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Abstract. Existing verified compilers are proved correct under a closed-world
assumption, i.e., that the compiler will only be used to compile whole programs.
We present a new methodology for verifying correct compilation of program
components, while formally allowing linking with target code of arbitrary prove-
nance. To demonstrate our methodology, we present a two-pass type-preserving
open compiler and prove that compilation preserves semantics. The central novelty
of our approach is that we define a combined language that embeds the source,
intermediate, and target languages and formalizes a semantics of interoperability
between them, using boundaries in the style of Matthews and Findler. Compiler
correctness is stated as contextual equivalence in the combined language.
Note to reader: We use blue, red, and purple to typeset terms in various lan-
guages. This paper will be difficult to follow unless read/printed in color.

1 Introduction
There has been remarkable progress on formally verified compilers over the last few
years, with researchers proving the correctness of increasingly sophisticated compilers
for increasingly realistic languages. The most well known instance of this is the Comp-
Cert compiler [1, 2] which uses the Coq proof assistant to both implement and verify
a multi-pass optimizing compiler from C to PowerPC, ARM, and x86 assembly, prov-
ing that the compiler preserves semantics of source programs. Several other compiler-
verification efforts have successfully followed CompCert’s lead and basic methodology,
for instance, focusing on multithreaded Java [3], just-in-time compilation [4], and C
with relaxed memory concurrency [5].

Unfortunately, these projects prove compiler correctness under a closed-world as-
sumption, that is, assuming that the verified compiler will always compile whole pro-
grams. Despite the immense effort put into verification, the compiler correctness the-
orem provides no guarantees about correct compilation of components. This whole-
program assumption is completely unrealistic since most software systems today are
comprised of many components written in different languages compiled to a common
target, as well as runtime-library routines that may be handwritten in the target lan-
guage. We need compiler correctness theorems applicable to the way we actually use
these compilers.

Formally verifying that components are compiled correctly—often referred to as
compositional compiler correctness—is a challenging problem. A key difficulty is that,
in the setting of compiling components, it is not clear how to even state the compiler cor-
rectness theorem. CompCert’s compiler correctness theorem is easy to state thanks to
the whole program assumption: informally, it says that if a source program PS compiles
to a target program PT , then running PS and PT results in the same trace of observable



events. The same sort of theorem does not make sense when we compile a component
eS to a component eT : we cannot “run” a component since it is not a complete program.

Intuitively, we want the compiler correctness theorem to say that if a component eS
compiles to eT , then some desired relationship eS ' eT holds between eS and eT . The
central question is: how do we formally specify eS ' eT ? To answer this question, we
must consider how the compiled component is actually used: it needs to be linked with
some e′T , creating a whole program that can be run. Informally, the compiler correctness
theorem should guarantee that if we link eT with e′T , then the resulting target-level
program should correspond to the source component eS linked with e′T . But, formally
speaking, how can one link a source component with a target component and what
are the rules for running the resulting source-target hybrid? These questions demand
a semantics of interoperability between the source and target languages. We give our
semantics of interoperability as a multi-language operational model. We then define
eS ' eT as a contextual equivalence in that model.

There are two other important issues to consider when evaluating a compositional
compiler correctness theorem and its supporting formalism. The first is the degree of
horizontal compositionality that the model allows, that is, which target components e′T
may formally be linked with a compiled component. At the lower end of the horizontal
compositionality spectrum are fully abstract compilers. Full abstraction states that the
compiler both preserves and reflects contextual equivalence. Hence, a fully abstract
compiler preserves all of the source language’s abstractions, and compiled components
are only allowed to link with components that can be expressed in the source language.

But real systems often link together components from multiple languages with dif-
ferent guarantees and different expressive power. We are particularly interested in sup-
porting interoperability between parametric typed languages like ML and low-level
languages like C. Thus, full abstraction is often too restrictive. To support the whole
programs that we actually run, the compiler correctness theorem should formally sup-
port linking with as large a class of programs as possible, and in particular, should not
require an e′T to have been compiled from the same source language as eT .

Abandoning full abstraction in favor of greater horizontal compositionality does not
require giving up all the guarantees of the source language. The compiler and its ver-
ification framework can be designed to preserve the source-level equivalences that are
critically needed without forbidding all foreign behavior. To show that different levels
of abstraction preservation are possible, we will deliberately pick a target language that
is more expressive than the source and design our compiler so that it is not fully ab-
stract. Our focus in this paper is on how to preserve the representation independence
and information hiding guarantees provided by type abstraction in our source language.

The second important issue for a compiler correctness framework is that we want
to be able to verify multi-pass compilers. For example, if we have a two-pass compiler
that compiles a source component eS to an intermediate-language component eI to a
target component eT , we should be able verify each pass separately, showing eS ' eI
and eI ' eT , and then compose these results to get a correctness theorem for the whole
compiler saying eS ' eT . This is typically referred to as vertical compositionality.

We will show that our approach of using a multi-language operational model suc-
ceeds at both horizontal and vertical compositionality. In particular, we validate our



methodology by applying it to a two-pass type-preserving compiler. The compiler deals
with three languages: our source language F (System F with existential and recursive
types), an intermediate language C (the target of a typed closure conversion pass), and
our target language A (the target of a heap allocation pass).1 The target language A
allows tuples and closures to live only on the heap and supports both mutable and im-
mutable references. Our closure conversion pass translates F components of type τ to
C components of type τC , where τC denotes the type translation of τ . The subsequent
allocation pass translates C components of type τ to A components of type τA, where
τA is the type translation of τ .

To define the semantics of interoperability between these languages, we embed them
all into one language, FCA, and add syntactic boundary forms between each pair of ad-
jacent languages, in the style of Matthews and Findler [7] and of Ahmed and Blume [8].
For instance, the term CFτ (eF) allows an F component eF of type τ to be used as a C
component of type τC , while τFC(eC) allows a C component eC of translation type
τC to be used as an F component of type τ . Similarly, we have boundary forms AC
and CA for the next language pair. Non-adjacent languages can interact by stacking up
boundaries: for example,FC(CA eA) (abbreviatedFCA(eA)) allows an A component
eA to be embedded in an F term.
FCA Design Principles Our goal is for the FCA interoperability semantics to give us
a useful specification of when a component in one of the underlying languages should
be considered equivalent to a component in another language. We realize that goal by
following three principles.

First, we define the operational semantics of FCA so that the original languages are
embedded into FCA unchanged: running an FCA program that’s written solely in one of
the embedded languages is identical to running it in that language alone. For instance,
execution of the A program eA proceeds in exactly the same way whether we use the
operational semantics of A or the augmented semantics for FCA.

Next, we ensure that the typing rules are similarly embedded: a component that con-
tains syntax from only one underlying language should typecheck under that language’s
individual type system if and only if it typechecks under FCA’s type system.

The final property we need is boundary cancellation, which says that wrapping
two opposite language boundaries around a component yields the same behavior as the
underlying component with no boundaries. For example, any eF : τ must be contextually
equivalent to τFC(CFτeF), and any eC : τC must be equivalent to CFτ (τFCeC).
Compiler Correctness We state the correctness criterion for our compiler as a contex-
tual equivalence. For each pass of the compiler from a source S to a target T , where S
and T interoperate via boundaries ST and T S , define our source-target relationship by

eS ' eT
def
= eS ≈ctx

FCA
τST (eT ) : τ.

We prove that if eS : τ compiles to eT , then eS ' eT . Since contextual equivalence
is transitive, our framework achieves vertical compositionality immediately: it is easy
to combine the two correctness proofs for the individual compiler passes, giving the
overall correctness result that if eF compiles to eA, then eF ' eA, or

eF ≈ctx
FCA

τFCA(eA) : τ .

1 We have extended our F to A compiler with a code-generation pass to an assembly language,
much like Morrisett et al.’s stack-based TAL [6]. We will report on that work in a future paper.



Reasoning About Linking Our approach enjoys a strong horizontal compositionality
property: we can link with any target component e′

A that has an appropriate type, with
no requirement that e′

A was produced by any particular means or from any particular
source language. Specifically, if eF expects to be linked with a component of type τ ′ and
compiles to eA, then eA will expect to be linked with a component of type ((τ ′)C)A. If
e′

A has this type, then using our compiler correctness theorem, we can conclude that
(eF

τ ′
FCA(e′

A)) ≈ctx FCA(eA e′
A),

or equivalently,
ACF (eF

τ ′
FCA(e′

A)) ≈ctx eA e′
A.

The right-hand side of this equality is exactly the A program we ultimately want to run,
and the left-hand side is an FCA program that models that program.

Contributions Our main contributions are our methodology and that we have proven
correctness for an open multi-pass compiler. We have designed a multi-language seman-
tics that lets us state a strong compiler-correctness theorem, and to prove the theorems,
we have developed a logical relation for proving contextual equivalences between FCA
components. The most significant technical challenges were related to interoperability
between languages with type abstraction, specifically, in designing the multi-language
semantics so it preserves type abstraction between languages (§5), and in designing
the parts of the logical relation that model the handling of type abstraction in a multi-
language setting (§9).

Due to space constraints, we elide various technical details and omit proofs. All def-
initions, lemmas, and proofs are spelled out in full detail in the accompanying technical
report [9], available at: http://ccs.neu.edu/home/amal/voc/

2 Related Work: Benton-Hur Approach
Before beginning our technical development, we compare our methodology to the only
prominent existing approach to compositional compiler correctness.

To eliminate the closed-world assumption, Benton and Hur [10] advocate setting up
a logical relation between the source and target languages, specifying when a source
term semantically approximates target code and vice versa. We will refer to a logical
relation that relates terms from two different languages as a cross-language logical re-
lation. The relation is defined by induction on source-language types. Benton and Hur
verified a compiler from the simply-typed λ-calculus with recursion [10]—and later,
from System F with recursion [11]—to an SECD machine, proving that if source com-
ponent eS compiles to target code eT , then eS and eT are logically related. Later, Hur
and Dreyer [12] used essentially the same approach to prove correctness of a compiler
from an idealized ML to assembly.

However, the Benton-Hur (henceforth, BH) approach suffers from serious draw-
backs in both vertical and horizontal compositionality. First, the cross-language frame-
work does not scale to a multi-pass compiler. Both Benton-Hur and Hur-Dreyer handle
only a single pass. To achieve vertical compositionality in the BH style, one would
have to define separate cross-language logical relations relating the source and target
of each compiler pass, and then prove that the logical relations compose transitively
in order to establish that the correctness of each pass implies correctness for the entire
compiler. But this kind of transitive composition of cross-language logical relations has



been an open problem for some time. (We’ll discuss recent work towards addressing
this problem in §11.)

The second drawback to the BH approach is its limited horizontal compositionality.
Consider the situation where a verified compiler from language S to language T is used
to compile a source component eS to some target code eT . The BH compiler correctness
theorem tells us that eS and eT are logically related. We wish to link the compiled code
eT with some other target code e′T and verify the resulting program. To do this using the
BH framework, we must now come up with a source-level component e′S and show that
it is logically related to e′T . This is an onerous requirement: while it may be reasonable
to come up with e′S when the given e′T is very simple, it seems almost impossible when
e′T consists of hundreds of lines of assembly! Further, if e′T is compiled from some
other source language R, it may not even be possible to write down an e′S in language
S that is related to e′T .

Technically speaking, the BH approach does support linking with any target code
that can be proved logically related to a source component. But it cannot support link-
ing with any components that are not expressible in the source language. And we con-
tend that even for the theoretically-allowed cases, in practice the approach is limited
to allowing linking between only very simple components or components that were all
compiled from the same source language.

Overcoming BH Limitations By reasoning about components in the FCA setting, we
can overcome both limitations of the BH framework. We have already pointed out that
our framework admits vertical compositionality thanks to the transitivity of contextual
equivalence.

For the second limitation of the BH approach, consider a target component e′
A.

While the BH approach would need to find a related source component to fit e′
A into

their framework, we only need to find an FCA component that looks like a source com-
ponent. Specifically, we can use e′

A itself in a source context by wrapping it in appro-
priate boundaries:FCA(e′

A).

3 The Languages
We begin our technical development with a few notes on typesetting and notational con-
ventions. We typeset the terms, types, and contexts of our various languages as follows:

– F (System F) in a blue sans-serif font;
– C (Closure conversion) in a red bold font with serifs;
– A (Allocation) in a purple sans-serif bold font.

For each of our languages, we will use the metavariable e for components and t for
terms. In the first two languages, F and C, terms and components coincide, but the
distinction will be meaningful in language A. Similarly, all languages use τ for types,
v for values, E for evaluation contexts, and C for general contexts. We write fv(e)
to denote the free term variables of e and ftv(e) (or ftv(τ)) to denote the free type
variables of e (or of type τ ). We use a line above a syntactic element to indicate a list of
repeated instances of this element, e.g., α = α1, . . . , αn for n ≥ 0. When the arities of
different lists are required to match up in a definition or inference rule, these constraints
will usually be obvious from context. Whenever two environments (e.g. ∆ or Γ or Ψ )
are joined by a comma, this should be interpreted as a disjoint union.



τ ::= α | unit | int | ∀[α].(τ)→ τ | 〈τ〉 | ∃α.τ | µα.τ
e ::= t
t ::= x | () | n | t p t | if0 t t t | λ[α](x : τ).t | t [τ ] t | 〈t〉 | πi(t) | pack〈τ,t〉 as∃α.τ
| unpack 〈α, x〉 = t in t | foldµα.τ t | unfold t

p ::= + | − | ∗
v ::= () | n | λ[α](x : τ).t | 〈v〉 | pack〈τ,v〉 as∃α.τ | foldµα.τ v
E ::= [·] | E p t | v p E | if0 E t t | E [τ ] t | v [τ ] v E t | . . .

e 7−→ e′ E[λ[α](x : τ).t [τ ′] v] 7−→ E[t[τ ′/α] [v/x]] . . .

∆; Γ ` e : τ where ∆ ::= · |∆, α and Γ ::= · | Γ, x : τ

τ ::= α | unit | int | ∀[α].(τ)→ τ | 〈τ〉 | ∃α.τ | µα.τ
e ::= t

t ::= x | () | n | t p t | if0 t t t | λ[α](x : τ).t | t [] t | t[τ ] | 〈t〉 | πi(t)

| pack〈τ,t〉 as∃α.τ | unpack 〈α, x〉 = t in t | foldµα.τ t | unfold t
p ::= + | − | ∗
v ::= () | n | λ[α](x : τ).t | 〈v〉 | pack〈τ,v〉 as∃α.τ | foldµα.τ v | v[τ ]

E ::= [·] | . . . | E [] t | v [τ ] v E t | E[τ ] | . . .

e 7−→ e′ E[λ[α](x : τ).t [τ ′] v] 7−→ E[t[τ ′/α] [v/x]] . . .

∆;Γ ` e : τ where ∆ ::= · |∆, α and Γ ::= · | Γ, x: τ

α;x: τ ` t : τ ′

∆;Γ ` λ[α](x : τ).t :∀[α].(τ)→ τ ′
∆;Γ ` t :∀[].(τ)→ τ ′ ∆;Γ ` t : τ

∆;Γ ` t [] t : τ ′

∆;Γ ` t :∀[β, α].(τ)→ τ ′ ∆ ` τ0
∆;Γ ` t[τ0] :∀[α].(τ [τ0/β])→ τ ′[τ0/β]

. . .

τ ::= α | unit | int | ∃α.τ | µα.τ | ref ψ | boxψ
ψ ::= ∀[α].(τ)→ τ | 〈τ, . . . , τ〉
e ::= (t,H)

t ::= x | () | n | t p t | if0 t t t | ` | t [] t | t[τ ] | pack〈τ,t〉 as ∃α.τ | unpack 〈α, x〉 = t in t

| foldµα.τ t | unfold t | ralloc 〈t〉 | balloc 〈t〉 | read[i] t | write t [i]← t

p ::= + | − | ∗
v ::= () | n | pack〈τ,v〉 as ∃α.τ | foldµα.τ v | ` | v[τ ]

E ::= (Et, ·) Et ::= [·] | . . . | balloc 〈v, Et, t〉 | . . .
h ::= λ[α](x : τ).t | 〈v, . . . , v〉 H ::= · | H, ` 7→ h

〈H | e〉 7−→ 〈H′ | e′〉 Reduction Relation (selected cases)

〈H | (t, (H′, ` 7→ h)〉 7−→ 〈H, `′ 7→ h | (t[`′/`],H′[`′/`])〉 if `′ 6∈ dom(H)

〈H | E[` [τ ′] v]〉 7−→ 〈H | E[t[τ ′/α][v/x]]〉 if H(`) = λ[α](x : τ).t

Ψ ` h :ψ where Ψ ::= · | Ψ, ` : refψ | Ψ, ` : boxψ

Ψ ` H :Ψ′ which implies dom(Ψ) ∩ dom(Ψ′) = ∅
Ψ;∆;Γ ` e : τ where ∆ ::= · | ∆, α and Γ ::= · | Γ, x : τ

Ψ ` H :Ψ′ (Ψ,Ψ′);∆;Γ ` t : τ

Ψ;∆;Γ ` (t,H) : τ
. . .

Ψ;∆;Γ ` t : τ

Ψ;∆;Γ ` balloc 〈t〉 : box 〈τ〉
Ψ;∆;Γ ` t : box 〈τ0, . . . τi . . . , τn〉

Ψ;∆;Γ ` read[i] t : τi

Fig. 1. Definition of F (top), C (middle), and A (bottom)



Source Language Our source language F is System F with recursive types, existential
types, and tuples. The syntax of types and terms in F is shown in Figure 1 (top). We
combine type- and term-level abstractions of arbitrary arity into a single binding form
∀[α].(τ)→ τ ′, abbreviating ∀[].(τ)→ τ ′ as τ → τ ′. We define a small-step operational
semantics for F (written e 7−→ e′) using evaluation contexts E to lift the primitive reduc-
tions to a standard left-to-right call-by-value semantics for the language. The reduction
rules are standard; we show only the application rule.

F’s typing judgment has the form ∆; Γ ` e : τ . The type environment ∆ tracks the
type variables in scope. The value environment Γ tracks the term variables in scope
along with their types τ , which must be well formed under ∆ (written ∆ ` τ and
defined as ftv(τ) ⊆ ∆). The typing rules are standard and hence omitted.

Intermediate Language Our intermediate language C, shown in Figure 1 (middle), is
nearly identical to F, with two exceptions. First, since this language is the target of
closure conversion, functions are not allowed to contain free type or term variables.
Second, we allow the partial application of a function to a type. Hence, C terms include
t[τ ] and we consider v[τ ] to be a value.

The reduction relation e 7−→ e′ is identical to that of F, and the typing judgment
∆;Γ ` e : τ differs only in the rules for abstraction and application which are shown
in the figure. Note that the body of a C function must typecheck in an environment that
contains only the function’s formal arguments.

Target Language Our target A must serve as a target for heap allocation. Its design
is similar to the language λA from [13]. Since we are compiling a source language
without mutable references, it would suffice for A to provide only immutable references
to functions and tuples that must now live on the heap. However, to provide a concrete
illustration of the ability to link with target code that cannot be expressed in the source
language, we augment A with mutable references to tuples.

The language A is shown in Figure 1 (bottom). Functions in A are stored only in
immutable cells on the heap, while tuples are stored in heap cells that can be either
mutable or immutable. We use ψ for the types of these heap values h. Mutable and
immutable references have types ref ψ and boxψ, respectively. The terms ralloc 〈t〉
and balloc 〈t〉—which allocate mutable and immutable cells, respectively—each allo-
cate a new location ` and initialize it to the given tuple. The instructions read[i] ` and
write ` [i]← v respectively read from and write the value v to the i-th slot in the tuple
(of length n) stored at `, assuming 0 ≤ i < n. The type system ensures that writes are
only performed on mutable tuples.

Unlike F and C, the syntax of A distinguishes components e from terms t. A com-
ponent e pairs a term t with a heap fragment H. H can contain functions and tuples that
t may use by referring to locations in H. Intuitively, we need this notion of components
because a bare term t is not as expressive as C component. In particular, A does not
provide any way to dynamically allocate a location and initialize it to a function. We
discuss how the compiler produces components with heap fragments in §4.

Heap fragments are assigned heap types Ψ. A heap fragment may reference lo-
cations that are to be linked in by another component, so the judgment Ψ ` H : Ψ′

includes an external heap type Ψ as an environment used in assigning H the type Ψ′.
Here, Ψ′ must provide types for exactly the locations in H. Each h in H must typecheck



under the disjoint union of the two heap types (Ψ,Ψ′). Similarly, a component (t,H)
can reference both external locations and those bound by H, that is, locations in the
domain of either the external heap type Ψ or of H.

Our operational semantics for A is a relation between configurations 〈H | e〉. Any
code or data in the internal heap fragment of component e must be loaded into memory
before it can be run. We formally capture this with a reduction rule that “loads” a com-
ponent by merging its internal heap fragment with the external heap. When loading a
component (t,H), we must rename the locations bound in H so that they do not conflict
with the external heap. After the loading step, the term component t can be evaluated
using standard reduction rules.

The structure of A components also entails a small change to the structure of eval-
uation contexts, which are defined in two layers: contexts E expect components e, and
term contexts Et expect terms t. Terms are plugged into term contexts in the obvious
way. Plugging a component-level evaluation context E = (Et, ·) with a component e is
defined by (Et, ·)[(t,H)] = (Et[t],H)

4 The Compiler
Compiling F to C Closure conversion collects a function’s free term variables in a
tuple called the closure environment that is passed as an additional argument to the
function, thus turning the function into a closed term. The closed function is paired
with its environment to create a closure. The basic idea of typed closure conversion
goes back to Minamide et al. [14], whom we follow in using an existential type to
abstract the type of the environment. This ensures that two functions with the same
type but different free variables still have the same type after closure conversion: the
abstract type hides the fact that the closures’ environments have different types.

We must also rewrite functions to take their free type variables as additional argu-
ments. However, instead of collecting these types in a type environment as Minamide et
al. do, we follow Morrisett et al. [13] and directly substitute the types into the function.
Like the latter, we adopt a type-erasure interpretation, which means that since all types
are erased at run time the substitution of types into functions has no run-time effect.

Our closure-conversion pass compiles F terms of type τ to C terms of type τC .
Figure 2 (top) presents the type translation τC and some of the compilation rules. Since
this is closure conversion, the only interesting parts are those that involve functions.
The omitted rules are defined by structural recursion on terms.
Compiling C to A Our second compiler pass combines hoisting of functions with ex-
plicit allocation of tuples. It takes a C component (that is, just a C term t) of type τ ,
and produces an A term t as well as a heap fragment H with all the hoisted functions.
The component (t,H) is the overall output, and has type τA under an empty exter-
nal heap. The heap fragment generated by the compiler does not contain tuples: the
compiler translates C tuples by generating balloc expressions, not by putting them in
a static heap fragment. The type translation and interesting parts of the term translation
are shown in Figure 2 (bottom).

5 F and C Interoperability
5.1 The Basics
We now present a formal semantics for interoperability between F and C. For now,
we define a combined language FC; in §6, we will extend this to FCA. Our FC multi-



τC Type Translation

αC = α unitC = unit intC = int ∀[α].(τ)→ τ ′C = ∃β.〈(∀[α].(β, τC)→ τ ′C), β〉
∃α.τC = ∃α.τC µα.τC = µα.τC 〈τ1, . . . , τn〉C = 〈τ1C, . . . , τnC〉

∆; Γ ` e : τ  e Compiler (implies ∆C; ΓC ` e : τC)

x : τ ∈ Γ

∆; Γ ` x : τ  x ∆; Γ ` () : unit () ∆; Γ ` n : int n

y1, . . . , ym = fv(λ[α](x : τ).t) β1, . . . , βk = ftv(λ[α](x : τ).t)

∆, α; Γ, x : τ ` t : τ ′  t τenv = 〈(Γ(y1))C, . . . , (Γ(ym))C〉
v = λ[β, α](z : τenv, x: τC).(t[π1(z)/y1] · · · [πm(z)/ym])

∆; Γ ` λ[α](x : τ).t : ∀[α].(τ)→ τ ′  

pack〈τenv,〈v[β], 〈y〉〉〉 as∃α′.〈(∀[α].(α′, τC)→ τ ′C), α′〉

∆; Γ ` t0 :∀[α].(τ1)→ τ2  t0 ∆ ` τ ∆; Γ ` t : τ1[τ/α] t

∆; Γ ` t0 [τ ] t : τ2[τ/α] unpack 〈β, z〉 = t0 in π1(z) [τC]π2(z), t

τA Type Translation

αA = α unitA = unit intA = int ∀[α].(τ)→ τ ′A = box∀[α].(τA)→ τ ′A

∃α.τA = ∃α.τA µα.τA = µα.τA 〈τ1, . . . , τn〉A = box 〈(τ1A), . . . (τn
A)〉

∆;Γ ` e : τ  (t,H : Ψ) Compiler (implies · ` H :Ψ, and ·;∆A;ΓA ` (t,H) : τA)

x: τ ∈ Γ

∆;Γ ` x : τ  (x, · : ·) ∆;Γ ` () :unit ((), · : ·)
· · ·

α;x: τ ` t : τ ′  (t,H : Ψ)

∆;Γ ` λ[α](x : τ).t :∀[α].(τ)→ τ ′  

(`, (H, ` 7→ λ[α](x : τA).t) : (Ψ, ` : box∀[α].(τA)→ τ ′A))

∆;Γ ` t1 : τ1  (t1,H1 : Ψ1) · · · ∆;Γ ` tn : τn  (tn,Hn : Ψn)

∆;Γ ` 〈t1, . . . , tn〉 : 〈τ1, . . . , τn〉 
(balloc 〈t1, . . . , tn〉, (H1, . . . ,Hn) : (Ψ1, . . . ,Ψn))

Fig. 2. Compiler from F to C (top) and from C to A (bottom)

language system embeds the languages F and C so that both languages have natural
access to foreign values (i.e., values from the other language). In particular, we want
F components of type τ to be usable as C components of type τC , and vice versa. To
allow cross-language communication, FC extends the original F and C with syntactic
boundaries, written τFC e (C inside, F outside) and CFτe (F inside, C outside).

The interesting cases in the semantics of boundaries are those that handle universal
and existential types. These must be defined carefully to ensure that type abstraction
is not broken as values pass between languages. First, though, we explain the general
principles of our boundary semantics by looking at the cases for simple types and their
translations.



CF Boundary Semantics A term CFτe has type τC if e has type τ . To evaluate this
boundary term, FC’s operational semantics require first that e be reduced to a value v
(using F reduction rules). Then a type-directed meta-function is applied to v, yielding
a value in C of type τC (written CFτ (v) = v). An important restriction on this meta-
function, which we call the value translation, is that it is only defined for closed values.
This is sufficient for our needs because it is used only by the FC operational semantics,
and substitution-based reduction relations are defined only for closed programs. We
can still write FC programs with free variables appearing under boundaries, but by the
time we evaluate the boundary term, we will have supplied values for all of these free
variables.

At base types, value translation is easy: for example, translating a value n of type
int yields the same integer in C, n. Most of the other types are translated simply by
structural recursion.

The interesting case is the case for function types. Consider the translation of a
value v of type τ → τ ′. As per the type translation, this should produce a value of type
∃β.〈((β, τC)→ τ ′C), β〉. Since v is closed, we can simply use unit for the type β
of the closure environment:

CFτ→ τ ′
(v) = pack〈unit,〈v, ()〉〉 as∃β.〈((β, τC)→ τ ′C), β〉

We must still construct the underlying function v for this closure, which we can do
using boundary terms and the original function v:

v = λ(z : unit, x: τC).CFτ
′
(v τFC x).

The function we build simply translates its argument from C to F, applies v to the
translated argument, and finally translates the result back into C.

The full translation rule for functions must also handle type arguments and requires
some additional machinery, which we will discuss momentarily.

FC Boundary Semantics The term τFC e has type τ when e has type τC . As before,
to evaluate a boundary term, we first evaluate the component under the boundary, this
time to a value v. Then we apply a value translation τFC(v) = v that yields an F value
v of type τ . Again, this translation is only defined for closed values of translation type.

Let us consider the type τ → τ ′ again. A closure v of type (τ → τ ′)C must be
translated to an F function that first translates its argument from F to C, then unpacks
the closure v and applies the code to its environment and the translated argument, and
finally translates the result back from C to F:

τ→ τ ′
FC(v) = λ(x : τ).τ

′
FC(unpack 〈β, y〉 = v in π1(y) π2(y) CFτ x)

In both function cases, notice that the direction of the conversion (and the boundary
used) reverses for function arguments.

5.2 Handling Abstract Types
Now that we have established the general structure of boundary rules, we come to the
interesting cases, those for abstract types.

FC Type Abstraction Consider the type ∀[α].(α)→ α. Since αC = α, the translation
of this type is

(∀[α].(α)→ α)C = ∃β.〈(∀[α].(β, α)→ α), β〉.



If we naively try to extend the function case of the value translation given above, we get
the following:

∀[α].(α)→ αFC(v) = λ[α](x :α).αFC(unpack 〈β, y〉 = v in π1(y) [αC]π2(y) CFαx)

Note that we have not expanded αC in the application produced by this translation. It
would expand to a C type variable α, but we cannot allow this, because that α would
be unbound! What we really want is that when α is instantiated with a concrete type τ ,
the positions inside language C where that type is needed receive τC .

We resolve this by making two changes to our system: first, we add a type dαe
(which may be read as “α suspended in C”) that allows an F type variable to appear
in a C type. The F type variable α needs to be translated, but the translation is delayed
until α is instantiated with a concrete type. We enforce this semantics in the definition
of type substitution: dαe[τ/α] = τC .

Second, we adjust the type translation to turn F type variables into suspended type
variables instead of C type variables. We call this modified version of the type transla-
tion the boundary type translation, and notate it by τ 〈C〉. Formally, the rule for type
variables in the compiler’s type translation is replaced by the rule α〈C〉 = dαe in
the boundary type translation. We only want to suspend free type variables, so when
we translate a type that contains bound variables, we need to restore the behavior of
the compiler’s type translation when we translate the binding position. We can do this
using a substitution, e.g., (∃α.τ)〈C〉 = ∃α.(τ 〈C〉[α/dαe]). Thus the boundary type
translation preserves the binding structure of the type to which it is applied.

With these two changes, we can correct the example above by replacing the appear-
ance of αC with α〈C〉, and we get a sensible translation from C to F for values of type
(∀[α].(α)→ α)C .

CF Type Abstraction Next, consider translating values of type ∀[α].(α)→ α from F into
C. Once again, the existing machinery is not quite sufficient. Here is a naive attempt:

CF∀[α].(α)→ α(v) = pack〈unit,〈v, ()〉〉 as (∀[α].(α)→ α)〈C〉

where v = λ[α](z : unit, x:α).CFα(v [α]αFCx).

This time, we have translated the binder for α into a C binder forα, but we are left with
free occurrences of α in the result! This is not a suitable translation, as we must produce
a closed value. Note that the boundary terms in the body of v expect to be annotated
with a type that translates to α.

To fix this problem, we introduce a lump type L〈τ 〉 that allows us to pass C values to
F terms as opaque lumps. The introduction form for the lump type is the boundary term
L〈τ〉FCe, and the elimination form is CFL〈τ〉e. A pair of opposite boundaries at lump
type cancel, to yield the underlying C value. We extend the boundary type translation
by defining L〈τ 〉〈C〉 = τ .

Now the three free occurrences of α in v can be replaced with L〈α〉, yielding a
well-typed translation.

Summary With the additional tools of lumps, suspensions, and the boundary type trans-
lation, we have now developed everything needed for the FC multi-language system.
Figure 3 presents more of the details, including the complete value translations.



τ ::= · · · | L〈τ 〉
t ::= · · · | τFC e

v ::= · · · | L〈τ〉FCv
E ::= · · · | τFC E

τ ::= · · · | dαe
t ::= · · · | CFτ e
v ::= · · ·
E ::= · · · | CFτE

τ ::= τ | τ
e ::= e | e
v ::= v | v
E ::= E | E

∆ ::= · | ∆,α | ∆,α
Γ ::= · | Γ, x : τ | Γ,x: τ

τ〈C〉 Boundary Type Translation

∀[α].(τ)→ τ ′〈C〉 = ∃β.〈
(
∀[α].(β, τ〈C〉[α/dαe])→ τ ′〈C〉[α/dαe]

)
, β〉

α〈C〉 = dαe unit〈C〉 = unit int〈C〉 = int ∃α.τ〈C〉 = ∃α.(τ〈C〉[α/dαe])
µα.τ〈C〉 = µα.(τ〈C〉[α/dαe]) 〈τ〉〈C〉 = 〈τ〈C〉〉 L〈τ 〉〈C〉 = τ

Type Substitution: dαe[τ/α] = τ〈C〉

∆;Γ ` e : τ Include F and C rules, with environments replaced by ∆;Γ

∆;Γ ` e : τ〈C〉

∆;Γ ` τFC e : τ

∆;Γ ` e : τ

∆;Γ ` CFτ e : τ〈C〉

CFτ (v) = v Value Translation CFunit(()) = () CFint(n) = n CFL〈τ〉(L〈τ〉FCv) = v

CF∀[α].(τ)→ τ ′
(v) = pack〈unit,〈v, ()〉〉 as (∀[α].(τ)→ τ ′)〈C〉

where v = λ[α](z : unit, x: τ〈C〉[α/dαe]).CFτ
′[L〈α〉/α](v [L〈α〉] τ [L〈α〉/α]FCx)

CF∃α.τ (pack〈τ ′,v〉 as∃α.τ) = pack〈τ ′〈C〉,v〉 as ∃α.τ〈C〉 where CFτ [τ
′/α](v) = v

CFµα.τ (foldµα.τv) = foldµα.τ〈C〉v where CFτ [µα.τ/α](v) = v

CF〈τ1, . . . , τn〉(〈v1, . . . , vn〉) = 〈v1, . . . , vn〉 where CFτi(vi) = vi

τFC(v) = v Value Translation unitFC(()) = () intFC(n) = n L〈τ〉FC(v) = L〈τ〉FCv
∀[α].(τ)→ τ ′

FC(v) = λ[α](x : τ).τ
′
FC(unpack 〈β, y〉 = v in π1(y) [dαe]π2(y), CFτ x)

∃α.τFC(pack〈τ ′,v〉 as ∃α.τ〈C〉) = pack〈L〈τ ′〉,v〉 as∃α.τ where τ [L〈τ
′〉/α]FC(v) = v

µα.τFC(foldµα.τ〈C〉 v) = foldµα.τ v where τ [µα.τ/α]FC(v) = v

〈τ1, . . . , τn〉FC(〈v1, . . . , vn〉) = 〈v1, . . . , vn〉 where τiFC(vi) = vi

e 7−→ e′ Include F and C rules, replacing eval. contexts E, E with E.
CFτ (v) = v

E[CFτ v] 7−→ E[v]

τFC(v) = v τ 6= L〈τ 〉
E[τFCv] 7−→ E[v]

Fig. 3. FC multi-language system (extends F and C from Figure 1)

The syntax of FC simply combines the syntax of F with that of C, and adds bound-
aries, lumps, and suspensions. The type judgment combines the type rules for F and
C, but with the environments replaced by environments that can contain variables from
both languages. We also add rules to typecheck boundary terms.

The cases of the value translations we have not yet covered mostly proceed by struc-
tural recursion, but note that the cases for existential types need to make use of lumps
and suspensions (the suspensions are introduced by the boundary type translation) in
ways that are dual to the function cases.

The reduction relation combines the reduction rules from F and C and adds rules for
boundaries. The boundary reduction rules use the value translations to produce a value
in the other language.



τ ::= · · · | L〈τ〉
t ::= · · · | τCA e

v ::= · · · | L〈τ〉CA v
E ::= · · · | τCA E

τ ::= · · · | dαe | dαe
t ::= · · · | ACτe
v ::= · · ·
Et ::= · · · | ACτE

τ ::= · · · | τ
e ::= · · · | e
v ::= · · · | v
E ::= · · · | E

∆ ::= · · · | ∆,α
Γ ::= · · · | Γ, x : τ

τ 〈A〉 Boundary Type Translation

∀[α].(τ)→ τ ′〈A〉 = box ∀[α].(τ 〈A〉[α/dαe])→ τ ′〈A〉[α/dαe]

α〈A〉 = dαe . . . L〈τ〉〈A〉 = τ dαe〈A〉 = dαe

Type Substitution: dαe[τ/α] = (τ〈C〉)〈A〉 dαe[τ/α] = τ 〈A〉

Ψ;∆;Γ ` e : τ Include A rules and add Ψ to existing rules

Ψ;∆;Γ ` e : τ 〈A〉

Ψ;∆;Γ ` τCA e : τ

Ψ;∆;Γ ` e : τ

Ψ;∆;Γ ` ACτe : τ 〈A〉

ACτ (v,H) = (v,H′) Value Translation (selected cases) ACunit((),H) = ((),H)

AC∀[α].(τ)→ τ ′
(v,H) = (`, (H, ` 7→ h))

where h = λ[α](x : τ 〈A〉[α/dαe]).ACτ
′[L〈α〉/α]v [L〈α〉] τ [L〈α〉/α]CA x

AC〈τ〉(〈v〉,H1) = (`, (Hn+1, ` 7→ 〈v〉)) where ACτi(vi,Hi) = (vi,Hi+1)

τCA(v,H) = (v,H′) Value Translation (selected cases) unitCA((),H) = ((),H)

∀[α].(τ)→ τ ′
CA(v,H) = (λ[α](x : τ).τ

′
CA(v [dαe]ACτx),H)

〈τ〉CA(`,H1) = (〈v〉,Hn+1) where H1(`) = 〈v〉 and τiCA(vi,Hi) = (vi,Hi+1)

〈H | e〉 7−→ 〈H′ | e′〉 Lift FC rules to new config.; replace E with E

ACτ (v,H) = (v,H′)

〈H |E[ACτv]〉 7−→ 〈H′ |E[v]〉

τCA(v,H) = (v,H′) τ 6= L〈τ〉
〈H |E[τCA v]〉 7−→ 〈H′ |E[v]〉

Fig. 4. FCA multi-language system (extends Figures 1 and 3)

6 C and A Interoperability
The extensions to FC for interoperability with A are given in Figure 4. The principles
discussed in the development of FC still apply, but here we need to handle the presence
of the heap. Specifically, since functions and tuples in A are contained in the heap,
the value translations need access to the program’s memory. Going from C to A, the
value translation may allocate new memory for functions and tuples; going from A to C
requires looking up the contents of locations and translating those contents to functions
or tuples in C. Thus, we pass the current memory as an argument to the translations,
and return a memory that may have had additional locations allocated. Memory cells
allocated by boundaries are always immutable.

Aside from this change, the extension for the new language mostly follows what we
did for FC: we augment the syntax with boundaries between C and A, a lump type L〈τ 〉
for opaquely embedding A values into C, and suspensions of type variables into A. Note
that we need the boundary type translation from C to A to handle both C type variables
α and suspended F type variables dαe. Thus A has both dαe and dαe as suspension
types. The boundary type translation τ 〈A〉 works similarly to τ 〈C〉. The figure shows



C ::= [·] | C p t | · · · | λ[α](x : τ).C | · · · | τFCC
C ::= [·] | · · · | λ[α](x : τ).C | · · · | CFτC | τCAC
C ::= (Ct,H) | (t,CH)
Ct ::= [·] | · · · | ACτC CH ::= CH, ` 7→ h | H, ` 7→ λ[α](x : τ).Ct

C ::= C | C | C

C[e] Context Plugging (A cases shown)

(Ct,H)[e] =

{
(Ct[t], (H,H′)) e = (t,H′) ∧ Ct contains no language boundaries
(Ct[e],H) otherwise

(t,CH)[e] =

{
(t, (CH[t

′],H′)) e = (t′,H′) ∧ CH contains no language boundaries
(t,CH[e]) otherwise

[·][t] = t (Ct p t)[e] = (Ct[e]) p t · · ·

(CH, ` 7→ h)[e] = (CH[e]), ` 7→ h

(H, ` 7→ λ[α](x : τ).Ct)[e] = H, ` 7→ λ[α](x : τ).(Ct[e])

` C : (Ψ;∆;Γ ` τ) (Ψ′;∆′;Γ ′ ` τ ′) Context Typing (omitted)

Contextual Equivalence

Ψ;∆;Γ ` e1 ≈ctx e2 : τ
def
= Ψ;∆;Γ ` e1 : τ ∧ Ψ;∆;Γ ` e2 : τ ∧
∀C,H,Ψ′, τ ′. ` C : (Ψ;∆;Γ ` τ) (Ψ′; ·; · ` τ ′) ∧ ` H :Ψ′

=⇒ (〈H | C[e1]〉↓ ⇐⇒ 〈H | C[e2]〉↓)

Fig. 5. General Contexts & Contextual Equivalence for FCA

the function case and the cases involving lumps and suspensions. The type judgment
merges the A type rules with the FC type rules, but where the latter are modified to
add the extra environment Ψ, and adds type rules for boundaries. Finally, the reduction
relation for FCA lifts the FC reductions to use the configuration from A, with a program
heap. We also add the reduction rules from A and a pair of boundary reduction rules
that utilize the value translations.

7 Compiler Correctness
As mentioned in §1, we state compiler correctness in terms of FCA contextual equiva-
lence. Below, we formally define contextual equivalence for FCA components and then
present our compiler correctness theorems. We discuss how to prove these theorems in
§9 and give a longer discussion and the full proofs in the technical report [9].

7.1 FCA Contextual Equivalence
A general context C is an FCA component with a hole. A component e can be plugged
into the context only if it is from the same language as the hole. Since contexts can
contain boundaries, e need not be from the same language as the outermost layer of C.
The syntax of general contexts is given in Figure 5 (top). Contexts for F and C forms are
standard. In A, we need contexts to be able to have their hole in either the term part of a
component, or in the body of a function contained in the heap fragment. So in addition
to contexts C that produce components, we have context forms Ct and CH that produce
terms and heap fragments, respectively.



When plugging an A component (t,H) into a context C, the heap fragment H is
placed at the innermost component-level layer of C—that is, at the language boundary
closest to the hole—and merged with the heap fragment already in that position. To
formalize this, the A portion of the definition of plugging a component into a context is
given in Figure 5 (middle). The definition of plugging for F and C contexts is standard.

Given this notion of general contexts, contextual equivalence for FCA is standard
(see Figure 5, bottom). It says that two components e1 and e2 are contextually equiva-
lent under environments Ψ, ∆, Γ and at type τ if the following hold: First, both com-
ponents must typecheck under Ψ, ∆, Γ at type τ . Second, if C is a context that expects
to be given a component that typechecks under Ψ, ∆, Γ at type τ , and produces a re-
sulting program that is closed but expects to be run with a heap of type Ψ′, then C[e1]
and C[e2] have the same termination behavior when we run them with any initial heap
H that has type Ψ′.

7.2 Compiler Correctness
We can now state our main result: compiler-correctness theorems for both passes of our
compiler.

Theorem 1 (Closure Conversion is Semantics-Preserving). If α; x : τ ′ ` e : τ  e,
then ·;α; x : τ ′ ` e ≈ctx τFC(e[dαe/α] [CFτ ′

x/x]) : τ .

Theorem 2 (Allocation is Semantics-Preserving). If α;x: τ ′ ` e : τ  (t,H : Ψ),
then ·;α;x: τ ′ ` e ≈ctx τCA(t[dαe/α] [ACτ ′

x/x],H) : τ .

The formal theorems are essentially as we described our compiler correctness re-
sults in §1, with only one additional subtlety: we need to perform a substitution so that
the free variables of the original component match those of the compiled component.
Recall that the compiler turns free type and term variables α and x into type and term
variables α and x from the next language, whereas FCA needs the binding structure of
components to be preserved, including free variables being in the language prescribed
by the type environments ∆ and Γ . To get the free variables of the two components
back into sync, we substitute suspended type variables for translated type variables, and
we substitute boundary terms for translated term variables. Note that we do not need to
perform a substitution in the heap fragment produced by the allocation pass, since heap
values must be closed anyway.

We could equivalently have stated these theorems with the substitution on the other
side, and the environments correspondingly translated; e.g.

·;αC; x : τ ′C ` e[L〈α〉/α] [τ̂ ′FCx/x] ≈ctx τ̂FC e : τ̂ ,

where τ̂ = τ [L〈α〉/α] and τ̂ ′ = τ ′[L〈α〉/α].
It also does not matter which side the boundary term is placed on: boundary cancel-

lation lemmas allow us to prove as a corollary that, for example,

·;α; x : τ ` CFτ e ≈ctx e[dαe/α] [CFτ ′
x/x] : τ〈C〉.

Since we want to ensure that type variables in the environment remain tied to their
free occurrences in the result type, this version of the theorem uses the boundary type
translation τ 〈C〉 for the result type (instead of the compiler’s type translation τC).

Contextual equivalence is transitive, so we can easily chain these theorems together
to prove correctness for the full compiler:



Corollary 1 (Compiler Correctness). If α; x : τ ′ ` e : τ  e e, then
·;α; x : τ ′ ` e ≈ctx τFCA(e[dαe/α][ACFτ ′

x/x]) : τ .

8 An Example
We can use our compiler correctness theorem to make statements about linking with
arbitrary A components, as long as they have translation type. In this section, we present
an example showing how our framework allows linking both with A components that
cannot be expressed in F, and with those that can. To keep our example concise, we use
variable substitution as a simple notion of linking.

Consider the component
e = (λg : unit→int. (g ()) ∗ (g ())) x,

where ·; ·; (x : unit→ int) ` e : int. In F alone, only divergent or constant functions can
have type unit→ int, but if we are compiling to A before linking, we could be given a
component that makes use of A’s mutable references.

Putting e through the first compiler pass, we get a C component that contains several
administrative reductions. The complete result of compilation is shown in the technical
report, but for readability, we pretend that e compiles to
e = (λg :∃α.〈(α, unit)→int, α〉.(unpack 〈β, z〉 = g in (π1(z) π2(z) ()))

∗ (unpack 〈β, z〉 = g in (π1(z) π2(z) ()))) x,

which is equivalent to the actual result of compilation, and has exactly the same function
body as the closure produced by the compiler.

The second pass brings us to an A component e = (t,H), where t = ` x and
H = ` 7→ λg : ∃α.box 〈box (α, unit)→ int, α〉.

((unpack 〈β, z〉 = g in ((read[1] z) (read[2] z) ())) ∗
(unpack 〈β, z〉 = g in ((read[1] z) (read[2] z) ()))).

By compiler correctness, we know that
·; ·; (x : unit→ int) ` e ≈ctx intFCA(e[ACFunit → intx/x]) : int.

Equivalently,
·; ·; (x : τ ) ` ACF int(e[unit → intFCA x/x]) ≈ctx e : int,

where τ = unit→int〈C〉〈A〉 = ∃α.box 〈box (α, unit)→ int, α〉.
Suppose we want to instantiate x with the following A component, which creates a

function that uses a mutable reference to return the number of times it has been called:

e′ = (pack〈ref int,balloc 〈`, ralloc 〈0〉〉〉 as τ,

` 7→ λ(x : ref int, z : unit). let y = read[1] x in let z = write x [1]← y + 1 in y + 1).

We would then have
·; ·; · ` ACF int(e[unit → intFCA e′/x]) ≈ctx e[e′/x] : int,

The right-hand side of this equivalence is exactly the pure-A program that we would ul-
timately run, and the left-hand side is an FCA program that models it. Note that on either
side of the equation, the function exported by e′ will be applied to the unit value twice,
returning 1 the first time and 2 the second time. An F function could not exhibit this
behavior. This demonstrates how our framework allows for linking with components
that are not expressible in F.



If we want instead to link with a different A component ê that was compiled from
an F component ê, we can still make the statement

·; ·; · ` ACF int(e[unit → intFCA ê/x]) ≈ctx e[ê/x] : int,

but we can also simplify this statement using our additional knowledge of ê. Our com-
piler correctness theorem tells us that

·; ·; · ` ACFunit → int ê ≈ctx ê : τ .

From this, we can infer that
·; ·; · ` ACF int(e[unit→intFCA(ACFunit→int ê)/x]) ≈ctx e[ê/x] : int.

Applying boundary cancellation yields
·; ·; · ` ACF int(e[ê/x]) ≈ctx e[ê/x] : int.

Now we are essentially equating the pure-A program with a pure-F program, since the
only multi-language element in this statement is the integer boundary at the outermost
level, which merely converts an n to n. This demonstrates that when we do have source-
language equivalents for all our target-level components, our framework allows us to
model target-level linking with source-level linking.

9 Proving Compiler Correctness
To prove the compiler correctness theorem, we design a step-indexed Kripke logical
relation as a sound and complete model of contextual equivalence in FCA. Our logical
relation extends that of Dreyer et al. [15] with the ability to handle multi-language type
abstraction. We give an overview of the logical relation and a more detailed discussion
of its novel features in the technical report [9]. In this section, we briefly discuss the
high-level ideas behind our model’s novel elements.

A logical-relations model provides a relational value interpretation of each type
τ . This relation, which we denote VJτK, specifies when two values of type τ should
be considered related or equivalent. When τ has free type variables, an environment
ρ holds arbitrary relational interpretations for those abstract types. The relations in ρ
capture the invariants of different instantiations of polymorphic values, which allows us
to prove parametricity properties.

The interpretation VJαKρ is defined by just looking up ρ(α). To prove important
properties of VJτKρ for all types, we must ensure those properties hold in the α case
by constraining the relations we can put into ρ to require these properties to hold up-
front. Interpretations that satisfy these properties are called candidates or admissible
relations.

In our multi-language setting, the two key properties we need to require for admis-
sibility are boundary cancellation and the bridge lemma. The bridge lemma states that,
given a pair of values v1 and v2 related according to the interpretation VJτKρ, the CFτ

translations of those values must be related according to VJτ 〈C〉Kρ. Similarly, given val-
ues v1 and v2 related according to VJτ 〈C〉Kρ, their τFC translations must be related
according to VJτKρ. (We also require the analogous properties for the second pass.)

The type translation of α is dαe, so in order for the bridge lemma to hold at type α,
we need a suitable definition of VJdαeKρ, which necessarily will depend on ρ(α). One
naı̈ve definition we tried is the set of translations of values from ρ(α), roughly:

VJdαeKρ = {(v1,v2) | (v1, v2) ∈ ρ(α) ∧ CF(vi) = vi}.



While this definition does let us prove the bridge lemma at type α, it does not satisfy
boundary cancellation: if v1 and v2 are related according to this definition of VJdαeKρ,
it is not necessarily the case that CA(AC(v1)) and v2 are related.

All the ways we tried to define VJdαeKρ by a simple formula in terms of ρ(α)
failed for similar reasons. Instead of giving a uniform definition, we took the viewpoint
that if the properties of ρ(α) must be given a priori, then the particular relations with
those properties that instantiate VJαKρ and VJdαeKρ should be given a priori as well.
Specifically, in our model, an interpretation ρ(α) not just given by a relation on F val-
ues, but by a triple containing the relation on F values, a relation on C values to serve
as its “translation” and instantiate VJdαeKρ, and a relation on A values to instantiate
VJdαeKρ. Similarly, an interpretation ρ(α) is given by a pair containing a C-level rela-
tion and an A-level relation. For ρ(α), since A is the target language, only one relation
is needed.

This strategy moves the burden for defining the “translations” of candidate relations
to the places in our proof development where individual candidates are needed. But in
all these places, there is some specific information available about the relation, so it was
not difficult to construct them.

10 Discussion and Future Work
Software is composed from components written in different languages because different
languages are suited to different tasks. We have provided a novel methodology for ver-
ifying open, multi-pass compilers, one that yields a stronger theorem than any existing
work, allowing target-level linking with components of arbitrary provenance regardless
of whether the component can be expressed in the source language compiled by the
verified compiler.

Adding Compiler Passes Adding more intermediate languages to our compiler pipeline
requires extending the multi-language model with new boundary forms and translation
rules, and extending the logical relation with new clauses. Our aim is that the proof
structure should be as modular as possible, so that the major lemmas and the correct-
ness proof for one compiler pass can be completed independently of the rest of the
pipeline. Presently, since our admissible relations design requires relations from mul-
tiple languages, we have a small number of places where a proof about one pass is
affected by the other languages and passes. We hope to improve our proof engineering
so that proofs for existing passes are unaffected when the compiler pipeline is changed.

Compiling to Assembly We have extended our compiler with a code-generation pass
that translates A components to a stack-based typed assembly language, T. The latter
is similar to Morrisett et al.’s stack-based TAL [6] but with a type system that tracks
more information. Informally, the T type system allows us to track calls and returns of
semantic “functions” that may span multiple basic blocks, and to determine the “return
type” of such functions. With this information, we are able to give a formal definition of
contextual equivalence for T that makes distinctions about assembly at an appropriate
level of granularity. That is, we relate assembly language components comprised of any
number of basic blocks, rather than relating individual basic blocks. An equivalence
relation based on individual blocks would be too fine grained; for instance, it would
be unable to relate two components with an unequal number of basic blocks that may



have been produced by compiling two equivalent source terms. We are working on the
proofs for this pass and will report on it in a future paper.

Mutable References Consider adding mutable references to F and C. For the first com-
piler pass, we would extend the type translation with (ref τ)C = ref τC . When defining
interoperability at type ref τ , it doesn’t make sense to convert an F location ` into a fresh
C location ` (and vice versa) since it would lead to duplication of mutable cells in the
interoperating languages and these would be impossible to keep in sync. One solution is
to treat a wrapped location (e.g., ref τFC`) as a value form. Operations on these wrapped
locations can be performed by reduction rules such as these:

!(ref τFC`) 7−→ τFC(!`) (ref τFC`) := v 7−→ unitFC(` := CFτ v),

where !v is a dereference and v := v′ is an assignment. Passing references between C
and A can be done analogously. While these interoperability semantics are straightfor-
ward, we expect to find nontrivial challenges in designing a logical relation to properly
handle the wrapped-location value forms they introduce.

Supporting Realistic Interoperability We are particularly interested in supporting target-
level interoperability between a language with parametric polymorphism such as ML
and languages without type abstraction such as Scheme or C. For instance, given a
generic tree library compiled from ML, we want to allow code compiled from Scheme
or C to be able to use the library but ensure that such use cannot invalidate ML’s para-
metricity guarantees by inspecting values that have abstract type on the ML side. In this
paper, we have shown how to preserve ML’s parametricity guarantees part-way through
the compiler. Going forward we wish to develop a gradually typed assembly language
that, following Matthews and Ahmed [16], uses dynamic sealing on the untyped side to
enforce parametricity guarantees provided by type abstraction on the typed side.

11 Related Work
The literature on compiler verification spans over four decades but is mostly limited
to whole-program compilation; we refer the reader to the bibliography by Dave [17]
for compilers for first-order languages, and to Chlipala [18] for compilers for higher-
order functional languages. We have already discussed the existing work [10, 12] on
compositional compiler correctness in §2. Here we focus on other closely related work.

Dreyer et al. have recently been working on Relational Transition Systems (RTS’s) [19]
that may provide an alternative cross-language specification technique that is designed
to make it possible to prove transitivity. Regardless, it is still not easy to do: see their
technical report [20] where they prove transitivity for their single-language RTS system
for an idealized ML. It is a non-trivial task to do this for multiple cross-language RTS’s.
Additionally, even if the RTS approach proves effective for verifying a multi-pass com-
piler, it still does not address the problem of linking with a component e′T for which
there is no related source-level e′S .

The design of our multi-language system builds on that of Ahmed and Blume [8],
who developed a boundary-based multi-language system embedding the source (STLC)
and target (System F) of CPS translation. Ahmed and Blume did not have type abstrac-
tion in the source language, which meant that they did not have to make use of lumps
or suspensions, nor design a logical relation to handle these. Our semantics preserva-
tion proof is analogous to theirs. However, since they were interested in fully abstract



CPS translation, they designed their type translation to disallow linking compiled code
with target components whose behavior cannot be expressed at the source level. The
additional work that they do to prove full abstraction provides a roadmap for how to
extend our methodology to prove full abstraction in a setting where the type translation
enforces it.
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