
Array shape inference via the ∀∗∃∗.(∧) fragment

of the first-order free monoid theory

Justin Slepak

March 31, 2018

Abstract

The rank-polymorphic array language Remora uses restricted depen-
dent types in the style of Dependent ML to describe the shape of array
data, which in turn drives the control structure of the program. Type
inference for DML-style a type system requires a decision procedure for
the theory of the language of type indices. Array shapes can be described
using the free monoid over the natural numbers, and the existential frag-
ment of this theory is known to be decidable. Type inference requires
a larger fragment of the theory, with universal quantifiers accounting for
variables in the environment and existential quantifiers identifying type
indices which must be chosen at a call site. Here, the problem of find-
ing a witness for this larger fragment is reduced to finding a satisfying
assignment in the existential fragment.

1 Dependent types

Dependent types allow program terms to appear as arguments to type construc-
tors. The classic example is using values of type Nat as an argument to a List

type, specifying the list’s length. A function can be polymorphic over terms
used within its input and output types. For example, the zip function, which
builds pairs of corresponding elements in a pair of lists, has the type

Π n:Nat, T:Type.

(List n T, List n T) -> List n (T, T)

Π serves as a universal quantifier. The dependent arguments n and T stand
for the expected length and element types for the two input lists. The type
enforces the rule that we can only zip lists of the same length. In order to
call zip on two lists, we must first provide some Nat-typed argument which
accurately describes their length. It is then up to the type checker to ensure
that the argument given for n actually is equal to the length of each input list,
which is itself derived from the list’s type.

Unfortunately, this check can be quite costly because zip’s length argument
can still be any arbitrary term, performing any arbitrary computation, as long

1



as it has type Nat. To reduce the difficulty of checking dependent types, Xi
[4] design Dependent ML, in which dependent types are indexed by terms in a
restricted index language, rather than having the entire programming language
available. The design of Dependent ML is somewhat agnostic as to the details of
the index language, though it does require a decision procedure for that language
in order for type checking to work. Even a pared down index language can
still offer expressiveness. For example, an index language based on Presburger
arithmetic, with just natural numbers and addition, can still use our earlier
type for zip, as well as many other common list-processing functions such as
take, drop, append, and fold. Index variables can still be introduced into the
environment by a λ-like binder, just like term and type variables in System F.
Checking index equality, amounts to checking the validity of an equality whose
variables are the index variables bound in the current environment.

In the case of Remora, an array-oriented language with implicit rank poly-
morphism, the index language includes natural numbers and addition and also
sequences of natural numbers with an append operator. Remora’s index theory
extends Presburger arithmetic to include the free monoid over N—the algebra
corresponding to finite sequences of natural numbers, with an associative “ap-
pend” operator.

2 Trickier quantification

Type checking alone is insufficient for a practical programming language when
polymorphism permits detailed descriptions of functions’ behavior. The extra
detail explained in dependent function types is difficult to leverage when the pro-
grammer must explicitly specify index arguments to each function call. Ideally,
type inference should select the index arguments automatically. Type checking
effectively considers a formula of the form ∀−→x .(

∧n
i=1 si = ti), asking whether in-

dices are guaranteed to be equal no matter what value the index variables in the
environment take on. Type inference has indices it must choose in a way that
guarantees their compatibility with any possible value for the environment’s in-
dex variables. The form for type inference’s constraint is ∀−→x .∃−→y .(

∧n
i=1 si = ti).

What we want as a solution is what we should choose as index arguments −→y ,
written in terms of the index variables −→x we already have in the environment.
This is a tighter restriction on the form of a solution than just having a func-
tion mapping variables to terms. We require a witness whose interpretation of
each existential variable is built solely by appending generators and universal
variables.

Furia’s survey [2] notes that both the ∀∗ and ∃∗ fragments are decidable,
while the ∀∗∃∗ and ∃∗∀∗ fragments are not. The decision procedure for the ∃∗
fragment is based on Makanin’s algorithm [3], and we show here how to reduce
a ∀∗∃∗.(∧) formula to an ∃∗.(∧) formula.

The rough intuition for solving an equation in a free monoid is to find uses
of concrete generators on both sides (as opposed to variables) and consider the
ways they might be aligned with each other in a solution. We then turn the

2



original equation into a conjunction of smaller equations, one for each segment
between aligned generators. For example, consider the equation x0x1y = y10x.
We might align the two 0s or the two 1s. If we instead align 1s, we get x0x =
y1 ∧ y = 0x. We might instead align the 0s, or decide that the right side’s 01
fits between the left side’s 0 and 1 or completely off to the left or right of it.
In any equation, there are finitely many possible alignments, each generating a
conjunction of equations on syntactically smaller terms.

Existential variables might turn out to partially overlap, such as solving
1x0 = y10 with x = 011, y = 101. In this case, x occupies positions 1 through
3, and y occupies positions 0 through 2. However, no existential can partially
overlap a generator. This is the same rule we would need if universal variables
appeared in an equation. An existential variable partially overlapping a uni-
versal variable leads to a situation where the universal variable might take on
a value incompatible with the existential overlapping it. For example, with the
formula ∀a.∃e.a0 = 1e, e must cover all but the leftmost position of a. Even the
ability to choose a value of e based on a deep inspection of a doesn’t protect us
from the case where a starts with 0 instead of 1. So this formula is not true. If
we were able to make a complete overlap, as in ∀a.∃e, f.a0 = fe, we would have
a solution: e = 0, f = a (there are other solutions too). Solving the equation
relies on the option of making an existential variable fully overlap a.

The similar behavior of generators and universal variables is the basis for
transforming ∀∗∃∗.(∧) formulas over a countably generated free monoid into
equivalent ∃∗.(∧) formulas over a free monoid with a few more generators. Sup-
pose we are given a set G and a formula ∀−→a .∃−→e .

∧
(s = t) on the free monoid

generated by G. What we want is a witness A for the original formula—a
mapping from the existential variables −→e to terms from the free monoid on G.

To translate into the ∃∗ fragment, we augment G with a fresh elements −→g ,
one gi for each universal variable ai. Call this new generator set G′ = G ∪ {−→g }.
We then turn the original formula to ∃−→e .(s = t)[−−−→a 7→ g].

Let A′, mapping existential variables to closed terms from the free monoid on
G′, be a witness for ∃−→e .

∧
(s = t)[−−−→a 7→ g]. Then we can use A(e) = A′(e)[g 7→ a]

as a witness for the original formula1. On the existential-only side, our witness-

substituted formula becomes
∧

(s[−−−→a 7→ g,
−−−−−−−→
e 7→ A′(e)] = t[−−−→a 7→ g,

−−−−−−−→
e 7→ A′(e)]). Con-

sider an arbitrary equality from this post-substitution conjunction. It must be
satisfied by the witness A′, which means the two sides must be identical se-
quences of generators2. Since we have syntactically equal terms on the left and
right, back-translating this by replacing each occurrence of g by a must produce
syntactically equal terms too. So our constructed A serves as a witness for the
untranslated equality. Since A′ satisfies each of the translated equalities, A
must satisfy each of the original equalities.

Consider the earlier example: Let ϕ = ∀a.∃e, f.a0 = fe with generators
{0, 1}. We would translate this by extending the generator set to {0, 1, 2} and

1As an abuse of notation, we are using “substitution” to replace a generator with a variable
rather than the other way around

2Working in the free monoid means nothing else can be equal.

3



rewriting the formula as ϕ′ = ∃e, f.20 = fe. Each solution for ϕ′ corresponds to
a witness for ϕ. If we choose e = 0, f = 2, we get our earlier solution by back-
translating. The other solutions e = 20, f = ε and e = ε, f = 20 correspond to
the other possible ϕ witnesses.

Now suppose ϕ = ∀a.∃−→e .
∧

(s = t) is true. Then a witness A which only
appends generators and universal variables can be translated into A′ which
serves as a witness for ϕ′ = ∃−→e .

∧
(s = t)[−−−→a 7→ g] (with fresh generators −→g ), by

defining A′(e) = A(e)[−−−→a 7→ g].
This strategy depends on the property that valid ∀∗∃∗(∧) formulas have

witnesses that fit a very restricted format. Introducing the ∨ connective allows a
formula to require a more complicated witness. Consider the formula ∀w.∃x.w =
ww ∨ w = 0x where G = {0}. A witness for this must choose x based on the
internal structure of w. If w = ε, then the value of x does not matter. Otherwise
w must have a 0 as its leftmost component with k more 0s following it, so we
choose x = 0k. From an expressiveness point of view, disjunction allows us to
constrain the internal structure of universal variables. This capability is used
by Durnev [1] to show the undecidability of the ∀1∃3.(∧∨) fragment. Any single
equality which tries to constrain a universal like this is not valid, so neither is
any such conjunction of equalities. A valid disjunction, on the other hand, can
be made up of individually non-valid formulas, so our translation creates false
negatives.

References

[1] Durnev, V. G. Undecidability of the positive 3-theory of a free semigroup.
Siberian Mathematical Journal 36, 5 (1995), 917–929.

[2] Furia, C. A. Whats decidable about sequences? In International Sym-
posium on Automated Technology for Verification and Analysis (2010),
Springer, pp. 128–142.

[3] Makanin, G. S. The problem of solvability of equations in a free semigroup.
Sbornik: Mathematics 32, 2 (1977), 129–198.

[4] Xi, H. Dependent types in practical programming. PhD thesis, Pittsburgh,
PA, USA, 1998. AAI9918624.

4


