
OpenCL Floating Point Software on Heterogeneous
Architectures — Portable or Not?

Miriam Leesera, Jaideep Ramachandranb, Thomas Wahlb, Devon Yablonskic

Northeastern University, Boston, USA

amel@coe.neu.edu
b{jaideep,wahl}@ccs.neu.edu

cdyablons@mc.com

Abstract

OpenCL is an emerging platform for parallel computing that promises porta-
bility of applications across different architectures. This promise is seriously
undermined, however, by the frequent use of floating-point arithmetic in scien-
tific applications. Floating-point computations can yield vastly different results
on different architectures — even IEEE 754-compliant ones —, potentially caus-
ing changes in control flow and ultimately incorrect (not just imprecise) output
for the entire program. In this paper, we illustrate a few instances of non-trivial
diverging floating-point computations and thus present a case for rigorous static
analysis and verification methods for parallel floating point software running on
IEEE-754 2008 compliant hardware. We discuss plans for such methods, with
the goal to facilitate the automated prediction of portability issues in floating-
point software.

1. Introduction

Scientific applications, like high-throughput medical imaging, high-perfor-
mance simulations of vehicles, climate development, molecular dynamics be-
havior, etc., demand great computational resources. These scientific applica-
tions are typically run on multi-core and multi-processor environments. To best
take advantage of different types of parallelism, such environments are increas-
ingly heterogeneous and may include Graphics Processing Units (GPUs) for
fine-grained parallelism, as well as Field Programmable Gate Arrays (FPGAs)
for energy efficiency, alongside traditional Central Processing Units (CPUs).
OpenCL (Open Computing Language) [5] has emerged as a possible standard
for programming systems with a variety of computational devices. Adopters of
OpenCL include AMD, IBM, Intel, NVIDIA and Altera.

OpenCL specifically aims to deliver portability of parallel, heterogeneous
programs, promising write once, run anywhere functionality. In many cases,
however, the same program can produce different results when used with dif-
ferent architectures and compilers, a sensitivity that is especially critical for

June 16, 2012

floating-point computations. The recently (2008) revised IEEE 754 floating-
point standard leaves many implementation decisions to the execution platform.
As a result, floating-point results generally do not agree across different such
platforms, questioning the portability of OpenCL code.

OpenCL provides an excellent vehicle for examining correctness and sta-
bility issues with diverse floating-point implementations since the same code
can be run on different architectures; the results can be compared. Debugging
tools for OpenCL programs are currently very rudimentary. A generic debugger
that debugs parallel code running on different hardware seems a distant goal.
Finally, the shortcomings of testing parallel programs, with nondeterminism,
synchronization issues and potential data races, are well known.

We are planning to address these issues by static analysis and verification
methods based on model checking that analyze OpenCL code for the occur-
rence of floating-point constructs whose results are highly dependent on the
available hardware — such code is a prime suspect for violating portability. We
are conducting a thorough analysis of the behavior of OpenCL floating-point
benchmark code on a variety of heterogeneous architectures to understand the
sources of portability issues. The results of this study will be used to inform
the development of analysis tools.

In this note we share some well-known and some less well-known depen-
dencies of floating-point behavior on execution order, available hardware, and
compiler decisions. We then sketch the work we plan to address these issues,
and report on existing work in this area.

2. Floating-Point Issues in Sequential and Parallel Code

Floating-point code may produce different results on different processors.
Some of the sources of these differences are highlighted below.

Non-associativity of floating-point. Floating-point arithmetic is not associative.
If a compiler reorders computations, different results may arise. This is well-
known and prevents certain compiler optimizations in sequential programs from
being sound. When comparing sequential and parallel programs, however, the
effects can be much more interesting.

Consider the program in Figure 1, which computes a Riemann sum ap-
proximation of π [8], using segment midpoints with num steps segments. One
expects that, the greater the number of segments (num steps), the closer the
computed value will be to the exact answer.

However, this is not observed for this sequential program running on a CPU,
as seen in Figure 3 (green line) [10]: the addition of very large and very small
floating-point values can result in a greater loss of precision than when summing
values of similar magnitude. Floating-point can represent very large or very
small values because it acts as a sliding window. If the window of representation
slides towards a large value, a very small value cannot be represented in the same
window and can be partially or completely lost in an operation like addition.
More specifically, accumulating values sequentially will sometimes result in a

2

1 s t a t i c long num steps = 100000;
2 double s tep ;
3
4 void main (){
5 i n t i ; double x , pi , sum = 0 . 0 ;
6 s tep = 1 .0 / (double) num steps ;
7 f o r (i =1; i<=num steps ; i++) {
8 x = (i −0.5) ∗ s tep ;
9 sum = sum + 4.0 / (1 . 0 + x ∗ x) ;

10 }
11 p i = step ∗ sum ;
12 }

Figure 1: Sequential C code for π computation

Figure 2: Parallel π computation

3

large value that each successive small value is added to, resulting in diminished
accuracy of the results.

Figure 3: Sequential vs parallel computation of π

Consider now the parallel program in Figure 2. Here, the contributions to
the final sum are accumulated in a way such that similar-in-magnitude values
are being added first. This typical reduction-style of parallel computation thus
increases the accuracy of the π computation. Figure 4 [10] illustrates this phe-
nomenon.

Figure 4: CPU vs GPU

Fused Multiply Add. The 2008 version of the IEEE floating-point standard ac-
knowledged the fused multiply-add (FMA) operation, which had been around in
hardware implementations of floating-point arithmetic since the 1990s. Many
scientific codes implement computations, such as matrix multiplication, that

4

consist of operations of the form a × b + c where a, b and c are represented in
floating-point. Hardware support for such operations allows the result to be
computed in an atomic step, without intermediate rounding and normalization
between the multiplication and the addition. In most cases, this fused multiply-
add operation gives more accurate results. Before 2008, however, the Standard
assumed this expression was computed with separate multiplication and addi-
tion operations; the result a× b would be rounded and normalized before being
added to c. Differences that arise between the use of FMA and the use of sepa-
rate instructions for multiply and add is a common source of errors. There is –
of course – no requirement that FMA hardware be used to implement a× b+ c.
Its use will depend on the existence of supporting hardware as well as compilers
that assign the computation to the FMA unit.

Different number of bits in intermediate representations. The FMA issue is a
special case of a broader class of differences: floating-point implementations may
use different numbers of bits in their internal representations when implementing
operations. For example, floating-point computation running on a processor
that uses the Intel x87 architecture may produce different results from the same
code running on the same processor but using the SIMD (AVX) unit. Results
are converted to IEEE floating-point double precision standard format, but the
number of bits internal to the operation may change the value of the results.

Catastrophic cancellation and other issues. Many of the aforementioned issues
may appear to only affect the last few bits. This is not the case when there is a
catastrophic cancellation [4]. For example, consider the expression: x×y+x×z.
For integer arithmetic, one may rewrite this to x×(y+z), which is not equivalent,
however, for floating-point. Suppose y = −z. The result of (y+ z) will likely be
a very small value but not precisely zero. As a result, the answers to the two
different forms of this expression can differ in a large number of significant bits.
A similar case arises when calculating ((x× x) − (y × y)) given x = y [6]. This
computation may produce very different results depending on whether or not a
fused multiply add is used.

3. Planned Work

Our planned work will be based on the assumption that the architectures
and compilers under consideration comply with the IEEE 754 floating-point
standard. The following are our high-level objectives:

• conduct a thorough (partly manual?) analysis of the behavior of OpenCL
floating-point benchmark code on a variety of heterogeneous architectures,
to establish a systematic study of the portability issues, along the lines
sketched in the previous section. The findings of this study will be used
to make informed decisions during tool building.

• develop tools (based on model checking) that analyze the code for the
occurrence of floating-point constructs whose results highly depend on

5

the available hardware and the compiler used and are thus prime suspects
for violating portability.

We also plan to support a form of cross-architecture equivalence checking.
When our tool is passed an OpenCL program and two architecture/compiler
specifications, it would determine whether it is possible for the control flow to
differ when this program is run on those two architectures. If so, the output will
be the prefix of a path up to the point where the flows diverge. Note that exact
equality of computational results across architectures is neither achievable, nor
expected by programmers. However, control flow divergence is a red flag when
it comes to architectural portability of the code.

4. Existing Work

The only published work we are aware of to analyze floating-point-intensive
data-parallel programs is based on the KLEE tool, specifically KLEE-FP and
KLEE-CL [3, 2]. These tools are not based on an IEEE 754-compliant logi-
cal modeling of floating-point programs, but instead on a syntactic matching
of floating-point expression trees, after a series of canonizing rewritings. Such
syntactic comparisons make sense only for equivalence-checking similarly gen-
erated floating-point formulas: KLEE-FP performs equivalence checks between
a SIMD vectorized implementation of a floating-point program against an orig-
inal scalar (single-threaded) implementation. The work in [9] also requires a
sequential reference model to compare against. In contrast, we do not assume
the existence of a scalar version of the code: we have in fact shown in Section 2
that pre-existing sequential code may not be the gold standard when it comes to
correctness of code involving floating point operations. Our tools are planned to
be applicable to scientific software directly written for multi-core architectures.

There are a number of analysis tools targeting programs written in NVIDIA’s
CUDA architecture, which permits writing programs specifically for GPUs. Our
work, in contrast, addresses programs written in OpenCL, which targets much
broader types of architectures. GKlee [7] analyzes programs with respect to
properties like race detection and deadlocks. In addition to being CUDA spe-
cific, GKlee (i) does not support floating-point programs (as neither does the un-
derlying symbolic execution engine Klee); and (ii) analyzes bytecode produced
by the LLVM, a low-level virtual machine compiler. Since we are addressing
floating-point issues in OpenCL software, we are targeting the source code level
for our analysis. CBMC, a Bounded Model Checker for ANSI-C and C++ pro-
grams, has basic floating-point support for sequential programs [1]. We plan to
build on its framework and extend it to analyze OpenCL programs.

Acknowledgments. We thank James Brock and Nicholas Moore for their assis-
tance with running OpenCL programs on the heterogeneous infrastructure at
the Reconfigurable and GPU Computing Laboratory of Northeastern Univer-
sity.

6

References

[1] Angelo Brillout, Daniel Kroening, and Thomas Wahl. Mixed abstractions
for floating-point arithmetic. In FMCAD, pages 69–76, 2009.

[2] Peter Collingbourne, Cristian Cadar, and Paul Kelly. Symbolic testing of
OpenCL code. In Haifa Verification Conference, 2011.

[3] Peter Collingbourne, Cristian Cadar, and Paul H. J. Kelly. Symbolic cross-
checking of floating-point and SIMD code. In EuroSys, pages 315–328,
2011.

[4] D. Goldberg. What every computer scientist should know about floating-
point arithmetic. ACM Computing Surveys, 23(1):5–48, March 1991.

[5] Khronos Group. OpenCL – the open standard for parallel programming of
heterogeneous systems. http://www.khronos.org/opencl/, 2011.

[6] W. Kahan. The improbability of probabalistic error analyses for numerical
computations. http://www.eecs.berkeley.edu/ wkahan/improber.pdf, 1996.

[7] Guodong Li, Peng Li, Geoffrey Sawaya, Ganesh Gopalakrishnan, Indradeep
Ghosh, and Sreeranga P. Rajan. GKLEE: Concolic verification and test
generation for GPUs. In PPOPP, pages 215–224, 2012.

[8] Tim Mattson and Rudolph Eigenmann. OpenMP: An API for writ-
ing portable SMP application software. http://www.openmp.org/

presentations/sc99/sc99_tutorial.pdf. Tutorial.

[9] Stephen F. Siegel, Anastasia Mironova, George S. Avrunin, and Lori A.
Clarke. Combining symbolic execution with model checking to verify par-
allel numerical programs. ACM Trans. Softw. Eng. Methodol., 17(2):10:1–
10:34, May 2008.

[10] Devon Yablonski. Numerical accuracy differences in CPU and GPGPU
codes. Master’s thesis, Northeastern University, 2011. http://www.coe.

neu.edu/Research/rcl/publications.php#theses.

7

