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ABSTRACT
Given the ranked lists of documents returned by multiple
search engines in response to a given query, the problem of
metasearch is to combine these lists in a way which optimizes
the performance of the combination. This problem can be
naturally decomposed into three subproblems: (1) normaliz-
ing the relevance scores given by the input systems, (2) es-
timating relevance scores for unretrieved documents, and
(3) combining the newly-acquired scores for each document
into one, improved score.

Research on the problem of metasearch has historically con-
centrated on algorithms for combining (normalized) scores.
In this paper, we show that the techniques used for normal-
izing relevance scores and estimating the relevance scores of
unretrieved documents can have a significant effect on the
overall performance of metasearch. We propose two new
normalization/estimation techniques and demonstrate em-
pirically that the performance of well known metasearch al-
gorithms can be significantly improved through their use.

1. INTRODUCTION
Metasearch is a well-established technique for improving the
performance of document retrieval systems [4, 14, 7, 22, 12,
9]. The fundamental idea is to more accurately assess the
relevance of each document (with respect to a given query)
by first giving the query to a number of different search
engines and then combining their output ranked lists into a
single, improved ranked list.

Applications: Metasearch algorithms are used in basically
two ways: externally or internally. Web metasearch engines
like MetaCrawler, ProFusion, SavvySearch, MetaFerret, In-
Find, etc. are external: they combine the output of “com-
plete” search engines, as a kind of post-processing, value-
adding stage.
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On the other hand, a search engine may be composed of
a number of very different and perhaps very simple “sub-
engines,” not intended for use on their own, but very effec-
tive when combined with a metasearch algorithm. In this
internal use, the metasearch component is central to the op-
eration of the system. Metasearch offers a systematic way of
incorporating all of the various types of evidence available
to a given search engine. For example, in the context of
web page retrieval, many sources of information exist: each
page has text, in-links, out-links, images, tags, keywords,
and structural information. For each of these elements,
numerous indexing and retrieval algorithms may exist. A
metasearch algorithm can be used to automatically com-
bine the information provided by these disparate retrieval
components.

Scores vs. Ranks: The final desired output of a search system
(or for that matter a metasearch system) is usually a ranked
list of documents, in more-relevant to less-relevant order.
But usually relevance scores are computed for each docu-
ment first, from which the rankings are then derived. If these
“intermediate” relevance scores from each input system are
available to the metasearch system, it may be advantageous,
as they generally contain more information than the mere
rankings: the ranked ordering can be computed from the rel-
evance scores, but not vice-versa. In this paper, we assume
that the metasearch algorithms are always given access to
the underlying input systems’ relevance scores. The popular
Comb{SUM,MNZ,. . . } [9] metasearch algorithms make this
assumption, though other metasearch algorithms have been
developed which do not require relevance scores [4, 12].

Training Data: Sometimes training data is available to the
metasearch system; for example statistics about the average
performance of each input system or a sample set of queries
with associated documents judged relevant or irrelevant by
human judges. The algorithms that we investigate in this
paper do not require training data.

Database Overlap: The metasearch problem can be studied
in the context of data fusion, where each input search sys-
tem is over the same data set, collection fusion, where their
databases are disjoint, or even with arbitrarily overlapping
databases. In this study we restrict ourselves to the data
fusion setting—a setting more like internal metasearch than
external.



Benefits: Metasearch can provide improved recall, precision,
and consistency [4, 14].

We propose the following natural decomposition of the meta-
search problem into three sub-problems: relevance score
normalization, estimation, and combination.

Normalization addresses the problem that relevance scores
given to the same document by different input systems may
be totally incomparable. Although they are usually real
numbers, they may be on different scales, in different ranges,
and distributed differently. The goal of relevance score nor-
malization is to make relevance scores comparable across
input systems. The normalization stage is the topic of this
paper.

Estimation, or unretrieved document relevance score estima-
tion, addresses the problem that the input systems return
different documents. Since we assume that the input sys-
tems’ databases contain the same set of documents, if sys-
tem S does not return a document d, we know S would have
given d a lower score than any of the observed scores from S.
But how much lower? If we can estimate the score S would
have given d, we may simplify the score combination stage:
each document will have a score from each system. We will
only raise the issue of estimation in this paper, leaving its
resolution to future work.

Combination is the final relevance score calculation for each
document as a function of the newly-comparable (through
normalization), and newly-complete (through unretrieved
document score estimation) set of input scores. This topic
has been the traditional subject of metasearch research; for
the purposes of this paper, we will focus on the popular
Comb{SUM,MNZ,. . . } [9] metasearch algorithms.

In most work on metasearch, the combination technique has
been the focus of the study, with the normalization tech-
nique assumed to be less important. In this paper, we take
the opposite approach, fixing two simple, standard combi-
nation algorithms (CombMNZ and CombSUM), and exper-
imenting with different normalization algorithms.

We find that indeed the normalization stage is important:
even very simple modifications to the standard shift-and-
scale normalization scheme yield significant improvements
for standard combination algorithms. The key factor seems
to be removing the normalization’s sensitivity to outliers.

In the remainder of this work, we first review the relevant
literature. We then present the normalization, estimation,
and combination algorithms that we use, and detail the re-
sults of a number of experiments on TREC data. Finally,
we conclude with directions for future research.

2. RELATED WORK
The use of data fusion to combine document retrieval results
has received considerable attention in the past few years: it
has been the subject of a number of doctoral dissertations [5,
15, 22, 19], journal articles [21, 10, 24], and conference pa-
pers [8, 6, 11, 12, 16, 23], being especially used in the TREC
competitions [9, 20, 17]. In this section we review the results

of these publications as they relate to our work.

Fox and Shaw [9] designed the Comb{SUM,MNZ,. . . } meta-
search algorithms which we will discuss later in this work.

Lee [12] performed experiments with CombMNZ, suggesting
that scores be normalized before combination by shifting and
scaling them into the range [0, 1] so that they are comparable
across systems.

In the context of the filtering problem, Hull et al. [11] try
averaging algorithms. In their work, each of the four input
systems that they fuse output estimates for the probability
of relevance of each document, so they need not normalize:
scores are already directly comparable. They try both di-
rectly averaging these probabilities as well as averaging the
log-odds ratios, log p

1−p

Croft [7] reviews the literature surrounding fusion in IR. He
concludes that the systems being combined should: (1) have
compatible outputs, (2) each produce accurate probability
estimates, and (3) be independent of each other. His first
requirement, that the outputs be compatible, is the goal of
normalization.

Aslam and Montague’s Bayes-fuse algorithm [4, 14] can be
viewed as a normalization and estimation technique that re-
lies on training data. For each input system, two probability
distributions are estimated based on the training data: the
probability of a document being given rank r given that it is
relevant or irrelevant. The final normalized relevance score
is computed as the log odds of a document receiving rank
r. Although this work is rank-based, the same techniques
could be applied to relevance scores.

Bartell [5], Vogt [25, 24, 22, 23], and others experiment with
linearly combining the normalized relevance scores given to
each document. This work focuses on the training required
to learn the weights to give each system, but does not ques-
tion the wisdom of the standard, [0, 1] normalization.

Manmatha et al. [13] model the distribution of scores for
each query, using a mixture model of a negative exponen-
tial distribution (for irrelevant documents) and a Gaussian
distribution (for relevant docs). Using EM procedure, they
tune the model for each query. This allows them to compute
the final normalized relevance score for a document as the
probability that it is relevant based on its original score and
the model. They find that this normalization scheme yields
some improvement.

3. SCORE NORMALIZATION
We assume that the relevance score given to a document
by an input search system is a real number in the interval
(−∞,∞) (See Thompson’s CEO model [21] for an exam-
ple where this is not the case). For each query, each input
system Si returns their top n documents, along with their
associated scores. Let us denote the score given by S to a
document a as scrS(a). By convention, if scrS(a) > scrS(b),
then we know that S is asserting that a is more relevant, or
more likely relevant than b. But beyond this, we do not
assume that we know how to interpret the relevance scores;
for example, we do not know if they represent probabili-



ties of relevance, odds of relevance, log odds of relevance, or
some other measure. We treat each input system as a black
box expert that need not and perhaps cannot reveal how it
generated these scores or how to interpret them. Hence the
problem: how can we combine the scores if we do not know
what they mean? Even if we cannot interpret them individ-
ually, perhaps we can make the scores comparable between
systems. This is the goal of normalization: to make scores
directly comparable between input systems.

Traditionally normalization has been accomplished by a lin-
ear transformation: shifting and scaling relevance scores into
the range [0, 1] (see for instance [12]). But is this optimal?

We define three desirable qualities of a normalization scheme:

Shift invariant: Let R be a set of relevance scores and
Rc be R shifted by an additive constant c. That is, for
scr(a) ∈ R, scr(ac) = scr(a) + c ∈ Rc. Let scr′(a) denote
the normalized score of document a. Then we say that a
normalization scheme is shift invariant if scr′(a) = scr′(ac);
both the shifted and unshifted set of scores normalize to the
same set. In other words, we would like our normalization
scheme to be insensitive to mere shifts of the input.

Scale invariant: Similarly, we would like our normaliza-
tion scheme to be insensitive to its input being scaled by a
multiplicative constant.

Outlier insensitive: It is also desirable that normalization
not be overly-sensitive to the score of a single document.
That is, adding a “reasonable” outlier does not significantly
change the normalized score for the rest of the docs.

In this paper we test three simple normalization schemes,
summarized in table 1: the standard [0, 1] scheme, and two
others that we designed in order to avoid sensitivity to out-
liers.

Name Method
Standard Shift min to 0, scale max to 1
Sum Shift min to 0, scale sum to 1
ZMUV Shift mean to 0, scale variance to 1

Table 1: Normalization algorithms. We propose the

sum and ZMUV norms as simple and effective re-

placements for the standard norm.

Standard Norm: The standard norm is shift and scale
invariant, but is sensitive to the max and min scores given
for each query, and hence highly sensitive to outliers.

Sum Norm: The sum norm is shift and scale invariant, and
it is sensitive only to the min score given for each query.
The sum of the scores, as an aggregate statistic, is more
robust. In practice the min score is not an outlier, due to
the fact that ranked lists are truncated to only return a
certain number of documents. So in practice, the sum norm
is fairly outlier insensitive. Note also that equivalent results
would be obtained using the average score instead of the
sum of scores.

ZMUV Norm (Zero-Mean, Unit-Variance): ZMUV is shift
and scale invariant. It is also outlier insensitive: the ZMUV
transformation does not depend directly on either the min
or max scores given (except insomuch as they individually
affect the mean and variance of the collection). The mean
and variance of the relevance scores are both aggregate, and
thus more robust, statistics.

Note that none of these normalization schemes require train-
ing data.

4. SCORE ESTIMATION
In this paper, we use only the simplest possible score estima-
tors for unretrieved docs. Typically, a normalized relevance
score of zero is assigned to unretrieved documents [9], and
we also use a normalized relevance score of zero for the stan-
dard and sum normalization schemes.

For the ZMUV normalization scheme, wherein a normalized
relevance score of zero would imply average relevance, we
instead assign a relevance score of -2 to unretrieved docu-
ments. In other words, unretrieved documents are assigned
a relevance score two standard deviations below the mean.

Note that we have not attempted to optimize these con-
stants; in future work we will investigate unretrieved docu-
ment score estimation and its effect on metasearch.

5. SCORE COMBINATION
Fox and Shaw [9] designed some of the most simple, popular,
and effective metasearch algorithms to date. They are sum-
marized in table 5. CombMNZ works best, with CombSUM
a close second. Usually they are used with the standard
norm, and unretrieved documents are assigned a relevance
score of zero. We will use both CombSUM and CombMNZ
to compare normalization algorithms.

Name New relevance score is:
CombMIN minimum of individual rels
CombMED median of individual rels
CombMAX maximum of individual rels
CombSUM sum of individual rels
CombANZ CombSUM ÷ num nonzero rels
CombMNZ CombSUM × num nonzero rels

Table 2: Fox and Shaw’s Comb{SUM,MNZ,. . . } fu-

sion algorithms. “Rels” stands for relevance scores.

6. EXPERIMENTS
6.1 Data Sets
We use systems submitted to the annual Text REtrieval
Conference (TREC) as input to our metasearch algorithms.
TREC offers large, standard data sets with many ranked
lists for each query, ready to be fused. Also, each system
submits 50 queries, so we can more accurately assess perfor-
mance by averaging over the queries. Table 3 shows informa-
tion about three of the data sets. Note that in TREC, each
system is allowed to return up to 1000 documents for each
query. For the TREC 3 and TREC 5 data, we used the data
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Figure 1: The performance of CombSUM over four data sets using different normalization schemes.

Data set Topics No. Sys
TREC 3 151–200 40
TREC 5 251–300 61
TREC 9 451–500 105

Table 3: Three of the four data sets used in our

experiments.

submitted to the TREC “adhoc” task. For TREC 9, the ad-
hoc task had been replaced by the “web” track. Therefore,
over that data set we are fusing the results of World Wide
Web search engines. In TREC terminology, a “topic” is a
query; they are numbered consecutively. In the table, the
column labelled “No. Sys” contains the number of search
systems that submitted results to TREC that year—this
is the number of systems available for us to fuse. Also note
that the TREC 9 dataset was large and challenging. Some of
the input systems from TREC 9 purposefully masked their
scores by replacing them with reversed ranks. One system
had an average precision of zero.

Our fourth data set consists of a subset of the TREC 5 data
set as defined by Vogt [23]. In particular, it contains only 10
of the 61 TREC 5 systems, and only 10 of the 50 TREC 5
queries. This subset was chosen by Vogt to highlight the
strengths of the metasearch technique: it contains retrieval

systems chosen to maximize diversity, as measured by nine
similarity criteria. The systems are: CLTHES, DCU961,
anu5aut1, anu5man6, brkly17, colm1, fsclt4, gm96ma1, mds-
002, and uwgcx0. The queries were chosen for their large
number of relevant documents: queries 257, 259, 261, 272,
274, 280, 282, 285, 288, and 289. We include this data set
because of its diverse inputs: we expect that it more closely
models the environment of “internal” metasearch than the
other data sets.

6.2 Experimental Setup
We examine the performance of metasearch strategies when
combining random groups of retrieval systems. Each data
point represents the average value obtained over 200 trials
(or as many as are combinatorially possible) performed as
follows. Randomly select a set of n (for n ∈ {2, 4, ...12})
input systems, apply the metasearch algorithm to these sys-
tems, and record the average precision of the metasearch al-
gorithm’s output. (Additionally, we record the average pre-
cision of the best underlying system in order to meaningfully
assess the improvement gained, if any.) This experiment is
designed to test how well a fusion algorithm performs on
average, and to see how the algorithm improves when more
input systems are available. A successful system will con-
sistently improve on the best of its inputs, no matter how
many input systems are available.
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Figure 2: The performance of CombMNZ over four data sets using different normalization schemes.

6.3 Experimental Results
Figure 1 shows the results of using different normalization
schemes with CombSUM. The ZMUV norm almost always
performed significantly better than the standard norm. The
ZMUV norm also usually outperforms the sum norm. In-
deed, on TREC 5, both ZMUV and the sum norm cause
CombSUM to outperform the best input, whereas it had
not previously.

Figure 2 shows the results of using different norms with
CombMNZ. ZMUV performs very poorly with CombMNZ,
but this is easily understood: CombMNZ assumes all rel-
evance scores are positive. But roughly half of the scores
produced by ZMUV are negative since it shifts the mean to
zero. Thus the final step in CombMNZ, multiplying by the
number of systems that returned a document, actually pe-
nalizes those documents with negative scores whenever they
are returned by many systems.

The sum norm, however, almost always improves Comb-
MNZ, sometimes significantly. In TREC 5 for instance the
standard norm has trouble reaching the performance of the
best input system, but the sum norm easily exceeds it.

To explore the problem of CombMNZ interacting poorly
with ZMUV, we tried a “2MUV” normalization scheme:
shift the mean to two instead of zero (still using unit vari-

ance). This will force most scores to be positive, so that
CombMNZ can handle them properly. The results are shown
in Figure 3. Here we can see that the ZMUV norm can be
made to work with CombMNZ, though the sum norm usu-
ally works as well. We expect that with proper normaliza-
tion and unretrieved document score estimation, CombSum
will be a better system than CombMNZ.

Figure 4 compares the CombSUM–ZMUV combination with
the CombMNZ–sum combination (along with the standard
CombMNZ and best input for reference). There is no clear
winner between these two—each is best for one data set and
they tie on two data sets.

7. CONCLUSIONS
Relevance score normalization is an important step in the
metasearch problem. By simply using more robust statis-
tics than max and min in the normalization scheme we can
achieve significant improvements in the performance of both
CombMNZ and CombSUM. The inferior performance of the
standard shift-and-scale normalization scheme is likely due
to its dependence on the value of outliers (the min and max
relevance scores); normalization schemes which are not as
sensitive to outliers (such as those proposed) yield better
performance.

The proper estimation of normalized relevance scores for un-
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Figure 3: The performance of the 2MUV variant of the ZMUV normalization with CombMNZ.

retrieved documents is an open problem and the subject of
future work. Simply assigning a normalized relevance score
of zero (equivalent to the relevance score assigned to the
lowest ranked retrieved document) seems overly optimistic,
though this is classically done for the standard normalization
scheme and we have adopted it for the sum normalization
scheme as well. Assigning a normalized relevance score two
standard deviations below the mean for unretrieved docu-
ments in the ZMUV scheme, while reasonable, is perhaps
non-optimal. We expect that further research on properly
estimating the normalized relevance scores which should be
assigned to unretrieved documents will lead to further im-
provements in the performance of metasearch.
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