFCC : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ)

Ψ ⊆ Ψ′ ∆ ⊆ ∆′ Γ ⊆ Γ′

` [·] : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ)

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` int) Ψ′; ∆′; Γ′ ` t : int

` C p t : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` int)

Ψ′; ∆′; Γ′ ` t : int ` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` int)

` t p C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` int)

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` int) Ψ′; ∆′; Γ′ ` t1 : τ Ψ′; ∆′; Γ′ ` t2 : τ

` if0 C t1 t2 : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ)

Ψ′; ∆′; Γ′ ` t0 : int ` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ) Ψ′; ∆′; Γ′ ` t2 : τ

` if0 t0 C t2 : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ)

Ψ′; ∆′; Γ′ ` t0 : int Ψ′; ∆′; Γ′ ` t1 : τ ` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ)

` if0 t0 t1 C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ)

` C : (Ψ; ∆; Γ ` τ) (Ψ′; (α); (x: τ) ` τ ′)
` λ[α](x : τ).C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` ∀[α].(τ)→ τ ′)

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` ∀[].(τ1, . . . , τn)→ τ ′)
Ψ′; ∆′; Γ′ ` t1 : τ1 · · · Ψ′; ∆′; Γ′ ` tn : τn

` C [] t1 · · · tn : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ ′)

Ψ′; ∆′; Γ′ ` t :∀[].(τ1, . . . , τn)→ τ ′ Ψ′; ∆′; Γ′ ` t1 : τ1 · · · Ψ′; ∆′; Γ′ ` ti : τi
` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τi+1) Ψ′; ∆′; Γ′ ` ti+2 : τi+2 · · · Ψ′; ∆′; Γ′ ` tn : τn

` t [] t1 · · · ti C ti+2 · · · tn : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ ′)

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` ∀[β, α].(τ)→ τ ′) ∆ ` τ0
` C[τ0] : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` ∀[α].(τ [τ0/β])→ τ ′[τ0/β])

16

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ [τ ′/α])

` pack〈τ ′,C〉 as ∃α.τ : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` ∃α.τ)

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` ∃α.τ) Ψ′; ∆′,α; Γ′,x: τ ` t : τ ′

` unpack 〈α, x〉 = C in t : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` ∃α.τ)

Ψ′; ∆′; Γ′ ` t :∃α.τ ` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′,α; Γ′,x: τ ` τ ′)
` unpack 〈α, x〉 = t in C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ ′)

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ [µα.τ/α])

` foldµα.τ C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` µα.τ)

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` µα.τ)

` unfold C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ [µα.τ/α])

Ψ′; ∆′; Γ′ ` t1 : τ1 · · · Ψ′; ∆′; Γ′ ` ti : τi
` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τi+1) Ψ′; ∆′; Γ′ ` ti+2 : τi+2 · · · Ψ′; ∆′; Γ′ ` tn : τn

` 〈t1, . . . , ti,C, ti+2, . . . , tn〉 : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` 〈τ1, . . . , τn〉)

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` 〈τ1, . . . , τn〉)
` πi(C) : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τi)

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ)

` CFτ C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ 〈C〉)

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ 〈A〉)
` τCAC : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ)

Ψ′ ` H : Ψ ` Ct : (Ψ; ∆; Γ ` τ) ((Ψ′,Ψ); ∆′; Γ′ ` τ ′)
` (Ct,H) : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ ′)

` CH : (Ψ; ∆; Γ ` τ) (Ψ′ ` Ψ) (Ψ′,Ψ); ∆′; Γ′ ` t : τ ′

` (t,CH) : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ ′)
Ψ ⊆ Ψ′ ∆ ⊆ ∆′ Γ ⊆ Γ′

` [·] : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ)

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` int) Ψ′; ∆′; Γ′ ` t : int

` C p t : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` int)

Ψ′; ∆′; Γ′ ` t : int ` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` int)

` t p C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` int)

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` int) Ψ′; ∆′; Γ′ ` t1 : τ Ψ′; ∆′; Γ′ ` t2 : τ

` if0 C t1 t2 : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ)

Ψ′; ∆′; Γ′ ` t0 : int ` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ) Ψ′; ∆′; Γ′ ` t2 : τ

` if0 t0 C t2 : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ)

Ψ′; ∆′; Γ′ ` t0 : int Ψ′; ∆′; Γ′ ` t1 : τ ` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ)

` if0 t0 t1 C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ)

17

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` box ∀[].(τ1, . . . , τn)→ τ ′)
Ψ′; ∆′; Γ′ ` t1 : τ1 · · · Ψ′; ∆′; Γ′ ` tn : τn

` C [] t1 · · · tn : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ ′)

Ψ′; ∆′; Γ′ ` t : box∀[].(τ1, . . . , τn)→ τ ′ Ψ′; ∆′; Γ′ ` t1 : τ1 · · · Ψ′; ∆′; Γ′ ` ti : τi

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τi+1) Ψ′; ∆′; Γ′ ` ti+2 : τi+2 · · · Ψ′; ∆′; Γ′ ` tn : τn

` t [] t1 · · · ti C ti+2 · · · tn : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ ′)

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` box∀[β, α].(τ)→ τ ′) ∆ ` τ0

` C[τ0] : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` box ∀[α].(τ [τ0/β])→ τ ′[τ0/β])

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ [τ ′/α])

` pack〈τ ′,C〉 as∃α.τ : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` ∃α.τ)

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` ∃α.τ) Ψ′; ∆′,α; Γ′, x : τ ` t : τ ′

` unpack 〈α, x〉 = C in t : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` ∃α.τ)

Ψ′; ∆′; Γ′ ` t :∃α.τ ` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′,α; Γ′, x : τ ` τ ′)
` unpack 〈α, x〉 = t in C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ ′)

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ [µα.τ/α])

` foldµα.τ C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` µα.τ)

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` µα.τ)

` unfold C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ [µα.τ/α])

Ψ′; ∆′; Γ′ ` t1 : τ1 · · · Ψ′; ∆′; Γ′ ` ti : τi

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τi+1) Ψ′; ∆′; Γ′ ` ti+2 : τi+2 · · · Ψ′; ∆′; Γ′ ` tn : τn

` ralloc〈t1, . . . , ti,C, ti+2, . . . , tn〉 : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` ref〈τ1, . . . , τn〉)

Ψ′; ∆′; Γ′ ` t1 : τ1 · · · Ψ′; ∆′; Γ′ ` ti : τi

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τi+1) Ψ′; ∆′; Γ′ ` ti+2 : τi+2 · · · Ψ′; ∆′; Γ′ ` tn : τn

` balloc〈t1, . . . , ti,C, ti+2, . . . , tn〉 : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` box〈τ1, . . . , τn〉)

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` ref 〈τ1, . . . , τn〉)
` read[i] C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τi)

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` box 〈τ1, . . . , τn〉)
` read[i] C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τi)

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` ref 〈τ1, . . . , τn〉) Ψ′; ∆′; Γ′ ` t : τi

` write C [i]← t : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` unit)

Ψ′; ∆′; Γ′ ` t : ref 〈τ1, . . . , τn〉 ` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τi)

` write t [i]← C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` unit)

` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ)

` ACτ C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ 〈A〉)

H = `1 7→ h1, . . . , `n 7→ hn H′ = `′1 7→ h′1, . . . , `
′
m 7→ h′n

Ψ = {`1 :ψ1, . . . , `n :ψn, ` : ∀[α].(τ)→ τ ′, `′1 :ψ′1, . . . , `
′
m :ψ′m} · ` ψ1 · · · · ` ψn

Ψ′,Ψ ` h1 :ψ1 · · · Ψ′,Ψ ` hn :ψn ` Ct : (Ψ; ∆; Γ ` τ) ((Ψ′,Ψ); (α); (x : τ) ` τ ′)
· ` ψ′1 · · · · ` ψ

′
m Ψ′,Ψ ` h′1 :ψ′1 · · · Ψ′,Ψ ` h′m :ψ′m

` H, ` 7→ λ[α](x : τ).Ct,H′ : (Ψ; ∆; Γ ` τ) (Ψ′ ` Ψ)

18

6.3 Contextual Equivalence

Ψ; ∆; Γ ` e1 ≈ctx e2 : τ
def
= Ψ; ∆; Γ ` e1 : τ ∧ Ψ; ∆; Γ ` e2 : τ ∧
∀C,M,Ψ′, τ ′. ` C : (Ψ; ∆; Γ ` τ) (Ψ′; ·; · ` τ ′) ∧ `M : Ψ′

=⇒ (〈M | C[e1]〉 ↓ ⇐⇒ 〈M | C[e2]〉 ↓)

6.4 CIU Equivalence

Ψ; ∆; Γ ` e1 ≈ciu e2 : τ
def
= Ψ; ∆; Γ ` e1 : τ ∧ Ψ; ∆; Γ ` e2 : τ ∧
∀δ, γ, E,M,Ψ′, τ ′. · ` δ : ∆ ∧ Ψ′; ·; · ` γ : δ(Γ) ∧

` E : (Ψ; ·; · ` τ) (Ψ′; ·; · ` τ ′) ∧ `M : Ψ′

=⇒ (〈M | E[δ(γ(e1))]〉 ↓ ⇐⇒ 〈M | E[δ(γ(e2))]〉 ↓)

19

7 Logical Relation

Worlds and Auxiliary Definitions A world W consists of a step index k, a pair of heap types Ψ1 and
Ψ2, and a sequence Θ of islands θ. Each island expresses invariants on certain parts of memory by encoding
a state transition system and a memory relation MR that establishes which pairs of memories are acceptable
in each state. (See Dreyer et al. [14] for details.)

The first island in Θ is distinguished: it tracks the immutable contents of the heap. We assign this island
the index ibox. Further islands can be added to a world to encode invariants about mutable data.

Worldn
def
= {W = (k,Ψ1,Ψ2,Θ) | k < n ∧ ∃m ≥ 1. Θ ∈ Islandmk ∧
∃sbox. Θ(ibox) = islandbox(sbox, k) ∧ Ψref

1 ` sbox.M1 : Ψbox
1 ∧ Ψref

2 ` sbox.M2 : Ψbox
2 }

Islandn
def
= { θ = (s, S, δ, π,MR,bij) | s ∈ S ∧ S ∈ Set ∧ δ ⊆ S × S ∧ π ⊆ δ ∧

δ, π reflexive ∧ δ, π transitive ∧MR ∈ S → MemReln ∧ bij ∈ S → P(Val×Val) }

MemAtomn
def
= { (W,M1,M2) |W ∈Worldn ∧ Ψ1 `M1 : Ψ′1 ∧ Ψ2 `M2 : Ψ′2 ∧

Ψ1]Ψ′1 = W.Ψ1 ∧ Ψ2]Ψ′2 = W.Ψ2 }
MemReln

def
= {ϕM ⊆ MemAtomn | ∀(W,M1,M2) ∈ ϕM . ∀W ′ wW. (W ′,M1,M2) ∈ ϕM }

ϕM ⊗ ϕ′M
def
= { (W,M1]M ′1,M2]M ′2) | (W,M1,M2) ∈ ϕM ∧ (W,M ′1,M

′
2) ∈ ϕ′M}

The states of θbox encode the contents of the immutable part of the heap on each side. This island is
allowed to transition only by adding more immutable data to the heap.

ibox = 1

Sbox = { (M1,M2) }
δbox = {((M1,M2), (M ′1,M

′
2)) |M1 ⊆M ′1 ∧ M2 ⊆M ′2}

islandbox(s, k) = (s, Sbox, δbox, δbox, λs.{(W, s.M1, s.M2) |W ∈Worldk}, λs.∅)

These are standard operations for dealing with step indexing: we can approximate a world or relation to
a given number of steps with b·ck, and we can expend a step using the B operator (read “later”).

b(θ1, . . . , θm)ck
def
= (bθ1ck, . . . , bθmck)

b(s, S, δ, π,MR,bij)ck
def
= (s, S, δ, π, bMRck,bij)

bMRck
def
= λs. bMR(s)ck

bϕMck
def
= { (W,M1,M2) ∈ ϕM | W.k < k }

B(k + 1,Ψ1,Ψ2,Θ)
def
= (k,Ψ1,Ψ2, bΘck)

Bϕe
def
= { (W, e1, e2) |W.k > 0 =⇒ (BW, e1, e2) ∈ ϕe }

Bϕv
def
= { (W, v1, v2) |W.k > 0 =⇒ (BW, v1, v2) ∈ ϕv }

Future worlds W ′ of a given world W , written W ′ wW , may differ from W in any or all of the following
ways: they may have expended steps, added new islands, or taken transitions in existing islands. When
islands are added or transitioned, additional memory can be allocated. Public future worlds W ′ wpub W are

20

similar, but must have taken public transitions from the island states in W .

(k′,Ψ′1,Ψ
′
2,Θ

′) w (k,Ψ1,Ψ2,Θ)
def
= k′ ≤ k ∧ Ψ′1 ⊇ Ψ1 ∧ Ψ′2 ⊇ Ψ2 ∧ Θ′ w bΘck′
∧ (k,Ψ1,Ψ2,Θ) ∈World ∧ (k′,Ψ′1,Ψ

′
2,Θ

′) ∈World

(θ′1, . . . , θ
′
m′) w (θ1, . . . , θm)

def
= m′ ≥ m ∧ ∀j ∈ {1, . . . ,m}. θ′j w θj

(s′, S′, δ′, π′,MR′,bij′) w (s, S, δ, π,MR,bij)
def
= (S′, δ′, π′,MR′,bij′) = (S, δ, π,MR,bij) ∧ (s, s′) ∈ δ

(k′,Ψ′1,Ψ
′
2,Θ

′) wpub (k,Ψ1,Ψ2,Θ)
def
= k′ ≤ k ∧ Ψ′1 ⊇ Ψ1 ∧ Ψ′2 ⊇ Ψ2 ∧ Θ′ wpub bΘck′
∧ (k,Ψ1,Ψ2,Θ) ∈World ∧ (k′,Ψ′1,Ψ

′
2,Θ

′) ∈World

(θ′1, . . . , θ
′
m′) wpub (θ1, . . . , θm)

def
= m′ ≥ m ∧ ∀j ∈ {1, . . . ,m}. θ′j wpub θj

(s′, S′, δ′, π′,MR′,bij′) wpub (s, S, δ, π,MR,bij)
def
= (S′, δ′, π′,MR′,bij′) = (S, δ, π,MR,bij) ∧ (s, s′) ∈ π

Given a world W , we often need to talk about future worlds of W where the only change is that new
immutable memory has been allocated. We use this notation to capture this:

W � (M1,M2)
def
= (W.k,W.Ψ1]Ψ1,W.Ψ2]Ψ2,W.Θ[ibox 7→ islandbox(W (ibox).s] (M1,M2), W.k)])

if W.Ψ1 `M1 : Ψ1 ∧ W.Ψ2 `M2 : Ψ2 ∧ boxheap(Ψ1) ∧ boxheap(Ψ2).

The following is a convenient shorthand for getting the memory relation from the current state of an
island:

currentMR(θ)
def
= θ.MR(θ.s)

Admissible Relations Atoms are well-formed worlds together with a pair of components or values that
are well-typed at the indicated type under the appropriate memory type of the world.

TermAtomn[τ1, τ2]
def
= { (W, e1, e2) |W ∈Worldn ∧ W.Ψ1; ·; · ` e1 : τ1 ∧ W.Ψ2; ·; · ` e2 : τ2 }

ValAtomn[τ1, τ2]
def
= { (W, v1, v2) ∈ TermAtomn[τ1, τ2] }

HvalAtomn[ψ1,ψ2]
def
= { (W,h1,h2) |W ∈Worldn ∧ W.Ψ1 ` h1 :ψ1 ∧ W.Ψ2 ` h2 :ψ2 }

ContAtom[τ1, τ2] [τ ′1, τ
′
2]

def
= {(W,E1, E2) |W ∈World ∧ ∃Ψ1,Ψ2.

` E1 : (W.Ψ1; ·; · ` τ1) (Ψ1; ·; · ` τ ′1) ∧
` E2 : (W.Ψ2; ·; · ` τ2) (Ψ2; ·; · ` τ ′2)}

Relations ϕv on values must respect forward boundary cancellation on each side. If they are designated
as “translation relations,” they must also respect backward boundary cancellation. Since boundaries can
allocate (immutable) memory, boundary cancellation moves us to a future world that has added that memory
to the current state of θbox. The � operation we defined earlier expresses this transition.

ValRel[τ1, τ2]
def
= {ϕFv ⊆ ValAtom[τ1, τ2] | ∀(W, v1, v2) ∈ ϕFv . (∀W ′ wW. (W ′, v1, v2) ∈ ϕFv) ∧
∀(M1,M2) :W. ∀v′1, v

′
2,M

′
1,M

′
2.

(τ1FC(CFτ1(v1,M1)) = (v′1,M1]M ′1) =⇒ (W � (M ′1, {·}), v′1, v2) ∈ ϕFv) ∧
(τ2FC(CFτ2(v2,M2)) = (v′2,M2]M ′2) =⇒ (W � ({·},M ′2), v1, v

′
2) ∈ ϕFv)}

ValRel[τ1, τ2]
def
= {ϕCv ⊆ ValAtom[τ1, τ2] | ∀(W,v1,v2) ∈ ϕCv . (∀W ′ wW. (W ′,v1,v2) ∈ ϕCv) ∧
∀(M1,M2) :W. ∀v′1,v′2,M ′1,M ′2.

(τ1CA(ACτ1(v1,M1)) = (v′1,M1]M ′1) =⇒ (W � (M ′1, {·}),v′1,v2) ∈ ϕCv) ∧
(τ2CA(ACτ2(v2,M2)) = (v′2,M2]M ′2) =⇒ (W � ({·},M ′2),v1,v

′
2) ∈ ϕCv)}

ValRel[τ1, τ2]
def
= {ϕAv ⊆ ValAtom[τ1, τ2] | ∀(W, v1, v2) ∈ ϕAv . ∀W ′ wW. (W ′, v1, v2) ∈ ϕAv }

21

TransRelC [τ1, τ2]
def
= {ϕCv ∈ ValRel[τ1

〈C〉, τ2
〈C〉] | ∀(W,v1,v2) ∈ ϕCv . ∀(M1,M2) :W. ∀v′1,v′2,M ′1,M ′2.

(CFτ1(τ1FC(v1,M1)) = (v′1,M1]M ′1) =⇒ (W � (M ′1, {·}),v′1,v2) ∈ ϕCv) ∧
(CFτ2(τ2FC(v2,M2)) = (v′2,M2]M ′2) =⇒ (W � ({·},M ′2),v1,v

′
2) ∈ ϕCv)}

TransRelA[τ1, τ2]
def
= {ϕAv ∈ ValRel[τ1

〈A〉, τ2
〈A〉] | ∀(W, v1, v2) ∈ ϕAv . ∀(M1,M2) :W. ∀v′1, v′2,M ′1,M ′2.

(ACτ1(τ1CA(v1,M1)) = (v′1,M1]M ′1) =⇒ (W � (M ′1, {·}), v′1, v2) ∈ ϕAv) ∧
(ACτ2(τ2CA(v2,M2)) = (v′2,M2]M ′2) =⇒ (W � ({·},M ′2), v1, v′2) ∈ ϕAv)}

We need a basic notion of the translation of a relation ϕv. Given a relation interpretating a type variable,
the definitions below express the bare minimum requirement for what should be related under the relation
that interprets its translation.

CF(τ1, τ2, ϕ
F
v) = {(W � (M ′1,M

′
2),v1,v2) | (M1,M2) :W ∧ (W, v1, v2) ∈ ϕFv ∧

CFτ1(v1,M1) = (v1,M1]M ′1) ∧ CFτ2(v2,M2) = (v2,M2]M ′2)}
if ϕFv ∈ ValRel[τ1, τ2]

FC(τ1, τ2, ϕCv) = {(W � (M ′1,M
′
2), v1, v2) | (M1,M2) :W ∧ (W,v1,v2) ∈ ϕCv ∧

τ1FC(v1,M1) = (v1,M1]M ′1) ∧ τ2FC(v2,M2) = (v2,M2]M ′2)}
if ϕCv ∈ TransRelC [τ1, τ2]

AC(τ1, τ2, ϕCv) = {(W � (M ′1,M
′
2), v1, v2) | (M1,M2) :W ∧ (W,v1,v2) ∈ ϕCv ∧

ACτ1(v1,M1) = (v1,M1]M ′1) ∧ ACτ2(v2,M2) = (v2,M2]M ′2)}
if ϕCv ∈ ValRel[τ1, τ2]

CA(τ1, τ2, ϕ
A
v) = {(W � (M ′1,M

′
2),v1,v2) | (M1,M2) :W ∧ (W, v1, v2) ∈ ϕAv ∧

τ1CA(v1,M1) = (v1,M1]M ′1) ∧ τ2CA(v2,M2) = (v2,M2]M ′2)}
if ϕAv ∈ TransRelA[τ1, τ2]

We now define the full requirements for interpretations of type variables, which much include relations
specifying how the translation should be interpreted:

FValRel
def
= {VR = (τ1, τ2, ϕ

F
v , ϕ

C
v , ϕ

A
v) |

ϕFv ∈ ValRel[τ1, τ2] ∧ ϕCv ∈ TransRelC [τ1, τ2] ∧ ϕAv ∈ TransRelA[τ1
〈C〉, τ2

〈C〉] ∧
CF(τ1, τ2, ϕ

F
v) ⊆ ϕCv ∧ FC(τ1, τ2, ϕCv) ⊆ ϕFv ∧

AC(τ1〈C〉, τ2〈C〉, ϕCv) ⊆ ϕAv ∧ CA(τ1
〈C〉, τ2

〈C〉, ϕAv) ⊆ ϕCv }
CValRel

def
= {VR = (τ1, τ2, ϕ

C
v , ϕ

A
v) | ϕCv ∈ ValRel[τ1, τ2] ∧ ϕAv ∈ TransRelA[τ1, τ2] ∧

AC(τ1, τ2, ϕCv) ⊆ ϕAv ∧ CA(τ1, τ2, ϕ
A
v) ⊆ ϕCv }

AValRel
def
= {VR = (τ1, τ2, ϕ

A
v) | ϕAv ∈ ValRel[τ1, τ2]}

The set DJ∆K ensures that an environment ρ mapping type variables to value relations is well-formed.

DJ·K def
= { ∅ }

DJ∆, αK def
= { ρ[α 7→ VR] | ρ ∈ DJ∆K ∧ VR ∈ FValRel }

DJ∆,αK def
= { ρ[α 7→ VR] | ρ ∈ DJ∆K ∧ VR ∈ CValRel }

DJ∆,αK def
= { ρ[α 7→ VR] | ρ ∈ DJ∆K ∧ VR ∈ AValRel }

We use ρ1 and ρ2 to denote the substitutions formed by mapping variables in dom ρ to the first and
second components, respectively, of the tuples they map to.

We also use some shorthands for referring to atoms of a particular type in terms of an environment ρ:

22

TermAtom[τ]ρ
def
= TermAtom[ρ1(τ), ρ2(τ)]

ValAtom[τ]ρ
def
= ValAtom[ρ1(τ), ρ2(τ)]

HvalAtom[ψ]ρ
def
= HvalAtom[ρ1(ψ), ρ2(ψ)]

ContAtom[τ]ρ [τ ′]ρ′
def
= ContAtom[ρ1(τ), ρ2(τ)] [ρ′1(τ ′1), ρ′2(τ ′2)]

Core Relations The relation VJτKρ expresses when two values are related under a given world. For values
from language F, it is almost completely standard.

VJαKρ = ρ(α).ϕFv

VJunitKρ = { (W, (), ()) ∈ ValAtom[unit]ρ }
VJintKρ = { (W, n, n) ∈ ValAtom[int]ρ }
VJ∀[α].(τ)→ τ ′Kρ= { (W, v1, v2) ∈ ValAtom[∀[α].(τ)→ τ ′]ρ |

∀W ′ wW. ∀VR ∈ FValRel. ∀v′1, v
′
2. (W ′, v′1, v

′
2) ∈ VJτKρ[α 7→ VR]

=⇒ (W ′, v1 [VR.τ1] v′1, v2 [VR.τ2] v′2) ∈ EJτ ′Kρ[α 7→ VR] }
VJ∃α.τKρ = {(W, pack〈τ1,v1〉 as ρ1(∃α.τ), pack〈τ2,v2〉 as ρ2(∃α.τ)) ∈ ValAtom[∃α.τ]ρ |

∃VR ∈ FValRel. VR.τ1 = τ1 ∧ VR.τ2 = τ2 ∧ (W, v1, v2) ∈ VJτKρ[α 7→ VR] }
VJµα.τKρ = { (W, foldρ1(µα.τ) v1, foldρ2(µα.τ) v2) ∈ ValAtom[µα.τ]ρ |

(W, v1, v2) ∈ BVJτ [µα.τ/α]Kρ }
VJ〈τ1, . . . , τn〉Kρ = { (W, 〈v11, . . . , v1n〉, 〈v21, . . . , v2n〉) ∈ ValAtom[〈τ1, . . . , τn〉]ρ |

∀j ∈ {1, . . ., n}. (W, v1j, v2j) ∈ VJτjKρ }
VJL〈τ 〉Kρ = { (W, ρ1(L〈τ〉)FC v1,

ρ2(L〈τ〉)FC v2) ∈ ValAtom[L〈τ 〉]ρ | (W,v1,v2) ∈ VJτ Kρ }

The cases for language C types are almost identical to those for language F. The only addition is the
case for a suspended type variable.

VJαKρ = ρ(α).ϕCv

VJunitKρ = { (W, (), ()) ∈ ValAtom[unit]ρ }
VJintKρ = { (W,n,n) ∈ ValAtom[int]ρ }
VJ∀[α].(τ)→ τ ′Kρ= { (W,v1,v2) ∈ ValAtom[∀[α].(τ)→ τ ′]ρ |

∀W ′ wW. ∀VR ∈ CValRel. ∀v′1,v′2. (W ′,v′1,v
′
2) ∈ VJτ Kρ[α 7→ VR]

=⇒ (W ′,v1 [VR.τ1] v′1,v2 [VR.τ2] v′2) ∈ EJτ ′Kρ[α 7→ VR]}
VJ∃α.τ Kρ = { (W,pack〈τ1,v1〉 as ρ1(∃α.τ),pack〈τ2,v2〉 as ρ2(∃α.τ)) ∈ ValAtom[∃α.τ]ρ |

∃VR ∈ CValRel. VR.τ1 = τ1 ∧ VR.τ2 = τ2 ∧ (W,v1,v2) ∈ VJτ Kρ[α 7→ VR] }
VJµα.τ Kρ = { (W, foldρ1(µα.τ) v1, foldρ2(µα.τ) v2) ∈ ValAtom[µα.τ]ρ |

(W,v1,v2) ∈ BVJτ [µα.τ/α]Kρ }
VJ〈τ1, . . . , τn〉Kρ = { (W, 〈v11, . . . , v1n〉, 〈v21, . . . , v2n〉) ∈ ValAtom[〈τ1, . . . , τn〉]ρ |

∀j ∈ {1, . . .,n}. (W,v1j,v2j) ∈ VJτjKρ }
VJdαeKρ = ρ(α).ϕCv

VJL〈τ 〉Kρ = { (W, ρ1(L〈τ〉)CA v1,
ρ2(L〈τ〉)CA v2) ∈ ValAtom[L〈τ 〉]ρ | (W, v1, v2) ∈ VJτ Kρ }

23

For language A, we add cases for mutable and immutable references, and a second relation HVJψKρ to
describe when heap values are related, but otherwise we continue the patterns of previous languages.

VJαKρ = ρ(α).ϕAv

VJunitKρ = { (W, (), ()) ∈ ValAtom[unit]ρ }
VJintKρ = { (W,n,n) ∈ ValAtom[int]ρ }
VJ∃α.τ Kρ = { (W,pack〈τ1,v1〉 as ρ1(∃α.τ),pack〈τ2,v2〉 as ρ2(∃α.τ)) ∈ ValAtom[∃α.τ]ρ |

∃VR ∈ AValRel.VR.τ1 = τ1 ∧ VR.τ2 = τ2 ∧ (W, v1, v2) ∈ VJτ Kρ[α 7→ VR] }
VJµα.τ Kρ = { (W, foldρ1(µα.τ) v1, foldρ2(µα.τ) v2) ∈ ValAtom[µα.τ]ρ |

(W, v1, v2) ∈ BVJτ [µα.τ/α]Kρ }
VJref ψKρ = {(W, `1, `2) ∈ ValAtom[ref ψ]ρ | ∃i. ∀W ′ wW. (`1, `2) ∈W ′(i).bij(W ′(i).s) ∧

∃ϕM . currentMR(W ′(i)) = ϕM ⊗
{(W̃ ,{`1 7→ h1},{`2 7→ h2}) ∈ MemAtom | (W̃ ,h1,h2) ∈ HVJψKρ}

VJbox 〈τ1, . . . , τn〉Kρ = { (W, `1, `2) ∈ ValAtom[box 〈τ1, . . . , τn〉]ρ |
∀(W ′,M1,M2) ∈ currentMR(W (ibox)).

(W ′,M1(`1),M2(`2)) ∈ HVJ〈τ1, . . . , τn〉Kρ }
VJbox∀[α].(τ)→ τ ′Kρ= { (W, `1[τ

′
11, . . . , τ

′
1m], `2[τ

′
21, . . . , τ

′
2n]) ∈ ValAtom[box ∀[α].(τ)→ τ ′]ρ |

∀(W ′,M1,M2) ∈ currentMR(W (ibox)).

M1(`1) = λ[β11, . . . , β1m, α](x : τ1).t1 ∧ τ1[τ
′
1/β1] = ρ1(τ) ∧

M2(`2) = λ[β21, . . . , β2n, α](x : τ2).t2 ∧ τ2[τ
′
2/β2] = ρ2(τ) ∧

(W ′,λ[α](x : ρ1(τ)).t1[τ
′
1/β1],λ[α](x : ρ2(τ)).t2[τ

′
2/β2])

∈ HVJ∀[α].(τ)→ τ ′Kρ }
VJdαeKρ = ρ(α).ϕAv

VJdαeKρ = ρ(α).ϕAv

HVJ∀[α].(τ)→ τ ′Kρ = { (W,λ[α](x : ρ1(τ)).t1,λ[α](x : ρ2(τ)).t2) ∈ HvalAtom[∀[α].(τ)→ τ ′]ρ |
∀W ′ wW. ∀VR ∈ AValRel. ∀v1, v2. (W ′, v1, v2) ∈ VJτ Kρ[α 7→ VR]

=⇒ (W ′, t1[VR.τ1/α][v1/x], t2[VR.τ2/α][v2/x]) ∈ EJτ ′Kρ[α 7→ VR]}
HVJ〈τ1, . . . , τn〉Kρ = { (W, 〈v11, . . . , v1n〉, 〈v21, . . . , v2n〉) ∈ HvalAtom[〈τ1, . . . , τn〉]ρ |

∀j ∈ {1, . . .,n}. (W, v1j, v2j) ∈ VJτjKρ }

24

The relations KJτKρ and EJτKρ interpret types as sets of continuations or terms, respectively. They
depend on a notion of related observations, O.

KJτKρ = { (W,E1, E2) ∈ ContAtom[τ]ρ [τ ′]ρ′ |
∀W ′, v1, v2. W

′ wpub W ∧ (W ′, v1, v2) ∈ VJτKρ =⇒ (W ′, E1[v1], E2[v2]) ∈ O }
EJτKρ = { (W, e1, e2) ∈ TermAtom[τ]ρ |

∀E1, E2. (W,E1, E2) ∈ KJτKρ =⇒ (W,E1[e1], E2[e2]) ∈ O }

(M1,M2) : W = (W.k > 0 =⇒ (BW,M1,M2) ∈
⊗
{ currentMR(θ) | θ ∈W.Θ })

running(k, 〈M | e〉) = ∃M ′, e′. 〈M | e〉 7−→k+1 〈M ′ | e′〉
O = { (W, e1, e2) | ∀(M1,M2) : W. (〈M1 | e1〉 ↓ ∧ 〈M2 | e2〉 ↓) ∨

(running(W.k, 〈M1 | e1〉) ∧ running(W.k, 〈M2 | e2〉) }

Finally, we have interpretations for environments. DJ∆K was given earlier; we here define HJΨK and GJΓKρ.

HJ{·}K = World

HJΨ, ` : boxψK = HJΨK ∩ {W ∈World | (W, `, `) ∈ VJboxψK∅ }
HJΨ, ` : refψK = HJΨK ∩ {W ∈World | (W, `, `) ∈ VJref ψK∅ }
GJ·Kρ = { (W, ∅) | W ∈World }
GJΓ, x : τKρ = { (W,γ[x 7→ (v1, v2)]) | γ ∈ GJΓKρ ∧ (W, v1, v2) ∈ VJτKρ }

Our definition of logical equivalence is this:

Ψ; ∆; Γ ` e1 ≈ e2 : τ
def
= Ψ; ∆; Γ ` e1 : τ ∧ Ψ; ∆; Γ ` e2 : τ ∧
∀W,ρ, γ. W ∈ HJΨK ∧ ρ ∈ DJ∆K ∧ (W,γ) ∈ GJΓKρ

=⇒ (W,ρ1(γ1(e1)), ρ2(γ2(e2))) ∈ EJτKρ

25

8 Proofs: Basic Properties

8.1 Embedding Theorems

Theorem 8.1 (Multi-Language Type Judgment Embeds Single-Language Type Judgments)

1. If ∆; Γ ` e : τ under the type judgment for language F , then ·; ∆; Γ ` e : τ under the judgment for FCA.

2. If ∆; Γ ` e : τ in language C, then ·; ∆; Γ ` e : τ in FCA.

3. If Ψ; ∆; Γ ` e : τ in language A, then Ψ; ∆; Γ ` e : τ in FCA.

Proof

By induction on the single-language type derivations.

Theorem 8.2 (Multi-Language Reduction Embeds Single-Language Reduction)

1. If e 7−→ e′ under the reduction relation for language F , then for any M , 〈M | e〉 7−→ 〈M | e′〉 in FCA.

2. If e 7−→ e′ in C, then for any M , 〈M | e〉 7−→ 〈M | e′〉 in FCA.

3. If 〈H | e〉 7−→ 〈H | e′〉 in A, then 〈H | e〉 7−→ 〈H | e′〉 in FCA.

Proof

By inspection of the reduction relations.

8.2 Properties of the Value Translations

Lemma 8.3 (Value Translation Only Adds Memory)
For any v, v, v, M where `M : Ψ and

Ψ; ·; · ` v : τ , Ψ; ·; · ` v : τ , and Ψ; ·; · ` v : τ ,

the following hold:

• ∃!v′. CFτ (v,M) = (v′,M).

• ∃!v′. τFC(v,M) = (v′,M).

• ∃v′,H,Ψ. ACτ (v,M) = (v′, (M]H)) ∧ Ψ ` H : Ψ.

• ∃!v′. τCA(v,M) = (v′,M).

Proof

By inspection of the translations.

Lemma 8.4 (Weakening for Value Translation)
If ACτ (v,M) = (v,M ′) and dom(M ′) ∩ dom(M ′′) = ∅, then ACτ (v,M]M ′′) = (v,M ′]M ′′).

Proof

By inspection of the translations.

Lemma 8.5 (Value Translation Preserves Types)
Let `M : Ψ and `M ′ : Ψ′. Then

1. If Ψ; ·; · ` v : τ and CFτ (v,M) = (v,M ′), then Ψ′; ·; · ` v : τ 〈C〉.

2. If Ψ; ·; · ` v : τ 〈C〉 and τFC(v,M) = (v,M ′), then Ψ′; ·; · ` v : τ .

3. If Ψ; ·; · ` v : τ and ACτ (v,M) = (v,M ′), then Ψ′; ·; · ` v : τ 〈A〉.

4. If Ψ; ·; · ` v : τ 〈A〉 and τCA(v,M) = (v,M ′), then Ψ′; ·; · ` v : τ .

Proof

By induction on the type derivations and inspection of the translations.

26

8.3 Operations on Worlds

Lemma 8.6 (World Extension is Reflexive and Transitive)
For any W,W ′,W ′′ ∈World, we have

1. W wW

2. W wpub W

3. if W ′′ wW ′ and W ′ wW , then W ′′ wW

4. if W ′′ wpub W
′ and W ′ wpub W , then W ′′ wpub W .

Proof

By definition of w and wpub for worlds and islands, and by the reflexivity and transitivity of the
transition relations in the definition of well-formed islands.

Lemma 8.7 (Properties of �)
Let W ∈World.

1. If (M1,M2) : W and W � (M ′1,M
′
2) is defined, then (M1]M ′1,M2]M ′2) : W � (M ′1,M

′
2).

2. (W � (M1,M2))� (M ′1,M
′
2) = W � (M1]M ′1,M2]M ′2).

3. If W ′ wW � (M1,M2), then there is some W̃ such that W ′ = W̃ � (M1,M2).

Proof

By definition of W (ibox).

Lemma 8.8 (Properties of B)
For any W ∈World, we have

1. BW wW

2. BW wpub W

3. If (M1,M2) : W , then (M1,M2) : BW .

Proof

1. By definition of B and w, it suffices to show that bθcW.k−1 w bθcW.k−1 for each island θ ∈ W.Θ.
But this relation is reflexive, so we are done.

2. Similar.

3. Note that if W.k = 0, there is nothing to show. Otherwise, the claim follows from the definitions
of MemRel and bϕMck.

8.4 Basic Properties of Value and Component Relations

Lemma 8.9 (Related Values are Related Components)
If (W, v1, v2) ∈ VJτKρ, then (W, v1, v2) ∈ EJτKρ.

Proof

Let (W,E1, E2) ∈ KJτKρ. We need to show that (W,E1[v1], E2[v2]) ∈ O. But instantiating KJτKρ with
our hypotheses gives the result immediately.

Lemma 8.10 (Monotonicity)
Let ρ ∈ DJ∆K, where ∆ ` τ , ∆ ` ψ, ∆ ` τ , and ∆ ` τ . If W ′ wW , then

27

1. (W, v1, v2) ∈ VJτ Kρ =⇒ (W ′, v1, v2) ∈ VJτ Kρ

2. (W,h1,h2) ∈ HVJψKρ =⇒ (W ′,h1,h2) ∈ HVJτ Kρ

3. (W,v1,v2) ∈ VJτ Kρ =⇒ (W ′,v1,v2) ∈ VJτ Kρ

4. (W, v1, v2) ∈ VJτKρ =⇒ (W ′, v1, v2) ∈ VJτKρ

Proof

The proofs, like the claims, are presented working up from the target language. This is because the
case for lump types in each language depends on the property holding in the next language down.
However, it may be easiest to read the proof starting from the source language. Many other proofs
will also be structured in this way.

1. Proved by induction on W ′.k and on the structure of τ , simultaneously with Claim 2.

In each case, we will need to show (W ′, v1, v2) ∈ ValAtom[τ]ρ. This amounts to showing that
W ′.Ψi; ·; · ` vi : τ for i ∈ {1, 2}. We have by assumption that W.Ψi; ·; · ` vi : τ . By definition of
world extension, W ′.Ψi ⊇W.Ψi, so this property holds.

To complete the proof, consider the possible cases of τ :

Case α By definition of ValRel.

Case unit Immediate.

Case int Immediate.

Case ∃α.τ ′ Follows from the induction hypothesis for the type.

Case µα.τ ′ Follows from the induction hypothesis for the step index.

Case ref ψ′ By transitivity of world extension.

Case box 〈τ1, . . . , τn〉 We need to show that (W ′, `1, `2) ∈ VJbox 〈τ1, . . . , τn〉Kρ.

Let (W̃ ,M ′1,M
′
2) ∈ currentMR(W ′(ibox)). By definition of islandbox, M ′1 = W ′(ibox).s.M1

and M ′2 = W ′(ibox).s.M2. We need to show that

(W̃ ,M ′1(`1),M ′2(`2)) ∈ HVJ〈τ1, . . . , τn〉Kρ.

By assumption, it suffices to find M1 and M2 such that (W̃ ,M1,M2) ∈ currentMR(W ′(ibox)),
M1(`1) = M ′1(`1), and M2(`2) = M ′2(`2).
We choose M1 = W (ibox).s.M1 and M2 = W (ibox).s.M2. The first condition holds immedi-
ately by definition of islandbox. Since W ′ wW , we know that M1 ⊆M ′1 and M2 ⊆M ′2. Since
(W, `1, `2) ∈ TermAtom[box 〈τ1, . . . , τn〉]ρ, `1 and `2 must be in the domain of H1 and H2,
so we have the desired property.

Case box∀[α].(τ)→ τ ′ Let (W̃ ,M ′1,M
′
2) ∈ currentMR(W ′(ibox)). It suffices to find some M1

and M2 such that (W̃ ,M1,M2) ∈ currentMR(W (ibox)), M1(`1) = M ′1(`1), and M2(`2) =
M ′2(`2). This can be done exactly as in the previous case.

Case dαe By definition of ValRel.

Case dαe By definition of ValRel.

2. Proved simultaneously with Claim 1.

In both cases, we need to show that (W ′,h1,h2) ∈ HvalAtom[ψ]ρ. This amounts to showing that
W ′.Ψi ` hi :ψ for i ∈ {1, 2}. We have by assumption that W.Ψi ` hi :ψ. By definition of world
extension, W ′.Ψi ⊇W.Ψi, so this property holds.

Consider the possible cases of ψ:

Case ∀[α].(τ)→ τ ′ By transitivity of world extension.

Case 〈τ1, . . . , τn〉 Follows from Claim 1 using the induction hypothesis for the type.

3. By induction on W ′.k and on the structure of τ .

In each case, we will need to show (W ′,v1,v2) ∈ ValAtom[τ]ρ. This holds by an analogous
argument to Claim 1. To complete the proof, we consider the possible cases of τ :

28

Case α By definition of ValRel.

Case unit Immediate.

Case int Immediate.

Case ∀[α].(τ)→ τ ′ Follows by transitivity of world extension.

Case ∃α.τ ′ Follows from the induction hypothesis for the type.

Case µα.τ ′ Follows from the induction hypothesis for the step index.

Case 〈τ1, . . . , τn〉 Follows from the induction hypotheses for the type.

Case dαe By definition of ValRel.

Case L〈τ 〉 Follows from Claim 1.

4. By induction on W ′.k and on the structure of τ . We will need to show (W ′, v1, v2) ∈ ValAtom[τ]ρ.
This holds by analogously to Claim 1. To complete the proof, we consider the possible cases of τ :

Case α By definition of ValRel.

Case unit Immediate.

Case int Immediate.

Case ∀[α].(τ)→ τ ′ By transitivity of world extension.

Case ∃α.τ ′ Follows from the induction hypothsis for the type.

Case µα.τ ′ Follows from the induction hypothesis for the step index.

Case 〈τ1, . . . , τn〉 Follows from the induction hypotheses for the type.

Case L〈τ 〉 Follows from Claim 3.

8.5 Reduction Lemmas

Lemma 8.11 (O Closed under Anti-Reduction)
Given W ′ wW , if W.k ≤W ′.k + k1, W.k ≤W ′.k + k2, and

∀(M1,M2) : W. ∃(M ′1,M ′2) : W ′. 〈M1 | e1〉 7−→k1 〈M ′1 | e′1〉 ∧ 〈M2 | e2〉 7−→k2 〈M ′2 | e′2〉,

then
(W ′, e′1, e

′
2) ∈ O =⇒ (W, e1, e2) ∈ O.

Proof

Let (M1,M2) : W . Then, by our assumption, 〈M1 | e1〉 7−→k1 〈M ′1 | e′1〉 and 〈M2 | e2〉 7−→k2 〈M ′2 | e′2〉
for some (M ′1,M

′
2) : W ′. Since (W ′, e′1, e

′
2) ∈ O, we have either that 〈M ′1 | e′1〉 ↓ and 〈M ′2 | e′2〉 ↓ or

that running(W ′.k, 〈M ′1 | e′1〉) and running(W ′.k, 〈M ′2 | e′2〉).
In the former case, we have 〈M1 | e1〉 ↓ and 〈M2 | e2〉 ↓ by assumption. In the latter case, we have
running(W ′.k + k1, 〈M1 | e1〉) and running(W ′.k + k2, 〈M2 | e2〉). Since we have as assumptions that
both of these are more steps than needed, we have the result.

Lemma 8.12 (O Closed under Generalized Anti-Reduction)
If (M1,M2) ∈ currentMR(W (ibox)) and 〈M2 | e〉 7−→ 〈M2 | e′〉, then

(W, e1, e2[e′/x]) ∈ O =⇒ (W, e1, e2[e/x]) ∈ O.

Proof

Let (W, e1, e2[e′/x]) ∈ O and let (M ′1,M
′
2) :W . We have either that 〈M ′1 | e1〉 ↓ and 〈M ′2 | e2[e′/x]〉 ↓,

or that running(W.k, 〈M ′1 | e1〉) and running(W.k, 〈M ′1 | e2[e′/x]〉). In the first case, it suffices to show
that 〈M ′2 | e2[e/x]〉 ↓. In the second case, it suffices to show that running(W.k, 〈M ′1 | e2[e/x]〉). These
can both be proven by induction on the structure of e2.

29

Lemma 8.13 (O Closed under Loading Heap Values)
If (W, e1, E[(t,H)]) ∈ O, then (W � ({·},H), e1, E[t]) ∈ O.

Proof

Similar to the proof of Lemma 8.11. Note that if (M1,M2) :W , 〈M2 | E[(t,H)]〉 7−→0 〈M2,H | E[t]〉.

Lemma 8.14 (EJτKρ Closed under Type-Preserving Anti-Reduction)
Let (W, e1, e2) ∈ TermAtom[τ]ρ. Given W ′ wW , if W.k ≤W ′.k + k1, W.k ≤W ′.k + k2, and

∀(M1,M2) : W. ∃(M ′1,M ′2) : W ′. 〈M1 | e1〉 7−→∗ 〈M ′1 | e′1〉 ∧ 〈M2 | e2〉 7−→∗ 〈M ′2 | e′2〉,

then
(W ′, e′1, e

′
2) ∈ EJτKρ =⇒ (W, e1, e1) ∈ EJτKρ.

Proof

Let (W,E1, E2) ∈ KJτKρ. We need to show that (W,E1[e1], E2[e2]) ∈ O. By our assumption,
(W ′, E1[e′1], E2[e′2]) ∈ O. By inspection of the operational semantics and by assumption, for any
(M1,M2) : W , there is an (M ′1,M

′
2) : W ′ such that

〈M1 | E1[e1]〉 7−→∗ 〈M ′1 | E1[e′1]〉 and 〈M2 | E2[e2]〉 7−→∗ 〈M ′2 | E2[e′2]〉.

The result follows by Lemma 8.11.

Lemma 8.15 (EJτKρ Closed under Memory-Invariant Anti-Reduction)
Let (W, e1, e2) ∈ EJτKρ. If

∀(M1,M2) : W. 〈M1 | e1〉 7−→∗ 〈M1 | e′1〉 ∧ 〈M2 | e2〉 7−→∗ 〈M2 | e′2〉,

then
(W, e′1, e

′
2) ∈ EJτKρ =⇒ (W, e1, e2) ∈ EJτKρ.

Proof

Follows from Lemma 8.14 using W ′ = W , M ′1 = M1, and M ′2 = M2.

Lemma 8.16 (EJτKρ Closed under Boundary Anti-Reduction)
If (M1,M2) : W and 〈M2 | ACτ v2〉 7−→ 〈M2]M ′ | v2〉, then

(W � ({·},M ′), e1, v2) ∈ EJτ 〈A〉Kρ =⇒ (W, e1,ACτ v2) ∈ EJτ 〈A〉Kρ.

Proof

Follows from Lemma 8.14 using W ′ = W � ({·},M ′), M ′1 = M1, and M ′2 = M2]M ′.

Lemma 8.17 (EJτKρ Closed under Generalized Anti-Reduction)
If (M1,M2) ∈ currentMR(W (ibox)), 〈M2 | e〉 7−→ 〈M2 | e′〉, and (W, e1, e2[e/x]) ∈ TermAtom[τ]ρ, then

(W, e1, e2[e′/x]) ∈ EJτKρ =⇒ (W, e1, e2[e/x]) ∈ EJτKρ.

Proof

By Lemma 8.12.

Lemma 8.18 (EJτKρ Closed under Loading Heap Values)
If (W, e1, E[(t,H)]) ∈ EJτKρ, then (W � ({·},H), e1, E[t]) ∈ EJτKρ.

Proof

By Lemma 8.13.

30

Lemma 8.19 (Plugging Continuations Preserves Atoms)
Let (W,E1, E2) ∈ ContAtom[τ]ρ [τ ′]ρ′.

• If (W, e1, e2) ∈ TermAtom[τ]ρ, then (W,E1[e1], E2[e2]) ∈ TermAtom[τ ′]ρ′.

• If (W,E′1, E
′
2) ∈ ContAtom[τ ′]ρ′ [τ ′′]ρ′′, then (W,E′1[E1], E′2[E2]) ∈ ContAtom[τ]ρ [τ ′′]ρ′′.

Proof

By induction on the type derivations.

Lemma 8.20 (Monadic Bind)
If (W, e1, e2) ∈ EJτKρ, (W,E1, E2) ∈ ContAtom[τ]ρ [τ ′]ρ′ and

∀W ′ wpub W. ∀v1, v2. (W ′, v1, v2) ∈ VJτKρ =⇒ (W ′, E1[v1], E2[v2]) ∈ EJτ ′Kρ′,

then (W,E1[e1], E2[e2]) ∈ EJτ ′Kρ′.

Proof

We first need to show that (W,E1[e1], E2[e2]) ∈ TermAtom[τ ′]ρ′. But this follows from Lemma 8.19,
since (W, e1, e2) ∈ TermAtom[τ]ρ.

Let (W,E′1, E
′
2) ∈ KJτ ′Kρ′. We need to show that (W,E′1[E1[e1]], E′2[E2[e1]]) ∈ O. It suffices to show

that
(W,E′1[E1], E′2[E2]) ∈ KJτKρ.

To get this, we first need (W,E′1[E1], E′2[E2]) ∈ ContAtom[τ]ρ [τ ′′]ρ′′ for some τ ′′ and ρ′′, but this
follows immediately from our assumption and Lemma 8.19.

Next, let W ′ wpub W such that (W ′, v1, v2) ∈ VJτKρ. We must show that

(W ′, E′1[E1[v1]], E′2[E2[v2]]) ∈ O.

Applying our premise, we find that (W ′, E1[v1], E2[v2]) ∈ EJτ ′Kρ′. Instantiating this with the fact that
(W,E′1, E

′
2) ∈ KJτ ′Kρ′ gives the result.

8.6 Identities on Abstract Type Interpretations

The weakening property established in the following few lemmas is trivial, but its proof shows the induction
structure necessary to prove other identities about the value interpretation relation VJτKρ and the other
parts of the logical relation it (mutually) depends on.

Lemma 8.21
If ρ[α 7→ VR] ∈ DJ∆, αK and α 6∈ ftv(τ), α 6∈ ftv(ψ), then

1. VJτ Kρ = VJτ Kρ[α 7→ VR]

2. HVJψKρ = HVJψKρ[α 7→ VR]

3. EJτ Kρ = EJτ Kρ[α 7→ VR]

4. KJτ Kρ = KJτ Kρ[α 7→ VR].

Proof

We prove all claims simultaneously, by induction on the step index and τ .

1. Consider the possible cases of τ :

Case α Immediate, since α 6= α.

Case unit Immediate.

Case int Immediate.

31

Case ∃α.τ Follows from the induction hypothesis for τ .

Case µα.τ Follows from the induction hypothesis for the step index.

Case ref ψ Follows from claim 2.

Case box 〈τ1, . . . , τn〉 Follows from claim 2.

Case box∀[α].(τ)→ τ ′ Follows from claim 2.

Case dαe Immediate, since α 6= α.

Case dαe Immediate, since α 6= α.

2. Consider the possible cases of ψ:

Case ∀[α].(τ)→ τ ′ Follows from the induction hypothesis for τ and from claim 3 (also using
the induction hypothesis for τ).

Case 〈τ1, . . . , τn〉 Follows from the induction hypothesis for τ .

3. Follows from claim 4.

4. Follows from claim 1.

Lemma 8.22
If ρ[α 7→ VR] ∈ DJ∆, αK and α 6∈ ftv(τ), then

1. VJτ Kρ = VJτ Kρ[α 7→ VR]

2. EJτ Kρ = EJτ Kρ[α 7→ VR]

3. KJτ Kρ = KJτ Kρ[α 7→ VR].

Proof

We prove all claims simultaneously, by induction on the step index and τ .

1. Consider the possible cases of τ :

Case α Immediate, since α 6= α.

Case unit Immediate.

Case int Immediate.

Case ∀[α].(τ)→ τ ′ Follows from the induction hypothesis for τ and from claim 2 (also using
the induction hypothesis for τ).

Case ∃α.τ Follows from the induction hypothesis for τ .

Case µα.τ Follows from the induction hypothesis for the step index.

Case 〈τ1, . . . , τn〉 Follows from the induction hypothesis for τ .

Case dαe Immediate, since α 6= α.

Case L〈τ 〉 Follows from Lemma 8.21.

2. Follows from claim 3.

3. Follows from claim 1.

Lemma 8.23
If ρ[α 7→ VR] ∈ DJ∆, αK and α 6∈ ftv(τ), then

1. VJτKρ = VJτKρ[α 7→ VR]

2. EJτKρ = EJτKρ[α 7→ VR]

3. KJτKρ = KJτKρ[α 7→ VR].

32

Proof

We prove all claims simultaneously, by induction on the step index and τ .

1. Consider the possible cases of τ :

Case α Immediate, since α 6= α.

Case unit Immediate.

Case int Immediate.

Case ∀[α].(τ)→ τ ′ Follows from the induction hypothesis for τ and from claim 2 (also using the
induction hypothesis for τ).

Case ∃α.τ Follows from the induction hypothesis for τ .

Case µα.τ Follows from the induction hypothesis for the step index.

Case 〈τ1, . . . , τn〉 Follows from the induction hypothesis for τ .

Case L〈τ 〉 Follows from Lemma 8.22.

2. Follows from claim 3.

3. Follows from claim 1.

We establish several identities that arise from the way our multi-language semantics handles abstract
types. As we have seen, types from different languages can be embedded in each other, but only in particular
ways: a lower-level type can only appear inside a lump type in the next higher language, and a higher-level
type cannot appear in a lower-level type except for suspended type variables.

Together with the fact that L〈τ 〉〈C〉 = τ (and L〈τ 〉〈A〉 = τ), this means that we can rewrite our
interpretation of an abstract type in several interesting ways, captured by the operations defined throughout
the rest of this section.

The first set of translation identities shows that, as long as we are observing at a lower-level language
type, we can replace a higher-level type variable (which can appear only in a suspension) with a lower-level
variable by “translating” its interpretation.

Definition 8.24
CF(τ1, τ2, ϕ

F
v , ϕ

C
v , ϕ

A
v)

def
= (τ1

〈C〉, τ2
〈C〉, ϕCv , ϕ

A
v)

AC(τ1, τ2, ϕCv , ϕAv)
def
= (τ1

〈A〉, τ2
〈A〉, ϕAv)

Lemma 8.25
1. If VR ∈ FValRel, then CFVR ∈ CValRel.

2. If VR ∈ CValRel, then ACVR ∈ AValRel.

Proof

Immediate, by the definitions of FValRel, CValRel, and AValRel.

Lemma 8.26
If ρ ∈ DJ∆K and α 6∈ ftv(τ), α 6∈ ftv(ψ), then

1. VJτ Kρ[α 7→ VR] = VJτ [α/dαe]Kρ[α 7→ ACVR]

2. HVJψKρ[α 7→ VR] = HVJψ[α/dαe]Kρ[α 7→ ACVR]

3. EJτ Kρ[α 7→ VR] = EJτ [α/dαe]Kρ[α 7→ ACVR]

4. KJτ Kρ[α 7→ VR] = KJτ [α/dαe]Kρ[α 7→ ACVR].

Proof

33

The proof follows the same structure as Lemma 8.21. The only interesting case is in claim 1, when
τ = dαe. In this case we have

VJdαeKρ[α 7→ VR] = VR.ϕAv = ACVR.ϕAv = VJαKρ[α 7→ ACVR] = VJdαe[α/dαe]Kρ[α 7→ ACVR].

Lemma 8.27
If ρ ∈ DJ∆K and α 6∈ ftv(τ), α 6∈ ftv(ψ), then

1. VJτ Kρ[α 7→ VR] = VJτ [α/dαe]Kρ[α 7→ ACCFVR]

2. HVJψKρ[α 7→ VR] = HVJψ[α/dαe]Kρ[α 7→ ACCFVR]

3. EJτ Kρ[α 7→ VR] = EJτ [α/dαe]Kρ[α 7→ ACCFVR]

4. KJτ Kρ[α 7→ VR] = KJτ [α/dαe]Kρ[α 7→ ACCFVR].

Proof

The proof follows the same structure as Lemma 8.21. The only interesting case is in claim 1, when
τ = dαe. In this case we have

VJdαeKρ[α 7→ VR] = VR.ϕAv

= ACVR.ϕAv = VJαKρ[α 7→ ACCFVR] = VJdαe[α/dαe]Kρ[α 7→ ACCFVR].

Lemma 8.28
If ρ ∈ DJ∆K and α 6∈ ftv(τ), then

1. VJτ Kρ[α 7→ VR] = VJτ [α/dαe]Kρ[α 7→ CFVR]

2. EJτ Kρ[α 7→ VR] = EJτ [α/dαe]Kρ[α 7→ CFVR]

3. KJτ Kρ[α 7→ VR] = KJτ [α/dαe]Kρ[α 7→ CFVR].

Proof

The proof follows the same structure as Lemma 8.22. The only interesting case is in claim 1, when
τ = dαe. In this case we have

VJdαeKρ[α 7→ VR] = VR.ϕCv = CFVR.ϕCv = VJαKρ[α 7→ CFVR] = VJdαe[α/dαe]Kρ[α 7→ CFVR].

The second set of identities is intuitively the inverse of the first set. We can “lump” an interpretation of
a lower-language type variable to replace it with a (properly suspended) higher-language type variable.

Definition 8.29

L〈(τ1, τ2, ϕCv , ϕAv)〉 def
= (L〈τ1〉, L〈τ2〉, {(W, L〈τ1〉FC v1,

L〈τ2〉FC v2) | (W,v1,v2) ∈ ϕCv }, ϕCv , ϕAv)

L〈(τ1, τ2, ϕ
A
v)〉 def

= (L〈τ1〉,L〈τ2〉, {(W, L〈τ1〉CA v1,
L〈τ2〉CA v2) | (W, v1, v2) ∈ ϕAv }, ϕAv)

Lemma 8.30

1. If VR ∈ CValRel, then L〈VR〉 ∈ FValRel.

2. If VR ∈ AValRel, then L〈VR〉 ∈ CValRel.

Proof

34

1. Let VR = (τ1, τ2, ϕ
C
v , ϕ

A
v). After applying the hypothesis, we need to show:

• ϕFv = {(W, L〈τ1〉FC v1,
L〈τ2〉FC v2) | (W,v1,v2) ∈ ϕCv } ∈ ValRel[L〈τ1〉, L〈τ2〉],

• ϕCv ∈ TransRelC [L〈τ1〉, L〈τ2〉],
• CF(L〈τ1〉, L〈τ2〉, ϕFv) ⊆ ϕCv ,

• FC(L〈τ1〉, L〈τ2〉, ϕCv) ⊆ ϕFv .

All of these follow easily from the definition of L〈VR〉.
2. Analagous to claim (1).

Lemma 8.31
If ρ ∈ DJ∆K and α 6∈ ftv(τ), α 6∈ ftv(ψ), then

1. VJτ Kρ[α 7→ L〈VR〉] = VJτ [α/dαe]Kρ[α 7→ VR]

2. HVJψKρ[α 7→ L〈VR〉] = HVJψ[α/dαe]Kρ[α 7→ VR]

3. EJτ Kρ[α 7→ L〈VR〉] = EJτ [α/dαe]Kρ[α 7→ VR]

4. KJτ Kρ[α 7→ L〈VR〉] = KJτ [α/dαe]Kρ[α 7→ VR].

Proof

The proof follows the same structure as the proof of Lemma 8.21. The only interesting case is in claim
1, when τ = dαe. In this case we have

VJdαeKρ[α 7→ L〈VR〉] = L〈VR〉.ϕAv = VR.ϕAv = VJαKρ[α 7→ VR] = VJdαe[α/dαe]Kρ[α 7→ VR].

Lemma 8.32
If ρ ∈ DJ∆K and α 6∈ ftv(τ), α 6∈ ftv(ψ), then

1. VJτ Kρ[α 7→ L〈L〈VR〉〉] = VJτ [α/dαe]Kρ[α 7→ VR]

2. HVJψKρ[α 7→ L〈L〈VR〉〉] = HVJψ[α/dαe]Kρ[α 7→ VR]

3. EJτ Kρ[α 7→ L〈L〈VR〉〉] = EJτ [α/dαe]Kρ[α 7→ VR]

4. KJτ Kρ[α 7→ L〈L〈VR〉〉] = KJτ [α/dαe]Kρ[α 7→ VR].

Proof

The proof follows the same structure as the proof of Lemma 8.21. The only interesting case is in claim
1, when τ = dαe. In this case we have

VJdαeKρ[α 7→ L〈L〈VR〉〉] = L〈L〈VR〉〉.ϕAv
= VR.ϕAv = VJαKρ[α 7→ VR] = VJdαe[α/dαe]Kρ[α 7→ VR].

Lemma 8.33
If ρ ∈ DJ∆K and α 6∈ ftv(τ), then

1. VJτ Kρ[α 7→ L〈VR〉] = VJτ [α/dαe]Kρ[α 7→ VR]

2. EJτ Kρ[α 7→ L〈VR〉] = EJτ [α/dαe]Kρ[α 7→ VR]

3. KJτ Kρ[α 7→ L〈VR〉] = KJτ [α/dαe]Kρ[α 7→ VR].

35

Proof

The proof follows the same structure as the proof of Lemma 8.22. The only interesting case is in claim
1, when τ = dαe. In this case we have

VJdαeKρ[α 7→ L〈VR〉] = L〈VR〉.ϕCv = VR.ϕCv = VJαKρ[α 7→ VR] = VJdαe[α/dαe]Kρ[α 7→ VR].

Finally, this set of identities deals with a property of the lump type exploited by the value translations
in our multi-language framework, which we need to reason about in order to prove boundary cancellation.

Since the translation of e.g. L〈τ 〈C〉〉 is the same as the translation of τ , we can transform the interpretation
of an abstract type between these two instantiations. Intuitively, thanks to parametricity, nothing can be
done with an abstract value except to return it from the term that was required to keep it abstract, and
similarly, there are no operations on a lump except to send it over the boundary. If the return from an
abstract view requires passing through a boundary, a lump of the translation of a value is indistinguishable
from the original value. Thus, an interpretation VR of a type variable is equivalent to this transformation
of it (opaqueR(VR)), as long as we are viewing it from a lower-level language, where we have to perform a
translation to get to the underlying values.

Definition 8.34

opaqueR(τ1, τ2, ϕ
F
v , ϕ

C
v , ϕ

A
v)

def
= (τ1, L〈(τ2〈C〉)〉, ϕ̂Fv , ϕCv , ϕAv)

where ϕ̂Fv = {(W, v1, L〈(τ2
〈C〉)〉FC v2) | (M1,M2) :W ∧ (W, v1, v2) ∈ ϕFv ∧

CFτ2(v2,M2) = (v2,M2)}
∪ {(W, v1, L〈(τ2

〈C〉)〉FC v2) | (M1,M2) :W ∧ (W,v1,v2) ∈ ϕCv ∧
τ1FC(v1,M1) = (v1,M1)}

opaqueR(τ1, τ2, ϕ
C
v , ϕ

A
v)

def
= (τ1,L〈(τ2〈A〉)〉, ϕ̂Cv , ϕAv)

where ϕ̂Cv = {(W � ({·},M ′),v1,
L〈(τ2〈A〉)〉CA v2) | (M1,M2) :W ∧ (W, v1, v2) ∈ ϕAv ∧

ACτ2(v2,M2) = (v2,M2]M ′)}
∪ {(W,v1,

L〈(τ2〈A〉)〉CA v2) | (M1,M2) :W ∧ (W, v1, v2) ∈ ϕAv ∧
τ1CA(v1,M1) = (v1,M1)}

Lemma 8.35

1. If VR ∈ FValRel, then opaqueR(VR) ∈ FValRel.

2. If VR ∈ CValRel, then opaqueR(VR) ∈ CValRel.

Proof

1. Let VR = (τ1, τ2, ϕ
F
v , ϕ

C
v , ϕ

A
v),

ϕ̂Fv 1 = {(W, v1, L〈(τ2
〈C〉)〉FC v2) | (M1,M2) :W ∧ (W, v1, v2) ∈ ϕFv ∧ CFτ2(v2,M2) = (v2,M2)},

and

ϕ̂Fv 2 = {(W, v1, L〈(τ2
〈C〉)〉FC v2) | (M1,M2) :W ∧ (W,v1,v2) ∈ ϕCv ∧ τ1FC(v1,M1) = (v1,M1)}.

After applying the hypothesis, we need to show:

• (ϕ̂Fv 1 ∪ ϕ̂Fv 2) ∈ ValRel[τ1, L〈τ2〈C〉〉],
• ϕCv ∈ TransRelC [τ1, L〈τ2〈C〉〉],
• CF(τ1, L〈τ2〈C〉〉, (ϕ̂Fv 1 ∪ ϕ̂Fv 2)) ⊆ ϕCv , and

• FC(τ1, L〈τ2〈C〉〉, ϕCv) ⊆ (ϕ̂Fv 1 ∪ ϕ̂Fv 2).

36

The first two requirements are boundary cancellation properties. On the left, they follow from
the boundary cancellation properties given by ϕFv ∈ ValRel[τ1, τ2] and ϕCv ∈ TransRelC [τ1, τ2]. On
the right, they follow directly from the translation rules for lump types.

The latter two requirements are bridge properties. We can break them down to the following:

• CF(τ1, L〈τ2〈C〉〉, ϕ̂Fv 1) ⊆ ϕCv ,

• CF(τ1, L〈τ2〈C〉〉, ϕ̂Fv 2) ⊆ ϕCv , and

• FC(τ1, L〈τ2〈C〉〉, ϕCv) ⊆ ϕ̂Fv 2.

These follow easily from the definitions of ϕ̂Fv 1 and ϕ̂Fv 2 and from the boundary cancellation
property given in ϕCv ∈ TransRelC [τ1, τ2].

2. Analogous to claim (1).

Lemma 8.36
Let VR ∈ ValRel[τ1, τ2] and VR′ = opaqueR(VR). Let ϕFv = VR.ϕFv and ϕ̂Fv = VR′.ϕFv .

1. If (W, v1, v2) ∈ ϕFv , (M1,M2) :W , and CFτ2(v2,M2) = (v2,M2), then (W, v1,
L〈τ2〈C〉〉FC v2) ∈ ϕ̂Fv .

2. If (W, v1,
L〈τ2〈C〉〉FC v2) ∈ ϕ̂Fv , (M1,M2) :W , and τ2FC(v2,M2) = (v2,M2), then (W, v1, v2) ∈ ϕFv .

Proof

1. Immediate from the first part of the definition of ϕ̂Fv .

2. By boundary cancellation on ϕFv and the bridge property from VR.ϕCv to ϕFv .

Lemma 8.37
Let VR ∈ ValRel[τ1, τ2] and VR′ = opaqueR(VR). Let ϕCv = VR.ϕCv and ϕ̂Cv = VR′.ϕCv .

1. If (W,v1,v2) ∈ ϕCv , (M1,M2) :W , and ACτ2(v2,M2) = (v2,M2]M ′), then

(W � ({·},M ′),v1,
L〈τ2〈A〉〉CA v2) ∈ ϕ̂Cv .

2. If (W,v1,
L〈τ2〈A〉〉CA v2) ∈ ϕ̂Cv , (M1,M2) :W , and τ2CA(v2,M2) = (v2,M2), then (W,v1,v2) ∈ ϕCv .

Proof

1. Immediate from the first part of the definition of ϕ̂Cv .

2. By boundary cancellation on ϕCv and the bridge property from VR.ϕAv to ϕCv .

Lemma 8.38

1. VJτ Kρ[α 7→ VR] = VJτ Kρ[α 7→ opaqueR(VR)]

2. HVJψKρ[α 7→ VR] = HVJψKρ[α 7→ opaqueR(VR)]

3. EJτ Kρ[α 7→ VR] = EJτ Kρ[α 7→ opaqueR(VR)]

4. KJτ Kρ[α 7→ VR] = KJτ Kρ[α 7→ opaqueR(VR)].

Proof

Follows the structure of Lemma 8.21. The only interesting case is in claim (1) with τ = dαe, where

VJdαeKρ[α 7→ VR] = VR.ϕAv = opaqueR(VR).ϕAv = VJdαeKρ[α 7→ opaqueR(VR)]

by definition.

37

Lemma 8.39

1. VJτ Kρ[α 7→ VR] = VJτ Kρ[α 7→ opaqueR(VR)]

2. HVJψKρ[α 7→ VR] = HVJψKρ[α 7→ opaqueR(VR)]

3. EJτ Kρ[α 7→ VR] = EJτ Kρ[α 7→ opaqueR(VR)]

4. KJτ Kρ[α 7→ VR] = KJτ Kρ[α 7→ opaqueR(VR)].

Proof

Follows the structure of Lemma 8.21. The only interesting case is in claim (1) with τ = dαe, where

VJdαeKρ[α 7→ VR] = VR.ϕAv = opaqueR(VR).ϕAv = VJdαeKρ[α 7→ opaqueR(VR)]

by definition.

Lemma 8.40

1. VJτ Kρ[α 7→ VR] = VJτ Kρ[α 7→ opaqueR(VR)]

2. EJτ Kρ[α 7→ VR] = EJτ Kρ[α 7→ opaqueR(VR)]

3. KJτ Kρ[α 7→ VR] = KJτ Kρ[α 7→ opaqueR(VR)].

Proof

Follows the structure of Lemma 8.22. The only interesting case is in claim (1) with τ = dαe, where

VJdαeKρ[α 7→ VR] = VR.ϕCv = opaqueR(VR).ϕCv = VJdαeKρ[α 7→ opaqueR(VR)]

by definition.

38

9 Proofs: Boundary Cancellation

Lemma 9.1
Given W , τ , and ∆, let ρ ∈ DJ∆, βK such that ρ = ρ0[β 7→ VR] and ρ′ = ρ0[β 7→ VR′], where for each
VRi, VR′i, either VRi = opaqueR(VR′i) or opaqueR(VRi) = VR′i. Also let (W, v1, v2) ∈ ValAtom[τ]ρ,
(M1,M2) : W , and ρ′2(τ)FC(CFρ2(τ)(v2,M2)) = (v′2,M2). Then (W, v1, v

′
2) ∈ ValAtom[τ]ρ′.

Proof

We need to show that (W, v1, v
′
2) ∈ TermAtom[τ]ρ′. From (W, v1, v2) ∈ ValAtom[τ]ρ, we know that

W ∈ World, W.Ψ1; ·; · ` v1 : ρ1(τ), and W.Ψ2; ·; · ` v2 : ρ2(τ). By definition of opaqueR, ρ′1 = ρ1,
so it suffices to show that W.Ψ2; ·; · ` v′2 : ρ′2(τ). But now we need only use our hypothesis that
ρ′2(τ)FC(CFρ2(τ)(v2,M2)) = (v′2,M2) to apply Lemma 8.5 twice.

Lemma 9.2 (FC/CF Boundary Cancellation)

Given W , τ , and ∆, let ρ ∈ DJ∆, βK such that ρ = ρ0[β 7→ VR] and ρ′ = ρ0[β 7→ VR′], where for each VRi,
VR′i, either VRi = opaqueR(VR′i) or opaqueR(VRi) = VR′i. Then

1. If (W, e1, e2) ∈ EJτKρ, then (W, e1,
ρ′2(τ)FC CFρ2(τ) e2) ∈ EJτKρ′.

2. If (W, v1, v2) ∈ VJτKρ, (M1,M2) : W , and ρ′2(τ)FC(CFρ2(τ)(v2,M2)) = (v′2,M2), then

(W, v1, v
′
2) ∈ VJτKρ′.

Proof

We prove both claims simultaneously by induction on W.k and then on the structure of τ .

For claim (1), let W ′ wpub W and (W ′, v1, v2) ∈ VJτKρ. Note that (W, [·], ρ′2(τ)FC CFρ2(τ) [·]) ∈
ContAtom[τ]ρ [τ]ρ′. By Lemma 8.20, it suffices to show

(W ′, v1,
ρ′2(τ)FC CFρ2(τ) v2) ∈ EJτKρ′.

Note that (W ′, v1,
ρ′2(τ)FC CFρ2(τ) v2) ∈ TermAtom[τ]ρ′.

By Lemma 8.3, for any M , there is a v′2 such that 〈M | ρ′2(τ)FC CFρ2(τ) v2〉 7−→2 〈M | v′2〉. Thus, by
Lemma 8.15, it suffices to show (W ′, v1, v

′
2) ∈ EJτKρ′, and finally, by Lemma 8.9, we need only show

(W ′, v1, v
′
2) ∈ VJτKρ′, which we have by claim (2).

We prove claim (2) by considering the possible cases of τ :

Case α

Since ρ ∈ DJ∆, αK, we know that ρ(α) ∈ FValRel. By Lemma 8.35, ρ′(α) ∈ FValRel as well.
Consider the three possible cases of ρ(α) and ρ′(α):

• If ρ(α) = ρ′(α) = (τ1, τ2, ϕ
F
v , ϕ

C
v , ϕ

A
v), then the result is immediate, since ρ(α) ∈ ValRel[τ1, τ2].

• If ρ(α) = (τ1, τ2, ϕ
F
v , ϕ

C
v , ϕ

A
v) and ρ′(α) = opaqueR(ρ(α)) = (τ1, L〈τ2〈C〉〉, ϕ̂Fv , ϕCv , ϕAv), then

by Lemma 8.5, v′2 = L〈τ2〈C〉〉FC v2 for some v2 such that CFτ2(v2,M2) = (v2,M2). The result
follows from Lemma 8.36.

• Finally, if ρ′(α) = (τ1, τ2, ϕ
F
v , ϕ

C
v , ϕ

A
v) and

ρ(α) = opaqueR(ρ′(α)) = (τ1, L〈τ2〈C〉〉, ϕ̂Fv , ϕCv , ϕAv),

then there exists some v2 such that v2 = L〈τ2〈C〉〉FC v2, and τ2FC(v2,M2) = (v′2,M2). The
result follows from Lemma 8.36.

Case unit

By inspection of the translation, v′2 = v2 = (), so we are done.

Case int

By inspection of the translation, v′2 = v2 = n, so we are done.

39

Case ∀[α].(τ)→ τ ′

By Lemma 9.1, we know that (W, v1, v
′
2) ∈ ValAtom[∀[α].(τ)→ τ ′]ρ′.

Let W ′ wW , VR ∈ FValRel and (W ′, v̂1, v̂2) ∈ VJτKρ′[α 7→ VR]. We need to show that

(W ′, v1 [VR.τ1] v̂1, v
′
2 [VR.τ2] v̂2) ∈ EJτ ′Kρ′[α 7→ VR].

For convenience, let τ1 = VR.τ1, τ2 = VR.τ2, ρ̂ = ρ[α 7→ opaqueR(VR)], and ρ̂′ = ρ′[α 7→ VR].
Thus we can restate our assumptions as (W ′, v̂1, v̂2) ∈ VJτKρ̂′, and we can restate our proof obli-
gation as (W ′, v1 [τ1] v̂1, v

′
2 [τ2] v̂2) ∈ EJτ ′Kρ̂′.

By Lemma 8.3, there are some v̂ and v̂′2 such that

CFρ̂2(τ)(v̂2,M) = (v̂,M) and ρ̂′2(τ)FC(v̂,M) = (v̂′2,M).

By the induction hypothesis,
(W ′, v̂1, v̂

′
2) ∈ VJτKρ̂.

Hence, by our assumption that (W, v1, v2) ∈ VJ∀[α].(τ)→ τ ′Kρ, we have

(W ′, v1 [τ1] v̂1, v2 [L〈τ2〈C〉〉] v̂′2) ∈ EJτ ′Kρ̂.

By the induction hypothesis and by claim (1),

(W ′, v1 [τ1] v̂1,
ρ̂′2(τ ′)FC CF ρ̂2(τ ′) v2 [L〈τ2〈C〉〉] v̂′2) ∈ EJτ ′Kρ̂

′.

By Lemma 8.15, it suffices to show that

〈M | v′2 [τ2] v̂2〉 7−→∗ 〈M | ρ̂
′
2(τ ′)FC CF ρ̂2(τ ′) v2 [L〈τ2〈C〉〉] v̂′2〉.

To show this, we derive the shape of v′2. By definition,

CFρ2(∀[α].(τ)→ τ ′)(v2,M) = (pack〈unit,〈v, ()〉〉 as (ρ2(∀[α].(τ)→ τ ′))〈C〉,M),

where

v = λ[α](z : unit, x: ρ2(τ)〈C〉[α/dαe]).CFρ2(τ ′)[L〈α〉/α] v2 [L〈α〉] ρ2(τ)[L〈α〉/α]FC x.

Also by definition,

ρ′2(∀[α].(τ)→ τ ′)FC(pack〈unit,〈v, ()〉〉,M) = (λ[α](x : τ).ρ
′
2(τ ′)FC e,M),

where

e = unpack 〈β, y〉 = pack〈unit,〈v, ()〉〉 in (π1(y)) [dαe]π2(y), CFρ′2(τ) x.

Thus v′2 = λ[α](x : τ).ρ
′
2(τ ′)FC e.

By the operational semantics, we have

〈M | v′2 [τ2] v̂2〉 7−→ 〈M | (ρ′2(τ ′)FC e)[τ2/α][v̂2/x]〉
7−→∗ 〈M | ρ̂′2(τ ′)FC (v [τ2〈C〉] (), CF ρ̂′2(τ) v̂2)〉
7−→∗ 〈M | ρ̂′2(τ ′)FC (v [τ2〈C〉] (), v̂)〉
7−→ 〈M | ρ̂′2(τ ′)FC CF ρ̂2(τ ′) v2 [L〈τ2〈C〉〉] ρ̂2(τ)FC v̂〉
7−→∗ 〈M | ρ̂′2(τ ′)FC CF ρ̂2(τ ′) v2 [L〈τ2〈C〉〉] v̂′2〉,

as desired.

40

Case ∃α.τ
By Lemma 9.1, we know that (W, v1, v

′
2) ∈ ValAtom[∃α.τ]ρ′.

By our hypothesis that (W, v1, v2) ∈ VJ∃α.τKρ, we know that

v1 = pack〈τ1,v̂1〉 as ρ1(∃α.τ), v2 = pack〈τ2,v̂2〉 as ρ2(∃α.τ),

and that there is some VR ∈ FValRel such that VR.τ1 = τ1, VR.τ2 = τ2, and

(W, v̂1, v̂2) ∈ VJτKρ[α 7→ VR].

By Lemma 8.3, there are some v̂2 and v̂′2 such that

CFρ2(τ)[τ2/α](v̂2,M) = (v̂,M) and ρ′2(τ)[L〈τ2〈C〉〉/α]FC(v̂,M) = (v̂′2,M).

By definition of the value translations, we have v′2 = pack〈L〈τ 〈C〉2 〉,v̂′2〉 as ρ′2(∃α.τ). To show that
(W, v1, v

′
2) ∈ VJ∃α.τKρ′, we need to find VR′ ∈ FValRel such that VR′.τ1 = τ1, VR′.τ2 = L〈τ2〈C〉〉,

and
(W, v̂1, v̂

′
2) ∈ VJτKρ′[α 7→ VR′].

By the induction hypothesis, VR′ = opaqueR(VR) does exactly this, so we are done.

Case µα.τ

By Lemma 9.1, we know that (W, v1, v
′
2) ∈ ValAtom[µα.τ]ρ′.

By our hypothesis that (W, v1, v2) ∈ VJµα.τKρ, we know that

v1 = foldρ1(µα.τ) v̂1, v2 = foldρ2(µα.τ) v̂2,

and that (W, v̂1, v̂2) ∈ BVJτ [µα.τ/α]Kρ.

By Lemma 8.3, there are some v̂2 and v̂′2 such that

CFρ(τ)(v̂2,M) = (v̂2,M) and ρ(τ)FC(v̂2,M) = (v̂′2,M).

By the induction hypothesis,

(W, v̂1, v̂
′
2) ∈ BVJτ [µα.τ/α]Kρ′.

It remains only to show that v′2 = foldρ′2(µα.τ) v̂′2, but this follows easily from the definition of

the value translations.

Case 〈τ〉
By the definition of the value translations and the induction hypothesis.

Case L〈τ 〉
By Lemma 9.1, we know that (W, v1, v

′
2) ∈ ValAtom[L〈τ 〉]ρ′.

By assumption, we know that

v1 = ρ1(L〈τ〉)FC v̂1, v2 = ρ2(L〈τ〉)FC v̂2,

and (W, v̂1, v̂2) ∈ VJτ Kρ. By inspection of the value translations, we know that v′2 = ρ′2(L〈τ〉)FC v̂2,
so we need to show only that (W, v̂1, v̂2) ∈ VJτ Kρ′. But this follows by Lemma 8.40.

Lemma 9.3
Given W , τ , and ∆, let ρ ∈ DJ∆, βK such that ρ = ρ0[β 7→ VR] and ρ′ = ρ0[β 7→ opaqueR(VR)]. Also let
(W,v1,v2) ∈ ValAtom[τ 〈C〉]ρ, (M1,M2) : W , and CFρ

′
2(τ)(ρ

′
2(τ)FC(v2,M2)) = (v′2,M2). Then

(W,v1,v
′
2) ∈ ValAtom[τ 〈C〉]ρ.

41

Proof

We need to show that (W,v1,v
′
2) ∈ TermAtom[ρ1(τ 〈C〉), ρ2(τ 〈C〉)]. By (W,v1,v2) ∈ ValAtom[τ 〈C〉]ρ,

we know that W ∈World, W.Ψ; ·; · ` v1 : ρ1(τ 〈C〉), and W.Ψ; ·; · ` v2 : ρ2(τ 〈C〉). It suffices to show that
W.Ψ; ·; · ` v′2 : ρ2(τ 〈C〉). But we can simply use CFρ

′
2(τ)(ρ

′
2(τ)FC(v2,M2)) = (v′2,M2) to apply Lemma

8.5 twice.

Lemma 9.4 (CF/FC Boundary Cancellation)
Given W , τ , and ∆, let ρ ∈ DJ∆, βK such that ρ = ρ0[β 7→ VR] and ρ′ = ρ0[β 7→ opaqueR(VR)]. Then

1. If (W, e1, e2) ∈ EJτ 〈C〉Kρ, then (W, e1, CFρ
′
2(τ) ρ′2(τ)FC e2) ∈ EJτ 〈C〉Kρ.

2. If (W,v1,v2) ∈ VJτ 〈C〉Kρ, (M1,M2) : W , and CFρ
′
2(τ)(ρ

′
2(τ)FC(v2,M2)) = (v′2,M2), then

(W,v1,v
′
2) ∈ VJτ 〈C〉Kρ.

Proof

We prove both claims simultaneously by induction on W.k and then on the structure of τ .

For claim (1), let W ′ wpub W and (W ′,v1,v2) ∈ VJτ 〈C〉Kρ. Note that (W, [·], CFρ′2(τ) ρ′2(τ)FC [·]) ∈
ContAtom[τ 〈C〉]ρ [τ 〈C〉]ρ. By Lemma 8.20, it suffices to show

(W ′,v1, CFρ
′
2(τ) ρ′2(τ)FC v2) ∈ EJτ 〈C〉Kρ.

By Lemma 8.3, for any M , there is a v′2 such that 〈M | CFρ′2(τ) ρ′2(τ)FC v2〉 7−→∗ 〈M | v′2〉. Thus, by
Lemma 8.15, it suffices to show (W ′,v1,v

′
2) ∈ EJτ 〈C〉Kρ, and finally, by Lemma 8.9, we need only show

(W ′,v1,v
′
2) ∈ VJτ 〈C〉Kρ. We have this by claim (2).

We prove claim (2) by cases of τ :

Case α

Since ρ′(α) ∈ FValRel, we have ρ(α).ϕCv = ρ′(α).ϕCv ∈ TransRelC [ρ′1(α), ρ′2(α)]. This gives the
result immediately.

Case unit

By inspection of the translation, v′2 = v2 = (), so we are done.

Case int

By inspection of the translation, v′2 = v2 = n, so we are done.

Case ∀[α].(τ)→ τ ′

By Lemma 9.3, we know that (W,v1,v
′
2) ∈ ValAtom[λ[α](τ).τ ′〈C〉]ρ.

Recall that

∀[α].(τ)→ τ ′〈C〉 = ∃β.〈
(
∀[α].(β, τ 〈C〉[α/dαe])→ τ ′〈C〉[α/dαe]

)
, β〉.

Let τf = ∀[α].(β, τ 〈C〉[α/dαe])→ τ ′〈C〉[α/dαe]. Since (W,v1,v2) ∈ VJ∃β.〈τf , β〉Kρ, we know
that

v1 = pack〈τ1,〈vf1, venv1〉〉 as ∃β.〈ρ1(τf), β〉, v2 = pack〈τ2,〈vf2, venv2〉〉 as ∃β.〈ρ2(τf), β〉,

and there is some VR ∈ CValRel such that VR.τ1 = τ1, VR.τ2 = τ2,

(W,vf1,vf2) ∈ VJτf Kρ[β 7→ VR], and (W,venv1,venv2) ∈ VR.ϕCv .

By inpection of the translations, v′2 = pack〈unit,〈v′f2, ()〉〉 as ∃β.〈ρ2(τf), β〉. We need to find
some VR′ ∈ CValRel such that VR′.τ1 = τ1, VR′.τ2 = unit,

(W,venv1, ()) ∈ VR′.ϕCv , and (W,vf1,v
′
f2) ∈ VJτf Kρ[β 7→ VR′].

42

We will construct such a VR′ shortly. First, we will show that the last condition can be derived
from the first three and the property that if (W ′,v1, ()) ∈ VR′.ϕCv , then (W ′,v1,venv2) ∈ VR.ϕCv .

We are proving that (W,vf1,v
′
f2) ∈ VJτf Kρ[β 7→ VR′]. Let W ′ wW , VR∗ ∈ CValRel,

ρ∗ = ρ[β 7→ VR′][α 7→ VR∗],

(W ′,v∗env1,v
∗
env2) ∈ VR′.ϕCv , and (W ′,v∗1,v

∗
2) ∈ VJτ 〈C〉[α/dαe]Kρ∗. For convenience, also let

τ∗1 = VR∗.τ1 and τ∗2 = VR∗.τ2. We need to show that

(W ′,vf1 [τ∗1] v∗env1, v
∗
1,v
′
f2 [τ∗2] v∗env2, v

∗
2) ∈ EJτ ′〈C〉[α/dαe]Kρ∗.

Let ρ̂ = ρ[β 7→ VR][α 7→ VR∗]. By Lemma 8.3, there exist v∗2 and v∗2
′ such that

ρ′2(τ)[L〈τ∗2 〉/α]FC(v∗2,M) = (v∗2 ,M) and CFρ
′
2(τ)[L〈τ∗2 〉/α](v∗2 ,M) = (v∗2

′,M).

By Lemma 8.33, VJτ 〈C〉[α/dαe]Kρ∗ = VJτ 〈C〉Kρ[β 7→ VR′][α 7→ L〈VR∗〉], so we can apply the in-

duction hypothesis and get (W ′,v∗1,v
∗
2
′) ∈ VJτ 〈C〉[α/dαe]Kρ∗. Note that ρ∗ and ρ̂ only differ at

β, and that β 6∈ ftv(τ 〈C〉[α/dαe]). Therefore, by Lemma 8.22,

(W ′,v∗1,v
∗
2
′) ∈ VJτ 〈C〉[α/dαe]Kρ̂.

Since VR′.τ2 = unit, we must have v∗env2 = (). By our assumption about VR′, we have that
(W ′,v∗env1,venv2) ∈ VR.ϕCv . Therefore, by our hypothesis that (W,vf1,vf2) ∈ VJτf Kρ[β 7→ VR],
we have

(W ′,vf1 [τ∗1] v∗env1, v
∗
1,vf2 [τ∗2] venv2, v

∗
2
′) ∈ EJτ ′〈C〉[α/dαe]Kρ̂.

Once again, β 6∈ ftv(τ ′〈C〉[α/dαe]), so

(W ′,vf1 [τ∗1] v∗env1, v
∗
1,vf2 [τ∗2] venv2, v

∗
2
′) ∈ EJτ ′〈C〉[α/dαe]Kρ∗.

By Lemma 8.33,

EJτ ′〈C〉[α/dαe]Kρ∗ = EJτ ′〈C〉Kρ[β 7→ VR′][α 7→ L〈VR∗〉],

so we can apply the induction hypothesis to get

(W ′,vf1 [τ∗1] v∗env1, v
∗
1, CFρ

′(τ ′)[L〈τ∗2 〉/α] (ρ
′(τ ′)[L〈τ∗2 〉/α]FC vf2 [τ∗2] venv2, v

∗
2
′))

∈ EJτ ′〈C〉[α/dαe]Kρ∗,

By Lemma 8.15, it suffices to show that

v′f2 [τ∗2] (), v∗2 7−→∗ CFρ
′(τ ′)[L〈τ∗2 〉/α] (ρ

′(τ ′)[L〈τ∗2 〉/α]FC vf2 [τ∗2] venv2, v
∗
2
′).

To show this, we examine the value translations to determine the structure of v′f2. We have that

v′f2 = λ[α](z : unit, x: ρ2(τ 〈C〉)[α/dαe]).CFρ′2(τ ′)[L〈α〉/α] v [L〈α〉] ρ′2(τ)[L〈α〉/α]FC x,

where
ρ2(∀[α].(τ)→ τ ′〈C〉)FC(v2,M) = (v,M).

In particular,

v = λ[α](x : τ).ρ
′
2(τ ′)FC (unpack 〈β, y〉 = v2 in π1(y) [dαe]π2(y), CFρ′2(τ) x).

43

Therefore,

〈M | v′f2 [τ∗2] (), v∗2〉
7−→ 〈M | CFρ′2(τ ′)[L〈τ∗2 〉/α] v [L〈τ∗2 〉] ρ

′
2(τ)[L〈τ∗2 〉/α]FC v∗2〉

7−→∗ 〈M | CFρ′2(τ ′)[L〈τ∗2 〉/α] v [L〈τ∗2 〉] v∗2〉
7−→4 〈M | CFρ′2(τ ′)[L〈τ∗2 〉/α]FC vf2 [τ∗2] venv2, CFρ

′
2(τ)[L〈τ∗2 〉/α] v∗2〉

7−→∗ 〈M | CFρ′2(τ ′)[L〈τ∗2 〉/α] ρ′2(τ ′)[L〈τ∗2 〉/α]FC vf2 [τ∗2] venv2, v
∗
2
′〉,

as desired.

It remains to construct VR′. Recall that the properties VR′ must satisfy are these:

• VR′ ∈ CValRel

• VR′.τ1 = τ1
• VR′.τ2 = unit

• (W,venv1, ()) ∈ VR′.ϕCv
• If (W ′,v, ()) ∈ VR′.ϕCv , then (W ′,v,venv2) ∈ VR.ϕCv .

Define VR′ as follows:

ϕCv 0 = {(W ′,venv1, ()) |W ′ wW}
ϕCv n+1 = ϕCv n ∪ CA(τ1,unit, ϕAv n)

ϕ̂Cv =
⋃∞
i=0 ϕ

C
v i

ϕAv 0 = {}
ϕAv n+1 = ϕAv n ∪ AC(τ1,unit, ϕCv n)

ϕ̂Av =
⋃∞
i=0 ϕ

A
v i

VR′ = (τ1,unit, ϕ̂Cv , ϕ̂
A
v).

We need to show the first and last of the required properties; the others hold obviously.

To show that VR′ ∈ CValRel, we need to show the following:

1. ϕ̂Cv ∈ ValRel[τ1,unit]

2. ϕ̂Av ∈ TransRelA[τ1,unit]

3. AC(τ1,unit, ϕ̂Cv) ⊆ ϕ̂Av
4. CA(τ1,unit, ϕ̂Av) ⊆ ϕ̂Cv .

Part (1) requires monotonicity and forward boundary cancellation. Monotonicity holds by in-
duction on i, noting that the translation operators preserve monotonicity. Boundary cancellation
holds on the left by definition: for any element of ϕCv i, the required translation is in ϕCv i+2. On
the right, boundary cancellation holds by the translation rules for the unit value.

Part (2) requires monotonicity and backward boundary cancellation. These properties hold by
similar arguments to those for part (1).

Parts (3) and (4) hold by definition.

Finally, we must show that (W ′,v, ()) ∈ ϕ̂Cv , implies (W ′,v,venv2) ∈ VR.ϕCv . We prove this si-
multaneously with the property that for any (W ′, v, ()) ∈ ϕ̂Av , if (M1,M2) :W ′ and τ1CA(v,M1) =
(v,M1), then (W ′,v,venv2) ∈ VR.ϕCv , using induction on i.

For the first proposition, we have (W ′,v, ()) ∈ ϕCv i for some i. If i = 0, we have the result
since we know that (W,venv1,venv2) ∈ VR.ϕCv . If i > 0, then either (W ′,v, ()) ∈ ϕCv i−1, in
which case the induction hypothesis gives the result immediately, or there is some v such that
τ1CA(v,M1) = (v,M1) and (W ′, v, ()) ∈ ϕAv i−1, in which case the induction hypothesis for the
second proposition gives the result immediately.

For the second proposition, we have (W ′, v, ()) ∈ ϕAv i for some i. If i = 0, we have a contradiction
since ϕAv 0 is empty, so we are done. If i > 0, then either (W ′, v, ()) ∈ ϕAv i−1, in which case the

induction hypothesis gives the result immediately, or there are some v, W̃ , and M ′ such that
W ′ = W̃ � (M ′, {·}), ACτ1(v,M1) = (v,M1]M ′), and (W̃ ,v, ()) ∈ ϕ̂Cv i−1. By the induction

hypothesis for the first proposition, (W̃ ,v,venv2) ∈ VR.ϕCv . The result follows from boundary
cancellation on VR.ϕCv .

This completes the proof of the most difficult case of boundary cancellation!

44

Case ∃α.τ
By Lemma 9.3, we know that (W,v1,v

′
2) ∈ ValAtom[∃α.τ 〈C〉]ρ.

We know that v1 = pack〈τ1,v̂1〉 as ρ1(∃α.τ 〈C〉) and v2 = pack〈τ2,v̂2〉 as ρ2(∃α.τ 〈C〉), and that
there is some VR ∈ CValRel such that VR.τ1 = τ1, VR.τ2 = τ2, and (applying Lemma 8.33)

(W, v̂1, v̂2) ∈ VJτ 〈C〉[α/dαe]Kρ[α 7→ VR] = VJτ 〈C〉Kρ[α 7→ L〈VR〉].

By Lemma 8.3, there exist v̂ and v̂′2 such that

ρ′2(τ)[L〈τ1〉/α]FC(v̂2,M) = (v̂,M) and CFρ
′
2(τ)[L〈τ1〉/α](v̂,M) = (v̂′2,M).

Thus we can apply the induction hypothesis and Lemma 8.33 to get

(W, v̂1, v̂
′
2) ∈ VJτ 〈C〉Kρ[α 7→ L〈VR〉] = VJτ 〈C〉[α/dαe]Kρ[α 7→ VR].

By inspection of the translations, v′2 = pack〈τ2,v̂′2〉 as (ρ2(∃α.τ)〈C〉), so we have the desired
result of

(W,v1,v
′
2) ∈ VJ∃α.τ 〈C〉Kρ

by using VR to instantiate the existential.

Case µα.τ

By Lemma 9.3, we know that (W,v1,v
′
2) ∈ ValAtom[µα.τ 〈C〉]ρ.

We know that v1 = fold
ρ1(µα.τ 〈C〉)

v̂1, v2 = fold
ρ2(µα.τ 〈C〉)

v̂2, and

(W, v̂1, v̂2) ∈ BVJτ 〈C〉[α/dαe][µα.τ 〈C〉/α]Kρ = BVJ(τ [µα.τ/α])〈C〉Kρ.

By Lemma 8.3, there exist v̂ and v̂′2 such that

ρ′2(τ [µα.τ/α])FC(v̂2,M) = (v̂,M) and CFρ
′
2(τ [µα.τ/α])(v̂,M) = (v̂′2,M).

Thus we can apply the induction hypothesis to get

(W, v̂1, v̂
′
2) ∈ BVJ(τ [µα.τ/α])〈C〉Kρ = BVJτ 〈C〉[α/dαe][µα.τ 〈C〉/α]Kρ.

By inspection of the translations, v′2 = fold
ρ2(µα.τ 〈C〉)

v̂′2, so we have the result.

Case 〈τ〉
By definition of the value translations and the induction hypothesis.

Case L〈τ 〉
By inspection of the translations at type L〈τ 〉, v′2 = v2, so we are done.

Lemma 9.5
Given W , τ , and ∆, let ρ ∈ DJ∆,βK such that ρ = ρ0[β 7→ VR] and ρ′ = ρ0[β 7→ VR′], where for each VRi,
VR′i, either VRi = opaqueR(VR′i) or opaqueR(VRi) = VR′i. Also let (W,v1,v2) ∈ ValAtom[τ]ρ, (M1,M2) :
W , and ρ′2(τ)CA(ACρ2(τ)(v2,M2)) = (v′2,M2]M ′2). Then (W � ({·},M ′2),v1,v

′
2) ∈ ValAtom[τ]ρ′.

Proof

We need to show that (W � ({·},M ′2),v1,v
′
2) ∈ TermAtom[τ]ρ′. From (W,v1,v2) ∈ ValAtom[τ]ρ we

know that W ∈ World, W.Ψ1; ·; · ` v1 : ρ1(τ), and W.Ψ2; ·; · ` v2 : ρ2(τ). By definition of opaqueR,
ρ′1 = ρ1, so it suffices to show (W � ({·},M ′2)).Ψ2; ·; · ` v′2 : ρ′2(τ). But now we need only use our

hypothesis that ρ
′
2(τ)CA(ACρ2(τ)(v2,M2)) = (v′2,M2]M ′2) to apply Lemma 8.5 twice.

Lemma 9.6 (CA/AC Boundary Cancellation)

Given W , τ , and ∆, let ρ ∈ DJ∆,βK such that ρ = ρ0[β 7→ VR] and ρ′ = ρ0[β 7→ VR′], where for each VRi,
VR′i, either VRi = opaqueR(VR′i) or opaqueR(VRi) = VR′i. Then

45

1. If (W, e1, e2) ∈ EJτ Kρ, then (W, e1,
ρ′2(τ)CAACρ2(τ) e2) ∈ EJτ Kρ′.

2. If (W,v1,v2) ∈ VJτ Kρ, (M1,M2) : W , and ρ′2(τ)CA(ACρ2(τ)(v2,M2)) = (v′2,M2]M ′), then

(W � ({·},M ′),v1,v
′
2) ∈ VJτ Kρ′.

Proof

We prove both claims simultaneously by induction on W.k and then on the structure of τ .

For claim (1), let W ′ wpub W and (W ′,v1,v2) ∈ VJτ Kρ. Note that (W, [·], ρ′2(τ)CAACρ2(τ) [·]) ∈
ContAtom[τ]ρ [τ]ρ′. By Lemma 8.20, it suffices to show

(W ′,v1,
ρ′2(τ)CAACρ2(τ) v2) ∈ EJτ Kρ′.

Note that (W ′,v1,
ρ′2(τ)CAACρ2(τ) v2) ∈ TermAtom[τ]ρ′.

By Lemma 8.3, for any (M1,M2) :W , there is a v′2 such that

〈M2 | ρ
′
2(τ)CAACρ2(τ) v2〉 7−→∗ 〈M2]M ′ | v′2〉.

Thus, by Lemma 8.16, it suffices to show (W ′� ({·},M ′),v1,v
′
2) ∈ EJτ Kρ′, and finally, by Lemma 8.9,

we need only show (W ′ � ({·},M ′),v1,v
′
2) ∈ VJτ Kρ′, which we have by claim (2).

We prove claim (2) by considering the possible cases of τ :

Case α

Since ρ ∈ DJ∆,αK, we know that ρ(α) ∈ CValRel. By Lemma 8.35, ρ′(α) ∈ CValRel as well.
Consider the three possible cases of ρ(α) and ρ′(α):

• If ρ(α) = ρ′(α) = (τ1, τ2, ϕ
C
v , ϕ

A
v), then the result is immediate, since ρ(α) ∈ ValRel[τ1, τ2].

• If ρ(α) = (τ1, τ2, ϕ
C
v , ϕ

A
v) and ρ′(α) = opaqueR(ρ(α)) = (τ1,L〈τ2〈A〉〉, ϕ̂Cv , ϕAv), then by

Lemma 8.5, v′2 = L〈τ2〈A〉〉CA v2 for some v2 such that ACτ2(v2,M2) = (v2,M2]M ′). The
result follows from Lemma 8.37.

• Finally, if ρ′(α) = (τ1, τ2, ϕ
C
v , ϕ

A
v) and ρ(α) = opaqueR(ρ′(α)) = (τ1,L〈τ2〈A〉〉, ϕ̂Cv , ϕAv),

then there exists some v2 such that v2 = L〈τ2〈A〉〉CA v2 and τ2CA(v2,M2) = (v′2,M2). The
result follows from Lemma 8.37.

Case unit

By inspection of the translation, v′2 = v2 = (), so we are done.

Case int

By inspection of the translation, v′2 = v2 = n, so we are done.

Case ∀[α].(τ)→ τ ′

By Lemma 9.5, we know that (W,v1,v
′
2) ∈ ValAtom[∀[α].(τ)→ τ ′]ρ′.

Let W ′ w W � ({·},M ′), VR ∈ CValRel, SR ∈ TStackRel, and (W ′, v̂1, v̂2) ∈ VJτ Kρ′[α 7→ VR].
We need to show that

(W ′,v1 [VR.τ1] v̂1,v
′
2 [VR.τ2] v̂2) ∈ EJτ ′Kρ′[α 7→ VR].

For convenience, let τ1 = VR.τ1, τ2 = VR.τ2, ρ̂ = ρ[α 7→ opaqueR(VR)], and ρ̂′ = ρ′[α 7→ VR].
Thus we can restate our assumptions as (W ′, v̂1, v̂2) ∈ VJτ Kρ̂′, and we can restate our proof
obligation as (W ′,v1 [τ1] v̂1,v

′
2 [τ2] v̂2) ∈ EJτ ′Kρ̂′.

Suppose (M̂1, M̂2) :W ′. By Lemma 8.3, there are some v̂ and v̂′2 such that

ACρ̂2(τ)(v̂2, M̂2) = (v̂, M̂2] M̂ ′i) and ρ̂′2(τ)CA(v̂, M̂2] M̂ ′i) = (v̂′2, M̂2] M̂ ′i).

46

Let M̂ ′ =
⋃
M ′i . By the induction hypothesis and monotonicity,

(W ′ � ({·}, M̂ ′), v̂1, v̂
′
2) ∈ VJτ Kρ̂.

Hence, by our assumption that (W,v1,v2) ∈ VJ∀[α].(τ)→ τ ′Kρ, we have

(W ′ � ({·}, M̂ ′),v1 [τ1] v̂1,v2 [L〈τ2〈A〉〉] v̂′2) ∈ EJτ ′Kρ̂.

By the induction hypothesis and by claim (1),

(W ′ � ({·}, M̂ ′),v1 [τ1] v̂1,
ρ̂′2(τ ′)CAACρ̂2(τ ′) v2 [L〈τ2〈A〉〉] v̂′2) ∈ EJτ ′Kρ̂′.

We claim that

〈M̂2 | v′2 [τ2] v̂2〉 7−→∗ 〈M̂2 ∪ M̂ ′ | ρ̂
′
2(τ ′)CAACρ̂2(τ ′) v2 [L〈τ2〈A〉〉] v̂′2〉

using only memory-invariant reduction steps and translation reduction steps that only affect
memory by allocating the M̂ ′i . By Lemmas 8.15 and 8.16, this is sufficient to complete the proof.

To show this reduction sequence, we derive the shape of v′2. By definition,

ACρ2(∀[α].(τ)→ τ ′)(v2,M2) = (`,M2]M ′),

where

M ′ = ` 7→ λ[α](x : ρ2(τ)〈A〉[α/dαe]).ACρ2(τ ′)[L〈α〉/α] v2 [L〈α〉] ρ2(τ)[L〈α〉/α]CA x.

Also by definition,

ρ′2(∀[α].(τ)→ τ ′)CA(`,M2]M ′) = (λ[α](x : τ).ρ
′
2(τ ′)CA (` [dαe]ACρ′2(τ) x),M2]M ′).

Thus v′2 = λ[α](x : τ).ρ
′
2(τ ′)CA (` [dαe]ACρ′2(τ) x).

By the operational semantics and by the property that M̂2(`) = M ′(`) (which follows from the
definitions of � and world extension), we have

〈M̂2 | v′2 [τ2] v̂2〉 7−→ 〈M̂2 | ρ̂
′
2(τ ′)CA (` [τ2〈A〉]ACρ̂

′
2(τ) v̂2)〉

7−→∗ 〈M̂2] M̂ ′ | ρ̂
′
2(τ ′)CA (` [τ2〈A〉] v̂)〉

7−→ 〈M̂2] M̂ ′ | ρ̂
′
2(τ ′)CAACρ̂2(τ ′) v2 [L〈τ2〈A〉〉] ρ̂2(τ)CA v̂〉

7−→∗ 〈M̂2] M̂ ′ | ρ̂
′
2(τ ′)CAACρ̂2(τ ′) v2 [L〈τ2〈A〉〉] v̂′2〉,

as desired.

Case ∃α.τ
By Lemma 9.5, we know that (W � ({·},M ′),v1,v

′
2) ∈ ValAtom[∃α.τ]ρ′.

By our hypothesis that (W,v1,v2) ∈ VJ∃α.τ Kρ, we know that

v1 = pack〈τ1,v̂1〉 as ρ1(∃α.τ), v2 = pack〈τ2,v̂2〉 as ρ2(∃α.τ),

and that there is some VR ∈ CValRel such that VR.τ1 = τ1, VR.τ2 = τ2, and

(W, v̂1, v̂2) ∈ VJτ Kρ[α 7→ VR].

Note that by Lemma 8.3, there are some v̂ and v̂′2 such that

ACρ(τ)[τ2/α](v̂2,M2) = (v̂,M2]M ′) and ρ(τ)[L〈τ2〈A〉〉/α]CA(v̂,M2]M ′) = (v̂′2,M2]M ′).

47

Consider the form of v′2. By definition,

ACρ2(∃α.τ)(v2,M2) = (pack〈τ2〈A〉,v̂〉 as (ρ2(∃α.τ))〈A〉,M2]M ′)

and

ρ′2(∃α.τ)CA(pack〈τ2〈A〉,v̂〉 as (ρ2(∃α.τ))〈A〉,M2]M ′) = (pack〈L〈τ2〈A〉〉,v̂′2〉,M2]M ′).

So to show that (W,v1,v
′
2) ∈ VJ∃α.τ Kρ′, we need to show that there is some VR′ ∈ CValRel

such that VR′.τ1 = τ1, VR′.τ2 = L〈τ2〈A〉〉, and

(W � ({·},M ′), v̂1, v̂
′
2) ∈ VJτ Kρ′[α 7→ VR′].

By the induction hypothesis, VR′ = opaqueR(VR) does exactly this, so we are done.

Case µα.τ

By Lemma 9.5, we know that (W � ({·},M ′),v1,v
′
2) ∈ ValAtom[µα.τ]ρ′.

By our hypothesis that (W,v1,v2) ∈ VJµα.τ Kρ, we know that

v1 = foldρ1(µα.τ) v̂1, v2 = foldρ2(µα.τ) v̂2,

and that (W, v̂1, v̂2) ∈ BVJτ [µα.τ/α]Kρ.

By Lemma 8.3, there are some v̂ and v̂′2 such that

ACρ2(τ [µα.τ/α])(v̂2,M2) = (v̂,M2]M ′) and ρ2(τ [µα.τ/α])CA(v̂,M2]M ′) = (v̂′2,M2]M ′).

By the induction hypothesis,

(W � ({·},M ′), v̂1, v̂
′
2) ∈ BVJτ [µα.τ/α]Kρ′.

It remains only to show that v′2 = foldρ′2(µα.τ) v̂′2, but this follows easily from the definition of

the value translations.

Case 〈τ1, . . . , τn〉
By Lemma 9.5, we know that (W � ({·},M ′),v1,v

′
2) ∈ ValAtom[〈τ1, . . . , τn〉]ρ′. By our hypoth-

esis that (W,v1,v2) ∈ VJ〈τ1, . . . , τn〉Kρ, we know that

v1 = 〈v11, . . . , v1n〉, v2 = 〈v21, . . . , v2n〉,

and that for each i, (W,v1i,v2i) ∈ VJτiKρ.

By inspection of the translations,

M ′ = M ′1] · · ·]M ′n] (` 7→ 〈v̂1, . . . , v̂n〉) and v′2 = 〈v̂1, . . . , v̂n〉

for some v̂1, . . . , v̂n and v̂1, . . . , v̂n such that

ACρ2(τi)(v2i,M2]M ′1] · · ·]M ′i−1) = (v̂i,M2]M ′1] · · ·]M ′i)

and
ρ′2(τi)CA(v̂i,M2]M ′) = (v̂i,M2]M ′).

By the induction hypothesis and monotonicity, each (W � ({·},M ′),v1i, v̂i) ∈ VJτiKρ′. Thus
(W � ({·},M ′),v1,v

′
2) ∈ VJ〈τ1, . . . , τn〉Kρ′ as desired.

Case dαe
Since ρ′(α) = ρ(α),this follows from ρ(α).ϕCv ∈ ValRel[ρ1(α)〈C〉, ρ2(α)〈C〉].

48

Case L〈τ 〉
By Lemma 9.5, we know that (W � ({·},M ′),v1,v

′
2) ∈ ValAtom[L〈τ 〉]ρ′.

By assumption, we know that

v1 = ρ1(L〈τ〉)CA v̂1, v2 = ρ2(L〈τ〉)CA v̂2,

and (W, v̂1, v̂2) ∈ VJτ Kρ. By inspection of the value translations, we know that

v′2 = ρ′2(L〈τ〉)CA v̂2 and M ′ = {·},

so we need to show only that (W, v̂1, v̂2) ∈ VJτ Kρ′. But this follows by Lemma 8.38.

Lemma 9.7
Given W , τ , and ∆, let ρ ∈ DJ∆,βK such that ρ = ρ0[β 7→ VR] and ρ′ = ρ0[β 7→ opaqueR(VR)]. Also let
(W, v1, v2) ∈ ValAtom[τ 〈A〉]ρ, (M1,M2) : W , and ACρ

′
2(τ)(ρ

′
2(τ)CA(v2,M2)) = (v′2,M2]M ′2). Then

(W � ({·},M ′2), v1, v′2) ∈ ValAtom[τ 〈A〉]ρ.

Proof

We need to show that (W, v1, v′2) ∈ TermAtom[τ 〈A〉]ρ. From (W, v1, v2) ∈ ValAtom[τ 〈A〉]ρ, we know
that W ∈ World, W.Ψ; ·; · ` v1 : ρ1(τ 〈A〉), and W.Ψ; ·; · ` v2 : ρ2(τ 〈A〉). It suffices to show that
W.Ψ; ·; · ` v′2 : ρ2(τ 〈A〉). But we can simply use ACρ

′
2(τ)(ρ

′
2(τ)CA(v2,M2)) = (v′2,M2) to apply Lemma

8.5 twice.

Lemma 9.8 (AC/CA Boundary Cancellation)
Given W , τ , and ∆, let ρ ∈ DJ∆,βK such that ρ = ρ0[β 7→ VR] and ρ′ = ρ0[β 7→ opaqueR(VR)]. Then

1. If (W, e1, e2) ∈ EJτ 〈A〉Kρ, then (W, e1,ACρ
′
2(τ) ρ′2(τ)CA e2) ∈ EJτ 〈A〉Kρ.

2. If (W, v1, v2) ∈ VJτ 〈A〉Kρ, (M1,M2) : W , and ACρ
′
2(τ)(ρ

′
2(τ)CA(v2,M2)) = (v′2,M2]M ′2), then

(W � ({·},M ′2), v1, v′2) ∈ VJτ 〈A〉Kρ.

Proof

We prove both claims simultaneously by induction on W.k and then on the structure of τ .

For claim (1), let W ′ wpub W and (W ′, v1, v2) ∈ VJτ 〈A〉Kρ. Note that (W, [·],ACρ′2(τ) ρ′2(τ)CA [·]) ∈
ContAtom[τ 〈A〉]ρ [τ 〈A〉]ρ. By Lemma 8.20, it suffices to show

(W ′, v1,ACρ
′
2(τ) ρ′2(τ)CA v2) ∈ EJτ 〈A〉Kρ.

Note that (W ′, v1,ACρ
′
2(τ) ρ′2(τ)CA v2) ∈ TermAtom[τ]ρ′.

By Lemma 8.3, for any (M1,M2) :W , there is a v′2 such that

〈M2 | ACρ
′
2(τ) ρ′2(τ)CA v2〉 7−→∗ 〈M2]M ′ | v′2〉.

Thus, by Lemma 8.16, it suffices to show (W ′ � ({·},M ′), v1, v′2) ∈ EJτ 〈A〉Kρ, and finally, by Lemma
8.9, we need only show (W ′ � ({·},M ′), v1, v′2) ∈ VJτ 〈A〉Kρ. We have this by claim (2).

We prove claim (2) by cases of τ :

Case α

Since ρ(α) ∈ CValRel, we have ρ(α).ϕAv = ρ′(α).ϕAv ∈ TransRelA[ρ′1(α), ρ′2(α)]. This gives the
result immediately.

49

Case unit

By inspection of the translation, v′2 = v2 = (), so we are done.

Case int

By inspection of the translation, v′2 = v2 = n, so we are done.

Case ∀[α].(τ)→ τ ′

By Lemma 9.7, we know that (W, v1, v′2) ∈ ValAtom[λ[α](τ).τ ′〈A〉]ρ.

Recall that
∀[α].(τ)→ τ ′〈A〉 = box∀[α].(τ 〈A〉[α/dαe])→ τ ′〈A〉[α/dαe].

Let ψf = ∀[α].(τ 〈A〉[α/dαe])→ τ ′〈A〉[α/dαe]. Since (W, v1, v2) ∈ VJboxψfKρ, we know that

v1 = `1[τ̂11, . . . , τ̂1m], v2 = `2[τ̂21, . . . , τ̂2n],

M1(`1) = λ[β11, . . . , β1m, α](x : ρ1(τ1)).t1, τ = τ1[τ̂1/β1],

M2(`2) = λ[β21, . . . , β2n, α](x : ρ2(τ2)).t2, τ = τ2[τ̂2/β2],

and
(W,λ[α](x : ρ1(τ1)).t1[τ̂1/β1],λ[α](x : ρ2(τ2)).t2[τ̂2/β2]) ∈ HVJψfKρ.

By inpection of the translations, v′2 = ` and M ′ = ` 7→ h, where

h = λ[α](x : ρ′2(τ)〈A〉[α/dαe]).e, e = ACρ′2(τ ′)[L〈α〉/α] v [L〈α〉] ρ′2(τ)[L〈α〉/α]CA x,

and
v = λ[α](x : ρ′2(τ)).ρ

′
2(τ ′)CA `2 [τ̂2, dαe]ACρ

′
2(τ) x.

We need to show that

(W � ({·},M ′),λ[α](x : ρ1(τ1)).t1[τ̂1/β1],h) ∈ HVJψfKρ.

Let W ′ w W , VR ∈ AValRel, (W ′, v∗1 , v
∗
2) ∈ VJτ 〈A〉[α/dαe]Kρ[α 7→ VR]. For convenience, also

let τ∗1 = VR.τ1 and τ∗2 = VR.τ2. We need to show that

(W ′, t1[τ̂1/β1][τ
∗
1 /α][v∗1/x], e[τ∗2 /α][v∗2/x]) ∈ EJτ ′〈A〉[α/dαe]Kρ[α 7→ VR].

By Lemma 8.3, for any (M ′1,M
′
2) :W ′, there exist v∗2, v∗2

′, and M∗ = M∗1] · · ·]M∗k such that

ρ2(τ)[L〈τ∗2 〉/α]CA(v∗2 ,M
′
2) = (v∗2,M

′
2)

and

ACρ2(τ)[L〈τ∗2 〉/α](v∗2,M
′
2) = (v∗2

′,M ′2]M∗i).

By Lemma 8.31, VJτ 〈A〉[α/dαe]Kρ[α 7→ VR] = VJτ 〈A〉Kρ[α 7→ L〈VR〉], so we can apply the in-
duction hypothesis and monotonicity to get

(W ′ � ({·},M∗), v∗1 , v∗2
′) ∈ VJτ 〈A〉[α/dαe]Kρ[α 7→ VR].

By instantiating our hypothesis, we know that

(W ′ � ({·},M∗), t1[τ̂1/β1][τ
∗
1 /α][v∗1/x], t2[τ̂2/β2][τ

∗
2 /α][v∗2/x]) ∈ EJτ ′〈A〉[α/dαe]Kρ[α 7→ VR].

By Lemma 8.31, EJτ ′〈A〉[α/dαe]Kρ[α 7→ VR] = EJτ ′〈A〉Kρ[α 7→ L〈VR〉], so we can apply the
induction hypothesis to get

(W ′ � ({·},M∗), t1[τ̂1/β1][τ
∗
1 /α][v∗1/x],ACρ

′(τ ′)[L〈τ∗2 〉/α]CA t2[τ̂2/β2][τ
∗
2 /α][v∗2/x])

∈ EJτ ′〈A〉[α/dαe]Kρ[α 7→ VR],

50

We claim that

〈M ′2 | e[τ∗2 /α][v∗2/x]〉 7−→∗ 〈M ′2]M∗ | ACρ
′(τ ′)[L〈τ∗2 〉/α]CA t2[τ̂2/β2][τ

∗
2 /α][v∗2/x]〉

using only memory-invariant reduction steps and translation reduction steps that only affect
memory by allocating the M∗i . By Lemmas 8.15 and 8.16, this is sufficient to complete the proof.

By the operational semantics and by the property that M ′2(`) = h (which follows from the
definitions of � and world extension), we have

〈M ′2 | e[τ∗2 /α][v∗2/x]〉 = 〈M ′2 | ACρ2(τ ′)[L〈τ∗2 〉/α] v [L〈τ∗2 〉] ρ2(τ)[L〈τ∗2 〉/α]CA v∗2 〉
7−→∗ 〈M ′2 | ACρ2(τ ′)[L〈τ∗2 〉/α] v [L〈τ∗2 〉] v∗2〉
7−→ 〈M ′2 | ACρ2(τ ′)[L〈τ∗2 〉/α]CA `2 [τ̂2, τ

∗
2]ACρ2(τ)[L〈τ∗2 〉/α] v∗2〉

7−→∗ 〈M ′2]M∗ | ACρ2(τ ′)[L〈τ∗2 〉/α]CA `2 [τ̂2, τ
∗
2] v∗2

′〉
7−→ 〈M ′2]M∗ | ACρ

′(τ ′)[L〈τ∗2 〉/α]CA t2[τ̂2/β2][τ
∗
2 /α][v∗2/x]〉,

as desired.

Case ∃α.τ
By Lemma 9.7, we know that (W, v1, v′2) ∈ ValAtom[∃α.τ 〈A〉]ρ.

We know that v1 = pack〈τ1,v̂1〉 as ρ1(∃α.τ 〈A〉) and v2 = pack〈τ2,v̂2〉 as ρ2(∃α.τ 〈A〉), and that
there is some VR ∈ AValRel such that VR.τ1 = τ1, VR.τ2 = τ2, and (applying Lemma 8.31)

(W, v̂1, v̂2) ∈ VJτ 〈A〉[α/dαe]Kρ[α 7→ VR] = VJτ 〈A〉Kρ[α 7→ L〈VR〉].

By Lemma 8.3, there exist v̂ and v̂′2 such that

ρ′2(τ)[L〈τ1〉/α]CA(v̂2,M2) = (v̂,M2) and ACρ
′
2(τ)[L〈τ1〉/α](v̂,M2) = (v̂′2,M2]M ′).

Thus we can apply the induction hypothesis and Lemma 8.31 to get

(W � ({·},M ′), v̂1, v̂′2) ∈ VJτ 〈A〉Kρ[α 7→ L〈VR〉] = VJτ 〈A〉[α/dαe]Kρ[α 7→ VR].

By inspection of the translations, v′2 = pack〈τ2,v̂′2〉 as (ρ2(∃α.τ)〈A〉), so we have the desired
result of

(W � ({·},M ′), v1, v′2) ∈ VJ∃α.τ 〈A〉Kρ

by using VR to instantiate the existential.

Case µα.τ

By Lemma 9.7, we know that (W, v1, v′2) ∈ ValAtom[µα.τ 〈A〉]ρ.

We know that v1 = fold
ρ1(µα.τ 〈A〉)

v̂1, v2 = fold
ρ2(µα.τ 〈A〉)

v̂2, and

(W, v̂1, v̂2) ∈ BVJτ 〈A〉[α/dαe][µα.τ 〈A〉/α]Kρ = BVJ(τ [µα.τ/α])〈A〉Kρ.

By Lemma 8.3, there exist v̂ and v̂′2 such that

ρ′2(τ [µα.τ/α])CA(v̂2,M2) = (v̂,M2) and ACρ
′
2(τ [µα.τ/α])(v̂,M2) = (v̂′2,M2]M ′).

Thus we can apply the induction hypothesis to get

(W � ({·},M ′), v̂1, v̂′2) ∈ BVJ(τ [µα.τ/α])〈A〉Kρ = BVJτ 〈A〉[α/dαe][µα.τ 〈A〉/α]Kρ.

By inspection of the translations, v′2 = fold
ρ2(µα.τ 〈A〉)

v̂′2, so we have the result.

51

Case 〈τ1, . . . , τn〉
By Lemma 9.7, we know that (W � ({·},M ′), v1, v′2) ∈ ValAtom[〈τ1, . . . , τn〉〈A〉]ρ′. By our
hypothesis that (W, v1, v2) ∈ VJ〈τ1, . . . , τn〉〈A〉Kρ = VJbox 〈τ1〈A〉, . . . , τn〈A〉〉Kρ, we know that
v1 = `1 and v2 = `2, where

M1(`1) = 〈v11, . . . , v1n〉, M2(`2) = 〈v21, . . . , v2n〉,

and that for each i, (W, v1i, v2i) ∈ VJτiKρ.

By inspection of the translations,

M ′ = M ′1] · · ·]M ′n] (` 7→ 〈v̂1, . . . , v̂n〉)� and v′2 = `

for some v̂1, . . . , v̂n and v̂1, . . . , v̂n such that

ρ′2(τi)CA(v2i,M2) = (v̂i,M2)

and
ACρ

′
2(τi)(v̂i,M2]M ′1] · · ·]M ′i−1) = (v̂i,M2]M ′1] · · ·]M ′i).

By the induction hypothesis and monotonicity, each (W � ({·},M ′), v1i, v̂i) ∈ VJτiKρ′. Thus
(W � ({·},M ′), v1, v′2) ∈ VJ〈τ1, . . . , τn〉〈A〉Kρ′ as desired.

Case dαe
Since ρ′(α) = ρ(α), this follows from ρ(α).ϕAv ∈ TransRelA[ρ1(α)〈C〉, ρ2(α)〈C〉].

Case L〈τ 〉
By inspection of the translations at type L〈τ 〉, v′2 = v2, so we are done.

52

10 Proofs: Soundness and Completeness

10.1 Bridge Lemmas

Lemma 10.1
Let ρ ∈ DJ∆K and ∆ ` τ .

1. (a) If (W, e1, e2) ∈ EJτ 〈C〉Kρ, then (W, ρ1(τ)FC e1,
ρ2(τ)FC e2) ∈ EJτKρ.

(b) If (W, e1, e2) ∈ EJτKρ, then (W, CFρ1(τ) e1, CFρ2(τ) e2) ∈ EJτ 〈C〉Kρ.

2. (a) FC(ρ1(τ), ρ2(τ),VJτ 〈C〉Kρ) ⊆ VJτKρ.

(b) CF(ρ1(τ), ρ2(τ),VJτKρ) ⊆ VJτ 〈C〉Kρ

Proof

We can restate claim (2) as follows:

(a) If (W,v1,v2) ∈ VJτ 〈C〉Kρ, (M1,M2) :W , ρ1(τ1)FC(v1,M1) = (v1,M1), ρ2(τ2)FC(v2,M2) = (v2,M2),
then (W, v1, v2) ∈ VJτKρ.

(b) If (W, v1, v2) ∈ VJτKρ, (M1,M2) :W , CFρ1(τ1)(v1,M1) = (v1,M1), CFρ1(τ2)(v2,M2) = (v2,M2),
then (W,v1,v2) ∈ VJτ 〈C〉Kρ.

We prove all the claims simultaneously by induction on W.k and the structure of τ .

For claim (1), let W ′ wpub W , (W ′, v1, v2) ∈ VJτKρ, and (W ′,v1,v2) ∈ VJτ 〈C〉Kρ. Note that

(W, ρ1(τ)FC [·], ρ2(τ)FC [·]) ∈ ContAtom[τ 〈C〉]ρ [τ]ρ

and
(W, CFρ1(τ) [·], CFρ2(τ) [·]) ∈ ContAtom[τ]ρ [τ 〈C〉]ρ.

By Lemma 8.20, for part (a) it suffices to show that

(W ′, ρ1(τ)FC v1,
ρ2(τ)FC v2) ∈ EJτKρ,

and for part (b) it suffices to show that

(W ′, CFρ1(τ) v1, CFρ2(τ) v2) ∈ EJτ 〈C〉Kρ.

But by Lemma 8.3, for any (M1,M2) :W , there exist v′1, v′2, v′1, and v′2 such that

〈M1 | ρ1(τ)FC v1〉 7−→ 〈M1 | v′1〉 〈M2 | ρ2(τ)FC v2〉 7−→ 〈M2 | v′2〉
〈M1 | CFρ1(τ) v1〉 7−→ 〈M1 | v′1〉 〈M2 | CFρ2(τ) v2〉 7−→ 〈M2 | v′2〉.

So by Lemma 8.15, Lemma 8.9, and claim (2), we have the result.

For claim (2), we consider the possible cases of τ :

Case α

Since ρ(α) ∈ FValRel, we have this immediately.

Case unit

Immediate.

Case int

Immediate.

53

Case ∀[α].(τ)→ τ ′

For part (a), let W ′ w W , VR ∈ FValRel, and (W ′, v̂1, v̂2) ∈ VJτKρ[α 7→ VR]. For convenience,
also let τ̂1 = VR.τ1, τ̂2 = VR.τ2, and ρ′ = ρ[α 7→ VR]. We need to show that

(W ′, v1 [τ̂1] v̂1, v2 [τ̂2] v̂2) ∈ EJτ ′Kρ′.

By our assumption, there is some VR∗ such that

v1 = pack〈τ1env,〈v1f , v1env〉〉 as ∀[α].(τ)→ τ ′〈C〉,

v2 = pack〈τ2env,〈v2f , v2env〉〉 as ∀[α].(τ)→ τ ′〈C〉,

VR∗.τ1 = τ1env, VR∗.τ2 = τ2env, (W,v1env,v2env) ∈ VR∗.ϕCv , and

(W,v1f ,v2f) ∈ VJ∀[α].(β, τ 〈C〉[α/dαe])→ τ ′〈C〉[α/dαe]Kρ[β 7→ VR∗].

Let (M ′1,M
′
2) :W ′. By Lemma 8.3 and the induction hypothesis, there are some v̂1 and v̂2 such

that CFτ̂1(v̂1,M1) = (v̂1,M1), CFτ̂2(v̂2,M2) = (v̂2,M2), and

(W ′, v̂1, v̂2) ∈ VJτ 〈C〉Kρ′ = VJτ 〈C〉[α/dαe]Kρ[β 7→ VR∗][α 7→ CFVR].

Instantiating the previous fact with this, we get

(W ′,v1f [τ̂1〈C〉] v1env, v̂1,v2f [τ̂2〈C〉] v2env, v̂2)

∈ EJτ ′〈C〉[α/dαe]Kρ[β 7→ VR∗][α 7→ CFVR] = EJτ ′〈C〉Kρ′.

By the induction hypothesis,

(W ′, ρ
′
1(τ ′)FC v1f [τ̂1〈C〉] v1env, v̂1,

ρ′2(τ ′)FC v2f [τ̂2〈C〉] v2env, v̂2) ∈ EJτ ′Kρ′.

By Lemma 8.15, it suffices to show for i = 1, 2 that

〈Mi | vi [τ̂i] v̂i〉 7−→∗ 〈Mi | ρ
′
i(τ

′)FC vif [τ̂i〈C〉] vienv, v̂i〉.

To show this, note by the translation definitions that

vi = λ[α](x : τ).ρi(τ
′)FC (unpack 〈β, y〉 = vi in π1(y) [dαe]π2(y), CFρi(τ) x).

Thus we have

〈Mi | vi [τ̂i] v̂i〉
7−→ 〈Mi | ρ

′
i(τ

′)FC (unpack 〈β, y〉 = vi in π1(y) [τ̂i〈C〉]π2(y), CFρ′i(τ) v̂i)〉
7−→∗ 〈Mi | ρ

′
i(τ

′)FC (vif [τ̂i〈C〉] vienv, CFρ
′
i(τ) v̂i)〉

7−→∗ 〈Mi | ρ
′
i(τ

′)FC (vif [τ̂i〈C〉] vienv, v̂i)〉,

as desired.

For part (b), recall that

∀[α].(τ)→ τ ′〈C〉 = ∃β.〈τf , β〉, where τf = ∀[α].(β, τ 〈C〉[α/dαe])→ τ ′〈C〉[α/dαe].

By inspection of the translations,

v1 = pack〈unit,〈v′1, ()〉〉 as ∃β.〈ρ1(τf), β〉 and v2 = pack〈unit,〈v′2, ()〉〉 as ∃β.〈ρ2(τf), β〉,

where

v′1 = λ[α](z : unit, x: ρ1(τ)〈C〉[α/dαe]).CFρ1(τ ′)[L〈α〉/α] v1 [L〈α〉] ρ1(τ)[L〈α〉/α]FC x

54

and

v′2 = λ[α](z : unit, x: ρ2(τ)〈C〉[α/dαe]).CFρ2(τ ′)[L〈α〉/α] v2 [L〈α〉] ρ2(τ)[L〈α〉/α]FC x.

Let
VR = (unit,unit, {(W, (), ()) |W ∈World}, {(W, (), ()) |W ∈World}).

Clearly, VR ∈ CValRel. It suffices to prove that

(W,v′1,v
′
2) ∈ VJτf Kρ[β 7→ VR].

To do this, let W ′ wW , VR′ ∈ CValRel, ρ′ = ρ[β 7→ VR][α 7→ VR′], and

(W ′, v̂1, v̂2) ∈ VJτ 〈C〉[α/dαe]Kρ′ = VJτ 〈C〉Kρ[β 7→ VR][α 7→ L〈VR′〉].

For convenience, also let τ̂1 = VR′.τ1 and τ̂2 = VR′.τ2. We need to show that

(W ′,v′1 [τ̂1] v̂1,v
′
2 [τ̂2] v̂2) ∈ EJτ ′〈C〉[α/dαe]Kρ′.

Recall that EJτ ′〈C〉[α/dαe]Kρ′ = EJτ ′〈C〉Kρ[β 7→ VR][α 7→ L〈VR′〉]. By Lemma 8.3, there are some
v̂1 and v̂2 such that

ρ′1(τ)FC(v̂1,M1) = (v̂1,M1) and ρ′2(τ)FC(v̂2,M2) = (v̂2,M2).

By the induction hypothesis, (W ′, v̂1, v̂2) ∈ VJτKρ′. Instantiating (W, v1, v2) ∈ VJ∀[α].(τ)→ τ ′Kρ,
we have that

(W ′, v1 [L〈τ̂1〉] v̂1, v2 [L〈τ̂2〉] v̂2) ∈ EJτ ′Kρ[α 7→ L〈VR′〉].

By the induction hypothesis,

(W ′, CFρ
′
1(τ ′) v1 [L〈τ̂1〉] v̂1, CFρ

′
2(τ ′) v2 [L〈τ̂2〉] v̂2) ∈ EJτ ′〈C〉Kρ[α 7→ L〈VR′〉].

By Lemmas 8.22 and 8.33,

(W ′, CFρ
′
1(τ ′) v1 [L〈τ̂1〉] v̂1, CFρ

′
2(τ ′) v2 [L〈τ̂2〉] v̂2) ∈ EJτ ′〈C〉[α/dαe]Kρ′.

By Lemma 8.15, it suffices to show for i = 1, 2 that

〈Mi | v′i [τ̂i] v̂i〉 7−→∗ 〈Mi | CFρ
′
1(τ ′) v1 [L〈τ̂1〉] v̂1〉.

By inspection of the operational semantics, we have

〈Mi | v′i [τ̂i] v̂i〉
7−→ 〈Mi | CFρ

′
i(τ

′) vi [L〈τ̂i〉] ρ
′
i(τ)FC v̂i〉

7−→∗ 〈Mi | CFρ
′
i(τ

′) vi [L〈τ̂i〉] v̂i〉,

as desired.

Case ∃α.τ
For part (a), we have v1 = pack〈τ̂1,v̂1〉 as ρ1(∃α.τ 〈C〉), v2 = pack〈τ̂2,v̂2〉 as ρ2(∃α.τ 〈C〉), and
that there is some VR ∈ CValRel such that VR.τ1 = τ̂1, VR.τ2 = τ̂2, and

(W, v̂1, v̂2) ∈ VJτ 〈C〉[α/dαe]Kρ[α 7→ VR] = VJτ 〈C〉Kρ[α 7→ L〈VR〉].

By inspection of the translations,

v1 = pack〈L〈τ̂1〉,v̂1〉 as ρ1(∃α.τ) and v2 = pack〈L〈τ̂2〉,v̂2〉 as ρ2(∃α.τ),

55

where

ρ1(τ)[L〈τ̂1〉/α]FC(v̂1,M1) = (v̂1,M1) and ρ1(τ)[L〈τ̂2〉/α]FC(v̂2,M2) = (v̂2,M2).

By the induction hypothesis,

(W, v̂1, v̂2) ∈ VJτKρ[α 7→ L〈VR〉].

We can use L〈VR〉 to instantiate the definition of VJ∃α.τKρ and reach the result.

Part (b) is similar: we have v1 = pack〈τ̂1,v̂1〉 as ρ1(∃α.τ), v2 = pack〈τ̂2,v̂2〉 as ρ2(∃α.τ), and that
there is some VR ∈ FValRel such that VR.τ1 = τ̂1, VR.τ2 = τ̂2, and

(W, v̂1, v̂2) ∈ VJτKρ[α 7→ VR].

By inspection of the translations,

v1 = pack〈τ̂1〈C〉,v̂1〉 as ρ1(∃α.τ 〈C〉) and v2 = pack〈τ̂2〈C〉,v̂2〉 as ρ2(∃α.τ 〈C〉),

where
CFτ [τ̂1/α](v̂1,M1) = (v̂1,M1) and CFτ [τ̂2/α](v̂2,M2) = (v̂2,M2).

By the induction hypothesis and Lemma 8.28,

(W, v̂1, v̂2) ∈ VJτ 〈C〉Kρ[α 7→ VR] = VJτ 〈C〉[α/dαe]Kρ[α 7→ FCVR].

We now instantiate VJ∃α.τ 〈C〉Kρ with FCVR to complete the proof.

Case µα.τ

For part (a), we have v1 = fold
ρ1(µα.τ 〈C〉)

v̂1, v2 = fold
ρ2(µα.τ 〈C〉)

v̂2, and

(W, v̂1, v̂2) ∈ BVJτ 〈C〉[α/dαe][µα.τ/α]Kρ. = BVJτ [µα.τ/α]〈C〉Kρ

By inspection of the translations,

v1 = foldρ1(µα.τ) v̂1 and v2 = foldρ2(µα.τ) v̂2,

where

ρ1(τ [µα.τ/α])FC(v̂1,M1) = (v̂1,M1) and ρ2(τ [µα.τ/α])FC(v̂2,M2) = (v̂2,M2).

By the induction hypothesis,
(W, v̂1, v̂2) ∈ BVJτ [µα.τ/α]Kρ,

which is sufficient to prove (W, v1, v2) ∈ VJµα.τKρ.

Part (b) is similar: we have v1 = foldρ1(µα.τ) v̂1, v′2 = foldρ2(µα.τ) v̂2, and

(W, v̂1, v̂2) ∈ BVJτ [µα.τ/α]Kρ.

By inspection of the translations,

v1 = fold
ρ1(µα.τ 〈C〉)

v̂1 and v2 = fold
ρ2(µα.τ 〈C〉)

v̂2,

where

CFρ1(τ [µα.τ/α])(v̂1,M1) = (v̂1,M1) and CFρ2(τ [µα.τ/α])(v̂2,M2) = (v̂2,M2).

By the induction hypothesis,

(W, v̂1, v̂2) ∈ BVJτ [µα.τ/α]〈C〉Kρ = BVJτ 〈C〉[α/dαe][µα.τ/α]Kρ.

This completes the proof.

56

Case 〈τ〉
By definition of the value translations and the induction hypothesis.

Case L〈τ 〉
Follows immediately from the definitions of VJL〈τ 〉Kρ and the translation rules for lumps.

Lemma 10.2
Let ρ ∈ DJ∆K and ∆ ` τ .

1. (a) If (W, e1, e2) ∈ EJτ 〈A〉Kρ, then (W, ρ1(τ)CA e1,
ρ2(τ)CA e2) ∈ EJτ Kρ.

(b) If (W, e1, e2) ∈ EJτ Kρ, then (W,ACρ1(τ) e1,ACρ2(τ) e2) ∈ EJτ 〈A〉Kρ.

2. (a) CA(ρ1(τ), ρ2(τ),VJτ 〈A〉Kρ) ⊆ VJτ Kρ.

(b) AC(ρ1(τ), ρ2(τ),VJτ Kρ) ⊆ VJτ 〈A〉Kρ.

Proof

We can restate claim (2) as follows:

(a) If (W, v1, v2) ∈ VJτ 〈A〉Kρ, (M1,M2) : W ,

ρ1(τ)CA(v1,M1) = (v1,M1), and ρ2(τ)CA(v2,M2) = (v2,M2),

then (W,v1,v2) ∈ VJτ Kρ.

(b) If (W,v1,v2) ∈ VJτ Kρ, (M1,M2) : W ,

ACρ1(τ)(v1,M1) = (v1,M1]M ′1), and ACρ2(τ)(v2,M2) = (v2,M2]M ′2),

then (W � (M ′1,M
′
2), v1, v2) ∈ VJτ 〈A〉Kρ.

We prove all the claims simultaneously by induction on W.k and the structure of τ .

For claim (1), let W ′ wpub W , (W ′,v1,v2) ∈ VJτ Kρ, and (W ′, v1, v2) ∈ VJτ 〈A〉Kρ. Note that

(W, ρ1(τ)CA [·], ρ2(τ)CA [·]) ∈ ContAtom[τ 〈A〉]ρ [τ]ρ

and
(W,ACρ1(τ) [·],ACρ2(τ) [·]) ∈ ContAtom[τ]ρ [τ 〈A〉]ρ.

By Lemma 8.20, for part (a) it suffices to show that

(W ′, ρ1(τ)CA v1,
ρ2(τ)CA v2) ∈ EJτ Kρ,

and for part (b) it suffices to show that

(W ′,ACρ1(τ) v1,ACρ2(τ) v2) ∈ EJτ 〈A〉Kρ.

But by Lemma 8.3, for any (M1,M2) :W , there exist v′1, v′2, v′1, and v′2 such that

〈M1 | ρ1(τ)CA v1〉 7−→ 〈M1 | v′1〉 〈M2 | ρ2(τ)CA v2〉 7−→ 〈M2 | v′2〉
〈M1 | ACρ1(τ) v1〉 7−→ 〈M1]M ′1 | v′1〉 〈M2 | ACρ2(τ) v2〉 7−→ 〈M2]M ′2 | v′2〉.

So by Lemma 8.15, Lemma 8.9, and claim (2), we have the result.

For claim (2), we consider the possible cases of τ :

Case α

Since ρ(α) ∈ CValRel, we have this immediately.

57

Case unit

Immediate.

Case int

Immediate.

Case ∀[α].(τ)→ τ ′

For part (a), let W ′ w W , VR ∈ CValRel, and (W ′, v̂1, v̂2) ∈ VJτ Kρ[α 7→ VR]. For convenience,
also let τ̂1 = VR.τ1, τ̂2 = VR.τ2, and ρ′ = ρ[α 7→ VR]. We need to show that

(W ′,v1 [τ̂1] v̂1,v2 [τ̂2] v̂2) ∈ EJτ ′Kρ′.

By our assumption,

v1 = `1[τ
∗
1], M1(`1) = λ[β1, α](x : τ1).t1, τ1[τ

∗
1 /β1] = ρ1(τ 〈A〉[α/dαe]),

v2 = `2[τ
∗
2], M2(`2) = λ[β1, α](x : τ2).t2, τ2[τ

∗
2 /β2] = ρ2(τ 〈A〉[α/dαe]),

and

(W,λ[α](x : ρ1(τ 〈A〉[α/dαe])).t1[τ
∗
1 /β1],λ[α](x : ρ2(τ 〈A〉[α/dαe])).t2[τ

∗
2 /β2])

∈ HVJ∀[α].(τ 〈A〉[α/dαe])→ τ ′〈A〉[α/dαe]Kρ.

Let (M ′1,M
′
2) :W ′. By Lemma 8.3 and the induction hypothesis, there are some v̂1 and v̂2 such

that ACτ̂1(v̂1,M1) = (v̂1,M1]M ′1i), ACτ̂2(v̂2,M2) = (v̂2,M2]M ′2i), and

(W ′ � (M ′1,M
′
2), v̂1, v̂2) ∈ VJτ 〈A〉Kρ′ = VJτ 〈A〉[α/dαe]Kρ[α 7→ ACVR],

where M ′1 =
⊎
M ′1i and M ′2 =

⊎
M ′2i. Instantiating the previous fact with this, we get

(W ′ � (M ′1,M
′
2), t1[τ

∗
1 /β1][τ̂1〈A〉/α][v̂1/x], t2[τ

∗
2 /β2][τ̂2〈A〉/α][v̂2/x])

∈ EJτ ′〈A〉[α/dαe]Kρ[α 7→ CAVR] = EJτ ′〈A〉Kρ′.

By the induction hypothesis,

(W ′ � (M ′1,M
′
2), ρ

′
1(τ ′)CA t1[τ

∗
1 /β1][τ̂1〈A〉/α][v̂1/x], ρ

′
2(τ ′)CA t2[τ

∗
2 /β2][τ̂2〈A〉/α][v̂2/x])

∈ EJτ ′Kρ′.

By Lemma 8.15, it suffices to show for i = 1, 2 that

〈Mi | vi [τ̂i] v̂i〉 7−→∗ 〈Mi]M ′i | ρ
′
i(τ
′)CA ti[τ

∗
i /βi][τ̂i〈A〉/α][v̂i/x]〉.

To show this, note by the translation definitions that

vi = λ[α](x : τ).ρi(τ
′)CA vi [dαe]ACρi(τ) x.

Thus we have
〈Mi | vi [τ̂i] v̂i〉

7−→ 〈Mi | ρ
′
i(τ
′)CA vi [τ̂i〈A〉]ACρ

′
i(τ) v̂i〉

7−→∗ 〈Mi | ρ
′
i(τ
′)CA (vi [τ̂i〈A〉] v̂i)〉

7−→∗ 〈Mi | ρ
′
i(τ
′)CA ti[τ

∗
i /βi][τ̂i〈A〉/α][v̂i/x]〉,

as desired.

For part (b), recall that

∀[α].(τ)→ τ ′〈A〉 = box∀[α].(τ 〈A〉[α/dαe])→ τ ′〈A〉[α/dαe].

58

By inspection of the translations, v1 = `1 and v2 = `2, where

M ′1(`1) = h1 = λ[α](x : ρ1(τ)〈A〉[α/dαe]).ACρ1(τ ′)[L〈α〉/α] v1 [L〈α〉] ρ1(τ)[L〈α〉/α]CA x

and

M ′2(`2) = h2 = λ[α](x : ρ2(τ)〈A〉[α/dαe]).ACρ2(τ ′)[L〈α〉/α] v2 [L〈α〉] ρ2(τ)[L〈α〉/α]CA x.

It suffices to prove that

(W � (M ′1,M
′
2),h1,h2) ∈ HVJ∀[α].(τ 〈A〉[α/dαe])→ τ ′〈A〉[α/dαe]Kρ.

To do this, let W ′ wW � (M ′1,M
′
2), VR′ ∈ AValRel, and

(W ′, v̂1, v̂2) ∈ VJτ 〈A〉[α/dαe]Kρ[α 7→ VR′] = VJτ 〈A〉Kρ[α 7→ L〈VR′〉].

For convenience, also let τ̂1 = VR′.τ1 and τ̂2 = VR′.τ2. We need to show that

(W ′,ACρ1(τ ′)[L〈α〉/α] v1 [L〈τ̂1〉] ρ1(τ)[L〈τ̂1〉/α]CA v̂1,

ACρ2(τ ′)[L〈α〉/α] v2 [L〈τ̂2〉] ρ2(τ)[L〈τ̂2〉/α]CA v̂2)

∈ EJτ ′〈A〉[α/dαe]Kρ[α 7→ VR′] = EJτ ′〈A〉Kρ[α 7→ L〈VR′〉].

By Lemma 8.3, there are some v̂1 and v̂2 such that

ρ′1(τ)CA(v̂1,M1) = (v̂1,M1) and ρ′2(τ)CA(v̂2,M2) = (v̂2,M2).

By the induction hypothesis, (W ′, v̂1, v̂2) ∈ VJτ Kρ[α 7→ L〈VR〉′]. Instantiating

(W,v1,v2) ∈ VJ∀[α].(τ)→ τ ′Kρ,

we have that
(W ′,v1 [L〈τ̂1〉] v̂1,v2 [L〈τ̂2〉] v̂2) ∈ EJτ ′Kρ[α 7→ L〈VR′〉].

By the induction hypothesis,

(W ′,ACρ
′
1(τ ′) v1 [L〈τ̂1〉] v̂1,ACρ

′
2(τ ′) v2 [L〈τ̂2〉] v̂2) ∈ EJτ ′〈A〉Kρ[α 7→ L〈VR′〉].

The result follows by Lemma 8.15.

Case ∃α.τ
For part (a), we have v1 = pack〈τ̂1,v̂1〉 as ρ1(∃α.τ 〈A〉), v2 = pack〈τ̂2,v̂2〉 as ρ2(∃α.τ 〈A〉), and
that there is some VR ∈ AValRel such that VR.τ1 = τ̂1, VR.τ2 = τ̂2, and

(W, v̂1, v̂2) ∈ VJτ 〈A〉[α/dαe]Kρ[α 7→ VR] = VJτ 〈A〉Kρ[α 7→ L〈VR〉].

By inspection of the translations,

v1 = pack〈L〈τ̂1〉,v̂1〉 as ρ1(∃α.τ) and v2 = pack〈L〈τ̂2〉,v̂2〉 as ρ2(∃α.τ),

where

ρ1(τ)[L〈τ̂1〉/α]CA(v̂1,M1) = (v̂1,M1) and ρ1(τ)[L〈τ̂2〉/α]CA(v̂2,M2) = (v̂2,M2).

By the induction hypothesis,

(W, v̂1, v̂2) ∈ VJτ Kρ[α 7→ L〈VR〉].

59

We can use L〈VR〉 to instantiate the definition of VJ∃α.τ Kρ and reach the result.

Part (b) is similar: we have v1 = pack〈τ̂1,v̂1〉 as ρ1(∃α.τ), v2 = pack〈τ̂2,v̂2〉 as ρ2(∃α.τ), and
that there is some VR ∈ CValRel such that VR.τ1 = τ̂1, VR.τ2 = τ̂2, and

(W, v̂1, v̂2) ∈ VJτ Kρ[α 7→ VR].

By inspection of the translations,

v1 = pack〈τ̂1〈A〉,v̂1〉 as ρ1(∃α.τ 〈A〉) and v2 = pack〈τ̂2〈A〉,v̂2〉 as ρ2(∃α.τ 〈A〉),

where

ACτ [τ̂1/α](v̂1,M1) = (v̂1,M1]M ′1) and ACτ [τ̂2/α](v̂2,M2) = (v̂2,M2]M ′2).

By the induction hypothesis and Lemma 8.26,

(W � (M ′1,M
′
2), v̂1, v̂2) ∈ VJτ 〈A〉Kρ[α 7→ VR] = VJτ 〈A〉[α/dαe]Kρ[α 7→ CAVR].

We now instantiate VJ∃α.τ 〈A〉Kρ with CAVR to complete the proof.

Case µα.τ

For part (a), we have v1 = fold
ρ1(µα.τ 〈A〉)

v̂1, v2 = fold
ρ2(µα.τ 〈A〉)

v̂2, and

(W, v̂1, v̂2) ∈ BVJτ 〈A〉[α/dαe][µα.τ/α]Kρ. = BVJτ [µα.τ/α]〈A〉Kρ

By inspection of the translations,

v1 = foldρ1(µα.τ) v̂1 and v2 = foldρ2(µα.τ) v̂2,

where

ρ1(τ [µα.τ/α])CA(v̂1,M1) = (v̂1,M1) and ρ2(τ [µα.τ/α])CA(v̂2,M2) = (v̂2,M2).

By the induction hypothesis,

(W, v̂1, v̂2) ∈ BVJτ [µα.τ/α]Kρ,

which is sufficient to prove (W,v1,v2) ∈ VJµα.τ Kρ.

Part (b) is similar: we have v1 = foldρ1(µα.τ) v̂1, v′2 = foldρ2(µα.τ) v̂2, and

(W, v̂1, v̂2) ∈ BVJτ [µα.τ/α]Kρ.

By inspection of the translations,

v1 = fold
ρ1(µα.τ 〈A〉)

v̂1 and v2 = fold
ρ2(µα.τ 〈A〉)

v̂2,

where

ACρ1(τ [µα.τ/α])(v̂1,M1) = (v̂1,M1]M ′1) and ACρ2(τ [µα.τ/α])(v̂2,M2) = (v̂2,M2]M ′2).

By the induction hypothesis,

(W � (M ′1,M
′
2), v̂1, v̂2) ∈ BVJτ [µα.τ/α]〈A〉Kρ = BVJτ 〈A〉[α/dαe][µα.τ/α]Kρ.

This completes the proof.

Case 〈τ 〉
By definition of the value translations and the induction hypothesis.

Case dαe
Since ρ(α) ∈ FValRel, we have this immediately.

Case L〈τ 〉
Follows immediately from the definitions of VJL〈τ 〉Kρ and the translation rules for lumps.

60

10.2 Substitution

Lemma 10.3
Let ρ ∈ DJ∆K.

1. If ∆ ` τ , then VJτKρ ∈ ValRel[ρ1(τ), ρ2(τ)] and VJτ 〈C〉Kρ ∈ TransRelC [ρ1(τ), ρ2(τ)].

2. If ∆ ` τ , then VJτ Kρ ∈ ValRel[ρ1(τ), ρ2(τ)] and VJτ 〈A〉Kρ ∈ TransRelA[ρ1(τ), ρ2(τ)].

3. If ∆ ` τ , then VJτ Kρ ∈ ValRel[ρ1(τ), ρ2(τ)].

Proof

Follows from monotonicity and boundary cancellation.

Lemma 10.4
Let ρ ∈ DJ∆K.

1. If ∆ ` τ , then (ρ1(τ), ρ2(τ),VJτKρ,VJτ 〈C〉Kρ,VJτ 〈C〉〈A〉Kρ) ∈ FValRel.

2. If ∆ ` τ , then (ρ1(τ), ρ2(τ),VJτ Kρ,VJτ 〈A〉Kρ) ∈ CValRel.

3. If ∆ ` τ , then (ρ1(τ), ρ2(τ),VJτ Kρ) ∈ AValRel.

Proof

Follows from Lemma 10.3 and the bridge lemmas.

To avoid repetition, for the next three lemmas, let ρ ∈ DJ∆K, and define the function V as follows:

V(τ) = (ρ1(τ), ρ2(τ),VJτKρ,VJτ 〈C〉Kρ,VJτ 〈C〉〈A〉Kρ)

V(τ) = (ρ1(τ), ρ2(τ),VJτ Kρ,VJτ 〈A〉Kρ)

V(τ) = (ρ1(τ), ρ2(τ),VJτ Kρ)

Note that by Lemma 10.4, ρ[α 7→ V(τ)] ∈ DJ∆, αK as long as τ and α are in the same language and α 6∈ ∆.
We assume this is the case for the next three lemmas.

We now state a key set of substitution lemmas:

Lemma 10.5

1. VJτ Kρ[α 7→ V(τ)] = VJτ [τ/α]Kρ.

2. HVJψKρ[α 7→ V(τ)] = HVJψ[τ/α]Kρ.

3. EJτ Kρ[α 7→ V(τ)] = EJτ [τ/α]Kρ

4. KJτ Kρ[α 7→ V(τ)] = KJτ [τ/α]Kρ.

Proof

Follows the induction structure of Lemma 8.21. The base cases (for type variables and suspensions)
follow from the definition of V(τ).

Lemma 10.6

1. VJτ Kρ[α 7→ V(τ)] = VJτ [τ/α]Kρ.

2. EJτ Kρ[α 7→ V(τ)] = EJτ [τ/α]Kρ

3. KJτ Kρ[α 7→ V(τ)] = KJτ [τ/α]Kρ.

Proof

61

Follows the induction structure of Lemma 8.22. The base cases (for type variables and suspensions)
follow from the definition of V(τ).

Lemma 10.7

1. VJτKρ[α 7→ V(τ)] = VJτ [τ/α]Kρ.

2. EJτKρ[α 7→ V(τ)] = EJτ [τ/α]Kρ

3. KJτKρ[α 7→ V(τ)] = KJτ [τ/α]Kρ.

Proof

Follows the induction structure of Lemma 8.23. The base case (for type variables) follows from the
definition of V(τ).

10.3 Compatability Lemmas

Because of the recursive dependence between the relations EJτKρ, VJτKρ, and HVJψKρ, to prove the funda-
mental property we will need to define relations for open values and heap values:

Definition 10.8 (Logical Relation for Values)

Ψ; ∆; Γ ` v1 ≈v v2 : τ
def
= Ψ; ∆; Γ ` v1 : τ ∧ Ψ; ∆; Γ ` v2 : τ ∧

∀W,ρ, γ. W ∈ HJΨK ∧ ρ ∈ DJ∆K ∧ (W,γ) ∈ GJΓKρ
=⇒ (W,ρ1(γ1(v1)), ρ2(γ2(v2))) ∈ VJτKρ

Ψ ` h1 ≈hv h2 :ψ
def
= Ψ ` h1 :ψ ∧ Ψ ` h2 :ψ ∧ ∀W ∈ HJΨK. (W,h1,h2) ∈ HVJψK∅

The compatibility lemmas for value forms will have two similar statements: one for the logical relation
for terms, and one for the logical relation for values. We will only address the former in the proofs, because
the latter can always be shown with a very similar proof.

Lemma 10.9 (F Variable)
If x : τ ∈ Γ, then Ψ; ∆; Γ ` x ≈ x : τ .

Proof

First note that Ψ; ∆; Γ ` x : τ .

Let W ∈ HJΨK, ρ ∈ DJ∆K, and (W,γ) ∈ GJΓKρ. By definition of GJΓKρ,

(W,ρ1(γ1(x)), ρ2(γ2(x))) = (W,γ1(x), γ2(x)) ∈ VJτKρ.

Then by Lemma 8.9, (W,ρ1(γ1(x)), ρ2(γ2(x))) ∈ EJτKρ, as desired.

Lemma 10.10 (F Unit)

• Ψ; ∆; Γ ` () ≈ () : unit

• Ψ; ∆; Γ ` () ≈v () : unit.

Proof

First note that Ψ; ∆; Γ ` () : unit.

Let W ∈ HJΨK, ρ ∈ DJ∆K, and (W,γ) ∈ GJΓKρ. By definition,

(W,ρ1(γ1(())), ρ2(γ2(()))) = (W, (), ()) ∈ VJunitKρ.

By Lemma 8.9, (W,ρ1(γ1(())), ρ2(γ2(()))) ∈ EJunitKρ, as desired.

62

Lemma 10.11 (F Int)

• Ψ; ∆; Γ ` n ≈ n : int

• Ψ; ∆; Γ ` n ≈v n : int.

Proof

First note that Ψ; ∆; Γ ` n : int.

Let W ∈ HJΨK, ρ ∈ DJ∆K, and (W,γ) ∈ GJΓKρ. By definition,

(W,ρ1(γ1(n)), ρ2(γ2(n))) = (W, n, n) ∈ VJintKρ.

By Lemma 8.9, (W,ρ1(γ1(n)), ρ2(γ2(n))) ∈ EJintKρ, as desired.

Lemma 10.12 (F Primitive)
If Ψ; ∆; Γ ` t1 ≈ t2 : int and Ψ; ∆; Γ ` t′1 ≈ t′2 : int, then Ψ; ∆; Γ ` t1 p t′1 ≈ t2 p t′2 : int.

Proof

First note that Ψ; ∆; Γ ` t1 p t′1 : int and Ψ; ∆; Γ ` t2 p t′2 : int.

Let W ∈ HJΨK, ρ ∈ DJ∆K, and (W,γ) ∈ GJΓKρ.

We need to show that

(W,ρ1(γ1(t1 p t′1)), ρ2(γ2(t2 p t′2))) = (W,ρ1(γ1(t1)) p ρ1(γ1(t′1)), ρ2(γ2(t2)) p ρ2(γ2(t′2))) ∈ EJintKρ.

By assumption, (W,ρ1(γ1(t1)), ρ2(γ2(t2))) ∈ EJintKρ and (W,ρ1(γ1(t′1)), ρ2(γ2(t′2))) ∈ EJintKρ.

Let W ′ wpub W and (W ′, v1, v2) ∈ VJintKρ. By Lemma 8.20, it suffices to show that

(W ′, v1 p ρ1(γ1(t′1)), v2 p ρ2(γ2(t′2))) ∈ EJintKρ.

Let W ′′ wpub W
′ and (W ′, v′1, v

′
2) ∈ VJintKρ. By another application of Lemma 8.20, it suffices to show

that
(W ′′, v1 p v′1, v2 p v′2) ∈ EJintKρ.

But by definition of VJintKρ, v1 = v2 = m and v′1 = v′2 = n. For any (M1,M2) :W ′′,

〈Mi | m p n〉 7−→ 〈Mi | n′〉.

By definition, (W ′′, n′, n′) ∈ VJintKρ. So by Lemma 8.9 and Lemma 8.15, we have the result.

Lemma 10.13 (F If0)
If Ψ; ∆; Γ ` t1 ≈ t2 : int, Ψ; ∆; Γ ` t′1 ≈ t′2 : τ , and Ψ; ∆; Γ ` t′′1 ≈ t′′2 : τ , then

Ψ; ∆; Γ ` if0 t1 t′1 t′′1 ≈ if0 t2 t′2 t′′2 : τ .

Proof

First note that Ψ; ∆; Γ ` if0 t1 t′1 t′′1 : τ and Ψ; ∆; Γ ` if0 t2 t′2 t′′2 : τ .

Let W ∈ HJΨK, ρ ∈ DJ∆K, and (W,γ) ∈ GJΓKρ.

We need to show that

(W,ρ1(γ1(if0 t1 t′1 t′′1)), ρ2(γ2(if0 t2 t′2 t′′2)))

= (W, if0 ρ1(γ1(t1)) ρ1(γ1(t′1)) ρ1(γ1(t′′1)), if0 ρ2(γ2(t2)) ρ2(γ2(t′2)) ρ2(γ2(t′′2))) ∈ EJτKρ.

By assumption, (W,ρ1(γ1(t1)), ρ2(γ2(t2))) ∈ EJintKρ,

(W,ρ1(γ1(t′1)), ρ2(γ2(t′2))) ∈ EJτKρ, and (W,ρ1(γ1(t′′1)), ρ2(γ2(t′′2))) ∈ EJτKρ.

63

Let W ′ wpub W and (W ′, v1, v2) ∈ VJintKρ. By Lemma 8.20, it suffices to show that

(W ′, if0 v1 ρ1(γ1(t′1)) ρ1(γ1(t′′1)), if0 v2 ρ2(γ2(t′2)) ρ2(γ2(t′′2))) ∈ EJτKρ.

By definition of VJintKρ, v1 = v2 = n. Depending on whether n = 0, for any (M1,M2) :W ′, either

〈Mi | if0 vi ρi(γi(t′i)) ρi(γi(t′′i))〉 7−→ 〈Mi | ρi(γi(t′i))〉

or
〈Mi | if0 vi ρi(γi(t′i)) ρi(γi(t′′i))〉 7−→ 〈Mi | ρi(γi(t′′i))〉.

Thus, by Lemma 8.15, it suffices to show that

(W,ρ1(γ1(t′1)), ρ2(γ2(t′2))) ∈ EJτKρ and (W,ρ1(γ1(t′′1)), ρ2(γ2(t′′2))) ∈ EJτKρ.

But we already have these facts, so we are done.

Lemma 10.14 (F Function)
If Ψ; (∆, α); (Γ, x : τ) ` t1 ≈ t2 : τ ′, then

• Ψ; ∆; Γ ` λ[α](x : τ).t1 ≈ λ[α](x : τ).t2 :∀[α].(τ)→ τ ′

• Ψ; ∆; Γ ` λ[α](x : τ).t1 ≈v λ[α](x : τ).t2 :∀[α].(τ)→ τ ′.

Proof

First note that Ψ; ∆; Γ ` λ[α](x : τ).t1 :∀[α].(τ)→ τ ′ and Ψ; ∆; Γ ` λ[α](x : τ).t2 :∀[α].(τ)→ τ ′.

Let W ∈ HJΨK, ρ ∈ DJ∆K, and (W,γ) ∈ GJΓKρ.

We need to show that

(W,ρ1(γ1(λ[α](x : τ).t1)), ρ2(γ2(λ[α](x : τ).t2)))

= (W,λ[α](x : τ).ρ1(γ1(t1)), λ[α](x : τ).ρ2(γ2(t2))) ∈ EJ∀[α].(τ)→ τ ′Kρ.

By Lemma 8.9, it suffices to show that

(W,λ[α](x : τ).ρ1(γ1(t1)), λ[α](x : τ).ρ2(γ2(t2))) ∈ VJ∀[α].(τ)→ τ ′Kρ.

Let W ′ w W , VR ∈ FValRel, and (W ′, v1, v2) ∈ VJτKρ[α 7→ VR]. For convenience, also let τ1 = VR.τ1
and τ2 = VR.τ2 We need to show that

(W,λ[α](x : τ).ρ1(γ1(t1)) [τ1] v1, λ[α](x : τ).ρ2(γ2(t2)) [τ2] v2) ∈ EJτ ′Kρ[α 7→ VR].

By Lemma 8.15, it suffices to show that

(W,ρ1(γ1(t1))[τ1/α][v1/x], ρ2(γ2(t2))[τ2/α][v2/x]) ∈ EJτ ′ρ[α 7→ VR]K.

By definition, W ′ ∈ HJΨK and ρ[α 7→ VR] ∈ DJ∆, αK. By definition and by monotonicity,

(W ′, γ[x 7→ (v1, v2)]) ∈ GJΓ, x : τKρ[α 7→ VR].

Applying our assumption gives the result.

Lemma 10.15 (F Application)

If Ψ; ∆; Γ ` t1 ≈ t2 :∀[α].(τ)→ τ ′, ∆ ` τ̂ , and Ψ; ∆; Γ ` t′1 ≈ t′2 : τ [τ̂ /α], then

Ψ; ∆; Γ ` t1 [τ̂] t′1 ≈ t2 [τ̂] t′2 : τ ′[τ̂ /α].

Proof

64

First note that Ψ; ∆; Γ ` t1 [τ̂] t′1 : τ ′[τ̂ /α] and Ψ; ∆; Γ ` t2 [τ̂] t′2 : τ ′[τ̂ /α].

Let W ∈ HJΨK, ρ ∈ DJ∆K, and (W,γ) ∈ GJΓKρ. We need to show that

(W,ρ1(γ1(t1 [τ̂] t′1)), ρ2(γ2(t2 [τ̂] t′2)))

= (W,ρ1(γ1(t1)) [ρ1(τ̂)] ρ1(γ1(t′1)), ρ2(γ2(t2)) [ρ2(τ̂)] ρ2(γ2(t′2))) ∈ EJτ ′[τ̂ /α]Kρ.

Let VR = (ρ1(τ̂), ρ2(τ̂),VJτ̂Kρ,VJτ̂ 〈C〉Kρ,VJτ̂ 〈C〉〈A〉Kρ). By Lemma 10.7,

EJτ ′[τ̂ /α]Kρ = EJτ ′Kρ[α 7→ VR] and VJτ [τ̂ /α]Kρ = VJτKρ[α 7→ VR].

We will use these equalities throughout the proof.

Let W0 wpub W and (W0, v1, v2) ∈ VJ∀[α].(τ)→ τ ′Kρ. By Lemma 8.20, it suffices to show that

(W0, v1 [ρ1(τ̂)] ρ1(γ1(t′1)), v2 [ρ2(τ̂)] ρ2(γ2(t′2))) ∈ EJτ ′[τ̂ /α]Kρ.

Let Wi wpub Wi−1 and (Wi, v
′
1i, v
′
2i) ∈ VJτ [τ̂ /α]Kρ. By further applications of 8.20, it suffices to show

that
(Wn, v1 [ρ1(τ̂)] v′1, v2 [ρ2(τ̂)] v′2) ∈ EJτ ′[τ̂ /α]Kρ.

Since Wn wW0, VR ∈ FValRel, and (Wn, v
′
1, v
′
2) ∈ VJτKρ[α 7→ VR], we can instantiate our assumption

that
(W0, v1, v2) ∈ VJ∀[α].(τ)→ τ ′Kρ

to get exactly the needed result.

Lemma 10.16 (F Pack)

• If Ψ; ∆; Γ ` t1 ≈ t2 : τ [τ ′/α], then Ψ; ∆; Γ ` pack〈τ ′,t1〉 as∃α.τ ≈ pack〈τ ′,t2〉 as∃α.τ :∃α.τ

• If Ψ; ∆; Γ ` v1 ≈v v2 : τ [τ ′/α], then Ψ; ∆; Γ ` pack〈τ ′,v1〉 as∃α.τ ≈v pack〈τ ′,v2〉 as∃α.τ :∃α.τ .

Proof

Note that Ψ; ∆; Γ ` pack〈τ ′,t1〉 as∃α.τ :∃α.τ and Ψ; ∆; Γ ` pack〈τ ′,t2〉 as∃α.τ :∃α.τ .

Let W ∈ HJΨK, ρ ∈ DJ∆K, and (W,γ) ∈ GJΓKρ. We need to show that

(W,ρ1(γ1(pack〈τ ′,t1〉 as∃α.τ)), ρ2(γ2(pack〈τ ′,t2〉 as∃α.τ)))

= (W, pack〈ρ1(τ ′),ρ1(γ1(t1))〉 as∃α.τ , pack〈ρ2(τ ′),ρ2(γ2(t2))〉 as∃α.τ) ∈ EJ∃α.τKρ.

Let VR = (ρ1(τ ′), ρ2(τ ′),VJτ ′Kρ,VJτ ′〈C〉Kρ,VJτ ′〈C〉〈A〉Kρ). By our assumption and Lemma 10.7,

(W,ρ1(γ1(t1)), ρ2(γ2(t2))) ∈ EJτ [τ ′/α]Kρ = EJτKρ[α 7→ VR].

Let W ′ wpub W and (W ′, v1, v2) ∈ VJτKρ[α 7→ VR]. By Lemma 8.20, it suffices to show that

(W, pack〈ρ1(τ ′),v1〉 as∃α.τ , pack〈ρ2(τ ′),v2〉 as∃α.τ) ∈ EJ∃α.τKρ.

By Lemma 8.9, it suffices to show that

(W, pack〈v1,ρ1(γ1(t1))〉 as∃α.τ , pack〈v2,ρ2(γ2(t2))〉 as∃α.τ) ∈ VJ∃α.τKρ.

But (W ′, v1, v2) ∈ VJτKρ[α 7→ VR] is sufficient to give this.

Lemma 10.17 (F Unpack)
If Ψ; ∆; Γ ` t1 ≈ t2 :∃α.τ and Ψ; (∆, α); (Γ, x : τ) ` t′1 ≈ t′2 : τ ′, then

Ψ; ∆; Γ ` unpack 〈α, x〉 = t1 in t′1 ≈ unpack 〈α, x〉 = t2 in t′2 : τ ′.

65

Proof

Note that Ψ; ∆; Γ ` unpack 〈α, x〉 = t1 in t′1 : τ ′ and Ψ; ∆; Γ ` unpack 〈α, x〉 = t2 in t′2 : τ ′.

Let W ∈ HJΨK, ρ ∈ DJ∆K, and (W,γ) ∈ GJΓKρ. We need to show that

(W,ρ1(γ1(unpack 〈α, x〉 = t1 in t′1)), ρ2(γ2(unpack 〈α, x〉 = t2 in t′2)))

= (W, unpack 〈α, x〉 = ρ1(γ1(t1)) in ρ1(γ1(t′1)), unpack 〈α, x〉 = ρ2(γ2(t2)) in ρ2(γ2(t′2))) ∈ EJτ ′Kρ.

By our assumption, (W,ρ1(γ1(t1)), ρ2(γ2(t2))) ∈ EJ∃α.τKρ. Let W ′ w W and (W ′, v1, v2) ∈ VJ∃α.τKρ.
By Lemma 8.20, it suffices to show that

(W ′, unpack 〈α, x〉 = v1 in ρ1(γ1(t′1)), unpack 〈α, x〉 = v2 in ρ2(γ2(t′2))) ∈ EJτ ′Kρ.

By definition of VJ∃α.τKρ, v1 = pack〈τ1,v̂1〉 as ρ1(∃α.τ) and v2 = pack〈τ2,v̂2〉 as ρ2(∃α.τ), where there
is some VR ∈ FValRel such that VR.τ1 = τ1, VR.τ2 = τ2, and (W ′, v̂1, v̂2) ∈ VJτKρ[α 7→ VR]. By the
operational semantics and by Lemma 8.15, it suffices to show that

(W ′, ρ1(γ1(t′1))[τ1/α][v̂1/x], ρ2(γ2(t′2))[τ2/α][v̂2/x]) ∈ EJτ ′Kρ.

By our hypothesis, this follows from W ′ ∈ HJΨK, ρ[α 7→ VR] ∈ DJ∆, αK, and

(W ′, γ[x 7→ (v1, v2)]) ∈ GJΓ, x : τKρ[α 7→ VR].

The first two of these conditions hold immediately, and the last holds by monotonicity and since
(W ′, v1, v2) ∈ VJτKρ[α 7→ VR].

Lemma 10.18 (F Fold)

• If Ψ; ∆; Γ ` t1 ≈ t2 : τ [µα.τ/α], then Ψ; ∆; Γ ` foldµα.τ t1 ≈ foldµα.τ t2 :µα.τ

• If Ψ; ∆; Γ ` v1 ≈v v2 : τ [µα.τ/α], then Ψ; ∆; Γ ` foldµα.τ v1 ≈v foldµα.τ v2 :µα.τ .

Proof

Note that Ψ; ∆; Γ ` foldµα.τ t1 :µα.τ and Ψ; ∆; Γ ` foldµα.τ t2 :µα.τ .

Let W ∈ HJΨK, ρ ∈ DJ∆K, and (W,γ) ∈ GJΓKρ. We need to show that

(W,ρ1(γ1(foldµα.τ t1)), ρ2(γ2(foldµα.τ t2)))

= (W, foldρ1(µα.τ) ρ1(γ1(t1)), foldρ2(µα.τ) ρ2(γ2(t2))) ∈ EJµα.τKρ.

By our assumption and monotonicity,

(W,ρ1(γ1(t1)), ρ2(γ2(t2))) ∈ BEJτ [µα.τ/α]Kρ.

Let W ′ wpub W and (W ′, v1, v2) ∈ BVJτ [µα.τ/α]Kρ. By Lemma 8.20, it suffices to show that

(W ′, foldρ1(µα.τ) v1, foldρ2(µα.τ) v2) ∈ EJµα.τKρ.

By Lemma 8.9, it suffices to show that

(W ′, foldρ1(µα.τ) v1, foldρ2(µα.τ) v2) ∈ VJµα.τKρ.

But (W ′, v1, v2) ∈ BVJτ [µα.τ/α]Kρ is sufficient to give this.

Lemma 10.19 (F Unfold)
If Ψ; ∆; Γ ` t1 ≈ t2 :µα.τ , then Ψ; ∆; Γ ` unfold t1 ≈ unfold t2 : τ [µα.τ/α].

Proof

66

Note that Ψ; ∆; Γ ` unfold t1 : τ [µα.τ/α] and Ψ; ∆; Γ ` unfold t2 : τ [µα.τ/α].

Let W ∈ HJΨK, ρ ∈ DJ∆K, and (W,γ) ∈ GJΓKρ. We need to show that

(W,ρ1(γ1(unfold t1)), ρ2(γ2(unfold t2))) = (W, unfold ρ1(γ1(t1)), unfold ρ2(γ2(t2))) ∈ EJτ [µα.τ/α]Kρ.

By our assumption, (W,ρ1(γ1(t1)), ρ2(γ2(t2))) ∈ EJµα.τKρ. Let W ′ w W and (W ′, v1, v2) ∈ VJµα.τKρ.
By Lemma 8.20, it suffices to show that

(W ′, unfold v1, unfold v2) ∈ EJτ [µα.τ/αKρ.

By definition of VJµα.τKρ, v1 = foldρ1(µα.τ) v̂1 and v2 = foldρ2(µα.τ) v̂2, where

(W ′, v̂1, v̂2) ∈ BVJτ [µα.τ/α]Kρ.

By the operational semantics and by Lemma 8.15, it suffices to show that

(W ′, v̂1, v̂2) ∈ EJτ [µα.τ/α]Kρ.

But this follows from Lemma 8.9.

Lemma 10.20 (F Tuple)

• If Ψ; ∆; Γ ` t1 ≈ t2 : τ , then Ψ; ∆; Γ ` 〈t1〉 ≈ 〈t2〉 : 〈τ〉

• If Ψ; ∆; Γ ` v1 ≈v v2 : τ , then Ψ; ∆; Γ ` 〈v1〉 ≈v 〈v2〉 : 〈τ〉.
Proof

Note that Ψ; ∆; Γ ` 〈t1〉 : 〈τ〉 and Ψ; ∆; Γ ` 〈t2〉 : 〈τ〉.
Let W ∈ HJΨK, ρ ∈ DJ∆K, and (W,γ) ∈ GJΓKρ. We need to show that

(W,ρ1(γ1(〈t1〉)), ρ2(γ2(〈t2〉))) = (W, 〈ρ1(γ1(t1))〉, 〈ρ2(γ2(t2))〉) ∈ EJ〈τ〉Kρ.

By our assumption,
(W,ρ1(γ1(t1)), ρ2(γ2(t2))) ∈ EJτKρ.

Let W0 = W , Wi wpub Wi−1, and (Wi, v1, v2) ∈ VJτKρ. By repeated use of Lemma 8.20, it suffices to
show that

(Wn, 〈v1〉, 〈v2〉) ∈ EJ〈τ〉Kρ.
By Lemma 8.9, it suffices to show that

(Wn, 〈v1〉, 〈v2〉) ∈ VJ〈τ〉Kρ.

But we have this by its definition and by monotonicity.

Lemma 10.21 (F Projection)
If Ψ; ∆; Γ ` t1 ≈ t2 : 〈τ〉, then Ψ; ∆; Γ ` πi(t1) ≈ πi(t2) : τi.

Proof

Note that Ψ; ∆; Γ ` πi(t1) : τi and Ψ; ∆; Γ ` πi(t2) : τi.

Let W ∈ HJΨK, ρ ∈ DJ∆K, and (W,γ) ∈ GJΓKρ. We need to show that

(W,ρ1(γ1(πi(t1))), ρ2(γ2(πi(t2)))) = (W,πi(ρ1(γ1(t1))), πi(ρ2(γ2(t2)))) ∈ EJτiKρ.

By our assumption, (W,ρ1(γ1(t1)), ρ2(γ2(t2))) ∈ EJ〈τ〉Kρ. Let W ′ wW and (W ′, v1, v2) ∈ VJ〈τ〉Kρ. By
Lemma 8.20, it suffices to show that

(W ′, πi(v1), πi(v2)) ∈ EJτiKρ.

By definition of VJ〈τ〉Kρ, v1 = 〈v̂1〉 and v2 = 〈v̂2〉, where (W ′, v̂1, v̂2) ∈ VJτKρ. By the operational
semantics and by Lemma 8.15, it suffices to show that

(W ′, v̂1i, v̂2i) ∈ EJτiKρ.

But this follows from Lemma 8.9.

67

Lemma 10.22 (FC Boundary)
If Ψ; ∆; Γ ` e1 ≈ e2 : τ 〈C〉, then Ψ; ∆; Γ ` τFC e1 ≈ τFC e2 : τ .

Proof

Note that Ψ; ∆; Γ ` τFC e2 : τ and Ψ; ∆; Γ ` τFC e2 : τ .

Let W ∈ HJΨK, ρ ∈ DJ∆K, and (W,γ) ∈ GJΓKρ. By our assumption,

(W,ρ1(γ1(e1)), ρ2(γ2(e2))) ∈ EJτ 〈C〉Kρ.

By the bridge lemma,

(W, ρ1(τ)FC ρ1(γ1(e1)), ρ2(τ)FC ρ2(γ2(e2))) = (W,ρ1(γ1(τFC e1)), ρ2(γ2(τFC e2))) ∈ EJτKρ,

as desired.

Lemma 10.23 (C Function)
If Ψ; (α); (x: τ) ` t1 ≈ t2 : τ ′, then

• Ψ; ∆; Γ ` λ[α](x : τ).t1 ≈ λ[α](x : τ).t2 :∀[α].(τ)→ τ ′

• Ψ; ∆; Γ ` λ[α](x : τ).t1 ≈v λ[α](x : τ).t2 :∀[α].(τ)→ τ ′.

Proof

First note that Ψ; ∆; Γ ` λ[α](x : τ).t1 :∀[α].(τ)→ τ ′ and Ψ; ∆; Γ ` λ[α](x : τ).t2 :∀[α].(τ)→ τ ′.

Let W ∈ HJΨK, ρ ∈ DJ∆K, and (W,γ) ∈ GJΓKρ.

We need to show that

(W,ρ1(γ1(λ[α](x : τ).t1)), ρ2(γ2(λ[α](x : τ).t2)))

= (W,λ[α](x : τ).t1,λ[α](x : τ).t2) ∈ EJ∀[α].(τ)→ τ ′Kρ.

By Lemma 8.9, it suffices to show that

(W,λ[α](x : τ).t1,λ[α](x : τ).t2) ∈ VJ∀[α].(τ)→ τ ′Kρ.

Let W ′ w W , VR ∈ CValRel, and (W ′,v1,v2) ∈ VJτ Kρ[α 7→ VR]. For convenience, let τ1 = VR.τ1
and τ2 = VR.τ2 We need to show that

(W,λ[α](x : τ).t1 [τ1] v1,λ[α](x : τ).t2 [τ2] v2) ∈ EJτ ′Kρ[α 7→ VR].

By Lemma 8.15, it suffices to show that

(W, t1[τ1/α][v1/x], t2[τ2/α][v2/x]) ∈ EJτ ′Kρ[α 7→ VR].

By definition, W ′ ∈ HJΨK, ·[α 7→ VR] ∈ DJαK, and (W ′, ·[x 7→ (v1,v2)]) ∈ GJx: τ Kρ[α 7→ VR]. Ap-
plying our assumption gives the result.

Lemma 10.24 (C Application)

If Ψ; ∆; Γ ` t1 ≈ t2 :∀[].(τ)→ τ ′ and Ψ; ∆; Γ ` t′1 ≈ t′2 : τ , then Ψ; ∆; Γ ` t1 [] t′1 ≈ t2 [] t′2 : τ ′.

Proof

First note that Ψ; ∆; Γ ` t1 [] t′1 : τ ′ and Ψ; ∆; Γ ` t2 [] t′2 : τ ′.

Let W ∈ HJΨK, ρ ∈ DJ∆K, and (W,γ) ∈ GJΓKρ. We need to show that

(W,ρ1(γ1(t1 [] t′1)), ρ2(γ2(t2 [] t′2))) = (W,ρ1(γ1(t1)) [] ρ1(γ1(t′1)), ρ2(γ2(t2)) [] ρ2(γ2(t′2))) ∈ EJτ ′Kρ.

68

Let W0 wpub W and (W0,v1,v2) ∈ VJ∀[].(τ)→ τ ′Kρ. By Lemma 8.20, it suffices to show that

(W0,v1 [] ρ1(γ1(t′1)),v2 [] ρ2(γ2(t′2))) ∈ EJτ ′Kρ.

Let Wi wpub Wi−1 and (Wi,v
′
1i,v

′
2i) ∈ VJτ Kρ. By further applications of 8.20, it suffices to show that

(Wn,v1 [] v′1,v2 [] v′2) ∈ EJτ ′Kρ.

Since Wn wW0 and (Wn,v
′
1,v
′
2) ∈ VJτ Kρ, we can instantiate our assumption that

(W0,v1,v2) ∈ VJ∀[].(τ)→ τ ′Kρ

to get exactly the needed result.

Lemma 10.25 (C Type Application)
If Ψ; ∆; Γ ` t1 ≈ t2 :∀[β, α].(τ)→ τ ′ and ∆ ` τ̂ , then

Ψ; ∆; Γ ` t1[τ̂] ≈ t2[τ̂] :∀[α].(τ [τ̂ /β])→ τ ′[τ̂ /β].

Proof

First note that Ψ; ∆; Γ ` ti[τ̂] :∀[α].(τ [τ̂ /β])→ τ ′[τ̂ /β] for i ∈ {1, 2}.
Let W ∈ HJΨK, ρ ∈ DJ∆K, and (W,γ) ∈ GJΓKρ. We need to show that

(W,ρ1(γ1(t1[τ̂])), ρ2(γ2(t2[τ̂])))

= (W,ρ1(γ1(t1))[ρ1(τ̂)], ρ2(γ2(t2))[ρ2(τ̂)]) ∈ EJ∀[α].(τ [τ̂ /β])→ τ ′[τ̂ /β]Kρ.

By our assumption, (W,ρ1(γ1(t1)), ρ2(γ2(t2))) ∈ EJ∀[β, α].(τ)→ τ ′Kρ. Let W ′ wW and

(W ′,v1,v2) ∈ VJ∀[β, α].(τ)→ τ ′Kρ.

By Lemma 8.20, it suffices to show that

(W ′,v1[ρ1(τ̂)],v2[ρ2(τ̂)]) ∈ EJ∀[α].(τ [τ̂ /β])→ τ ′[τ̂ /β]Kρ.

Let VR = (ρ1(τ̂), ρ2(τ̂),VJτ̂ Kρ,VJτ̂ 〈A〉Kρ). By Lemma 8.9 and Lemma 10.5, it suffices to show that

(W ′,v1[ρ1(τ̂)],v2[ρ2(τ̂)]) ∈ VJ∀[α].(τ [τ̂ /β])→ τ ′[τ̂ /β]Kρ = VJ∀[α].(τ)→ τ ′Kρ[β 7→ VR].

We can reach this easily from our hypothesis that (W ′,v1,v2) ∈ VJ∀[β, α].(τ)→ τ ′Kρ.

Lemma 10.26 (CF Boundary)
If Ψ; ∆; Γ ` e1 ≈ e2 : τ , then Ψ; ∆; Γ ` CFτ e1 ≈ CFτ e2 : τ 〈C〉.

Proof

Note that Ψ; ∆; Γ ` CFτ e1 : τ 〈C〉 and Ψ; ∆; Γ ` CFτ e2 : τ 〈C〉.

Let W ∈ HJΨK, ρ ∈ DJ∆K, and (W,γ) ∈ GJΓKρ. By our assumption,

(W,ρ1(γ1(e1)), ρ2(γ2(e2))) ∈ EJτKρ.

By the bridge lemma,

(W, CFρ1(τ) ρ1(γ1(e1)), CFρ2(τ) ρ2(γ2(e2))) = (W,ρ1(γ1(CFτ e1)), ρ2(γ2(CFτ e2))) ∈ EJτ 〈C〉Kρ,

as desired.

Lemma 10.27 (CA Boundary)
If Ψ; ∆; Γ ` e1 ≈ e2 : τ 〈A〉, then Ψ; ∆; Γ ` τCA e1 ≈ τCA e2 : τ .

69

Proof

Note that Ψ; ∆; Γ ` τCA e2 : τ and Ψ; ∆; Γ ` τCA e2 : τ .

Let W ∈ HJΨK, ρ ∈ DJ∆K, and (W,γ) ∈ GJΓKρ. By our assumption,

(W,ρ1(γ1(e1)), ρ2(γ2(e2))) ∈ EJτ 〈A〉Kρ.

By the bridge lemma,

(W, ρ1(τ)CA ρ1(γ1(e1)), ρ2(τ)CA ρ2(γ2(e2))) = (W,ρ1(γ1(τCA e1)), ρ2(γ2(τCA e2))) ∈ EJτ Kρ,

as desired.

We omit proofs of the remaining compatibility lemmas for C, as they are identical to the proofs of the
corresponding F compatibility lemmas.

Lemma 10.28 (C Variable)
If x: τ ∈ Γ, then Ψ; ∆; Γ ` x ≈ x : τ .

Lemma 10.29 (C Unit)

• Ψ; ∆; Γ ` () ≈ () : unit

• Ψ; ∆; Γ ` () ≈v () : unit.

Lemma 10.30 (C Int)

• Ψ; ∆; Γ ` n ≈ n : int

• Ψ; ∆; Γ ` n ≈v n : int.

Lemma 10.31 (C Primitive)
If Ψ; ∆; Γ ` t1 ≈ t2 : int and Ψ; ∆; Γ ` t′1 ≈ t′2 : int, then Ψ; ∆; Γ ` t1 p t′1 ≈ t2 p t′2 : int.

Lemma 10.32 (C If0)
If Ψ; ∆; Γ ` t1 ≈ t2 : int, Ψ; ∆; Γ ` t′1 ≈ t′2 : τ , and Ψ; ∆; Γ ` t′′1 ≈ t′′2 : τ , then

Ψ; ∆; Γ ` if0 t1 t′1 t′′1 ≈ if0 t2 t′2 t′′2 : τ .

Lemma 10.33 (C Pack)

• If Ψ; ∆; Γ ` t1 ≈ t2 : τ [τ ′/α], then Ψ; ∆; Γ ` pack〈τ ′,t1〉 as ∃α.τ ≈ pack〈τ ′,t2〉 as ∃α.τ :∃α.τ

• If Ψ; ∆; Γ ` v1 ≈v v2 : τ [τ ′/α], then Ψ; ∆; Γ ` pack〈τ ′,v1〉 as ∃α.τ ≈v pack〈τ ′,v2〉 as ∃α.τ :∃α.τ .

Lemma 10.34 (C Unpack)
If Ψ; ∆; Γ ` t1 ≈ t2 :∃α.τ and Ψ; (∆,α); (Γ,x: τ) ` t′1 ≈ t′2 : τ ′, then

Ψ; ∆; Γ ` unpack 〈α, x〉 = t1 in t′1 ≈ unpack 〈α, x〉 = t2 in t′2 : τ ′.

Lemma 10.35 (C Fold)

• If Ψ; ∆; Γ ` t1 ≈ t2 : τ [µα.τ/α], then Ψ; ∆; Γ ` foldµα.τ t1 ≈ foldµα.τ t2 :µα.τ

• If Ψ; ∆; Γ ` v1 ≈v v2 : τ [µα.τ/α], then Ψ; ∆; Γ ` foldµα.τ v1 ≈v foldµα.τ v2 :µα.τ .

Lemma 10.36 (C Unfold)
If Ψ; ∆; Γ ` t1 ≈ t2 :µα.τ , then Ψ; ∆; Γ ` unfold t1 ≈ unfold t2 : τ [µα.τ/α].

Lemma 10.37 (C Tuple)

• If Ψ; ∆; Γ ` t1 ≈ t2 : τ , then Ψ; ∆; Γ ` 〈t1〉 ≈ 〈t2〉 : 〈τ 〉

• If Ψ; ∆; Γ ` v1 ≈v v2 : τ , then Ψ; ∆; Γ ` 〈v1〉 ≈v 〈v2〉 : 〈τ 〉.

70

Lemma 10.38 (C Projection)
If Ψ; ∆; Γ ` t1 ≈ t2 : 〈τ 〉, then Ψ; ∆; Γ ` πi(t1) ≈ πi(t2) : τi.

Lemma 10.39 (A Heap Fragment)
If (Ψ, ` : boxψ); ∆; Γ ` (t1,H1) ≈ (t2,H2) : τ and for any W ∈ HJΨK, (W,h1,h2) ∈ HVJψK∅, then

Ψ; ∆; Γ ` (t1, (H1, ` 7→ h1)) ≈ (t2, (H2, ` 7→ h2)) : τ .

Proof

Note that Ψ; ∆; Γ ` (t1, (H1, ` 7→ h1)) : τ and Ψ; ∆; Γ ` (t2, (H2, ` 7→ h2)) : τ .

Let W ∈ HJΨK, ρ ∈ DJ∆K, and (W,γ) ∈ GJΓKρ. We need to show that

(W,ρ1(γ1((t1, (H1, ` 7→ h1)))), ρ2(γ2((t2, (H2, ` 7→ h2)))))

= (W, (ρ1(γ1(t1)), (H1, ` 7→ h1)), (ρ2(γ2(t2)), (H2, ` 7→ h2))) ∈ EJτ Kρ.

By Lemma 8.14, it suffices to show that

(W � (` 7→ h1, ` 7→ h2), ρ1(γ1((t1,H1))), ρ2(γ2((t2,H2)))) ∈ EJτ Kρ.

We can apply our first assumption to get exactly this as long as W�(` 7→ h1, ` 7→ h2) ∈ HJΨ, ` : boxψK.
But this follows from our second assumption.

Lemma 10.40 (A Ref)
If ` : refψ ∈ Ψ, then

• Ψ; ∆; Γ ` ` ≈ ` : ref ψ

• Ψ; ∆; Γ ` ` ≈v ` : ref ψ.

Proof

Note that Ψ; ∆; Γ ` ` : ref ψ.

Let W ∈ HJΨK, ρ ∈ DJ∆K, and (W,γ) ∈ GJΓKρ. By definition of W ∈ HJΨK,

(W,ρ1(γ1(`)), ρ2(γ2(`))) = (W, `, `) ∈ VJref ψK∅ = VJref ψKρ,

so we are done.

Lemma 10.41 (A Box)
If ` : boxψ ∈ Ψ, then

• Ψ; ∆; Γ ` ` ≈ ` : boxψ

• Ψ; ∆; Γ ` ` ≈v ` : boxψ.

Proof

Note that Ψ; ∆; Γ ` ` : boxψ.

Let W ∈ HJΨK, ρ ∈ DJ∆K, and (W,γ) ∈ GJΓKρ. By definition of W ∈ HJΨK,

(W,ρ1(γ1(`)), ρ2(γ2(`))) = (W, `, `) ∈ VJboxψK∅ = VJboxψKρ,

so we are done.

Lemma 10.42 (A Application)

If Ψ; ∆; Γ ` t1 ≈ t2 : box∀[].(τ)→ τ ′ and Ψ; ∆; Γ ` t′1 ≈ t′2 : τ , then Ψ; ∆; Γ ` t1 [] t′1 ≈ t2 [] t′2 : τ ′.

Proof

71

First note that Ψ; ∆; Γ ` t1 [] t′1 : τ ′ and Ψ; ∆; Γ ` t2 [] t′2 : τ ′.

Let W ∈ HJΨK, ρ ∈ DJ∆K, and (W,γ) ∈ GJΓKρ. We need to show that

(W,ρ1(γ1(t1 [] t′1)), ρ2(γ2(t2 [] t′2))) = (W,ρ1(γ1(t1)) [] ρ1(γ1(t′1)), ρ2(γ2(t2)) [] ρ2(γ2(t′2))) ∈ EJτ ′Kρ.

Let W0 wpub W and (W0, v1, v2) ∈ VJbox∀[].(τ)→ τ ′Kρ. By Lemma 8.20, it suffices to show that

(W0, v1 [] ρ1(γ1(t′1)), v2 [] ρ2(γ2(t′2))) ∈ EJτ ′Kρ.

Let Wi wpub Wi−1 and (Wi, v′1i, v
′
2i) ∈ VJτ Kρ. By further applications of 8.20, it suffices to show that

(Wn, v1 [] v′1, v2 [] v′2) ∈ EJτ ′Kρ.

By definition of VJbox ∀[].(τ)→ τ ′Kρ, we know v1 = `1[τ̂1], v2 = `2[τ̂2], and for any (M1,M2) :W0,

M1(`1) = λ[α1](τ1).t1, τ1[τ̂1/α1] = ρ1(τ),

M2(`2) = λ[α2](τ2).t2, τ2[τ̂2/α2] = ρ2(τ),

and (Wn,λ[](x : ρ1(τ)).t1[τ̂1/α1],λ[](x : ρ2(τ)).t2[τ̂2/α2]) ∈ HVJλ[](τ).τ ′Kρ. By Lemma 8.15, it
suffices to show that

(Wn, t1[τ̂1/α1][v′1/x], t2[τ̂2/α2][v′2/x]) ∈ EJτ ′Kρ.

Since Wn wW0 and (Wn, v′1, v
′
2) ∈ VJτ Kρ, we can instantiate HVJλ[](τ).τ ′Kρ to get exactly the needed

result.

Lemma 10.43 (A Type Application)
If Ψ; ∆; Γ ` t1 ≈ t2 : box∀[β, α].(τ)→ τ ′ and ∆ ` τ̂ , then

Ψ; ∆; Γ ` t1[τ̂] ≈ t2[τ̂] : box∀[α].(τ [τ̂ /β])→ τ ′[τ̂ /β].

Proof

First note that Ψ; ∆; Γ ` ti[τ̂] : box ∀[α].(τ [τ̂ /β])→ τ ′[τ̂ /β] for i ∈ {1, 2}.
Let W ∈ HJΨK, ρ ∈ DJ∆K, and (W,γ) ∈ GJΓKρ. We need to show that

(W,ρ1(γ1(t1[τ̂])), ρ2(γ2(t2[τ̂])))

= (W,ρ1(γ1(t1))[ρ1(τ̂)], ρ2(γ2(t2))[ρ2(τ̂)]) ∈ EJbox∀[α].(τ [τ̂ /β])→ τ ′[τ̂ /β]Kρ.

By our assumption, (W,ρ1(γ1(t1)), ρ2(γ2(t2))) ∈ EJbox ∀[β, α].(τ)→ τ ′Kρ. Let W ′ wpub W and

(W ′, v1, v2) ∈ VJbox∀[β, α].(τ)→ τ ′Kρ.

By Lemma 8.20, it suffices to show that

(W ′, v1[ρ1(τ̂)], v2[ρ2(τ̂)]) ∈ EJbox∀[α].(τ [τ̂ /β])→ τ ′[τ̂ /β]Kρ.

Let VR = (ρ1(τ̂), ρ2(τ̂),VJτ̂ Kρ). By Lemma 8.9 and Lemma 10.5, it suffices to show that

(W ′, v1[ρ1(τ̂)], v2[ρ2(τ̂)]) ∈ VJbox∀[α].(τ [τ̂ /β])→ τ ′[τ̂ /β]Kρ = VJ∀[α].(τ)→ τ ′Kρ[β 7→ VR].

We can reach this easily from our hypothesis that (W ′, v1, v2) ∈ VJbox ∀[β, α].(τ)→ τ ′Kρ.

Lemma 10.44 (A Allocate Ref)
If Ψ; ∆; Γ ` t1 ≈ t2 : τ , then Ψ; ∆; Γ ` ralloc 〈t1〉 ≈ ralloc 〈t2〉 : ref 〈τ 〉.

Proof

72

Note that Ψ; ∆; Γ ` ralloc 〈t1〉 : ref 〈τ 〉 and Ψ; ∆; Γ ` ralloc 〈t2〉 : ref 〈τ 〉.
Let W0 ∈ HJΨK, ρ ∈ DJ∆K, and (W0, γ) ∈ GJΓKρ. We need to show that

(W0, ρ1(γ1(ralloc 〈t1〉)), ρ2(γ2(ralloc 〈t2〉)))
= (W0, ralloc 〈ρ1(γ1(t1))〉, ralloc 〈ρ1(γ1(t1))〉) ∈ EJref 〈τ 〉Kρ.

Let Wi wpub Wi−1 and (Wi, v1, v2) ∈ VJτ Kρ. By repeated application of Lemma 8.20, it suffices to
show that

(Wn, ralloc 〈v1〉, ralloc 〈v2〉) ∈ EJref 〈τ 〉Kρ.

Let (M1,M2) :Wn. Note that

〈M1 | ralloc 〈v1〉〉 7−→ 〈M1, `1 7→ 〈v1〉 | `1〉 and 〈M2 | ralloc 〈v2〉〉 7−→ 〈M2, `2 7→ 〈v2〉 | `2〉.

Thus, by Lemma 8.14 and Lemma 8.9, it suffices to find some W ′ wWn such that

(M1, `1 7→ 〈v1〉,M2, `2 7→ 〈v2〉) :W ′ and (W ′, `1, `2) ∈ VJref 〈τ 〉Kρ.

We can do this by constructing an island that satisfies the requirements of VJref 〈τ 〉Kρ and adding it
to Wn. In particular, let

W ′ = (Wn.k, ((Wn.Ψ1), `1 : ref〈τ 〉), ((Wn.Ψ2), `2 : ref〈τ 〉), ((Wn.Θ), θ)),

where

θ = (•, {•}, {}, {}, λs.{(W̃ ,{`1 7→ h1},{`2 7→ h2}) | (W̃ ,h1,h2) ∈ HVJ〈τ 〉Kρ}, λs.{(`1, `2)}).

From here it suffices to show that (BW ′, 〈v1〉, 〈v2〉) ∈ HVJ〈τ 〉Kρ. But this follows from monotonicity
and our assumption that (Wi, v1, v2) ∈ VJτ Kρ.

Lemma 10.45 (A Allocate Box)
If Ψ; ∆; Γ ` t1 ≈ t2 : τ , then Ψ; ∆; Γ ` balloc 〈t1〉 ≈ balloc 〈t2〉 : box 〈τ 〉.

Proof

Note that Ψ; ∆; Γ ` balloc 〈t1〉 : box 〈τ 〉 and Ψ; ∆; Γ ` balloc 〈t2〉 : box 〈τ 〉.
Let W0 ∈ HJΨK, ρ ∈ DJ∆K, and (W0, γ) ∈ GJΓKρ. We need to show that

(W0, ρ1(γ1(balloc 〈t1〉)), ρ2(γ2(balloc 〈t2〉)))
= (W0,balloc 〈ρ1(γ1(t1))〉,balloc 〈ρ1(γ1(t1))〉) ∈ EJbox 〈τ 〉Kρ.

Let Wi wpub Wi−1 and (Wi, v1, v2) ∈ VJτ Kρ. By repeated application of Lemma 8.20, it suffices to
show that

(Wn,balloc 〈v1〉,balloc 〈v2〉) ∈ EJbox 〈τ 〉Kρ.

Let (M1,M2) :Wn. Note that

〈M1 | balloc 〈v1〉〉 7−→ 〈M1, `1 7→ 〈v1〉 | `1〉 and 〈M2 | balloc 〈v2〉〉 7−→ 〈M2, `2 7→ 〈v2〉 | `2〉.

Thus, by Lemma 8.14 and Lemma 8.9, it suffices to show that

(M1, `1 7→ 〈v1〉,M2, `2 7→ 〈v2〉) :Wn � (`1 7→ 〈v1〉, `2 7→ 〈v2〉)

and
(Wn � (`1 7→ 〈v1〉, `2 7→ 〈v2〉), `1, `2) ∈ VJbox 〈τ 〉Kρ.

This amounts to showing that (Wn�(`1 7→ 〈v1〉, `2 7→ 〈v2〉), 〈v1〉, 〈v2〉) ∈ HVJ〈τ 〉Kρ. But this follows
from monotonicity and our assumption that (Wi, v1, v2) ∈ VJτ Kρ.

73

Lemma 10.46 (A Read from Ref)
If Ψ; ∆; Γ ` t1 ≈ t2 : ref 〈τ 〉, then Ψ; ∆; Γ ` read[i] t1 ≈ read[i] t2 : τi.

Proof

Note that Ψ; ∆; Γ ` read[i] t1 : τi and Ψ; ∆; Γ ` read[i] t2 : τi.

Let W ∈ HJΨK, ρ ∈ DJ∆K, and (W,γ) ∈ GJΓKρ. We need to show that

(W,ρ1(γ1(read[i] t1)), ρ2(γ2(read[i] t2))) = (W, read[i] ρ1(γ1(t1)), read[i] ρ2(γ2(t2))) ∈ EJτiKρ.

By our hypothesis, (W,ρ1(γ1(t1)), ρ2(γ2(t2))) ∈ EJref 〈τ 〉Kρ. Let W ′ wW and

(W ′, v1, v2) ∈ VJref 〈τ 〉Kρ.

By Lemma 8.20, it suffices to show that

(W ′, read[i] v1, read[i] v2) ∈ EJτiKρ.

By definition of VJref 〈τ 〉Kρ and HVJ〈τ 〉Kρ, we know that v1 = `1 and v2 = `2, where for any
(M1,M2) :W , M1(`1) = 〈v̂1〉, M2(`2) = 〈v̂2〉, and (W ′, v̂1, v̂2) ∈ VJτ Kρ. By the operational semantics
and by Lemma 8.15, it suffices to show that

(W ′, v̂1i, v̂2i) ∈ EJτiKρ.

But this follows from Lemma 8.9.

Lemma 10.47 (A Read from Box)
If Ψ; ∆; Γ ` t1 ≈ t2 : box 〈τ 〉, then Ψ; ∆; Γ ` read[i] t1 ≈ read[i] t2 : τi.

Proof

Note that Ψ; ∆; Γ ` read[i] t1 : τi and Ψ; ∆; Γ ` read[i] t2 : τi.

Let W ∈ HJΨK, ρ ∈ DJ∆K, and (W,γ) ∈ GJΓKρ. We need to show that

(W,ρ1(γ1(read[i] t1)), ρ2(γ2(read[i] t2))) = (W, read[i] ρ1(γ1(t1)), read[i] ρ2(γ2(t2))) ∈ EJτiKρ.

By our hypothesis, (W,ρ1(γ1(t1)), ρ2(γ2(t2))) ∈ EJbox 〈τ 〉Kρ. Let W ′ wW and

(W ′, v1, v2) ∈ VJbox 〈τ 〉Kρ.

By Lemma 8.20, it suffices to show that

(W ′, read[i] v1, read[i] v2) ∈ EJτiKρ.

By definition of VJbox 〈τ 〉Kρ and HVJ〈τ 〉Kρ, we know that v1 = `1 and v2 = `2, where for any
(M1,M2) :W , M1(`1) = 〈v̂1〉, M2(`2) = 〈v̂2〉, and (W ′, v̂1, v̂2) ∈ VJτ Kρ. By the operational semantics
and by Lemma 8.15, it suffices to show that

(W ′, v̂1i, v̂2i) ∈ EJτiKρ.

But this follows from Lemma 8.9.

Lemma 10.48 (A Write to Ref)
If Ψ; ∆; Γ ` t1 ≈ t2 : ref 〈τ 〉 and Ψ; ∆; Γ ` t′1 ≈ t′2 : τi, then

Ψ; ∆; Γ ` write t1 [i]← t′1 ≈ write t1 [i]← t′2 : unit.

Proof

74

Note that Ψ; ∆; Γ ` write t1 [i]← t′1 : unit and Ψ; ∆; Γ ` write t2 [i]← t′2 : unit.

Let W ∈ HJΨK, ρ ∈ DJ∆K, and (W,γ) ∈ GJΓKρ. We need to show that

(W,ρ1(γ1(write t1 [i]← t′1)), ρ2(γ2(write t2 [i]← t′2)))

= (W,write ρ1(γ1(t1)) [i]← ρ1(γ1(t′1)),write ρ2(γ2(t2)) [i]← ρ2(γ2(t′2))) ∈ EJ()Kρ.

By our hypothesis, (W,ρ1(γ1(t1)), ρ2(γ2(t2))) ∈ EJref 〈τ 〉Kρ and (W,ρ1(γ1(t′1)), ρ2(γ2(t′2))) ∈ EJτiKρ.
Let W ′ wpub W and (W ′, v1, v2) ∈ VJref 〈τ 〉Kρ. By Lemma 8.20, it suffices to show that

(W ′,write v1 [i]← ρ1(γ1(t′1)),write v2 [i]← ρ2(γ2(t′2))) ∈ EJunitKρ.

Let W ′′ wpub W
′ and (W ′′, v′1, v

′
2) ∈ VJτiKρ. By another application of Lemma 8.20, it suffices to show

that
(W ′′,write v1 [i]← v′1,write v2 [i]← v′2) ∈ EJunitKρ.

Let (M1,M2) :W ′′. By definition of VJref 〈τ 〉Kρ and HVJ〈τ 〉Kρ, we know that v1 = `1 and v2 = `2,
where M1(`1) = 〈v̂11, . . . , v̂1i, . . . , v̂1n〉, M2(`2) = 〈v̂21, . . . , v̂2i, . . . , v̂2n〉, and (W ′, v̂1, v̂2) ∈ VJτ Kρ.
Note that

〈M1 | write v1 [i]← v′1〉 7−→ 〈M1[`1 7→ 〈v̂11, . . . , v′1, . . . , v̂1n〉] | ()〉

and
〈M2 | write v2 [i]← v′2〉 7−→ 〈M2[`2 7→ 〈v̂21, . . . , v′2, . . . , v̂2n〉] | ()〉.

To apply Lemma 8.15, we need to show that

(M1[`1 7→ 〈v̂11, . . . , v′1, . . . , v̂1n〉],M2[`2 7→ 〈v̂21, . . . , v′2, . . . , v̂2n〉]) :W ′′.

But this follows from the definition of VJref 〈τ 〉Kρ and from

(W ′′, 〈v̂11, . . . , v′1, . . . , v̂1n〉, 〈v̂21, . . . , v′2, . . . , v̂2n〉) ∈ HVJ〈τ 〉Kρ,

so we can indeed apply Lemma 8.15, by which it suffices to show that (W ′′, (), ()) ∈ EJunitKρ. This
follows from Lemma 8.9.

Lemma 10.49 (AC Boundary)
If Ψ; ∆; Γ ` e1 ≈ e2 : τ , then Ψ; ∆; Γ ` ACτ e1 ≈ ACτ e2 : τ 〈A〉.

Proof

Note that Ψ; ∆; Γ ` ACτ e1 : τ 〈A〉 and Ψ; ∆; Γ ` ACτ e2 : τ 〈A〉.

Let W ∈ HJΨK, ρ ∈ DJ∆K, and (W,γ) ∈ GJΓKρ. By our assumption,

(W,ρ1(γ1(e1)), ρ2(γ2(e2))) ∈ EJτ Kρ.

By the bridge lemma,

(W,ACρ1(τ) ρ1(γ1(e1)),ACρ2(τ) ρ2(γ2(e2))) = (W,ρ1(γ1(ACτ e1)), ρ2(γ2(ACτ e2))) ∈ EJτ 〈A〉Kρ,

as desired.

The next two compatibility lemmas have a slightly different shape, as they cover the two type rules for
heap values.

Lemma 10.50 (A Function)
If Ψ;α; x : τ ` t1 ≈ t2 : τ ′, then Ψ ` λ[α](x : τ).t1 ≈hv λ[α](x : τ).t2 :∀[α].(τ)→ τ ′.

Proof

75

Note that Ψ ` λ[α](x : τ).t1 :∀[α].(τ)→ τ ′ and Ψ ` λ[α](x : τ).t2 :∀[α].(τ)→ τ ′.

Let W ∈ HJΨK. We need to show that (W,λ[α](x : τ).t1,λ[α](x : τ).t2) ∈ HVJ∀[α].(τ)→ τ ′K∅.

Let W ′ wW , VR ∈ AValRel, and (W ′, v1, v2) ∈ VJτ Kρ[α 7→ VR].

We need to show that

(W ′, t1[VR.τ1/α][v1/x], t2[VR.τ2/α][v2/x]) ∈ EJτ ′K∅[α 7→ VR].

We have W ′ ∈ HJΨK, ∅[α 7→ VR] ∈ DJαK, and (W ′, ·[x 7→ (v1, v2)]) ∈ GJx : τ K∅[α 7→ VR]. Applying
our assumption gives the result.

Lemma 10.51 (A Tuple)
If Ψ; ·; · ` v1 ≈v v2 : τ , then Ψ ` 〈v1〉 ≈hv 〈v2〉 : 〈τ 〉.

Proof

Note that Ψ ` 〈v1〉 : 〈τ 〉 and Ψ ` 〈v2〉 : 〈τ 〉.
Let W ∈ HJΨK. By our assumption, (W, v1, v2) ∈ VJτ K∅, which is exactly what we need.

The remaining compatibility lemmas for A are identical to cases from F and C, so we omit their proofs.

Lemma 10.52 (A Variable)
If x : τ ∈ Γ, then Ψ; ∆; Γ ` x ≈ x : τ .

Lemma 10.53 (A Unit)

• Ψ; ∆; Γ ` () ≈ () : unit

• Ψ; ∆; Γ ` () ≈v () : unit.

Lemma 10.54 (A Int)

• Ψ; ∆; Γ ` n ≈ n : int

• Ψ; ∆; Γ ` n ≈v n : int.

Lemma 10.55 (A Primitive)
If Ψ; ∆; Γ ` t1 ≈ t2 : int and Ψ; ∆; Γ ` t′1 ≈ t′2 : int, then Ψ; ∆; Γ ` t1 p t′1 ≈ t2 p t′2 : int.

Lemma 10.56 (A If0)
If Ψ; ∆; Γ ` t1 ≈ t2 : int, Ψ; ∆; Γ ` t′1 ≈ t′2 : τ , and Ψ; ∆; Γ ` t′′1 ≈ t′′2 : τ , then

Ψ; ∆; Γ ` if0 t1 t′1 t′′1 ≈ if0 t2 t′2 t′′2 : τ .

Lemma 10.57 (A Pack)

• If Ψ; ∆; Γ ` t1 ≈ t2 : τ [τ ′/α], then Ψ; ∆; Γ ` pack〈τ ′,t1〉 as∃α.τ ≈ pack〈τ ′,t2〉 as∃α.τ :∃α.τ

• If Ψ; ∆; Γ ` v1 ≈v v2 : τ [τ ′/α], then Ψ; ∆; Γ ` pack〈τ ′,v1〉 as∃α.τ ≈v pack〈τ ′,v2〉 as∃α.τ :∃α.τ .

Lemma 10.58 (A Unpack)
If Ψ; ∆; Γ ` t1 ≈ t2 :∃α.τ and Ψ; (∆,α); (Γ, x : τ) ` t′1 ≈ t′2 : τ ′, then

Ψ; ∆; Γ ` unpack 〈α, x〉 = t1 in t′1 ≈ unpack 〈α, x〉 = t2 in t′2 : τ ′.

Lemma 10.59 (A Fold)

• If Ψ; ∆; Γ ` t1 ≈ t2 : τ [µα.τ/α], then Ψ; ∆; Γ ` foldµα.τ t1 ≈ foldµα.τ t2 :µα.τ

• If Ψ; ∆; Γ ` v1 ≈v v2 : τ [µα.τ/α], then Ψ; ∆; Γ ` foldµα.τ v1 ≈v foldµα.τ v2 :µα.τ .

Lemma 10.60 (A Unfold)
If Ψ; ∆; Γ ` t1 ≈ t2 :µα.τ , then Ψ; ∆; Γ ` unfold t1 ≈ unfold t2 : τ [µα.τ/α].

76

10.4 Fundamental Property and Soundness

Lemma 10.61 (Fundamental Property)

• If Ψ; ∆; Γ ` e : τ , then Ψ; ∆; Γ ` e ≈ e : τ

• If Ψ; ∆; Γ ` v : τ , then Ψ; ∆; Γ ` v ≈v v : τ

• If Ψ ` h :ψ, then Ψ ` h ≈hv h :ψ.

Proof

We prove all three claims simultaneously, by induction on the typing derivations, using the compatibility
lemmas.

Lemma 10.62 (Weakening)
If Ψ; ∆; Γ ` e1 ≈ e2 : τ and Ψ ⊆ Ψ′, ∆ ⊆ ∆′, Γ ⊆ Γ′, then Ψ′; ∆′; Γ′ ` e1 ≈ e2 : τ .

Proof

Let W ∈ HJΨ′K, ρ′ ∈ DJ∆′K, and (W,γ′) ∈ GJΓ′Kρ.

Let ρ = ρ′|∆ and γ = γ′|Γ. Note that W ∈ HJΨK and ρ ∈ DJ∆K immediately. By our hypothesis, it
suffices to show that (W,γ) ∈ GJΓKρ. Clearly, (W,γ) ∈ GJΓKρ′. Since the free type variables of Γ are
all in ∆, GJΓKρ′ = GJΓKρ, so we are done.

Lemma 10.63 (Congruence)
If Ψ; ∆; Γ ` e1 ≈ e2 : τ and ` C : (Ψ; ∆; Γ ` τ) (Ψ′; ∆′; Γ′ ` τ ′), then Ψ′; ∆′; Γ′ ` C[e1] ≈ C[e2] : τ ′.

Proof

By induction on the type derivation for C, using Lemma 10.62 for the cases where C is empty, and the
compatibility lemmas for all other cases.

Lemma 10.64 (Canonical World)
If `M : Ψ, then for any k, ∃W. W.k = k ∧ W ∈ HJΨK ∧ (M,M) : W .

Proof

Say that Ψ = Ψ′, `1 : refψ1, . . . , `n : refψn, where boxheap(Ψ′). Let

θi = (•, {•}, {}, {}, λs.{(W ′,M1,M2) ∈ MemAtomk | (W ′,M1(`i),M2(`i)) ∈ HVJψiK∅}, λs.{(`i, `i)})

for 1 ≤ i ≤ n. We construct

W = (k,Ψ,Ψ, (islandbox(k,M |dom(Ψ′)), θ1, . . . , θn)).

We need to show the following:

• For each ` : boxψ ∈ Ψ′, (W, `, `) ∈ VJboxψK∅,
• For each i, (W, `i, `i) ∈ VJref ψiK∅,
• (M,M) :W .

The first two conditions follow directly from the definitions. The last condition amounts to showing
that (BW,M(`i),M(`i)) ∈ HVJψiK∅. This follows from the Fundamental Property for heap values.

Lemma 10.65 (Adequacy)
If Ψ; ·; · ` e1 ≈ e2 : τ , `M : Ψ, then 〈M | e1〉 ↓ if and only if 〈M | e2〉 ↓.

Proof

77

We show that 〈M | e1〉 ↓ implies 〈M | e2〉 ↓, and the converse holds by an identical argument.

Suppose 〈M | e1〉 ↓k. By Lemma 10.64, there is some W ∈ HJΨK such that (M,M) :W and W.k ≥ k.
So by our assumption, (W, e1, e2) ∈ EJτK∅. We claim that (W,E,E) ∈ KJτK∅, where

E =

[·] τ = τ

[·] τ = τ

([·], ·) τ = τ .

If the claim holds, then (W,E[e1], E[e2]) = (W, e1, e2) ∈ O. Since running(W.k, 〈M | e1〉) contradicts
our assumption, we must have 〈M | e2〉 ↓, as desired.

To prove the claim, let W ′ wpub W and (W ′, v1, v2) ∈ VJτK∅. But then

(W ′, E[v1], E[v2]) = (W ′, v1, v2) ∈ O

trivially, so we are done.

Lemma 10.66 (Logical Equivalence Implies Contextual Equivalence)
If Ψ; ∆; Γ ` e1 ≈ e2 : τ , then Ψ; ∆; Γ ` e1 ≈ctx e2 : τ .

Proof

Let ` C : (Ψ; ∆; Γ ` τ) (Ψ′; ·; · ` τ ′) and ` M : Ψ′. By congruence, Ψ′; ·; · ` C[e1] ≈ C[e2] : τ ′. By
adequacy, 〈M | C[e1]〉 ↓ if and only if 〈M | C[e2]〉 ↓, as desired.

10.5 Completeness

Lemma 10.67 (Contextual Equivalence Implies CIU Equivalence)
If Ψ; ∆; Γ ` e1 ≈ctx e2 : τ , then Ψ; ∆; Γ ` e1 ≈ciu e2 : τ .

Proof

We have that Ψ; ∆; Γ ` e1 : τ , Ψ; ∆; Γ ` e2 : τ , and

∀C,M,Ψ′, τ ′. ` C : (Ψ; ∆; Γ ` τ) (Ψ′; ·; · ` τ ′) ∧ `M : Ψ′

=⇒ (〈M | C[e1]〉 ↓ ⇐⇒ 〈M | C[e2]〉 ↓).

We need to show that

∀δ, γ, E,M,ΨE , τE . · ` δ : ∆ ∧ ΨE ; ·; · ` γ : δ(Γ) ∧ ` E : (Ψ; ·; · ` τ) (ΨE ; ·; · ` τE) ∧ `M : ΨE

=⇒ (〈M | E[δ(γ(e1))]〉 ↓ ⇐⇒ 〈M | E[δ(γ(e2))]〉 ↓).

Assume all of the premises in that implication. It suffices to find some C such that co-termination of
〈M | C[e1]〉 and 〈M | C[e2]〉 is equivalent to co-termination of 〈M | E[δ(γ(e1))]〉 and 〈M | E[δ(γ(e2))]〉.
We will need a C such that

` C : (Ψ; ∆; Γ ` τ) (ΨE ; ·; · ` τE).

Let

τE =

τ τE = τ

L〈τ 〉 τE = τ

L〈L〈τ 〉〉 τE = τ

τE =

τ 〈C〉 τE = τ

τ τE = τ

L〈τ 〉 τE = τ

τE =

τ 〈C〉〈A〉 τE = τ

τ 〈A〉 τE = τ

τ τE = τ ,

∆ = ∆,∆,∆, Γ = Γ,Γ,Γ, δFC = δ|∆,∆, and δF = δ|∆.

78

Now choose C as follows:

C = (` [δ(∆)] δ(γ(dom(Γ))), ` 7→ λ[∆](δ(Γ)).Ct)

Ct = ACδ
FC(τE) ((λ[∆](δFC(Γ)).C) [δ(∆)] δFC(γ(dom(Γ))))

C = CFδ
F (τE) ((λ[∆](δF (Γ)).C) [δ(∆)] δF (γ(dom(Γ))))

C =

E E = E
τEFCE E = E
τEFC τECAE E = E

By inspection of the operational semantics,

〈M | C[ei]〉 7−→∗ 〈M, ` 7→ λ[∆](δ(Γ)).Ct | ACδ(τE) (CFδ(τE) (C[δ(γ(ei))]))〉.

Since this is just a fixed sequence of boundary terms around E[δ(γ(ei))], we can see that this configu-
ration co-terminates with 〈M | E[δ(γ(ei))]〉, as desired.

Lemma 10.68 (CIU Equivalence Implies Logical Equivalence)
If Ψ; ∆; Γ ` e1 ≈ciu e2 : τ , then Ψ; ∆; Γ ` e1 ≈ e2 : τ .

Proof

We have that Ψ; ∆; Γ ` e1 : τ , Ψ; ∆; Γ ` e2 : τ , and

∀δ, γ, E,M,ΨE , τE . · ` δ : ∆ ∧ ΨE ; ·; · ` γ : δ(Γ) ∧ ` E : (Ψ; ∆; · ` τ) (ΨE ; ·; · ` τE) ∧ `M : ΨE

=⇒ (〈M | E[δ(γ(e1))]〉 ↓ ⇐⇒ 〈M | E[δ(γ(e2))]〉 ↓).

We need to show that

∀W,ρ, γ. W ∈ HJΨK ∧ ρ ∈ DJ∆K ∧ (W,γ) ∈ GJΓKρ =⇒ (W,ρ1(γ1(e1)), ρ2(γ2(e2))) ∈ EJτKρ.

Assume all the premises of this implication.

Let (W,E1, E2) ∈ KJτKρ. We need to show that (W,E1[ρ1(γ1(e1))], E2[ρ2(γ2(e2))]) ∈ O.

Let (M1,M2) : W . It suffices to show that

〈M1 | E1[ρ1(γ1(e1))]〉 ↓ ⇐⇒ 〈M2 | E2[ρ2(γ2(e2))]〉 ↓ .

By the Fundamental Property, Ψ; ∆; Γ ` e1 ≈ e1 : τ . Therefore

(W,ρ1(γ1(e1)), ρ2(γ2(e1))) ∈ EJτKρ

and thus
〈M1 | E1[ρ1(γ1(e1))]〉 ↓ ⇐⇒ 〈M2 | E2[ρ2(γ2(e1))]〉 ↓ .

It remains to show that

〈M2 | E2[ρ2(γ2(e1))]〉 ↓ ⇐⇒ 〈M2 | E2[ρ2(γ2(e2))]〉 ↓ .

But this follows from our hypothesis that Ψ; ∆; Γ ` e1 ≈ciu e2 : τ .

79

11 Proofs: Compiler Correctness

Lemma 11.1

• If Ψ; ∆; Γ ` e : τ , then Ψ; ∆; Γ ` e ≈ τFC CFτ e : τ .

• If Ψ; ∆; Γ ` e : τ 〈C〉, then Ψ; ∆; Γ ` e ≈ CFτ τFC e : τ 〈C〉.

• If Ψ; ∆; Γ ` e : τ , then Ψ; ∆; Γ ` e ≈ τCAACτ e : τ .

• If Ψ; ∆; Γ ` e : τ 〈A〉, then Ψ; ∆; Γ ` e ≈ ACτ τCA e : τ 〈A〉.

Proof

We prove the first claim; the others can be proven analogously.

First, note that Ψ; ∆; Γ ` τFC CFτ e : τ .

Let W ∈ HJΨK, ρ ∈ DJ∆K, and (W,γ) ∈ GJΓKρ. By the fundamental property, Ψ; ∆; Γ ` e ≈ e : τ , so
(W,ρ1(γ1(e)), ρ2(γ2(e))) ∈ EJτKρ. By boundary cancellation,

(W,ρ1(γ1(e)), ρ2(τ)FC CFρ2(τ) ρ2(γ2(e))) ∈ EJτKρ,

as desired.

Lemma 11.2

• Ψ; ∆; Γ ` e1 ≈ C[e2] : τ if and only if Ψ; ∆; Γ ` e1 ≈ C[τ
′FC CFτ ′

e2] : τ .

• Ψ; ∆; Γ ` e1 ≈ C[e2] : τ if and only if Ψ; ∆; Γ ` e1 ≈ C[CFτ ′ τ ′FC e2] : τ .

• Ψ; ∆; Γ ` e1 ≈ C[e2] : τ if and only if Ψ; ∆; Γ ` e1 ≈ C[τ
′CAACτ ′ e2] : τ .

• Ψ; ∆; Γ ` e1 ≈ C[e2] : τ if and only if Ψ; ∆; Γ ` e1 ≈ C[ACτ ′ τ ′CA e2] : τ .

Proof

We prove the first claim; the others can be proven analogously. By Lemma 11.1 and congruence,
Ψ; ∆; Γ ` C[e2] ≈ C[τ

′FC CFτ ′
e2] : τ . The result follows by transitivity.

11.1 Correctness of Closure Conversion

Lemma 11.3 (Variable)
If x : τ ∈ Γ, then ·; ∆; Γ ` x ≈ τFC (CFτ x) : τ .

Proof

Follows immediately from Lemma 11.1.

Lemma 11.4 (Unit)
·; ∆; Γ ` () ≈ unitFC () : unit.

Proof

Follows from Lemmas 8.15 and 8.9.

Lemma 11.5 (Int)
·; ∆; Γ ` n ≈ intFC n : int.

Proof

Follows from Lemmas 8.15 and 8.9.

Lemma 11.6 (Primitive)

If ·;α; x : τ ′ ` t ≈ intFC t[dαe/α][CFτ ′
x/x] : int and ·;α; x : τ ′ ` t′ ≈ intFC t′[dαe/α][CFτ ′

x/x] : int, then

·;α; x : τ ′ ` t p t′ ≈ intFC (t p t′)[dαe/α][CFτ ′
x/x] : int.

80

Proof

By Lemma 11.2, it suffices to show that

·;α; x : τ ′ ` t p t′ ≈ intFC (CF intFC (t[dαe/α][CFτ ′
x/x])) p (CF intFC (t′[dαe/α][CFτ ′

x/x])) : int.

Note that ·;α; x : τ ′ ` t p t′ : int and

·;α; x : τ ′ ` intFC (CF intFC (t[dαe/α][CFτ ′
x/x])) p (CF intFC (t′[dαe/α][CFτ ′

x/x])) : int.

Let W ∈World, ρ ∈ DJαK, and (W,γ) ∈ GJx : τKρ. We need to show that

(W,ρ1(γ1(t p t′)),

ρ2(γ2(intFC (CF intFC (t[dαe/α][CFτ ′
x/x])) p (CF intFC (t′[dαe/α][CFτ ′

x/x]))))

= (W,ρ1(γ1(t)) p ρ1(γ1(t′)),
intFC ρ2(γ2(CF intFC (t[dαe/α][CFτ ′

x/x]))) p ρ2(γ2(CF intFC (t′[dαe/α][CFτ ′
x/x]))))

∈ EJintKρ.

By our hypotheses,

(W,ρ1(γ1(t)), ρ2(γ2(intFC (t[dαe/α][CFτ ′
x/x])))) ∈ EJintKρ

and
(W,ρ1(γ1(t′)), ρ2(γ2(intFC (t′[dαe/α][CFτ ′

x/x])))) ∈ EJintKρ.

Let W ′ wW , (W ′,m,m) ∈ VJintKρ, and (W ′, n, n) ∈ VJintKρ. By Lemma 8.20, it suffices to show that

(W ′,m p n, intFC (CF int m p CF int n)) ∈ EJintKρ.

Since boundary translations at type int produce the same integers they are given, and since the seman-
tics of primitive operations are the same in F and C, from this point it is clear that we can complete
the proof using Lemma 8.15 and Lemma 8.9.

Lemma 11.7 (If0)

If ·;α; x : τ ′ ` t ≈ intFC t[dαe/α][CFτ ′
x/x] : int,

·;α; x : τ ′ ` t′ ≈ τFC t′[dαe/α][CFτ ′
x/x] : τ , and ·;α; x : τ ′ ` t′′ ≈ τFC t′′[dαe/α][CFτ ′

x/x] : τ ,

then ·;α; x : τ ′ ` if0 t t′ t′′ ≈ τFC (if0 t t′ t′′)[dαe/α][CFτ ′
x/x] : τ .

Proof

By Lemma 11.2, it suffices to show that

·;α; x : τ ′ ` if0 t t′ t′′ ≈ τFC (if0 CF intFC (t[dαe/α][CFτ ′
x/x])

(t′[dαe/α][CFτ ′
x/x])

(t′′[dαe/α][CFτ ′
x/x])) : τ .

For brevity, let t̂ = t[dαe/α][CFτ ′
x/x], t̂′ = t′[dαe/α][CFτ ′

x/x], and t̂′′ = t′′[dαe/α][CFτ ′
x/x].

Note that ·;α; x : τ ′ ` if0 t t′ t′′ : int and ·;α; x : τ ′ ` τFC (if0 CF intFC t̂ t̂′ t̂′′) : τ .

Let W ∈World, ρ ∈ DJαK, and (W,γ) ∈ GJx : τKρ. We need to show that

(W,ρ1(γ1(if0 t t′ t′′)), ρ2(γ2(τFC (if0 (CF intFC t̂) t̂′ t̂′′))))

= (W, if0 ρ1(γ1(t)) ρ1(γ1(t′)) ρ1(γ1(t′′)), τFC if0 ρ2(γ2(CF intFC t̂)) ρ2(γ2(̂t′)) ρ2(γ2(̂t′))) ∈ EJτKρ.

81

By our first hypothesis, (W,ρ1(γ1(t)), ρ2(γ2(intFC t̂))) ∈ EJintKρ. Let W ′ wW and (W ′, n, n) ∈ VJintKρ.
By Lemma 8.20, it suffices to show that

(W ′, if0 n ρ1(γ1(t′)) ρ1(γ1(t′′)), τFC (if0 (CF int n) ρ2(γ2(̂t′)) ρ2(γ2(̂t′′)))) ∈ EJτKρ.

We can complete the proof using a case split on whether n = 0, and then applying Lemma 8.15 and
the appropriate one of our hypotheses.

Lemma 11.8 (Pack)

If ·;α; x : τ ′ ` t ≈ τ [τ̂/β]FC t[dαe/α][CFτ ′
x/x] : τ [τ̂ /β], then

·;α; x : τ ′ ` pack〈τ̂ ,t〉 as∃β.τ ≈ ∃β.τFC (pack〈τ̂C,t〉 as ∃β.τC)[dαe/α][CFτ ′
x/x] :∃β.τ .

Proof

By Lemma 11.2, it suffices to show that

·;α; x : τ ′ ` pack〈τ̂ ,t〉 as∃β.τ ≈ ∃β.τFC (pack〈τ̂C[dαe/α],CFτ [τ̂/β]FC (t[dαe/α][CFτ ′
x/x])〉) :∃β.τ .

Note that ·;α; x : τ ′ ` pack〈τ̂ ,t〉 as∃β.τ :∃β.τ and

·;α; x : τ ′ ` ∃β.τFC (pack〈τ̂C[dαe/α],CFτ [τ̂/β]FC (t[dαe/α][CFτ ′
x/x])〉 as ∃β.τC) :∃β.τ .

Let W ∈World, ρ ∈ DJαK, and (W,γ) ∈ GJx : τKρ. We need to show that

(W,ρ1(γ1(pack〈τ̂ ,t〉 as∃β.τ)),

ρ2(γ2(∃β.τFC (pack〈τ̂C[dαe/α],CFτ [τ̂/β]FC (t[dαe/α][CFτ ′
x/x])〉 as ∃β.τC[dαe/α]))))

= (W, pack〈ρ1(τ̂),ρ1(γ1(t))〉 as ρ1(∃β.τ),
ρ2(∃β.τ)FC pack〈ρ2(τ̂ 〈C〉),CFρ2(τ [τ̂/β])FC (ρ2(γ2(t[dαe/α][CFτ ′

x/x])))〉 as ρ2(∃β.τ 〈C〉))

∈ EJ∃β.τKρ.

By our hypothesis, (W,ρ1(γ1(t)), ρ2(γ2(τ [τ̂/β]FC (t[dαe/α][CFτ ′
x/x])))) ∈ EJτ [τ̂ /β]Kρ. Let W ′ w W

and (W ′, v1, v2) ∈ VJτ [τ̂ /β]Kρ. By Lemma 8.20, it suffices to show that

(W ′, pack〈ρ1(τ̂),v1〉 as ρ1(∃β.τ), ρ2(∃β.τ)FC pack〈ρ2(τ̂ 〈C〉),CFρ2(τ [τ̂/β]) v2〉 as ρ2(∃β.τ 〈C〉)) ∈ EJ∃β.τKρ.

By Lemma 8.3, for any (M1,M2) :W ′, there are some v2 and v′2 such that

CFρ2(τ [τ̂/β])(v2,M2) = (v2,M2) and L〈ρ2(τ [τ̂/β]〈C〉)〉FC(v2,M2) = (v′2,M2).

By the operational semantics,

〈M2 | ρ2(∃β.τ)FC pack〈ρ2(τ̂ 〈C〉),CFρ2(τ [τ̂/β]) v2〉 as ρ2(∃β.τ)〉
7−→2 〈M2 | pack〈L〈ρ2(τ̂ 〈C〉)〉,v′2〉 as ρ2(∃β.τ 〈C〉)〉.

Thus, by Lemma 8.15 and Lemma 8.9, it suffices to show that

(W ′, pack〈ρ1(τ̂),v1〉 as ρ1(∃β.τ), pack〈L〈ρ2(τ̂ 〈C〉)〉,v′2〉 as ρ2(∃β.τ)) ∈ VJ∃β.τKρ.

To show this, we need to find some VR ∈ FValRel such that VR.τ1 = ρ1(τ̂), VR.τ2 = L〈ρ2(τ̂ 〈C〉)〉, and
(W ′, v1, v

′
2) ∈ VJτKρ[β 7→ VR]. We use

VR = opaqueR(ρ1(τ̂), ρ2(τ̂),VJτ̂Kρ,VJτ̂ 〈C〉Kρ,VJτ̂ 〈C〉〈A〉Kρ).

That this VR ∈ FValRel follows from Lemma 10.4 and Lemma 8.35. The types match by definition of
opaqueR. For the last condition, note that

(W ′, v1, v2) ∈ VJτKρ[β 7→ (ρ1(τ̂), ρ2(τ̂),VJτ̂Kρ,VJτ̂ 〈C〉Kρ,VJτ̂ 〈C〉〈A〉Kρ)]

by Lemma 10.7. The result follows directly from boundary cancellation.

82

Lemma 11.9 (Unpack)

If ·;α; x : τ ′ ` t ≈ ∃β.τFC t[dαe/α][CFτ ′
x/x] :∃β.τ and

·;α, β; x : τ ′, y : τ ` t′ ≈ τ̂FC t′[dαe/α][dβe/β][CFτ ′
x/x][CFτ y/y] : τ̂ ,

then ·;α; x : τ ′ ` unpack 〈β, y〉 = t in t′ ≈ τ̂FC (unpack 〈β, y〉 = t in t′)[dαe/α][CFτ ′
x/x] : τ̂ .

Proof

For brevity, let t̂ = t[dαe/α][CFτ ′
x/x] and t̂′ = t′[dαe/α][CFτ ′

x/x]. By Lemma 11.2, it suffices to
show that

·;α; x : τ ′ ` unpack 〈β, y〉 = t in t′ ≈ τ̂FC (unpack 〈β, y〉 = (CF∃β.τFC t̂) in t̂′[CFτFC y/y]) : τ̂ .

Note that ·;α; x : τ ′ ` unpack 〈β, y〉 = t in t′ : τ̂ and

·;α; x : τ ′ ` τ̂FC (unpack 〈β, y〉 = (CF∃β.τFC t̂) in t̂′[CFτFC y/y]) : τ̂ .

Let W ∈World, ρ ∈ DJαK, and (W,γ) ∈ GJx : τKρ. We need to show that

(W,ρ1(γ1(unpack 〈β, y〉 = t in t′)),

ρ2(γ2(τ̂FC (unpack 〈β, y〉 = (CF∃β.τFC t̂) in t̂′[CFτFC y/y]))))

= (W, unpack 〈β, y〉 = ρ1(γ1(t)) in ρ1(γ1(t′)),
ρ2(τ̂)FC (unpack 〈β, y〉 = (CFρ2(∃β.τ)FC ρ2(γ2(̂t))) in ρ2(γ2(̂t′))[CFρ2(τ)FC y/y]))

∈ EJτ̂Kρ.

By our first hypothesis, (W,ρ1(γ1(t)), ρ2(∃β.τ)FC ρ2(γ2(̂t))) ∈ EJ∃β.τKρ. Let W ′ wW and

(W ′, pack〈τ1,v1〉 as ρ1(∃β.τ), pack〈τ2,v2〉 as ρ2(∃β.τ)) ∈ VJ∃β.τKρ.

By Lemma 8.20, it suffices to show that

(W ′, unpack 〈β, y〉 = (pack〈τ1,v1〉 as ρ1(∃β.τ)) in ρ1(γ1(t′)),
ρ2(τ̂)FC (unpack 〈β, y〉 = (CFρ2(∃β.τ) pack〈τ2,v2〉) in ρ2(γ2(̂t′))[CFρ2(τ)FC y/y])) ∈ EJτ̂Kρ.

By Lemma 8.3, for any (M1,M2) :W , there are some v2 and v′2 such that

CFρ2(τ [τ2/β])(v2,M2) = (v2,M2) and ρ2(τ [τ2/β])FC(v2,M2) = (v′2,M2).

Note that

〈M1 | unpack 〈β, y〉 = (pack〈τ1,v1〉 as ρ1(∃β.τ)) in ρ1(γ1(t′))〉 7−→ 〈M1 | ρ1(γ1(t′))[τ1/β][v1/y]〉

and

〈M2 | ρ2(τ̂)FC (unpack 〈β, y〉 = (CFρ2(∃β.τ) pack〈τ2,v2〉) in ρ2(γ2(̂t′))[CFρ2(τ)FC y/y])〉
7−→2 〈M2 | ρ2(τ̂)FC (ρ2(γ2(̂t′))[τ2

〈C〉/β][CFρ2(τ)FC v2/y])〉.

By Lemma 8.15, it suffices to show that

(W ′, ρ1(γ1(t′))[τ1/β][v1/y], ρ2(τ̂)FC (ρ2(γ2(̂t′))[τ2
〈C〉/β][CFρ2(τ)FC v2/y])) ∈ EJτ̂Kρ.

By Lemma 8.17, it suffices to show that

(W ′, ρ1(γ1(t′))[τ1/β][v1/y], ρ2(τ̂)FC (ρ2(γ2(̂t′))[τ2
〈C〉/β][CFρ2(τ) v′2/y])) ∈ EJτ̂Kρ.

By definition of VJ∃β.τKρ, there is some VR ∈ FValRel such that VR.τ1 = τ1, VR.τ2 = τ2, and
(W ′, v1, v2) ∈ VJτKρ[β 7→ VR]. By boundary cancellation, (W ′, v1, v

′
2) ∈ VJτKρ[β 7→ VR]. Therefore

ρ[β 7→ VR] ∈ DJα, βK and (W ′, γ[y 7→ (v1, v
′
2)]) ∈ GJx : τ ′, y : τKρ. Hence we can apply our second

hypothesis to get exactly this result.

83

Lemma 11.10 (Fold)

If ·;α; x : τ ′ ` t ≈ τ [µα.τ/α]FC t[dαe/α][CFτ ′
x/x] : τ [µα.τ/α], then

·;α; x : τ ′ ` foldµα.τ t ≈ µα.τFC (foldµα.τC t)[dαe/α][CFτ ′
x/x] :µα.τ .

Proof

By Lemma 11.2, it suffices to show that

·;α; x : τ ′ ` foldµβ.τ t ≈ µβ.τFC (foldµβ.τ 〈C〉 CF
τ [µβ.τ/β]FC (t[dαe/α][CFτ ′

x/x])) :µβ.τ .

Note that ·;α; x : τ ′ ` foldµβ.τ t :µβ.τ and

·;α; x : τ ′ ` µβ.τFC (foldµβ.τ 〈C〉 CF
τ [µβ.τ/β]FC (t[dαe/α][CFτ ′

x/x])) :µβ.τ .

Let W ∈World, ρ ∈ DJαK, and (W,γ) ∈ GJx : τKρ. We need to show that

(W,ρ1(γ1(foldµβ.τ t)), ρ2(γ2(µβ.τFC (foldµβ.τ 〈C〉 CF
τ [µβ.τ/β]FC (t[dαe/α][CFτ ′

x/x])))))

= (W, foldρ1(µβ.τ) ρ1(γ1(t)),

ρ2(µβ.τ)FC fold
ρ2(µβ.τ 〈C〉)

CFρ2(τ [µβ.τ/β])FC (ρ2(γ2(t[dαe/α][CFτ ′
x/x])))) ∈ EJµβ.τKρ.

By our hypothesis, (W,ρ1(γ1(t)), ρ2(γ2(τ [µβ.τ/β]FC (t[dαe/α][CFτ ′
x/x])))) ∈ EJτ [µβ.τ/β]Kρ. Let

W ′ wW and (W ′, v1, v2) ∈ VJτ [µβ.τ/β]Kρ. By Lemma 8.20, it suffices to show that

(W ′, foldρ1(µβ.τ) v1,
ρ2(µβ.τ)FC fold

ρ2(µβ.τ 〈C〉)
CFρ2(τ [µβ.τ/β]) v2) ∈ EJµβ.τKρ.

By Lemma 8.3, for any (M1,M2) :W ′, there are some v2 and v′2 such that

CFρ2(τ [µα.τ/β])(v2,M2) = (v2,M2) and ρ2(τ [µα.τ/β])FC(v2,M2) = (v′2,M2).

By the operational semantics,

〈M2 | ρ2(µβ.τ)FC foldρ2(µβ.τ) CF
ρ2(τ [µα.τ/β]) v2〉 7−→2 〈M2 | fold

ρ2(µβ.τ 〈C〉)
v′2〉.

Thus, by Lemma 8.15 and Lemma 8.9, it suffices to show that

(W ′, foldρ1(µβ.τ) v1, foldρ2(µβ.τ) v′2) ∈ VJµβ.τKρ.

This follows from our hypothesis that (W ′, v1, v2) ∈ VJτ [µβ.τ/β]K, by monotonicity and boundary
cancellation.

Lemma 11.11 (Unfold)

If ·;α; x : τ ′ ` t ≈ µα.τFC t[dαe/α][CFτ ′
x/x] :µα.τ , then

·;α; x : τ ′ ` unfold t ≈ τ [µα.τ/α]FC (unfold t)[dαe/α][CFτ ′
x/x] : τ [µα.τ/α].

Proof

By Lemma 11.2, it suffices to show that

·;α; x : τ ′ ` unfold t ≈ τ [µβ.τ/β]FC (unfold CFµβ.τFC (t[dαe/α][CFτ ′
x/x])) : τ [µβ.τ/β].

Note that ·;α; x : τ ′ ` unfold t : τ [µβ.τ/β] and

·;α; x : τ ′ ` τ [µβ.τ/β]FC (unfold CFµβ.τFC (t[dαe/α][CFτ ′
x/x])) : τ [µβ.τ/β].

84

Let W ∈World, ρ ∈ DJαK, and (W,γ) ∈ GJx : τKρ. We need to show that

(W,ρ1(γ1(unfold t)), ρ2(γ2(τ [µβ.τ/β]FC (unfold CFµβ.τFC (t[dαe/α][CFτ ′
x/x])))))

= (W, unfold ρ1(γ1(t)),
ρ2(τ [µβ.τ/β])FC unfold CFρ2(µβ.τ)FC (ρ2(γ2(t[dαe/α][CFτ ′

x/x])))) ∈ EJτ [µβ.τ/β]Kρ.

By our hypothesis, (W,ρ1(γ1(t)), ρ2(γ2(µβ.τFC (t[dαe/α][CFτ ′
x/x])))) ∈ EJµβ.τKρ. Let W ′ wW and

(W ′, foldρ1(µβ.τ) v1, foldρ2(µβ.τ) v2) ∈ VJµβ.τKρ. By Lemma 8.20, it suffices to show that

(W ′, unfold (foldρ1(µβ.τ) v1),
ρ2(τ [µβ.τ/β])FC unfold CFρ2(µβ.τ) foldρ2(µβ.τ) v2) ∈ EJτ [µβ.τ/β]Kρ.

By Lemma 8.3, for any (M1,M2) :W ′, there are some v2 and v′2 such that

CFρ2(µβ.τ)(v2,M2) = (v2,M2) and ρ2(µβ.τ)FC(v2,M2) = (v′2,M2).

By the operational semantics,

〈M2 | ρ2(τ [µβ.τ/β])FC unfold CFρ2(µβ.τ) foldρ2(µβ.τ) v2〉 7−→3 〈M2 | v′2〉.

The result follows by Lemma 8.15, Lemma 8.9, and boundary cancellation.

Lemma 11.12 (Tuple)

If ·;α; x : τ ′ ` t ≈ τFC t[dαe/α][CFτ ′
x/x] : τ , then ·;α; x : τ ′ ` 〈t〉 ≈ 〈τ〉FC 〈t〉[dαe/α][CFτ ′

x/x] : 〈τ〉.

Proof

By Lemma 11.2, it suffices to show that

·;α; x : τ ′ ` 〈t〉 ≈ 〈τ〉FC (〈CFτFC (t[dαe/α][CFτ ′
x/x])〉) : 〈τ〉.

Note that ·;α; x : τ ′ ` 〈t〉 : 〈τ〉 and

·;α; x : τ ′ ` 〈τ〉FC (〈CF 〈τ〉FC (t[dαe/α][CFτ ′
x/x])〉) : 〈τ〉.

Let W ∈World, ρ ∈ DJαK, and (W,γ) ∈ GJx : τKρ. We need to show that

(W,ρ1(γ1(〈t〉)), ρ2(γ2(〈τ〉FC (〈CFτFC (t[dαe/α][CFτ ′
x/x])〉))))

= (W, 〈ρ1(γ1(t))〉, ρ2(〈τ〉)FC 〈CFρ2(τ)FC (ρ2(γ2(t[dαe/α][CFτ ′
x/x])))〉) ∈ EJ〈τ〉Kρ.

By our hypothesis,

(W,ρ1(γ1(t)), ρ2(γ2(τFC (t[dαe/α][CFτ ′
x/x])))) ∈ EJτKρ.

Let W ′ wW and (W ′, v1, v2) ∈ VJτKρ. By Lemma 8.20, it suffices to show that

(W ′, 〈v1〉, ρ2(〈τ〉)FC 〈CFρ2(τ) v2〉) ∈ EJ〈τ〉Kρ.

We have this by Lemma 8.15, Lemma 8.9, and boundary cancellation.

Lemma 11.13 (Projection)

If ·;α; x : τ ′ ` t ≈ 〈τ〉FC t[dαe/α][CFτ ′
x/x] : 〈τ〉, then ·;α; x : τ ′ ` πi(t) ≈ τiFC πi(t)[dαe/α][CFτ ′

x/x] : τi.

Proof

85

By Lemma 11.2, it suffices to show that

·;α; x : τ ′ ` πi(t) ≈ τiFC (πi(CF 〈τ〉FC (t[dαe/α][CFτ ′
x/x]))) : τi.

Note that ·;α; x : τ ′ ` πi(t) : τi and ·;α; x : τ ′ ` τiFC (πi(CF 〈τ〉FC (t[dαe/α][CFτ ′
x/x]))) : τi.

Let W ∈World, ρ ∈ DJαK, and (W,γ) ∈ GJx : τKρ. We need to show that

(W,ρ1(γ1(πi(t))), ρ2(γ2(τiFC (πi(CF 〈τ〉FC (t[dαe/α][CFτ ′
x/x]))))))

= (W,πi(ρ1(γ1(t))), ρ2(τi)FC πi(CFρ2(〈τ〉)FC (ρ2(γ2(t[dαe/α][CFτ ′
x/x]))))) ∈ EJτiKρ.

By our hypothesis, (W,ρ1(γ1(t)), ρ2(γ2(〈τ〉FC (t[dαe/α][CFτ ′
x/x])))) ∈ EJ〈τ〉Kρ. Let W ′ w W and

(W ′, 〈v1〉, 〈v2〉) ∈ VJ〈τ〉Kρ. By Lemma 8.20, it suffices to show that

(W ′, πi((〈v1〉)), ρ2(τi)FC πi(CFρ2(〈τ〉) 〈v2〉)) ∈ EJτiKρ.

We have this by Lemma 8.15, Lemma 8.9, and boundary cancellation.

Lemma 11.14 (Function)
Let k′ ≥ k, m′ ≥ m, ∆ = β1, . . . , βk′ , and Γ = y1 : τ1, . . . , ym′ : τm′ .

If fv(λ[α](x : τ).t) = y1, . . . , ym, ftv(λ[α](x : τ).t) = β1, . . . , βk, τenv = 〈τ1C, . . . , τmC〉,

·; (∆, α); (Γ, x : τ) ` t ≈ τ ′FC t[dβ1e/β1] · · · [dβk′e/βk′][dαe/α]

[CFτ1 y1/y1] · · · [CFτm′ ym′/ym′][CFτ x/x] : τ ′,

vf = λ[β1, . . . , βk, α](z : τenv, x: τC).t[π1(z)/y1] · · · [πm(z)/ym], and

v = pack〈τenv,〈vf [β1] · · · [βk], 〈y1, . . . , ym〉〉〉 as ∃α′.〈(∀[α].(α′, τC)→ τ ′C), α′〉,

then
·; ∆; Γ ` λ[α](x : τ).t ≈ ∀[α].(τ)→ τ ′FC v[dβ1e/β1] · · · [dβk′e/βk′]

[CFτ1 y1/y1] · · · [CFτm′ ym′/ym′] :∀[α].(x : τ)→ τ ′.

Proof

Let

v′f = λ[β1, . . . , βk, α](z : τenv, x: τC).t[CFτ1FC π1(z)/y1] · · · [CFτmFC πm(z)/ym][CFτ FC x/x]

and

v′ = pack〈τenv,〈v′f [β1] · · · [βk], 〈y1, . . . , ym〉〉〉 as ∃α′.〈(∀[α].(α′, τC)→ τ ′C), α′〉.

By Lemma 11.2, it suffices to show that

·; ∆; Γ ` λ[α](x : τ).t ≈ ∀[α].(τ)→ τ ′FC v′[dβ1e/β1] · · · [dβk′e/βk′]

[CFτ1 y1/y1] · · · [CFτm′ ym′/ym′] :∀[α].(x : τ)→ τ ′.

Note that ·; ∆; Γ ` λ[α](x : τ).t :∀[α].(τ)→ τ ′ and

·; ∆; Γ ` ∀[α].(τ)→ τ ′FC v′[dβ1e/β1] · · · [dβk′e/βk′]

[CFτ1 y1/y1] · · · [CFτm′ ym′/ym′] :∀[α].(x : τ)→ τ ′.

86

Let W ∈World, ρ ∈ DJ∆K, and (W,γ) ∈ GJΓKρ. We need to show that

(W,ρ1(γ1(λ[α](x : τ).t)), ρ2(γ2(∀[α].(τ)→ τ ′FC v′[dβ1e/β1] · · · [dβk′e/βk′]

[CFτ1 y1/y1] · · · [CFτm′ ym′/ym′])))

= (W,λ[α](x : τ).ρ1(γ1(t)), ∀[α].(τ)→ τ ′FC v′[ρ2(β1)
〈C〉/β1] · · · [ρ2(βk′)

〈C〉/βk′]

[CFρ2(τ1) γ2(y1)/y1] · · · [CFρ2(τm′) γ2(ym′)/ym′])

∈ EJ∀[α].(τ)→ τ ′Kρ.

Note that

v′[ρ2(β1)
〈C〉/β1] · · · [ρ2(βk′)

〈C〉/βk′][CFρ2(τ1) γ2(y1)/y1] · · · [CFρ2(τm′) γ2(ym′)/ym′]

= pack〈τenv[ρ2(β1)
〈C〉/β1] · · · [ρ2(βk′)

〈C〉/βk′],

〈v′f [ρ2(β1)
〈C〉] · · · [ρ2(βk′)

〈C〉], 〈CFρ2(τ1) γ2(y1), . . . , CFρ2(τ1) γ2(ym)〉〉〉.

Call this term t̂′. By Lemma 8.3, there are some v1, . . . ,vm and v′1, . . . , v
′
m such that for each 1 ≤ i ≤ m

and any (M1,M2) :W ,

CFτi(γ1(yi),M2) = (vi,M2) and τiFC(vi,M2) = (v′i ,M2).

Let

v̂′ = pack〈τenv[ρ2(β1)
〈C〉/β1] · · · [ρ2(βk′)

〈C〉/βk′],〈v′f [ρ2(β1)
〈C〉] · · · [ρ2(βk′)

〈C〉], 〈v1, . . . , vm〉〉〉.

By Lemma 8.15 and Lemma 8.9, it suffices to show that

(W,λ[α](x : τ).ρ1(γ1(t)), λ[α](x : τ).(τ
′FC unpack 〈β′, z〉 = v̂′ in π1(z) [dαe]π2(z), CFτ x))

∈ VJ∀[α].(τ)→ τ ′Kρ.

Let W ′ w W , VR ∈ FValRel, and (W ′, v̂1, v̂2) ∈ VJτKρ[α 7→ VR]. For convenience, let τ̂1 = VR.τ1 and
τ̂2 = VR.τ2. We need to show that

(W ′, (λ[α](x : τ).ρ1(γ1(t))) [τ̂1] v̂1,

(λ[α](x : τ).τ
′FC unpack 〈β′, z〉 = v̂′ in π1(z) [dαe]π2(z), CFτ x) [τ̂2] v̂2) ∈ EJτ ′Kρ[α 7→ VR].

By Lemma 8.15, it suffices to show that

(W ′, ρ1(γ1(t))[τ̂1/α][v̂1/x],

τ ′[τ̂2/α]FC (v′f [ρ2(β1)
〈C〉] · · · [ρ2(βk′)

〈C〉] [τ̂2〈C〉] 〈v1, . . . , vm〉, CFτ [τ̂2/α] v̂2)) ∈ EJτ ′Kρ[α 7→ VR].

By Lemma 8.3, for any (M ′1,M
′
2) :W ′, there are some v̂2 and v̂′2 such that

CFτ [τ̂2/α](v̂2,M
′
2) = (v̂2,M2) and τ [τ̂2/α]FC(v̂2,M2) = (v̂′2,M2).

By Lemma 8.15, it suffices to show that

(W ′, ρ1(γ1(t))[τ̂1/α][v̂1/x],
τ ′[τ̂2/α]FC (v′f [ρ2(β1)

〈C〉] · · · [ρ2(βk′)
〈C〉] [τ̂2〈C〉] 〈v1, . . . , vm〉, v̂2)) ∈ EJτ ′Kρ[α 7→ VR].

Note that

〈M ′2 | τ
′[τ̂2/α]FC (v′f [ρ2(β1)

〈C〉] · · · [ρ2(βk′)
〈C〉] [τ̂2〈C〉] 〈v1, . . . , vm〉, v̂2)〉

7−→ 〈M ′2 | τ
′[τ̂2/α]FC t[CFτ1FC π1(〈v1, . . . , vm〉)/y1] · · · [CFτmFC πm(〈v1, . . . , vm〉)/ym]

[CFτ FC v̂2/x][ρ2(β1)
〈C〉/β1] · · · [ρ2(βk′)

〈C〉/βk′][τ̂2〈C〉/α]〉

87

By Lemma 8.15 and multiple uses of Lemma 8.17, it suffices to show

(W ′, ρ1(γ1(t))[τ̂1/α][v̂1/x],
τ ′[τ̂2/α]FC t[CFτ1 v′1/y1] · · · [CFτm v′m/ym][CFτ v̂′2/x]

[ρ2(β1)
〈C〉/β1] · · · [ρ2(βk′)

〈C〉/βk′][τ̂2〈C〉/α]) ∈ EJτ ′Kρ[α 7→ VR].

We have that ρ[α 7→ VR] ∈ DJ∆, αK, and by monotonicity and boundary cancellation, that

(W ′, ∅[y1 7→ (γ1(y1), v
′
1)] · · · [ym 7→ (γ1(ym), v′m)][ym+1 7→ γ(ym+1)] · · · [ym′ 7→ γ(ym′)][x 7→ (v̂1, v̂

′
2)])

∈ GJΓ, x : τKρ[α 7→ VR].

Therefore we can apply our hypothesis to get exactly the needed result.

Lemma 11.15 (Application)

If ·;β; x : τ ′ ` t0 ≈ ∀[α].(τ1)→ τ2FC t0[dβe/β][CFτ ′
x/x] :∀[α].(τ1)→ τ2, β ` τ , and

·;β; x : τ ′ ` t ≈ τ1[τ/α]FC t[dβe/β][CFτ ′
x/x] : τ1[τ/α],

then

·;β; x : τ ′ ` t0 [τ] t ≈ τ2[τ/α]FC (unpack 〈β′, z〉 = t0 in π1(z) [τC]π2(z), t)[dβe/β][CFτ ′
x/x] : τ2[τ/α].

Proof

Let t̂0 = t0[dβe/β][CFτ ′
x/x] and t̂ = t[dβe/β][CFτ ′

x/x]. By Lemma 11.2, it suffices to show that

·;β; x : τ ′ ` t0 [τ] t ≈ τ2[τ/α]FC (unpack 〈β′, z〉 = CF∀[α].(τ1)→ τ2FC t̂0

in π1(z) [τ 〈C〉]π2(z), CFτ1[τ/α]FC t̂) : τ2[τ/α].

Note that ·;β; x : τ ′ ` t0 [τ] t : τ2 and

·;β; x : τ ′ ` τ2[τ/α]FC (unpack 〈β′, z〉 = CF∀[α].(τ1)→ τ2FC t̂0

in π1(z) [τ 〈C〉]π2(z), CFτ1[τ/α]FC t̂) : τ2[τ/α].

Let W ∈World, ρ ∈ DJβK, and (W,γ) ∈ GJx : τ ′Kρ. We need to show that

(W,ρ1(γ1(t0 [τ] t)), ρ2(γ2(τ2[τ/α]FC (unpack 〈β′, z〉 = CF∀[α].(τ1)→ τ2FC t̂0

in π1(z) [τ 〈C〉]π2(z), CFτ1[τ/α]FC t̂)))

= (W,ρ1(γ1(t0)) [τ] ρ1(γ1(t)), ρ2(τ2[τ/α])FC (unpack 〈β′, z〉 = ρ2(γ2(CF∀[α].(τ1)→ τ2FC t̂0))

in π1(z) [τ 〈C〉]π2(z), ρ2(γ2(CFτ1[τ/α]FC t̂)))))

∈ EJτ2Kρ.

Let W ′ w W , (W ′, v1, v2) ∈ VJ∀[α].(τ1)→ τ2Kρ, and (W ′, v̂1, v̂2) ∈ VJτ1[τ/α]Kρ. By Lemma 8.20, it
suffices to show that

(W ′, v1 [τ] v̂1,
ρ2(τ2[τ/α])FC (unpack 〈β′, z〉 = CFρ2(∀[α].(τ1)→ τ2) v2

in π1(z) [τ 〈C〉]π2(z), CFρ2(τ1[τ/α]) v̂2))) ∈ EJτ2[τ/α]Kρ.

By Lemma 8.3, for any (M1,M2) :W ′, there are some v̂2 and v̂′2 such that

CFρ2(τ1[τ/α])(v̂2,M2) = (v̂2,M2) and ρ2(τ1[L〈τ〈C〉〉/α])FC(v̂2,M2) = (v̂2,M2).

88

Let
v = λ[α](z : unit, y : ρ2(τ1)C).CFρ2(τ2)[L〈α〉/α] (v2 [L〈α〉] ρ2(τ1)[L〈α〉/α]FC y)

and note that

〈M2 | ρ2(τ2[τ/α])FC (unpack 〈β′, z〉 = CFρ2(∀[α].(τ1)→ τ2) v2

in π1(z) [τ 〈C〉]π2(z), CFρ2(τ1[τ/α]) v̂2)))〉
7−→ 〈M2 | ρ2(τ2[τ/α])FC (unpack 〈β′, z〉 = (pack〈unit,〈v, ()〉〉 as ρ2(∀[α].(τ1)→ τ2)

〈C〉)

in π1(z) [τ 〈C〉]π2(z), CFρ2(τ1[τ/α]) v̂2)))〉
7−→3 〈M2 | ρ2(τ2[τ/α])FC v [τ 〈C〉] (), CFρ2(τ1[τ/α]) v̂2〉
7−→∗ 〈M2 | ρ2(τ2[τ/α])FC v [τ 〈C〉] (), v̂2〉

7−→ 〈M2 | ρ2(τ2[τ/α])FC CFρ2(τ2)[L〈τ〈C〉〉/α] (v2 [L〈τ 〈C〉〉] ρ2(τ1)[L〈τ〈C〉〉/α]FC v̂2)〉

7−→∗ 〈M2 | ρ2(τ2[τ/α])FC CFρ2(τ2)[L〈τ〈C〉〉/α] (v2 [L〈τ 〈C〉〉] v̂′2)〉

By Lemma 8.14, it suffices to show that

(W ′, v1 [τ] v̂1,
ρ2(τ2[τ/α])FC CFρ2(τ2)[L〈τ〈C〉〉/α] (v2 [L〈τ 〈C〉〉] v̂′2)) ∈ EJτ2[τ/α]Kρ.

From here, note that

EJτ2[τ/α]Kρ = EJτ2Kρ[α 7→ (ρ1(τ), ρ2(τ),VJτKρ,VJτ 〈C〉Kρ,VJτ 〈C〉〈A〉Kρ)]

by Lemma 10.7. Let

VR = opaqueR(ρ1(τ), ρ2(τ),VJτKρ,VJτ 〈C〉Kρ,VJτ 〈C〉〈A〉Kρ).

Using VR and (W ′, v̂1, v̂
′
2) ∈ VJτ1Kρ[α 7→ VR] (which we have by Lemma 10.7 and boundary cancella-

tion), we can instantiate (W ′, v1, v2) ∈ VJ∀[α].(τ1)→ τ2Kρ to get

(W ′, v1 [τ] v̂1, v2 [L〈τ 〈C〉〉] v̂′2) ∈ EJτ2Kρ[α 7→ VR].

The result follows by boundary cancellation.

Theorem 11.16 (Closure Conversion is Semantics-Preserving)
If α; x : τ ′ ` e : τ e, then

·;α; x : τ ′ ` e ≈ τFC (e[dαe/α] [CFτ ′
x/x]) : τ .

Proof

By induction on the compiler judgment, using the preceding lemmas.

11.2 Correctness of Allocation

Lemma 11.17 (Variable)
If x: τ ∈ Γ, then ·; ∆; Γ ` x ≈ τCA (ACτ x) : τ .

Proof

Follows immediately from Lemma 11.1.

Lemma 11.18 (Unit)
·; ∆; Γ ` () ≈ unitCA () : unit.

Proof

Follows from Lemmas 8.15 and 8.9.

89

Lemma 11.19 (Int)
·; ∆; Γ ` n ≈ intCAn : int.

Proof

Follows from Lemmas 8.15 and 8.9.

Lemma 11.20 (Primitive)

If · ` H,H′ : Ψ, ·;α; x: τ ′ ` t ≈ intCA (t[dαe/α][ACτ ′ x/x],H) : int, and

·;α; x: τ ′ ` t′ ≈ intCA (t′[dαe/α][ACτ ′ x/x],H′) : int,

then ·;α; x: τ ′ ` t p t′ ≈ intCA ((t p t′)[dαe/α][ACτ ′ x/x], (H,H′)) : int.

Proof

By Lemma 11.2, it suffices to show that

·;α; x: τ ′ ` t p t′ ≈
intCA ((ACintCA (t[dαe/α][ACτ ′ x/x])) p (ACintCA (t′[dαe/α][ACτ ′ x/x])), (H,H′))

: int.

Note that ·;α; x: τ ′ ` t p t′ : int and

·;α; x: τ ′ ` intCA ((ACintCA (t[dαe/α][ACτ ′ x/x])) p (ACintCA (t′[dαe/α][ACτ ′ x/x])), (H,H′))

: int.

Let W ∈World, ρ ∈ DJαK, and (W,γ) ∈ GJx: τ Kρ. We need to show that

(W,ρ1(γ1(t p t′)),

ρ2(γ2(intCA ((ACintCA (t[dαe/α][ACτ ′ x/x])) p (ACintCA (t′[dαe/α][ACτ ′ x/x])), (H,H′))))

= (W,ρ1(γ1(t)) p ρ1(γ1(t′)),
intCA (ρ2(γ2(ACintCA (t[dαe/α][ACτ ′ x/x]))) p

ρ2(γ2(ACintCA (t′[dαe/α][ACτ ′ x/x]))), (H,H′))) ∈ EJintKρ.

By Lemma 8.14, it suffices to show that

(W � (·, (H,H′)), ρ1(γ1(t)) p ρ1(γ1(t′)),
intCA (ρ2(γ2(ACintCA (t[dαe/α][ACτ ′ x/x]))) p

ρ2(γ2(ACintCA (t′[dαe/α][ACτ ′ x/x]))))) ∈ EJintKρ.

By our hypotheses, Lemma 8.18, and monotonicity, we have

(W � (·, (H,H′)), ρ1(γ1(t)), ρ2(γ2(intCA (t[dαe/α][ACτ ′ x/x])))) ∈ EJintKρ

and
(W � (·, (H,H′)), ρ1(γ1(t′)), ρ2(γ2(intCA (t′[dαe/α][ACτ ′ x/x])))) ∈ EJintKρ.

Let W ′ w W � (·, (H,H′)), (W ′,m,m) ∈ VJintKρ, and (W ′,n,n) ∈ VJintKρ. By Lemma 8.20, it
suffices to show that

(W ′,m p n, intCA (ACint m p ACint n)) ∈ EJintKρ.

Since boundary translations at type int produce the same integers they are given, and since the
semantics of primitive operations are the same in C and A, from this point it is clear that we can
complete the proof using Lemma 8.15 and Lemma 8.9.

90

Lemma 11.21 (If0)

If · ` H,H′,H′′ : Ψ, ·;α; x: τ ′ ` t ≈ intCA (t[dαe/α][ACτ ′ x/x],H) : int,

·;α; x: τ ′ ` t′ ≈ τCA (t′[dαe/α][ACτ ′ x/x],H′) : τ ,

and
·;α; x: τ ′ ` t′′ ≈ τCA (t′′[dαe/α][ACτ ′ x/x],H′′) : τ ,

then ·;α; x: τ ′ ` if0 t t′ t′′ ≈ τCA ((if0 t t′ t′′)[dαe/α][ACτ ′ x/x], (H,H′,H′′)) : τ .

Proof

By Lemma 11.2, it suffices to show that

·;α; x: τ ′ ` if0 t t′ t′′ ≈ τCA (if0 ACintCA (t[dαe/α][ACτ ′ x/x])

(t′[dαe/α][ACτ ′ x/x])

(t′′[dαe/α][ACτ ′ x/x]), (H,H′,H′′)) : τ .

For brevity, let t̂ = t[dαe/α][ACτ ′ x/x], t̂′ = t′[dαe/α][ACτ ′ x/x], and t̂′′ = t′′[dαe/α][ACτ ′ x/x].

Note that ·;α; x: τ ′ ` if0 t t′ t′′ : int and ·;α; x: τ ′ ` τCA (if0 (ACintCA t̂) t̂′ t̂′′, (H,H′,H′′)) : τ .

Let W ∈World, ρ ∈ DJαK, and (W,γ) ∈ GJx: τ Kρ. We need to show that

(W,ρ1(γ1(if0 t t′ t′′)), ρ2(γ2(τCA (if0 (ACintCA t̂) t̂′ t̂′′, (H,H′,H′′)))))

= (W, if0 ρ1(γ1(t)) ρ1(γ1(t′)) ρ1(γ1(t′′)),
τCA (if0 ρ2(γ2(ACintCA t̂)) ρ2(γ2(̂t′)) ρ2(γ2(̂t′)), (H,H′,H′′))) ∈ EJτ Kρ.

By Lemma 8.14, it suffices to show that

(W � ({·}, (H,H′,H′′)), if0 ρ1(γ1(t)) ρ1(γ1(t′)) ρ1(γ1(t′′)),
τCA (if0 ρ2(γ2(ACintCA t̂)) ρ2(γ2(̂t′)) ρ2(γ2(̂t′)))) ∈ EJτ Kρ.

By our first hypothesis and Lemma 8.18, (W �({·}, (H,H′,H′′)), ρ1(γ1(t)), ρ2(γ2(intCA t̂))) ∈ EJintKρ.
Let W ′ wW � ({·}, (H,H′,H′′)) and (W ′,n,n) ∈ VJintKρ. By Lemma 8.20, it suffices to show that

(W ′, if0 n ρ1(γ1(t′)) ρ1(γ1(t′′)), τCA (if0 (ACint n) ρ2(γ2(̂t′)) ρ2(γ2(̂t′′)))) ∈ EJτ Kρ.

We can complete the proof using a case split on whether n = 0, and then applying Lemma 8.15 and
the appropriate one of our hypotheses.

Lemma 11.22 (Function)
If ` 6∈ dom(H) and ·;α; x: τ ` t ≈ τ ′CA (t[dαe/α][ACτ x/x],H) : τ ′, then

·; ∆; Γ ` λ[α](x : τ).t ≈ ∀[α].(τ)→ τ ′CA (`, (H, ` 7→ λ[α](x : τA).t)) :∀[α].(τ)→ τ ′.

Proof

By Lemma 11.2, it suffices to show that

·; ∆; Γ ` λ[α](x : τ).t ≈ ∀[α].(τ)→ τ ′CA (`, (H, ` 7→ λ[α](x : τA).t[ACτ CA x/x])) :∀[α].(τ)→ τ ′.

Note that ·; ∆; Γ ` λ[α](x : τ).t :∀[α].(τ)→ τ ′ and

·; ∆; Γ ` ∀[α].(τ)→ τ ′CA (`, (H, ` 7→ λ[α](x : τA).t[ACτ CA x/x])) :∀[α].(τ)→ τ ′.

91

Let W ∈World, ρ ∈ DJ∆K, and (W,γ) ∈ GJΓKρ. We need to show that

(W,ρ1(γ1(λ[α](x : τ).t)), ρ2(γ2(∀[α].(τ)→ τ ′CA (`, (H, ` 7→ λ[α](x : τA).t[ACτ CA x/x])))))

= (W,λ[α](x : τ).t, ∀[α].(τ)→ τ ′CA (`, (H, ` 7→ λ[α](x : τA).t[ACτ CA x/x])))

∈ EJ∀[α].(τ)→ τ ′Kρ.

By Lemma 8.14 and Lemma 8.9, it suffices to show that

(W � ({·}, (H, ` 7→ λ[α](x : τA).t[ACτ CA x/x])),λ[α](x : τ).t,λ[α](x : τ).(τ
′CA ` [dαe]ACτ x))

∈ VJ∀[α].(τ)→ τ ′Kρ.

Let W ′ wW � ({·}, (H, ` 7→ λ[α](x : τA).t[ACτ CA x/x])), VR ∈ CValRel, and

(W ′,v1,v2) ∈ VJτ Kρ[α 7→ VR].

For convenience, let τ1 = VR.τ1 and τ2 = VR.τ2. We need to show that

(W ′, (λ[α](x : τ).t) [τ1] v1, (λ[α](x : τ).τ
′[τ2/α]CA (` [dαe]ACτ [τ2/α] x)) [τ2] v2)

∈ EJ∀[α].(τ)→ τ ′Kρ[α 7→ VR] = EJ∀[α].(τ)→ τ ′K∅[α 7→ VR].

By Lemma 8.15, it suffices to show that

(W ′, t[τ1/α][v1/x], τ
′[τ2/α]CA (` [τ2〈A〉]ACτ [τ2/α] v2)) ∈ EJτ ′K∅[α 7→ VR].

By Lemma 8.3, for any (M1,M2) :W ′, there are some v2 and v′2 such that

ACτ [τ2/α](v2,M2) = (v2,M2]M ′2) and τ [τ2/α]CA(v2,M2]M ′2) = (v′2,M2]M ′2).

By Lemma 8.14, it suffices to show that

(W ′ � ({·},M ′2), t[τ1/α][v1/x], τ
′[τ2/α]CA (` [τ2〈A〉] v2)) ∈ EJτ ′K∅[α 7→ VR].

By one more application of Lemma 8.15, it suffices to show

(W ′ � ({·},M ′2), t[τ1/α][v1/x], τ
′[τ2/α]CA t[ACτ τCA x/x][τ2〈A〉/α][v2/x])

= (W ′ � ({·},M ′2), t[τ1/α][v1/x], τ
′[τ2/α]CA t[ACτ τCA v2/x][τ2〈A〉/α]) ∈ EJτ ′K∅[α 7→ VR].

Finally, by Lemma 8.17, it suffices to show that

(W ′ � ({·},M ′2), t[τ1/α][v1/x], τ
′[τ2/α]CA t[ACτ v′2/x][τ2〈A〉/α]) ∈ EJτ ′K∅[α 7→ VR],

which we have from our hypothesis and Lemma 8.18, since ∅[α 7→ VR] ∈ DJαK, and by boundary

cancellation, (W ′ � (∅,M ′2), ∅[x 7→ (v1,v
′
2)]) ∈ GJx: τ K∅[α 7→ VR].

Lemma 11.23 (Application)

If · ` H0,H : Ψ, ·;α; x: τ ′ ` t0 ≈ ∀[].(τ1)→ τ2CA (t0[dαe/α][ACτ ′ x/x],H0) :∀[].(τ1)→ τ2, and

·;α; x: τ ′ ` t ≈ τ1CA (t[dαe/α][ACτ ′ x/x],H) : τ1,

then ·;α; x: τ ′ ` t0 [] t ≈ τ2CA ((t0 [] t)[dαe/α][ACτ ′ x/x], (H0,H)) : τ2.

Proof

92

By Lemma 11.2, it suffices to show that

·;α; x: τ ′ ` t0 [τ] t ≈ τ2CA ((AC∀[].(τ1)→ τ2 CA t0 []ACτ1 CA t)[dαe/α][ACτ ′ x/x], (H0,H)) : τ2.

Note that ·;α; x: τ ′ ` t0 [] t : τ2 and

·;α; x: τ ′ ` τ2CA ((AC∀[].(τ1)→ τ2 CA t0 []ACτ1 CA t)[dαe/α][ACτ ′ x/x], (H0,H)) : τ2.

Let W ∈World, ρ ∈ DJαK, and (W,γ) ∈ GJx: τ ′Kρ. We need to show that

(W,ρ1(γ1(t0 [] t)), ρ2(γ2(τ2CA ((AC∀[].(τ1)→ τ2 CA t0 []ACτ1 CA t)[dαe/α][ACτ ′ x/x], (H0,H))))

= (W,ρ1(γ1(t0)) [] ρ1(γ1(t)), τ2CA (ρ2(γ2(AC∀[].(τ1)→ τ2 CA t0[dαe/α][ACτ ′ x/x]))

[] ρ2(γ2(ACτ1 CA t[dαe/α][ACτ ′ x/x])), (H0,H)) ∈ EJτ2Kρ.

By Lemma 8.14, it suffices to show that

(W � (·, (H0,H)), ρ1(γ1(t0)) [] ρ1(γ1(t)),
τ2CA (ρ2(γ2(AC∀[].(τ1)→ τ2 CA t0[dαe/α][ACτ ′ x/x]))

[] ρ2(γ2(ACτ1 CA t[dαe/α][ACτ ′ x/x])), (H0,H)) ∈ EJτ2Kρ.

By our hypotheses, Lemma 8.18, and monotonicity, we have

(W � (·, (H0,H)), ρ1(γ1(t0)), ρ2(γ2(∀[].(τ1)→ τ2CA (t0[dαe/α][ACτ ′ x/x])))) ∈ EJ∀[].(τ1)→ τ2Kρ

and

(W � (·, (H0,H)), ρ1(γ1(t)), ρ2(γ2(τ1CA (t[dαe/α][ACτ ′ x/x])))) ∈ EJτ1Kρ.

Let W ′ wW � (·, (H0,H)), (W ′,v1,v2) ∈ VJ∀[].(τ1)→ τ2Kρ, and (W ′, v̂1, v̂2) ∈ VJτ1Kρ. By Lemma
8.20, it suffices to show that

(W ′,v1 [] v̂1,
ρ2(τ2)CA (ACρ2(∀[].(τ1)→ τ2) v2 []ACρ2(τ1) v̂2)) ∈ EJτ2Kρ.

By Lemma 8.3, for any (M1,M2) :W ′, there are some v̂2 and v̂′2 such that

ACρ2(τ1)(v̂2,M2) = (v̂2,M2]M ′2) and ρ2(τ1)CA(v̂2,M2]M ′2) = (v̂2,M2]M ′2).

Note that

〈M2 | ρ2(τ2)CA (ACρ2(∀[].(τ1)→ τ2) v2 []ACρ2(τ1) v̂2)〉
7−→ 〈M2, ` 7→ (λ[](y : ρ2(τ1)A).ACρ2(τ2) v2 [] ρ2(τ2)CA y) | ρ2(τ2)CA (` []ACρ2(τ1) v̂2)〉
7−→∗ 〈M2, ` 7→ (λ[](y : ρ2(τ1)A).ACρ2(τ2) v2 [] ρ2(τ2)CA y),M ′2 | ρ2(τ2)CA (` [] v̂2)〉
7−→ 〈M2, ` 7→ (λ[](y : ρ2(τ1)A).ACρ2(τ2) v2 [] ρ2(τ2)CA y),M ′2 | ρ2(τ2)CAACρ2(τ2) v2 [] ρ2(τ2)CA v̂2〉
7−→∗ 〈M2, ` 7→ (λ[](y : ρ2(τ1)A).ACρ2(τ2) v2 [] ρ2(τ2)CA y),M ′2 | ρ2(τ2)CAACρ2(τ2) v2 [] v̂′2〉.

Let W ′′ = W ′�({·},{` 7→ λ[](y : ρ2(τ1)A).ACρ2(τ2) v2 [] ρ2(τ2)CA y}]M ′2). By Lemma 8.14, it suffices
to show that

(W ′′,v1 [] v̂1,
ρ2(τ2)CAACρ2(τ2) v2 [] v̂′2) ∈ EJτ2Kρ.

By monotonicity and boundary cancellation, (W ′′, v̂1, v̂
′
2) ∈ VJτ1Kρ, so we can instantiate our assump-

tion that (W ′,v1,v2) ∈ VJ∀[].(τ1)→ τ2Kρ to get

(W ′′,v1 [] v̂1,v2 [] v̂′2) ∈ EJτ2Kρ.

The result follows by another use of boundary cancellation.

93

Lemma 11.24 (Type Application)

If ·;α; x: τ ′ ` t ≈ ∀[β′, β].(τ1)→ τ2CA (t[dαe/α][ACτ ′ x/x],H) :∀[β′, β].(τ1)→ τ2, and α ` τ0 then

·;α; x: τ ′ ` t[τ0] ≈ ∀[β].(τ1[τ0/β′])→ τ2[τ0/β
′]CA ((t[τ0A])[dαe/α][ACτ ′ x/x],H) :

∀[β].(τ1[τ0/β′])→ τ2[τ0/β
′].

Proof

By Lemma 11.2, it suffices to show that

·;α; x: τ ′ ` t[τ0] ≈
∀[β].(τ1[τ0/β′])→ τ2[τ0/β

′]CA (((AC∀[β′, β].(τ1)→ τ2 CA t)[τ0A])[dαe/α][ACτ ′ x/x],H) :

∀[β].(τ1[τ0/β′])→ τ2[τ0/β
′].

Note that ·;α; x: τ ′ ` t[τ0] :∀[β].(τ1[τ0/β′])→ τ2[τ0/β
′] and

·;α; x: τ ′ ` ∀[β].(τ1[τ0/β′])→ τ2[τ0/β
′]CA (((AC∀[β′, β].(τ1)→ τ2 CA t)[τ0A])[dαe/α][ACτ ′ x/x],H) :

∀[β].(τ1[τ0/β′])→ τ2[τ0/β
′].

Let W ∈World, ρ ∈ DJαK, and (W,γ) ∈ GJx: τ Kρ. We need to show that

(W,ρ1(γ1(t[τ0])),

ρ2(γ2(∀[β].(τ1[τ0/β
′])→ τ2[τ0/β

′]CA (((AC∀[β′, β].(τ1)→ τ2 CA t)[τ0A])[dαe/α][ACτ ′ x/x],H))))

= (W,ρ1(γ1(t))[ρ1(τ0)],
ρ2(∀[β].(τ1[τ0/β′])→ τ2[τ0/β

′])CA (((ACρ2(∀[β′, β].(τ1)→ τ2)CA ρ2(γ2(t[dαe/α][ACτ ′ x/x])))

[ρ2(τ0
〈A〉)]),H))

∈ EJ∀[β].(τ1[τ0/β′])→ τ2[τ0/β
′]Kρ.

By Lemma 8.15, it suffices to show that

(W � ({·},H), ρ1(γ1(t))[ρ1(τ0)],
ρ2(∀[β].(τ1[τ0/β′])→ τ2[τ0/β

′])CA ((ACρ2(∀[β′, β].(τ1)→ τ2)CA ρ2(γ2(t[dαe/α][ACτ ′ x/x])))

[ρ2(τ0
〈A〉)])))

∈ EJ∀[β].(τ1[τ0/β′])→ τ2[τ0/β
′]Kρ.

By Lemma 8.18 and our hypothesis,

(W � ({·},H), ρ1(γ1(t)), ρ2(γ2(∀[β
′, β].(τ1)→ τ2CA (t[dαe/α][ACτ ′ x/x])))) ∈ EJ∀[β′, β].(τ1)→ τ2Kρ.

Let W ′ w W � ({·},H) and (W ′,v1,v2) ∈ VJ∀[β′, β].(τ1)→ τ2Kρ. By Lemma 8.20, it suffices to
show that

(W ′,v1[ρ1(τ0)], ρ2(∀[β].(τ1[τ0/β′])→ τ2[τ0/β
′])CA ((ACρ2(∀[β′, β].(τ1)→ τ2) v2)[ρ2(τ0

〈A〉)]))

∈ EJ∀[β].(τ1[τ0/β′])→ τ2[τ0/β
′]Kρ.

By Lemma 8.14 and Lemma 8.9, it suffices to show that

(W ′ � ({·},{` 7→ λ[β′, β](y : ρ2(τ1)〈A〉[β′/dβ′e][β/dβe]).
ACρ2(τ2)[L〈β′〉/β′][L〈β〉/β] v2 [L〈β′〉,L〈β〉] ρ2(τ1)[L〈β′〉/β′][L〈β〉/β]CA y}),

v1[ρ1(τ0)],

λ[β](y : ρ2(τ1[τ0/β
′])).ρ2(τ2[τ0/β

′])CA (`[ρ2(τ0
〈A〉)]) [dβe]ACρ2(τ1[τ0/β

′]) y)

∈ VJ∀[β].(τ1[τ0/β′])→ τ2[τ0/β
′]Kρ.

94

Let

W ′′ wW ′ � ({·},{` 7→ λ[β′, β](y : ρ2(τ1)〈A〉[β′/dβ′e][β/dβe]).
ACρ2(τ2)[L〈β′〉/β′][L〈β〉/β] v2 [L〈β′〉,L〈β〉] ρ2(τ1)[L〈β′〉/β′][L〈β〉/β]CA y}),

VR ∈ CValRel, and (W ′′, v̂1, v̂2) ∈ VJτ1[τ0/β
′]Kρ[β 7→ VR]. For convenience, let τ̂1 = VR.τ1 and

τ̂2 = VR.τ2. We need to show that

(W ′′, (v1[ρ1(τ0)]) [τ̂1] v̂1,

(λ[β](y : ρ2(τ1[τ0/β
′])).ρ2(τ2[τ0/β

′])CA (`[ρ2(τ0
〈A〉)]) [dβe]ACρ2(τ1[τ0/β

′]) y) [τ̂2] v̂2)

∈ EJτ2[τ0/β
′]Kρ[β 7→ VR].

Let
ρ′ = ρ[β 7→ VR][β′ 7→ (ρ1(τ0), ρ2(τ0),VJτ0Kρ,VJτ0〈A〉Kρ)]

and
ρ̂ = ρ[β 7→ opaqueR VR][β′ 7→ opaqueR(ρ1(τ0), ρ2(τ0),VJτ0Kρ,VJτ0〈A〉Kρ)].

Note that VJτ1[τ0/β
′]Kρ[β 7→ VR] = VJτ1Kρ′ and EJτ2[τ0/β

′]Kρ[β 7→ VR] = EJτ2Kρ′, by Lemma 10.6.

By Lemma 8.3, for any (M1,M2) :W ′′, there are some v2 and v′2 such that

ACρ
′
2(τ1)(v2,M2) = (v2,M2]M ′2) and ρ̂2(τ1)CA(v2,M2]M ′2) = (v2,M2]M ′2).

Note that

〈M2 | (λ[β](y : ρ2(τ1[τ0/β
′])).ρ2(τ2[τ0/β

′])CA (`[ρ2(τ0
〈A〉)]) [dβe]ACρ2(τ1[τ0/β

′]) y) [τ̂2] v̂2〉
7−→ 〈M2 | ρ

′
2(τ2)CA (`[ρ′2(τ0

〈A〉)]) [τ̂2〈A〉]ACρ
′
2(τ1) v̂2〉

7−→∗ 〈M2]M ′2 | ρ
′
2(τ2)CA (`[ρ′2(τ0

〈A〉)]) [τ̂2〈A〉] v̂2〉
7−→ 〈M2]M ′2 | ρ

′
2(τ2)CAACρ̂2(τ2) v2 [L〈ρ′2(τ0

〈A〉)〉,L〈τ̂2〈A〉〉] ρ̂2(τ1)CA v̂2〉
7−→∗ 〈M2]M ′2 | ρ

′
2(τ2)CAACρ̂2(τ2) v2 [L〈ρ′2(τ0

〈A〉)〉,L〈τ̂2〈A〉〉] v̂′2〉.

By Lemma 8.14, it suffices to show that

(W ′′ � ({·},M ′2),v1 [ρ1(τ0), τ̂1] v̂1,
ρ′2(τ2)CAACρ̂2(τ2) v2 [L〈ρ′2(τ0

〈A〉)〉,L〈τ̂2〈A〉〉] v̂′2) ∈ EJτ2Kρ′.

Since (W ′′ � ({·},M ′2), v̂1, v̂
′
2) ∈ VJτ1Kρ̂ by boundary cancellation and monotonicity, we can instantiate

our assumption that (W ′,v1,v2) ∈ VJ∀[β′, β].(τ1)→ τ2Kρ to get

(W ′′ � ({·},M ′2),v1 [ρ1(τ0), τ̂1] v̂1,v2 [L〈ρ′2(τ0
〈A〉)〉,L〈τ̂2〈A〉〉] v̂′2) ∈ EJτ2Kρ̂.

The result follows by another use of boundary cancellation.

Lemma 11.25 (Pack)

If ·;α; x: τ ′ ` t ≈ τ [τ̂/α]CA (t[dαe/α][ACτ ′ x/x],H) : τ [τ̂ /α], then

·;α; x: τ ′ ` pack〈τ̂ ,t〉 as ∃α.τ ≈ ∃α.τCA ((pack〈τ̂A,t〉 as∃α.τA)[dαe/α][ACτ ′ x/x],H) :∃α.τ .

Proof

By Lemma 11.2, it suffices to show that

·;α; x: τ ′ ` pack〈τ̂ ,t〉 as ∃β.τ ≈
∃β.τCA (pack〈τ̂A[dαe/α],ACτ [τ̂/β]CA (t[dαe/α][ACτ ′ x/x])〉 as∃β.τA,H) :∃β.τ .

95

Note that ·;α; x: τ ′ ` pack〈τ̂ ,t〉 as ∃β.τ :∃β.τ and

·;α; x: τ ′ ` ∃β.τCA (pack〈τ̂A[dαe/α],ACτ [τ̂/β]CA (t[dαe/α][ACτ ′ x/x])〉 as∃β.τA,H) :∃β.τ .

Let W ∈World, ρ ∈ DJαK, and (W,γ) ∈ GJx: τ Kρ. We need to show that

(W,ρ1(γ1(pack〈τ̂ ,t〉 as ∃β.τ)),

ρ2(γ2(∃β.τCA (pack〈τ̂A[dαe/α],ACτ [τ̂/β]CA (t[dαe/α][ACτ ′ x/x])〉 as∃β.τA[dαe/α],H))))

= (W,pack〈ρ1(τ̂),ρ1(γ1(t))〉 as ρ1(∃β.τ),
ρ2(∃β.τ)CA (pack〈ρ2(τ̂ 〈A〉),ACρ2(τ [τ̂/β])CA (ρ2(γ2(t[dαe/α][ACτ ′ x/x])))〉,H))

∈ EJ∃β.τ Kρ.

By Lemma 8.15, it suffices to show that

(W � ({·},H),pack〈ρ1(τ̂),ρ1(γ1(t))〉 as ρ1(∃β.τ),
ρ2(∃β.τ)CA (pack〈ρ2(τ̂ 〈A〉),ACρ2(τ [τ̂/β])CA (ρ2(γ2(t[dαe/α][ACτ ′ x/x])))〉))

∈ EJ∃β.τ Kρ.

By Lemma 8.18 and our hypothesis,

(W � ({·},H), ρ1(γ1(t)), ρ2(γ2(τ [τ̂/β]CA (t[dαe/α][ACτ ′ x/x])))) ∈ EJτ [τ̂ /β]Kρ.

Let W ′ wW � ({·},H) and (W ′,v1,v2) ∈ VJτ [τ̂ /β]Kρ. By Lemma 8.20, it suffices to show that

(W ′,pack〈ρ1(τ̂),v1〉 as ρ1(∃β.τ),
ρ2(∃β.τ)CApack〈ρ2(τ̂ 〈A〉),ACρ2(τ [τ̂/β]) v2〉 as ρ2(∃β.τ 〈A〉)) ∈ EJ∃β.τ Kρ.

By Lemma 8.3, for any (M1,M2) :W ′, there are some v2 and v′2 such that

ACρ2(τ [τ̂/β])(v2,M2) = (v2,M2]M ′2) and L〈ρ2(τ [τ̂/β]〈A〉)〉CA(v2,M2]M ′2) = (v′2,M2]M ′2).

By the operational semantics,

〈M2 | ρ2(∃β.τ)CApack〈ρ2(τ̂ 〈A〉),ACρ2(τ [τ̂/β]) v2〉 as ρ2(∃β.τ)〉
7−→2 〈M2]M ′2 | pack〈L〈ρ2(τ̂ 〈A〉)〉,v′2〉 as ρ2(∃β.τ 〈A〉)〉.

Thus, by Lemma 8.15 and Lemma 8.9, it suffices to show that

(W ′ � ({·},M ′2),pack〈ρ1(τ̂),v1〉 as ρ1(∃β.τ),pack〈L〈ρ2(τ̂ 〈A〉)〉,v′2〉 as ρ2(∃β.τ)) ∈ VJ∃β.τ Kρ.

To show this, we need to find some VR ∈ CValRel such that VR.τ1 = ρ1(τ̂), VR.τ2 = L〈ρ2(τ̂ 〈A〉)〉,
and (W ′ � ({·},M ′2),v1,v

′
2) ∈ VJτ Kρ[β 7→ VR]. We use

VR = opaqueR(ρ1(τ̂), ρ2(τ̂),VJτ̂ Kρ,VJτ̂ 〈A〉Kρ).

That this VR ∈ CValRel follows from Lemma 10.4 and Lemma 8.35. The types match by definition of
opaqueR. For the last condition, note that

(W ′,v1,v2) ∈ VJτ Kρ[β 7→ (ρ1(τ̂), ρ2(τ̂),VJτ̂ Kρ,VJτ̂ 〈A〉Kρ)]

by Lemma 10.6. The result follows directly from boundary cancellation.

96

Lemma 11.26 (Unpack)

If · ` H,H′ : Ψ, ·;α; x: τ ′ ` t ≈ ∃α.τCA (t[dαe/α][ACτ ′ x/x],H) :∃α.τ and

·;α, β; x: τ ′, y : τ ` t′ ≈ τ̂CA (t′[dαe/α][dβe/β][ACτ ′ x/x][ACτ y/y],H′) : τ̂ ,

then

·;α; x: τ ′ ` unpack 〈β, y〉 = t in t′ ≈ τ̂CA ((unpack 〈β, y〉 = t in t′)[dαe/α][ACτ ′ x/x], (H,H′) : τ̂ .

Proof

For brevity, let t̂ = t[dαe/α][ACτ ′ x/x] and t̂′ = t′[dαe/α][ACτ ′ x/x]. By Lemma 11.2, it suffices to
show that

·;α; x: τ ′ ` unpack 〈β, y〉 = t in t′ ≈
τ̂CA (unpack 〈β, y〉 = (AC∃β.τCA t̂) in t̂′[ACτCA y/y], (H,H′)) : τ̂ .

Note that ·;α; x: τ ′ ` unpack 〈β, y〉 = t in t′ : τ̂ and

·;α; x: τ ′ ` τ̂CA (unpack 〈β, y〉 = (AC∃β.τCA t̂) in t̂′[ACτCA y/y], (H,H′)) : τ̂ .

Let W ∈World, ρ ∈ DJαK, and (W,γ) ∈ GJx: τ Kρ. We need to show that

(W,ρ1(γ1(unpack 〈β, y〉 = t in t′)),

ρ2(γ2(τ̂CA (unpack 〈β, y〉 = (AC∃β.τCA t̂) in t̂′[ACτCA y/y], (H,H′)))))

= (W,unpack 〈β, y〉 = ρ1(γ1(t)) in ρ1(γ1(t′)),
ρ2(τ̂)CA (unpack 〈β, y〉 = (ACρ2(∃β.τ)CA ρ2(γ2(̂t))) in ρ2(γ2(̂t′))[ACρ2(τ)CA y/y], (H,H′)))

∈ EJτ̂ Kρ.

By Lemma 8.14, it suffices to show that

(W � ({·}, (H,H′)),

unpack 〈β, y〉 = ρ1(γ1(t)) in ρ1(γ1(t′)),
ρ2(τ̂)CA (unpack 〈β, y〉 = (ACρ2(∃β.τ)CA ρ2(γ2(̂t))) in ρ2(γ2(̂t′))[ACρ2(τ)CA y/y])) ∈ EJτ̂ Kρ.

By Lemma 8.18 and our first hypothesis,

(W � ({·}, (H,H′)), ρ1(γ1(t)), ρ2(∃β.τ)CA ρ2(γ2(̂t))) ∈ EJ∃β.τ Kρ.

Let W ′ wW � ({·}, (H,H′)) and

(W ′,pack〈τ1,v1〉 as ρ1(∃β.τ),pack〈τ2,v2〉 as ρ2(∃β.τ)) ∈ VJ∃β.τ Kρ.

By Lemma 8.20, it suffices to show that

(W ′,unpack 〈β, y〉 = (pack〈τ1,v1〉 as ρ1(∃β.τ)) in ρ1(γ1(t′)),
ρ2(τ̂)CA (unpack 〈β, y〉 = (ACρ2(∃β.τ) pack〈τ2,v2〉) in ρ2(γ2(̂t′))[ACρ2(τ)CA y/y])) ∈ EJτ̂ Kρ.

By Lemma 8.3, for any (M1,M2) :W , there are some v2 and v′2 such that

ACρ2(τ [τ2/β])(v2,M2) = (v2,M2]M ′2) and ρ2(τ [τ2/β])CA(v2,M2]M ′2) = (v′2,M2]M ′2).

Note that

〈M1 | unpack 〈β, y〉 = (pack〈τ1,v1〉 as ρ1(∃β.τ)) in ρ1(γ1(t′))〉 7−→ 〈M1 | ρ1(γ1(t′))[τ1/β][v1/y]〉

97

and

〈M2 | ρ2(τ̂)CA (unpack 〈β, y〉 = (ACρ2(∃β.τ) pack〈τ2,v2〉) in ρ2(γ2(̂t′))[ACρ2(τ)CA y/y])〉
7−→2 〈M2]M ′2 | ρ2(τ̂)CA (ρ2(γ2(̂t′))[τ2〈A〉/β][ACρ2(τ)CA v2/y])〉.

By Lemma 8.15, it suffices to show that

(W ′ � ({·},M ′2), ρ1(γ1(t′))[τ1/β][v1/y], ρ2(τ̂)CA (ρ2(γ2(̂t′))[τ2〈A〉/β][ACρ2(τ)CA v2/y])) ∈ EJτ̂ Kρ.

By Lemma 8.17, it suffices to show that

(W ′ � ({·},M ′2), ρ1(γ1(t′))[τ1/β][v1/y], ρ2(τ̂)CA (ρ2(γ2(̂t′))[τ2〈A〉/β][ACρ2(τ) v′2/y])) ∈ EJτ̂ Kρ.

By definition of VJ∃β.τ Kρ, there is some VR ∈ CValRel such that VR.τ1 = τ1, VR.τ2 = τ2, and
(W ′,v1,v2) ∈ VJτ Kρ[β 7→ VR]. By boundary cancellation, (W ′,v1,v

′
2) ∈ VJτ Kρ[β 7→ VR]. Therefore

ρ[β 7→ VR] ∈ DJα, βK and (W ′, γ[y 7→ (v1,v
′
2)]) ∈ GJx: τ ′, y : τ Kρ. Hence we can apply our second

hypothesis to get exactly this result.

Lemma 11.27 (Fold)

If ·;α; x: τ ′ ` t ≈ τ [µα.τ/α]CA (t[dαe/α][ACτ ′ x/x],H) : τ [µα.τ/α], then

·;α; x: τ ′ ` foldµα.τ t ≈ µα.τCA ((foldµα.τA t)[dαe/α][ACτ ′ x/x],H) :µα.τ .

Proof

By Lemma 11.2, it suffices to show that

·;α; x: τ ′ ` foldµβ.τ t ≈ µβ.τCA (foldµβ.τ 〈A〉 AC
τ [µβ.τ/β]CA (t[dαe/α][ACτ ′ x/x]),H) :µβ.τ .

Note that ·;α; x: τ ′ ` foldµβ.τ t :µβ.τ and

·;α; x: τ ′ ` µβ.τCA (foldµβ.τ 〈A〉 AC
τ [µβ.τ/β]CA (t[dαe/α][ACτ ′ x/x]),H) :µβ.τ .

Let W ∈World, ρ ∈ DJαK, and (W,γ) ∈ GJx: τ Kρ. We need to show that

(W,ρ1(γ1(foldµβ.τ t)), ρ2(γ2(µβ.τCA (foldµβ.τ 〈A〉 AC
τ [µβ.τ/β]CA (t[dαe/α][ACτ ′ x/x]),H))))

= (W, foldρ1(µβ.τ) ρ1(γ1(t)),

ρ2(µβ.τ)CA (fold
ρ2(µβ.τ 〈A〉)

ACρ2(τ [µβ.τ/β])CA (ρ2(γ2(t[dαe/α][ACτ ′ x/x]))),H))

∈ EJµβ.τ Kρ.

By Lemma 8.15, it suffices to show that

(W � ({·},H), foldρ1(µβ.τ) ρ1(γ1(t)),

ρ2(µβ.τ)CA (fold
ρ2(µβ.τ 〈A〉)

ACρ2(τ [µβ.τ/β])CA (ρ2(γ2(t[dαe/α][ACτ ′ x/x])))))

∈ EJµβ.τ Kρ.

By Lemma 8.18 and our hypothesis,

(W � ({·},H), ρ1(γ1(t)), ρ2(γ2(τ [µβ.τ/β]CA (t[dαe/α][ACτ ′ x/x])))) ∈ EJτ [µβ.τ/β]Kρ.

Let W ′ wW � ({·},H) and (W ′,v1,v2) ∈ VJτ [µβ.τ/β]Kρ. By Lemma 8.20, it suffices to show that

(W ′, foldρ1(µβ.τ) v1,
ρ2(µβ.τ)CA fold

ρ2(µβ.τ 〈A〉)
ACρ2(τ [µβ.τ/β]) v2) ∈ EJµβ.τ Kρ.

98

By Lemma 8.3, for any (M1,M2) :W ′, there are some v2 and v′2 such that

ACρ2(τ [µα.τ/β])(v2,M2) = (v2,M2]M ′2) and ρ2(τ [µα.τ/β])CA(v2,M2]M ′2) = (v′2,M2]M ′2).

By the operational semantics,

〈M2 | ρ2(µβ.τ)CA foldρ2(µβ.τ) AC
ρ2(τ [µα.τ/β]) v2〉 7−→2 〈M2]M ′2 | fold

ρ2(µβ.τ 〈A〉)
v′2〉.

Thus, by Lemma 8.15 and Lemma 8.9, it suffices to show that

(W ′ � ({·},M ′2), foldρ1(µβ.τ) v1, foldρ2(µβ.τ) v′2) ∈ VJµβ.τ Kρ.

This follows from our hypothesis that (W ′,v1,v2) ∈ VJτ [µβ.τ/β]K, by monotonicity and boundary
cancellation.

Lemma 11.28 (Unfold)

If ·;α; x: τ ′ ` t ≈ µα.τCA (t[dαe/α][ACτ ′ x/x],H) :µα.τ , then

·;α; x: τ ′ ` unfold t ≈ τ [µα.τ/α]CA ((unfold t)[dαe/α][ACτ ′ x/x],H) : τ [µα.τ/α].

Proof

By Lemma 11.2, it suffices to show that

·;α; x: τ ′ ` unfold t ≈ τ [µβ.τ/β]CA (unfoldACµβ.τCA (t[dαe/α][ACτ ′ x/x]),H) : τ [µβ.τ/β].

Note that ·;α; x: τ ′ ` unfold t : τ [µβ.τ/β] and

·;α; x: τ ′ ` τ [µβ.τ/β]CA (unfoldACµβ.τCA (t[dαe/α][ACτ ′ x/x]),H) : τ [µβ.τ/β].

Let W ∈World, ρ ∈ DJαK, and (W,γ) ∈ GJx: τ Kρ. We need to show that

(W,ρ1(γ1(unfold t)), ρ2(γ2(τ [µβ.τ/β]CA (unfoldACµβ.τCA (t[dαe/α][ACτ ′ x/x]),H))))

= (W,unfold ρ1(γ1(t)),
ρ2(τ [µβ.τ/β])CA (unfoldACρ2(µβ.τ)CA (ρ2(γ2(t[dαe/α][ACτ ′ x/x]))),H))

∈ EJτ [µβ.τ/β]Kρ.

By Lemma 8.14, it suffices to show that

(W � ({·},H),unfold ρ1(γ1(t)),
ρ2(τ [µβ.τ/β])CA (unfoldACρ2(µβ.τ)CA (ρ2(γ2(t[dαe/α][ACτ ′ x/x])))))

∈ EJτ [µβ.τ/β]Kρ.

By Lemma 8.18 and our hypothesis,

(W � ({·},H), ρ1(γ1(t)), ρ2(γ2(µβ.τCA (t[dαe/α][ACτ ′ x/x])))) ∈ EJµβ.τ Kρ.

Let W ′ wW � ({·},H) and (W ′, foldρ1(µβ.τ) v1, foldρ2(µβ.τ) v2) ∈ VJµβ.τ Kρ. By Lemma 8.20, it

suffices to show that

(W ′,unfold (foldρ1(µβ.τ) v1),

ρ2(τ [µβ.τ/β])CAunfoldACρ2(µβ.τ) foldρ2(µβ.τ) v2) ∈ EJτ [µβ.τ/β]Kρ.

99

By Lemma 8.3, for any (M1,M2) :W ′, there are some v2 and v′2 such that

ACρ2(µβ.τ)(v2,M2) = (v2,M2]M ′2) and ρ2(µβ.τ)CA(v2,M2]M ′2) = (v′2,M2]M ′2).

By the operational semantics,

〈M2 | ρ2(τ [µβ.τ/β])CAunfoldACρ2(µβ.τ) foldρ2(µβ.τ) v2〉 7−→3 〈M2]M ′2 | v′2〉.

The result follows by Lemma 8.15, Lemma 8.9, and boundary cancellation.

Lemma 11.29 (Projection)

If ·;α; x: τ ′ ` t ≈ 〈τ〉CA (t[dαe/α][ACτ ′ x/x],H) : 〈τ 〉, then

·;α; x: τ ′ ` πi(t) ≈ τiCA (read[i] t[dαe/α][ACτ ′ x/x],H) : τi.

Proof

By Lemma 11.2, it suffices to show that

·;α; x: τ ′ ` πi(t) ≈ τiCA (read[i]AC〈τ〉CA (t[dαe/α][ACτ ′ x/x]),H) : τi.

Note that ·;α; x: τ ′ ` πi(t) : τi and ·;α; x: τ ′ ` τiCA (read[i]AC〈τ〉CA (t[dαe/α][ACτ ′ x/x]),H) : τi.

Let W ∈World, ρ ∈ DJαK, and (W,γ) ∈ GJx: τ Kρ. We need to show that

(W,ρ1(γ1(πi(t))), ρ2(γ2(τiCA (read[i]AC〈τ〉CA (t[dαe/α][ACτ ′ x/x]),H))))

= (W,πi(ρ1(γ1(t))), ρ2(τi)CA (read[i]ACρ2(〈τ〉)CA (ρ2(γ2(t[dαe/α][ACτ ′ x/x]))),H)) ∈ EJτiKρ.

By Lemma 8.14, it suffices to show that

(W � ({·},H),πi(ρ1(γ1(t))), ρ2(τi)CA (read[i]ACρ2(〈τ〉)CA (ρ2(γ2(t[dαe/α][ACτ ′ x/x]))))) ∈ EJτiKρ.

By our hypothesis and Lemma 8.18,

(W � ({·},H), ρ1(γ1(t)), ρ2(γ2(〈τ〉CA (t[dαe/α][ACτ ′ x/x])))) ∈ EJ〈τ 〉Kρ.

Let W ′ wW � ({·},H) and (W ′, 〈v1〉, 〈v2〉) ∈ VJ〈τ 〉Kρ. By Lemma 8.20, it suffices to show that

(W ′,πi((〈v1〉)), ρ2(τi)CA read[i]ACρ2(〈τ〉) 〈v2〉) ∈ EJτiKρ.

We have this by Lemma 8.15, Lemma 8.9, and boundary cancellation.

Lemma 11.30 (Tuple)

If · ` H : Ψ and ·;α; x: τ ′ ` t ≈ τCA (t[dαe/α][ACτ ′ x/x],H) : τ , then

·;α; x: τ ′ ` 〈t〉 ≈ 〈τ〉CA (balloc 〈t〉[dαe/α][ACτ ′ x/x],H) : 〈τ 〉.

Proof

By Lemma 11.2, it suffices to show that

·;α; x: τ ′ ` 〈t〉 ≈ 〈τ〉CA (balloc 〈ACτCA (t[dαe/α][ACτ ′ x/x])〉,H) : 〈τ 〉.

Note that ·;α; x: τ ′ ` 〈t〉 : 〈τ 〉 and

·;α; x: τ ′ ` 〈τ〉CA (balloc 〈AC〈τ〉CA (t[dαe/α][ACτ ′ x/x])〉,H) : 〈τ 〉.

100

Let W ∈World, ρ ∈ DJαK, and (W,γ) ∈ GJx: τ Kρ. We need to show that

(W,ρ1(γ1(〈t〉)), ρ2(γ2(〈τ〉CA (balloc 〈ACτCA (t[dαe/α][ACτ ′ x/x])〉,H))))

= (W, 〈ρ1(γ1(t))〉, ρ2(〈τ〉)CA (balloc 〈ACρ2(τ)CA (ρ2(γ2(t[dαe/α][ACτ ′ x/x])))〉,H)) ∈ EJ〈τ 〉Kρ.

By Lemma 8.14, it suffices to show that

(W � ({·},H), 〈ρ1(γ1(t))〉, ρ2(〈τ〉)CA (balloc 〈ACρ2(τ)CA (ρ2(γ2(t[dαe/α][ACτ ′ x/x])))〉)) ∈ EJ〈τ 〉Kρ.

By our hypothesis,

(W � ({·},H), ρ1(γ1(t)), ρ2(γ2(τCA (t[dαe/α][ACτ ′ x/x])))) ∈ EJτ Kρ.

Let W ′ wW � ({·},H) and (W ′,v1,v2) ∈ VJτ Kρ. By Lemma 8.20, it suffices to show that

(W ′, 〈v1〉, ρ2(〈τ〉)CAballoc 〈ACρ2(τ) v2〉) ∈ EJ〈τ 〉Kρ.

We have this by Lemma 8.15, Lemma 8.9, and boundary cancellation.

Theorem 11.31 (Allocation is Semantics-Preserving)
If α; x: τ ′ ` e : τ (t,H : Ψ), then

·;α; x: τ ′ ` e ≈ τCA (t[dαe/α] [ACτ ′ x/x],H) : τ .

Proof

By induction on the compiler judgment, using the preceding lemmas.

11.3 Multi-Pass Correctness

Corollary 11.32 (FCA Compiler Correctness)
If α; x : τ ′ ` e : τ e e, then

·;α; x : τ ′ ` e ≈ctx τFCA (e[dαe/α][ACFτ ′
x/x]) : τ .

Proof

Let e = (t,H). By Theorem 11.31, we have

·;α; x: τ ′C ` e ≈ τCA (t[dαe/α] [ACτ ′C
x/x],H) : τC.

By applying the substitutions of [dαe/α] and [CFτ ′
x/x], we get

·;α; x : τ ′ ` e[dαe/α][CFτ ′
x/x] ≈ τCA (t[dαe/α] [ACτ ′〈C〉

(CFτ ′
x)/x],H) : τ 〈C〉.

Applying Lemma 10.22, we have

·;α; x : τ ′ ` τFC e[dαe/α][CFτ ′
x/x] ≈ τFC τCA (t[dαe/α] [ACτ ′〈C〉

(CFτ ′
x)/x],H) : τ .

Finally, Theorem 11.16 tells us that ·;α; x : τ ′ ` e ≈ τFC (e[dαe/α] [CFτ ′
x/x]) : τ , so by transitivity

and soundness, we have the result.

101

12 Examples

12.1 Example of Linking

We can use our compiler correctness theorem to make statements about linking with arbitrary A components,
as long as they have translation type. In this section, we present an example showing how our framework
allows linking with A components that both can and cannot be expressed in F.

Consider the component

e = (λ[](g :∀[].(unit)→ int).(g [] ()) ∗ (g [] ())) [] x.

Clearly, we have ·; ·; (x : unit→ int) ` e : int. In F alone, only divergent or constant functions can have type
∀[].(unit)→ int, but if we are compiling to A before linking, g could be instantiated with something that
makes use of A’s mutable references.

If we compile e to language C by ·; x :∀[].(unit)→ int ` e : int e, we get

e = unpack 〈β, z〉 = pack〈〈〉,〈λ[](z : 〈〉, g :∃α.〈∀[].(α, unit)→ int, α〉).ebody, 〈〉〉〉
as ∃β.〈∀[].(β, ∃α.〈∀[].(α, unit)→ int, α〉)→ int, β〉,

in π1(z) []π2(z), x

where

ebody = ((unpack 〈β, z〉 = g in π1(z) []π2(z), ()) ∗ (unpack 〈β, z〉 = g in π1(z) []π2(z), ())).

If we compile e to language A by ·; · ` e :∃β.〈∀[].(β, ∃α.〈∀[].(α, unit)→ int, α〉)→ int, β〉 (t,H : Ψ),
we get

t = unpack 〈β, z〉 = pack〈box 〈〉,balloc 〈`, balloc 〈〉〉〉
as∃β.box 〈∀[].(β, ∃α.box 〈box∀[].(α, unit)→ int, α〉)→ int, β〉

in π1(z) []π1(z), x

H = {` 7→ λ[](z : box 〈〉, g : ∃α.box 〈box ∀[].(α, unit)→ int, α〉).
((unpack 〈β, z〉 = g in (read[1] z) [] read[2] z, ()) ∗
(unpack 〈β, z〉 = g in (read[1] z) [] read[2] z, ()))}.

Ψ = {` : ∀[].(box 〈〉, ∃α.box 〈box ∀[].(α, unit)→ int, α〉)→ int}
e = (t,H).

By compiler correctness, we know that

·; ·; (x : unit→ int) ` e ≈ctx intFCA (e[ACFunit→ int x/x]) : int.

Equivalently,
·; ·; (x : τ) ` ACF int (e[unit→ intFCA x/x]) ≈ctx e : int,

where
τ = unit→int〈C〉〈A〉 = ∃α.box 〈box (α, unit)→ int, α〉.

Suppose we want to instantiate x with the following A component, which creates a function that uses a
mutable reference to return the number of times it has been called:

e′ = (pack〈ref int,balloc 〈`, ralloc 〈0〉〉〉 as∃α.box 〈box ∀[].(α, unit)→ int, α〉,
{` 7→ λ[](x : ref int, z : unit).let y = read[1] x in let z = write x [1]← y + 1 in y + 1}),

where let x = t in t′
def
= unpack 〈 , x〉 = pack〈 ,t〉 in t′. We would then have

·; ·; · ` ACF int (e[unit→ intFCA e′/x]) ≈ctx e[e′/x] : int.

102

The right-hand side of this equivalence is exactly the pure-A program that we would ultimately run, and
the left-hand side is an FCA program that models it. Note that on either side of the equation, the function
exported by e′ will be applied to the unit value twice, and it will return 1 the first time and 2 the second
time. An F function could not exhibit this behavior. This demonstrates how our framework allows for
linking with components that are not expressible in the source language.

If we want instead to link with a different A component ê that was compiled from an F component ê, we
can still make the statement

·; ·; · ` ACF int (e[unit→ intFCA ê/x]) ≈ctx e[ê/x] : int.

But we can simplify this statement using our additional knowledge of ê, as long as we know

·; ·; · ` ACFunit→ int ê ≈ctx ê : τ .

If ê was compiled to ê with our compiler, this is exactly what we have from our compiler correctness theorem.
If ê was compiled by some other compiler, we would need some other way to get a proof of this fact. From
the equivalence above, we can infer that

·; ·; · ` ACF int (e[unit→intFCA (ACFunit→int ê)/x]) ≈ctx e[ê/x] : int.

Applying boundary cancellation yields

·; ·; · ` ACF int (e[ê/x]) ≈ctx e[ê/x] : int.

Now we are essentially equating the pure-A program with a pure-F program, since the only multi-language
element in this statement is the integer boundary at the outermost level, which merely converts an n to n.
This demonstrates that when we do have source-language equivalents for all our target-level components,
our framework allows us to model target-level linking with source-level linking.

12.2 Example of Using the Logical Relation to Prove Contextual Equivalences

In this section, we give a simple example of how our FCA logical relation can be used to prove contextual
equivalences. Other than our notion of admissible relations, which are not generally hard to construct in
practice, these proofs proceed as similar proofs using a logical relations model normally would.

Lemma 12.1
Let

e1 = pack〈int,〈3, λ[](x : int).x + 2〉〉 as∃α.〈α,∀[].(α)→ int〉

and
e2 = pack〈int,〈5, λ[](x : int).x〉〉 as∃α.〈α,∀[].(α)→ int〉.

Then ·; ·; · ` e1 ≈ctx e2 :∃α.〈α,∀[].(α)→ int〉.

Proof

Let W ∈ World. We need to show that (W, e1, e2) ∈ EJ∃α.〈α,∀[].(α)→ int〉K∅. By Lemma 8.9, it
suffices to show that

(W, e1, e2) ∈ VJ∃α.〈α,∀[].(α)→ int〉K∅.

Let ϕFv = {(W ′, 3, 5) |W ′ wW}, ϕCv = {(W ′,3,5) |W ′ wW}, and ϕAv = {(W ′, 3, 5) |W ′ wW}. Let

VR = (int, int, ϕFv , ϕ
C
v , ϕ

A
v).

Note that VR ∈ FValRel. By definition of VJ∃α.〈α,∀[].(α)→ int〉K∅, it suffices to show that

(W, 〈3, λ[](x : int).x + 2〉, 〈5, λ[](x : int).x〉) ∈ VJ〈α,∀[].(α)→ int〉K∅[α 7→ VR].

Clearly, (W, 3, 5) ∈ VJαK∅[α 7→ VR], so it remains to show that

(W,λ[](x : int).x + 2, λ[](x : int).x) ∈ VJ∀[].(α)→ intK∅[α 7→ VR].

103

Let W ′ wW and (W ′, v1, v2) ∈ VJαK∅[α 7→ VR]. By definition of VR.ϕFv , v1 = 3 and v2 = 5. We need
to show that

(W ′, (λ[](x : int).x + 2) [] 3, (λ[](x : int).x) [] 5) ∈ EJintK∅[α 7→ VR].

But this follows easily from Lemma 8.15 and Lemma 8.9.

As the example shows, building admissible relations for base types is easy. By extension, it is also easy to
build admissible relations for types where repeated translation produces a small number of values, including
tuple, existential, and recursive types. Since repeatedly translating function types adds more and more
layers of wrapping boundaries, it is more difficult to build relations that satisfy boundary cancellation and
bridge properties at types that involve functions. However, this can be done by explicitly closing the desired
relation over all translations of its values.

To close off a relation VR = (τ1, τ2, ϕ
F
v , ϕ

C
v , ϕ

A
v) over all translations, we would require that for any initial

value v desired to be in ϕFv (on either side), the desired ϕFv , ϕCv , and ϕAv in the final VR must also contain
all the values that result from sequences of translations that match the following regular expressions:

• In ϕFv : (FC(CAAC)∗CF)∗(v)

• In ϕCv : ((CAAC)∗(CFFC)∗)∗CF(v)

• In ϕAv : (AC(CFFC)∗CA)∗AC(CFFC)∗CF(v)

The necessary sets of translations can be constructed similarly for relations that need particular C and A
values.

104

