
A compositional trace semantics for Orc

Dimitrios Vardoulakis and Mitchell Wand

Northeastern University
dimvar@ccs.neu.edu wand@ccs.neu.edu

Abstract. Orc [9] is a language for task orchestration. It has a small set
of primitives, but sufficient to express many useful programs succinctly.
We identify an ambiguity in the trace semantics of Kitchin et al. [9]. We
give possible interpretations of the ambiguous definition and show that
the semantics is not adequate regardless of the interpretation. We remedy
this situation by providing new operational and denotational semantics
with a better treatment of variable binding, and proving an adequacy
theorem to relate them. Also, we investigate strong bisimulation in Orc
and show that bisimulation implies trace equivalence but not vice versa.

1 Introduction

Orc [9] is a concurrent programming language for web-service orchestration. It
is small yet usefully programmable, making it a good vehicle for the study of
distributed processes in the presence of timeouts and communication failures.
Orc uses autonomous computing units called sites to perform sequential com-
putation and other basic services. It then provides operators to coordinate the
execution of sites and build larger processes.

The question of the practical applicability of Orc is outside the scope of this
paper. Popular concurrent programming patterns like fork-join parallelism can
be coded in Orc, and also the workflow patterns of van der Aalst et al. [12]. The
practical aspects of the language are discussed in [6,9,11]. Here, we will discuss
the formal properties of Orc.

– The existing trace semantics for Orc [9] is ambiguous when there is a naming
conflict between free and bound variables. We resolve the ambiguity and
show that the semantics is not adequate.

– We suggest that dynamic binding of variables be prohibited because it in-
validates an equivalence between Orc processes proved in [9].

– We provide new operational and denotational semantics which fix the afore-
mentioned problems and prove an adequacy theorem to relate them.

– We investigate strong bisimulation in Orc and show that it is a congruence.
We use it to prove useful equivalences between Orc processes. Last, we show
that strong bisimulation implies trace equivalence but not vice versa.

This paper is organized as follows. We give a quick overview of Orc in the next
section. Then we present the existing semantics [9] and its deficiencies in sec-
tion 3. In section 4, we give our semantics for Orc. We study strong bisimulation
in Orc in section 5. We discuss related work in section 6 and conclude in section 7.

2 Overview of Orc

The simplest Orc program is a site call. For example, the site call IsPrime(N)
sends the number N to a site named IsPrime. We imagine that this site will
return true if N is prime and false otherwise. Similarly, we imagine that the
result of the site call RedditFeed(today) will be a page of today’s technical news.
In Orc terminology, we use the word publication to refer to the result of a site
call. A site may respond to a call at most once and it can also ignore the request.
Note that the same site call at different times may publish different values.

In symmetric composition (f | g) the two processes are evaluated in paral-
lel and there is no interaction between them. The composite process publishes
all the values published by f and g. For instance, the process (IsPrime(N) |
RedditFeed(today)) can publish at most two values.

The sequencing operator (f >x>g) is used to spawn threads. Process f starts
running, and whenever f publishes some value v, an instance of g with v bound to
x is launched in parallel. For example, ((IsPrime(N) | RedditFeed(today)) >x>
Print(x)) may print twice, if both IsPrime(N) and RedditFeed(today) publish.
If f does not publish, g is not run.

Last, we can use the where operator to terminate a process after it publishes.
The expression (f where x :∈ g) starts evaluating f and g in parallel. However,
the parts of f that depend on x block until x acquires a value. If g publishes,
the value published is bound to x in f and g is terminated. Therefore, the
expression (Print(x) where x :∈ (IsPrime(N) | RedditFeed(today))) will either
print a boolean or today’s technical news, maybe none, but not both.

The operators we saw up to now do not allow us to write recursive processes.
To do that, we can define expressions like the following:

DOS(x) , Ping(x) | DOS(x)
This is a simple denial-of-service attack; the process DOS(ip) pings ip an un-
bounded number of times.

At this point we have explained the features of Orc informally and we can
proceed to discuss its formal syntax and semantics.

3 The existing semantics of Orc and its deficiencies

3.1 Syntax - Operational Semantics

The syntax of Orc is shown in Fig. 1. An Orc program consists of a finite set of
mutually recursive declarations and an expression that is evaluated with these
declarations in scope. We use ∆ to refer to the set of declarations. The terms
“expression” and “process” will be used interchangeably.

The process 0 is the inert process. The actual parameter of a site call or a
call to a defined expression is either a variable or a value. Values do not have
types; they all belong to some generic set Val . Orc is not higher-order: a process
is not a value. In what follows, we assume that processes are well-formed, i.e. do
not contain Ei(p) when there are fewer than i declarations in the program.

2

Program P ::= D1, . . . , Dk in e
Expression e ::= 0 M (p) let(p) Ei(p) (e1 | e2) e1 >x> e2 e1 where x :∈ e2

Parameter p ::= x v

Declaration Di ::= Ei(x) , e

Fig. 1. Syntax of Orc

(SITECALL)
k fresh

M (v)
Mk (v)
→ ?k

(SITERET) ?k
k?v
→ let(v)

(LET) let(v)
!v
→ 0

(DEF)
(Ei(x) , fi) ∈ ∆

Ei(p)
τ
→ [p/x]fi

(SYM1)
f

a
→ f ′

f | g
a
→ f ′ | g

(SYM2)
g

a
→ g′

f | g
a
→ f | g′

(SEQ1N)
f

a
→ f ′ a 6=!v

f >x> g
a
→ f ′ >x> g

(SEQ1V)
f

!v
→ f ′

f >x> g
τ
→ (f ′ >x> g) | [v/x]g

(ASYM1N)
f

a
→ f ′

f where x :∈ g
a
→ f ′ where x :∈ g

(ASYM1V)
g

!v
→ g′

f where x :∈ g
τ
→ [v/x]f

(ASYM2)
g

a
→ g′ a 6=!v

f where x :∈ g
a
→ f where x :∈ g′

Fig. 2. Existing operational semantics for Orc [9]

The operational semantics uses labeled transitions (Fig. 2). The metavari-

ables f, g range over processes. Every transition is of the form f
a
→ f ′, meaning

that process f takes a step to f ′ with event a. The events that occur during
transitions are publications, internal events, site calls and site responses:

BaseEvent ::= !v τ Mk (v) k?v

Let’s take a closer look at the rules. When process M (v) calls site M with
value v, a site call event occurs and a fresh handle k is allocated to identify the
call (rule SITECALL). The resulting process ?k is just an idle thread waiting
for an answer to the call with handle k. It is a necessary addition to the syntax
to represent intermediate state.

If the site replies with some value w, ?k performs a site response event k?w
and becomes let(w), as shown in rule SITERET. By rule LET, let(w) publishes
w and becomes 0, which has no further transitions.

None of the above steps is guaranteed to happen; M (v) may delay the site call
to M indefinitely, if the call happens M may never respond, and if it responds
the value may not be published.

Defined expressions Ei(p) are called by name (rule DEF). The actual param-
eter p is substituted for x in the body of Ei and the process continues as [p/x]fi.
This substitution is marked by an internal event τ .

3

(let(y) | let(2)) >x> M (x)
τ
→ by LET, SEQ1V

((let(y) | 0) >x> M (x)) | M (2)
Mk(2)
→ by SITECALL, SYM2

((let(y) | 0) >x> M (x)) | ?k
k?11
→ by SITERET, SYM2

((let(y) | 0) >x> M (x)) | let(11)
!11
→

((let(y) | 0) >x> M (x)) | 0
by LET, SYM2

Fig. 3. Possible evaluation of (let(y) | let(2)) >x> M (x)

The rules for symmetric composition are simple; f | g takes a step if either
f or g takes a step. The steps of the sub-processes can be interleaved arbitrarily.

Process f >x> g takes a step if f takes a step (rule SEQ1N). If f publishes
v the process performs an internal event and launches a new instance of g in
parallel (rule SEQ1V). We can think of x as an implicit communication channel
between f and g.1

In asymmetric composition f where x :∈ g, f and g execute in parallel unless
g publishes. Then, g is terminated and the published value v is communicated
via x to f (rule ASYM1V). Rule ASYM2 shows the non-publication steps of g,
and ASYM1N shows the steps of f . Note that a let(x) or a site call M(x) in f
will block waiting for a publication from g.

The example in Fig. 3 illustrates the use of some of the rules. Observe that
processes can evaluate even when they have free variables.

Using the rules of Fig. 2, M(x) has no transitions. It behaves like 0. However,
in a context that can provide a value for x (see Fig. 3) M(x) can publish and 0
cannot. To model this behavior, Kitchin et al. add one more rule:

(SUBST) f
[v/x]
→ [v/x]f

We call this new event a receive event.2 Any process f can perform any receive
step, even for variables not free in f (of course then [v/x]f = f). The constraint is
that the SUBST rule cannot be applied to parts of an expression, in other words
the event ‘a’ in the previous rules cannot be a receive event for any variable.

The reflexive and transitive closure of the transition relation is called execu-
tion:

Definition 1 (Execution). t is an execution of f i.e. f
t
→∗ f ′ iff

– t = ε and f ≡ f ′, or

– t = a t′ and for some f ′′, f
a
→ f ′′ and f ′′ t′

→∗ f ′

For instance, some executions of let(x) are: [2/x] [1/x] !2, [3/y] [2/x] !2
If t is a sequence of events then t\a is the sequence of events obtained from

t when all instances of event a are removed.

Definition 2. The trace set 〈f〉 of a process f is { t\τ | t is an execution of f }

For example, every trace of M(v) is a prefix of σ1 Mk (v) σ2 k?w σ3 !w σ4 where
σ1, . . . , σ4 are arbitrary sequences of receives and w is an arbitrary value.

1 versus the explicit prefix form x(y).P of the π-calculus.
2 This was called substitution event in [9]

4

3.2 Trace Semantics

Kitchin et al. attempt to provide a denotational semantics for processes by
overloading the Orc combinators to work on trace sets. They define T1 | T2,
T1 >x> T2, and T1 where x :∈ T2 as follows.

Symmetric Composition

Definition 3 (Merge). For traces t1 and t2, t1 | t2 is the set of all t such that
- t1 and t2 are subsequences of t and every event of t belongs to at least one

of t1 and t2
- every common event of t (i.e. an event that belongs to both t1 and t2) is a

receive event

- if t1 and t2 contain receives for the same variable x, the first receive for x
in both t1 and t2 is a common event of t

For example, if t1 = [1/x] !1, t2 = [1/x] [4/x]Mk (4), t3 = [2/x] [11/y] then
(t1 | t2) contains three elements, including [1/x] [4/x] !1 Mk(4), and (t2 | t3) is
empty.

For trace sets, define T1 | T2 =
⋃

t1∈T1, t2∈T2
t1 | t2 .

Sequencing
Define the operator: T ↾ [v/x] = { t | [v/x] t ∈ T }. This selects the traces in T
that start with [v/x] and removes the leading receive event from these traces.
For sequences of receives, define inductively:

T ↾ε = T
T ↾([v/x] σ) = (T ↾ [v/x])↾σ

Also, when a trace t has no publications we write P̄ (t) and when t has no
receives for x we write R̄(x, t).

Definition 4. For trace s and trace set T , define the set s >x> T by:










{s} P̄ (s)

s1((s2 >x> T ′) | (T ′ ↾ [u/x])) s = s1!u s2, P̄ (s1),

D is the sequence of receives in s1, T ′ = T ↾D

Note: Any receive event [v/x] in s is unrelated to x in (s >x> T)

For trace sets, define T1 >x> T2 =
⋃

s∈T1
s >x> T2 .

Every trace s of f that does not publish is also a trace of 〈f〉 >x> 〈g〉. Moreover,
if s contains a publication, an instance of g is launched in parallel and the
remaining transitions of f may spawn more instances of g. For example, consider
〈let(y)〉 >x> 〈let(y) | let(x)〉. The trace ([2/y] !2) is in 〈let(y)〉 and D is [2/y].
Also, ([2/y] [2/x] !2 !2) ∈ 〈let(y) | let(x)〉. Therefore, ([2/x] !2 !2) ∈ 〈let(y) |
let(x)〉 ↾ D which gives (!2 !2) ∈ T ′ ↾ [2/x]. Hence, ([2/y] !2 !2) ∈ 〈let(y)〉 >x>
〈let(y) | let(x)〉 .

The note in the definition of s >x> T which we copy directly from [9] is
ambiguous; what happens if s contains an event [v/x] ? We discuss possible
interpretations of the note in the following section.

5

Asymmetric Composition

Definition 5. For traces t1 and t2, define the set t1 where x :∈ t2 by:


















t1 | t2 P̄ (t2)

(t11 | t21)t12 t1 ≡ t11[v/x]t12, R̄(x, t11)

t2 ≡ t21!v t22, P̄ (t21)

∅ otherwise

Note: Any receive event [v/x] in t2 is unrelated to x in (t1 where x :∈ t2)

For trace sets, define 〈f〉 where x :∈ 〈g〉 =
⋃

t1∈〈f〉, t2∈〈g〉 t1 where x :∈ t2 .

If t2 does not publish, asymmetric composition is like symmetric composition. If
it publishes v and t1 receives v, the part of t2 prior to the publication is merged
with the part of t1 prior to the receive; followed by the rest of t1. The rest of t2
is discarded. The third branch disallows the creation of nonsensical traces that
combine a t1 that receives v1 for x with a t2 that publishes v2.

Like sequencing, the definition of t1 where x :∈ t2 is ambiguous about the
treatment of receives for x in t2.

3.3 Problems of Compositionality

To show that these definitions give a compositional semantics, Kitchin et al.
make the following claims:

Claim. 1. 〈f | g〉 = 〈f〉 | 〈g〉
2. 〈f >x> g〉 = 〈f〉 >x> 〈g〉
3. 〈f where x :∈ g〉 = 〈f〉 where x :∈ 〈g〉

We believe Claim 1 is true, but Claims 2 and 3 are problematic.

Sequencing
The truth of Claim 2 depends on the interpretation of the ambiguous note.

1. Rename the bound variable x to avoid naming conflicts:
Let h = let(1) >x> 0. The trace [3/x] is in 〈let(1)〉. Therefore, we pick a
fresh variable y and alpha-rename every event [v/x] in 〈0〉 to [v/y]. Let Z be
the set we obtain after the alpha-renaming. Then, the set [3/x] >x> 〈0〉 is
defined to be equal to [3/x] >y> Z. By rule SUBST however, 〈0〉 contains
every finite sequence of receives, so there is no fresh variable to pick for the
alpha-renaming; by this interpretation the set [3/x] >x> 〈0〉 is undefined.

2. Receive events for x in s are not allowed in s >x> T :
By this interpretation, the definition of s >x> T becomes


















{s} P̄ (s), R̄(x, s)

s1((s2 >x> T ′) | (T ′ ↾ [u/x])) s = s1!u s2, R̄(x, s), P̄ (s1), D is the

sequence of receives in s1, T ′ = T ↾D

∅ otherwise

Let h = M (1) > x > let(x). By rules SUBST, SITECALL and SEQ1N,

6

[3/x]Mk (1) ∈ 〈h〉. Let t = [3/x]Mk (1). We prove by contradiction that
t /∈ (〈M (1)〉 >x> 〈let(x)〉), hence 〈f >x> g〉 6= 〈f〉 >x> 〈g〉. Assume
that t ∈ (〈M (1)〉 >x> 〈let(x)〉). Then, there exists s ∈ 〈M (1)〉 such that
t ∈ (s >x> 〈let(x)〉).

a) If the first branch of the definition was used to produce t then t = s
which gives R̄(x, t), a contradiction.

b) If the second branch of the definition was used, then s is of the form
(σ1 Mk (1)σ2 k?w σ3 !w σ4) where σ1, . . . , σ4 are arbitrary sequences of
receive events for variables different from x. But then, σ1 must be [3/x]
which is a contradiction because R̄(x, s). We conclude that there is no
s ∈ 〈M (1)〉 such that t ∈ (s >x> 〈let(x)〉).

3. The note is simply a reminder that receives for x in s and receives for x in
the traces of T refer to different variables, and has no other impact:
In this interpretation, the definition of s >x> T is not influenced by the
note; receives for x in s are treated like receives for other variables. Let
h = let(2) >x> let(x), s = [1/x] !2, t = [1/x] [2/x] !1. Clearly, s ∈ 〈let(2)〉
and the sequence of receives in s is [1/x].
Also, t ∈ 〈let(x)〉 and {t} ↾ [1/x] = {[2/x] !1} ⇒ ([2/x] !1) ∈ T ′ ⇒
{[2/x] !1} ↾ [2/x] = {!1}. Then, ([1/x] !1) ∈ 〈let(2)〉 >x> 〈let(x)〉. But
this trace cannot be produced by the operational semantics of h; every op-
erational trace of h is of the form (σ1 !2 σ2) where σ1 and σ2 are arbitrary
sequences of receives. Thus, 〈f >x> g〉 6= 〈f〉 >x> 〈g〉

Asymmetric Composition
Claim 3 is false independent of the note, as the following simple counterexample
shows. Let h = let(x) where x :∈ 0. The only operational rule that applies to
h is SUBST, which takes h to itself. This means that a trace of h can consist
only of receive events. By SUBST and LET, t = ([2/x] !2) ∈ 〈let(x)〉 and also
ε ∈ 〈0〉. Then, (([2/x] !2) where x :∈ ε) = (([2/x] !2) | ε) = {[2/x] !2}
which yields ([2/x] !2) ∈ (〈let(x)〉 where x :∈ 〈0〉). Clearly, t /∈ 〈h〉. Therefore,
〈f where x :∈ g〉 6= 〈f〉 where x :∈ 〈g〉

Dynamic Binding
Consider the defined expression E(x) , e. Kitchin et al. [9] do not impose any
constraint on e, so it may contain variables other than x. In this case, dynamic
binding can take place during the execution of a process. This invalidates a
bisimulation result in [9], namely that when x /∈ fv(g)

(f | g) where x :∈ h ∼ (f where x :∈ h) | g

Let E(x) , let(y), f1 = (0 | E(2)) where y :∈ let(1), f2 = (0 where y :∈
let(1)) | E(2). Then τ τ !1 is an execution of f1 but not of f2 because in any
execution of f2 a receive for y must precede the publication. The details of this
are left to the reader.

7

(SITEC) k fresh

∆, Γ ⊢ M (v)
Mk (v)
→ ?k

(SITECV) Γ (x) = v

∆,Γ ⊢ M (x)
[v/x]
→ M (v)

(SITER)

∆, Γ ⊢ ?k
k?v
→ let(v)

(LET)

∆, Γ ⊢ let(v)
!v
→ 0

(LETV) Γ (x) = v

∆,Γ ⊢ let(x)
[v/x]
→ let(v)

(SYM-L) ∆, Γ ⊢ f
a
→ f ′

∆, Γ ⊢ f | g
a
→ f ′ | g

(SYM-R) ∆, Γ ⊢ g
a
→ g′

∆, Γ ⊢ f | g
a
→ f | g′

(DEF) (Ei(x) , fi) ∈ ∆

∆, Γ ⊢ Ei(v)
τ
→ [v/x]fi

(DEFV) (Ei(x) , fi) ∈ ∆ Γ (x) = v

∆, Γ ⊢ Ei(x)
[v/x]
→ Ei(v)

(SEQ) ∆, Γ ⊢ f
a
→ f ′ P̄ (a)

∆, Γ ⊢ f >x> g
a
→ f ′ >x> g

(SEQ-P) ∆, Γ ⊢ f
!v
→ f ′

∆, Γ ⊢ f >x> g
τ
→ (f ′ >x> g) | [v/x]g

(ASYM-L) ∆, Γ ⊢ f
a
→ f ′ R̄(x, a)

∆, Γ ⊢ f where x :∈ g
a
→ f ′ where x :∈ g

(ASYM-R) ∆, Γ ⊢ g
a
→ g′ P̄ (a)

∆, Γ ⊢ f where x :∈ g
a
→ f where x :∈ g′

(ASYM-P) ∆, Γ ⊢ g
!v
→ g′

∆, Γ ⊢ f where x :∈ g
τ
→ [v/x]f

Fig. 4. Our operational semantics for Orc

Note: After the completion of this work, we contacted the authors of [9], who
suggested corrections to their definitions. In s >x> T , D is the sequence of
receive events in s1 for variables other than x. In t1 where x :∈ t2, add the
side-condition R̄(x, t1) to the first branch; the notes are no longer needed. Our
counterexamples do not apply to the changed definitions; however we did not
try to verify the adequacy of the fixed semantics.

Note that our counterexamples use processes where free and bound variables
have distinct names, but since any process can take any receive step the naming
conflict cannot be avoided in the traces.

4 New operational and trace semantics for Orc

4.1 Operational Semantics

Our operational semantics for Orc is shown in Fig. 4. Here is a summary of the
changes.

No dynamic binding. The syntax of the language is unchanged. However,
in a declaration Ei(x) , fi we demand that fv(fi) ⊆ {x}. Hence, no dynamic
binding can take place during process evaluation. This approach is also taken by
Wehrman et al. [15].

8

∆, Γ ⊢ let(x) where x :∈ (M(x) | let(x))
[“hi”/x]
→ by LET-VAR, SYM-R, ASYM-R

let(x) where x :∈ (M(x) | let(“hi”))
τ
→

let(“hi”)
by LET, SYM-R, ASYM-P

Fig. 5. Possible evaluation when (x, “hi”) ∈ Γ

Defined expressions are called by value. Since we do not know of any
Orc program where call-by-name functionality is absolutely necessary, we made
this change because it simplifies the technical treatment.
A process f can take a [v/x] step only when x is free in f . By thinking
of variables as channels, we say that f can receive only on a channel it knows
i.e. when x is free in f .

When x is not free in f a receive [v/x] would leave f unchanged, therefore
such receives can be harmlessly forbidden. Consequently, closed processes do not
take any receive steps throughout their execution.

The condition x ∈ fv(f) is necessary but not sufficient for a receive step, for
example the process 0 >y> let(x) is inert.
Addition of an environment Γ . Let f take a [v/x] step to f ′. This means
that if f is plugged in a process-context that can provide v for x, f can receive
v and behave like f ′ (as in Fig. 3 for M(x)).

We use environments to model process contexts. An environment is a partial
function from variables to values. The metavariable Γ ranges over environments.
With this formulation, M(x) can go to M(v) only when (x, v) is in Γ , and is inert
otherwise. Note that, unlike traditional environments in operational semantics,
Γ can be non-empty at the beginning of the evaluation of a process and it
remains unchanged throughout the evaluation. This is because Γ keeps track of
the free variables in a process, but local binding is handled by substitution (e.g.
rule SEQ-P).

By using Γ instead of a SUBST-like rule which can be applied to whole
processes only, we do not need to differentiate between receives and base events.

Event ::= BaseEvent [v/x]

So, the event ‘a’ in our rules refers to any event, not just to a base event. Also,
observe that in ASYM-L f cannot proceed with a receive for x. Its parts that
depend on x are blocked waiting for a publication from g. See Fig. 5 for a sample
evaluation using the new operational semantics.

4.2 Denotational Semantics

We now present our denotational semantics for Orc, which is based on complete
partial orders. The meaning of a process is a set of traces in the presence of
environments for the declarations Fenv and variables Env :

[[f]] : [Fenv → [Env → P]]

9

[[0]] = λϕ.λρ.{ε}
[[let(v)]] = λϕ.λρ.{!v}p

[[let(x)]] = λϕ.λρ.case ρ(x) of Absent ⇒{ε}
v ⇒{[v/x] !v}p

[[M (v)]] = λϕ.λρ.{Mk(v) k?w !w | k fresh , w ∈ Val}p

[[M (x)]] = λϕ.λρ.case ρ(x) of Absent ⇒{ε}
v ⇒{ [v/x] Mk(v) k?w !w | k fresh , w ∈ Val}p

[[?k]] = λϕ.λρ.{ k?w !w | w ∈ Val}p

[[Ei (v)]] = λϕ.λρ.{ τ t | t ∈ ϕi(v)}p

[[Ei (x)]] = λϕ.λρ.case ρ(x) of Absent ⇒{ε}
v ⇒{ [v/x] τ t | t ∈ ϕi(v)}p

[[h | g]] = λϕ.λρ. [[h]]ϕρ ‖ [[g]]ϕρ
[[h >x> g]] = λϕ.λρ.

S

s∈[[h]]ϕρ s ≫ λv.([[g]]ϕρ[x = v])\[v/x]

[[h where x :∈ g]] = λϕ.λρ. (
S

v∈Val
[[h]]ϕρ[x = v]) <x [[g]]ϕρ

Fig. 6. Trace Semantics of Orc

A trace is a (possibly empty) sequence of events. Unlike the previous trace
semantics, internal events appear in traces. Trace sets are prefix-closed and or-
dered by inclusion. They are also non-empty because the empty trace ε is a
trace of any process. Last, we consider traces of finite length only; an infinite
trace is represented by the set of all its finite prefixes.

Traces = Event ∗, a discrete CPO.
P = {S | S ⊆ Traces ∧ S 6= ∅ ∧ S is prefix-closed}
Val = the set of all values, a discrete CPO.
Var = the set of all variable names, a discrete CPO.
Env = [Var → (Val ∪ {Absent})]
NoRecv = {S | S ∈ P ∧ ∀t∈S, x ∈ Var . R̄(x, t)}
Fenv = ([Val → NoRecv])k

Consider a declaration (Ei(x) , fi). Since only x can be free in fi, the traces
of Ei(v) do not contain any receives. NoRecv is a CPO with bottom element
{ε} and Fenv inherits its order from NoRecv in the usual way. We do not need
names to refer to the declared processes, we can index them by the order of
declaration.

The definitions of the meaning functions can be found in Fig. 6. Juxtaposition
of traces means concatenation. Various auxiliary operators are defined in Fig. 7.
The operations t\a, t1 ‖ t2, tp and (t1 <x t2) are lifted to trace sets in the
obvious way.

We can easily establish the following properties of the meaning functions:

Theorem 1 (Prefix Closure of Trace Sets). For all f, ϕ, ρ, [[f]]ϕρ ∈ P

Theorem 2 (Continuity of Denotations). For all f , [[f]] is continuous.

Lemma 1 (Substitution). [[[v/x]f]]ϕρ = ([[f]]ϕρ[x = v])\[v/x]

10

Remove event ‘a’ from a trace:

t\a ,

8

>

<

>

:

ε t = ε

t′\a t = at′

a′ (t′\a) t = a′t′ and a 6= a′

Merge:

t1 ‖ t2 ,

8

>

<

>

:

{t1} t2 = ε

{t2} t1 = ε

a(t′1 ‖ t2) ∪ b(t1 ‖ t′2) t1 = at′1 and t2 = bt′2

Prefix-closure:

tp ,

(

{ε} t = ε

{ε, a} ∪ a t′p t = at′

Sequencing combinator:

s ≫ F =

(

{s} P̄ (s)

s1 τ ((s2 ≫ F) ‖F (v)) s ≡ s1!vs2 , P̄ (s1)

Asymmetric combinator:

t1 <x t2 =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

t1 ‖ t2 R̄(x, t1) , P̄ (t2)

t1 ‖ t21τ R̄(x, t1) , t2 ≡ t21!v t22 , P̄ (t21)

(t11 ‖ t21τ)(t12\[v/x]) t1 ≡ t11[v/x]t12 , R̄(x, t11) ,

t2 ≡ t21!v t22 , P̄ (t21)

{ε} otherwise

Empty environment ρ0:
ρ0(x) = Absent for all x

Fig. 7. Various Definitions

One might expect [[[v/x]f]]ϕρ to be equal to [[f]]ϕρ[x = v]. However, since in
the latter v is provided by the environment we have to remove [v/x] from f ’s
traces in order to equate it with [v/x]f .

The proofs of these and all subsequent theorems can be found in [13]. Finally,
we apply the usual fixed-point technique [16] to give the denotation of a set of
declarations ∆: we define an Fenv transformer ∆̂ by

∆̂ = λϕ.(λv.([[f1]]ϕρ0[x = v])\[v/x] × · · · × λv.([[fk]]ϕρ0[x = v])\[v/x])

∆̂ is continuous, so we define [[∆]] as its least fixed point

[[∆]] = fix(∆̂)

To prove the correctness of our semantics we need to show that the executions
of a process match its traces.

11

Theorem 3 (Adequacy).
If ρ = ρ0[x1 = v1] . . . [xm = vm], Γ = {(x1, v1), . . . , (xm, vm)} then

t ∈ [[f]][[∆]]ρ iff ∃f ′. ∆, Γ ⊢ f
t
→∗ f ′

The theorem is proved by induction on the length of t. It relies on the following
lemma, which is proved by structural induction on f .

Lemma 2. If ρ = ρ0[x1 = v1] . . . [xm = vm], Γ = {(x1, v1), . . . , (xm, vm)} then

a t ∈ [[f]][[∆]]ρ iff ∃f ′. ∆, Γ ⊢ f
a
→ f ′ and t ∈ [[f ′]][[∆]]ρ

Let’s look at an interesting property concerning the publications of a process
f . When a sub-process of f publishes, the publication is either masked as a τ and
sent to another sub-process (SEQ-P, ASYM-P), or it is observed by f ’s context.
Observable publications do not trigger other events of f . The next lemma shows
that there is no causality between a publication and the events that follow it in
a trace.

Lemma 3. If s1 !v s2 ∈ [[f]][[∆]]ρ then s1(!v ‖ s2) ⊆ [[f]][[∆]]ρ

4.3 Semantics insensitive to internal events

Any Orc process can be a building block of a larger process, e.g. IsPrime(N)
in (Print(x) where x :∈ (IsPrime(N) | RedditFeed(today))). In such situations,
the internal events of a process are not observable by its context, in the sense
that they do not entail communication between the process and the rest of the
system. Instead, τ events represent communication that takes place within the
process. Therefore, we would like to have a semantics insensitive to internal
events:

Definition 6. {|f |} , λϕ.λρ.[[f]]ϕρ\τ

One could also define {|f |} compositionally and independent of [[f]] and then
prove definition 6 as a theorem.

Obviously, [[f]] = [[g]] implies {|f |} = {|g|}. Therefore, this semantics is less
discriminating than the semantics in section 4.2. We can now prove the following
equivalence, which is false in our original trace semantics:

Lemma 4. For all f, ρ {|f |}{|∆|}ρ = {|f >x> let(x)|}{|∆|}ρ

5 Strong Bisimulation Congruences

In [9], Kitchin et al. state some useful equivalences between processes using
strong bisimulation [10]. However, some of these equivalences are invalid because
of dynamic binding in the declarations. Also, they do not show bisimulation to
be a congruence and do not investigate the relation between bisimulation and
trace equivalence. For our semantics, we define a family of strong bisimulation
relations indexed by ∆:

12

For any ∆ such that f, g, h are well-formed,

1. f | 0 ∼∆ f
2. f | g ∼∆ g | f
3. f | (g | h) ∼∆ (f | g) | h
4. (f | g) >x> h ∼∆ (f >x> h) | (g >x> h)
5. f >x> (g >y> h) ∼∆ (f >x> g) >y> h if x /∈ fv(h)
6. (f | g) where x :∈ h ∼∆ (f where x :∈ h) | g if x /∈ fv(g)
7. (f >y> g) where x :∈ h ∼∆ (f where x :∈ h) >y> g if x /∈ fv(g)
8. (f where x :∈ g) where y :∈ h ∼∆ (f where y :∈ h) where x :∈ g

if y /∈ fv(g) and x /∈ fv(h)

Fig. 8. Strongly Bisimilar Processes

Definition 7 (∆-bisimulation). Let ∆ be a set of declarations. Then, a binary
relation R on processes is a ∆-bisimulation iff

1. R is symmetric
2. for any (f, g) ∈ R and for any Γ if ∆, Γ ⊢ f

a
→ f ′ then

∃g′. ∆, Γ ⊢ g
a
→ g′ and (f ′, g′) ∈ R

Definition 8 (Largest Strong Bisimulation). ∼∆ ,
⋃

{R | R is a ∆-bisim.}

For different declaration sets we get different bisimulations. For example,

E1 (v) ∼∆1
(let(v) >x> M (x)) for ∆1 = {E1 (x) , M (x)}

but
E1 (v) 6∼∆2

(let(v) >x> M (x)) for ∆2 = {E1 (x) , 0}

We can prove the equivalences in [9] using our new operational semantics
(see Fig 8). Naturally, symmetric composition is commutative and associative
(equiv. 2, 3). Symmetric composition can be distributed over sequencing be-
cause symmetrically composed processes do not communicate with each other
(equiv. 4). Equivalence 6 verifies our intuition that a (where x)-context does
not influence a process g if x is not free in g.

Lemma 5. For any ∆, ∼∆ is a congruence relation

The proof proceeds by induction on contexts. By lemma 5, the equivalences
of Fig. 8 become congruences automatically. Congruence is important in a con-
current setting, because we can replace a process in a system with a congruent
process without affecting the behavior of the system. The following example
illustrates congruences 1, 2 and 6 when x /∈ fv(g)

g where x :∈ h ∼∆ (0 | g) where x :∈ h ∼∆ (0 where x :∈ h) | g

Definition 7 is universally quantified over Γ . This helps establish a connection
between strong bisimulation and trace equivalence:

13

Theorem 4. If f ∼∆ g then for any ρ, [[f]][[∆]]ρ = [[g]][[∆]]ρ

As one might expect, trace equivalence does not imply bisimilarity:
Let f = let(y) where y :∈ (let(1) >x> (let(2) | let(3)))
and g = (let(y) where y :∈ let(x)) where x :∈ (let(2) | let(3)) .
For any ∆, ρ we get [[f]][[∆]]ρ = [[g]][[∆]]ρ = {τ τ !2, τ τ !3}p .
Let R be a ∆-bisimulation and (f, g) ∈ R. Then, g must be able to match the
steps of f .
∆, Γ ⊢ f

τ
→ let(y) where y :∈ ((0 >x> (let(2) | let(3))) | (let(2) | let(3))) ≡ f ′

The possible τ transitions of g are
∆, Γ ⊢ g

τ
→ let(y) where y :∈ let(2) ≡ g′

∆, Γ ⊢ g
τ
→ let(y) where y :∈ let(3) ≡ g′′

It should be obvious that (f ′, g′) /∈ R and (f ′, g′′) /∈ R because g′, g′′ have lost
one publishing option while f ′ maintains both. Formally, by the contrapositive
of theorem 4 we get f ′ 6∼∆ g′ and f ′ 6∼∆ g′′ because their trace sets differ.
Assuming that R exists leads to a contradiction, therefore f 6∼∆ g.

We now discuss a limitation of our semantics. Let f1 = let(y) >x> let(x), f2 =
let(y) >x> let(y), Γ = {(y, 42)}. These processes exhibit similar behaviors in Γ ,
they can receive 42 and publish it. However, they are not bisimilar. The reason
is that the right-hand-side of f1 will receive 42 from the left-hand-side, whereas
the right-hand-side of f2 will receive 42 from the context. We know that this
difference is unimportant because the value published by both will always be
the same, but we cannot equate such processes using our operational semantics.
A possible solution would be to propagate the receives with rules like:

(SYM-L′)
∆ ⊢ f

[v/x]
→ f ′

∆ ⊢ f | g
[v/x]
→ f ′ | [v/x]g

We have not verified the correctness of this semantics. We opted for the sim-
pler semantics and as a trade-off lost the ability to equate a small class of
Orc processes.

6 Related Work

Task orchestration is related to various industrial standards for business trans-
actions (e.g. WSBPEL [1], WSCDL [8]). Academics have also looked at other
aspects of business transactions, such as compensations (see [2–5]). A formal
specification for a subset of WSBPEL has been proposed as well [14].

The semantics in [9] and this paper are asynchronous. Misra et al. [11] aug-
ment the operational semantics of [9] with a synchronous semantics. This is an
operational semantics that gives priority to internal events, thus allowing the
possibility for processes to synchronize on external interactions. However, they
do not give a denotational semantics, nor do they state any theorems. Hoare et
al. [7] present a tree-based denotational semantics for Orc, and sketch an oper-
ational semantics based on the same trees. They prove a number of interesting
denotational equivalences, but do not state any theorem relating the operational

14

and denotational semantics. Wehrman et al. [15] have developed a timed seman-
tics for Orc, but in their semantics the observable events are quite different;
except publications, all other events are internal.

7 Conclusions

In this paper we presented operational and denotational semantics for Orc, a
language for task orchestration. We proved an adequacy theorem, showing that
the operational transitions of a process coincide with its denotational traces.
This is not the case in [9], as demonstrated in section 3. We also discussed
strong bisimulation in Orc and showed it to be a congruence. Finally, we showed
that in Orc strong bisimulation is more discriminating than trace equivalence,
which is also the case in other process calculi like CCS and the π-calculus.

References

1. Alexandre Alves, Assaf Arkin, et al. Web Services Business Process Execu-
tion Language version 2.0. Technical report, April 2007. http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.pdf.

2. Roberto Bruni, Hernán C. Melgratti, and Ugo Montanari. Theoretical Foundations
for Compensations in Flow Composition Languages. In Jens Palsberg and Mart́ın
Abadi, editors, Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 209–220. ACM, 2005.

3. Michael J. Butler and Carla Ferreira. A Process Compensation Language. In
Wolfgang Grieskamp, Thomas Santen, and Bill Stoddart, editors, Integrated For-
mal Methods, Second International Conference, volume 1945 of Lecture Notes in
Computer Science, pages 61–76. Springer, 2000.

4. Michael J. Butler and Carla Ferreira. An Operational Semantics for StAC, a
Language for Modelling Long-Running Business Transactions. In Rocco De Nicola,
Gian Luigi Ferrari, and Greg Meredith, editors, COORDINATION, volume 2949
of Lecture Notes in Computer Science, pages 87–104. Springer, 2004.

5. Michael J. Butler, C. A. R. Hoare, and Carla Ferreira. A Trace Semantics for Long-
Running Transactions. In Ali E. Abdallah, Cliff B. Jones, and Jeff W. Sanders,
editors, Communicating Sequential Processes: The First 25 Years, volume 3525 of
Lecture Notes in Computer Science, pages 133–150. Springer, 2004.

6. William R. Cook, Sourabh Patwardhan, and Jayadev Misra. Workflow Patterns
in Orc. In Paolo Ciancarini and Herbert Wiklicky, editors, COORDINATION,
volume 4038 of Lecture Notes in Computer Science, pages 82–96. Springer, 2006.

7. C. A. R. Hoare, Galen Menzel, and Jayadev Misra. A Tree Semantics for an
Orchestration Language, August 2004. Lecture Notes for NATO summer school,
Marktoberdorf.

8. Nickolas Kavantzas, David Burdett, et al. Web Services Choreogra-
phy Description Language version 1.0. Technical report, November 2005.
http://www.w3.org/TR/ws-cdl-10/.

9. David Kitchin, William R. Cook, and Jayadev Misra. A Language for Task Or-
chestration and its Semantic Properties. In Christel Baier and Holger Hermanns,
editors, CONCUR, volume 4137 of Lecture Notes in Computer Science, pages 477–
491. Springer, 2006.

15

10. Robin Milner. Operational and Algebraic Semantics of Concurrent Processes. In
Jan van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume B:
Formal Models and Semantics (B), pages 1201–1242. MIT Press/Elsevier, 1990.

11. Jayadev Misra and William R. Cook. Computation Orchestration: A Basis for
Wide-Area Computing. Software and Systems Modeling, 6(1):83–110, 2007.

12. Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kiepuszewski, and
Alistair P. Barros. Workflow Patterns. Distributed and Parallel Databases, 14(1):5–
51, 2003.

13. Dimitrios Vardoulakis and Mitchell Wand. A Compositional Trace Semantics
for Orc. Technical report, Northeastern University, College of Computer and
Information Science, March 2008. http://www.ccs.neu.edu/∼dimvar/papers/orc-
coord.pdf.

14. Mirko Viroli. Towards a Formal Foundation to Orchestration Languages. Electr.
Notes Theor. Comput. Sci., 105:51–71, 2004.

15. Ian Wehrman, David Kitchin, William R. Cook, and Jayadev Misra. A Timed
Semantics of Orc. unpublished.

16. Glynn Winskel. The Formal Semantics of Programming Languages. MIT Press,
Cambridge, MA, 1993.

16

A Various Definitions

Definition 9. Concatenate a trace and a trace-set
s T , { s t | t ∈ T }

Definition 10. Concatenate trace-sets
T1 T2 , { t1t2 | t1 ∈ T1, t2 ∈ T2}

Definition 11. Remove event ‘a’ from a trace

t\a ,











ε t = ε

t′\a t = at′

a′ t′\a t = a′t′ and a 6= a′

Definition 12. Remove event from a trace-set
T \a , { t\a | t ∈ T }

Definition 13. Merge for traces

t1 ‖ t2 ,











{t1} t2 = ε

{t2} t1 = ε

a(t′1 ‖ t2) ∪ b(t1 ‖ t′2) t1 = at′1 and t2 = bt′2

Definition 14. Merge for trace-sets
T1 ‖T2 ,

⋃

t1∈T1,t2∈T2
t1 ‖ t2

Definition 15. Prefixing

tp ,

{

{ε} t = ε

{ε, a} ∪ a t′p t = at′

Definition 16. Prefixing for trace-sets
Sp ,

⋃

s∈S sp

Definition 17. Extend-env: Env × (Var × Val) → Env
ρ[x = u] , (ρ − {(x, w)}) ∪ {(x, u)} ,where ρ(x) = w

Definition 18. Alternate merge

t1 ‖̆ t2 ,











{t1} t2 = ε

{t2} t1 = ε

(t′1 ‖̆ t2)a ∪ (t1 ‖̆ t′2)b t1 = t′1a and t2 = t′2b

Definition 19. Alternate merge for trace-sets

T1 ‖̆T2 ,
⋃

t1∈T1,t2∈T2
t1 ‖̆ t2

Note 6 P̄ (t) means that trace t contains no publications. R̄(x, t) means that
trace t contains no receive events for x.

17

Sequencing combinator:

s ≫ F =

{

{s} P̄ (s)

s1 τ ((s2 ≫ F) ‖F (v)) s ≡ s1!vs2 , P̄ (s1)

Asymmetric combinator:

t1 <x t2 =































t1 ‖ t2 R̄(x, t1) , P̄ (t2)

t1 ‖ t21τ R̄(x, t1) , t2 ≡ t21!v t22 , P̄ (t21)

(t11 ‖ t21τ)(t12\[v/x]) t1 ≡ t11[v/x]t12 , R̄(x, t11) ,

t2 ≡ t21!v t22 , P̄ (t21)

∅ otherwise

Asymmetric combinator for trace-sets:
T1 <x T2 =

⋃

t1∈T1,t2∈T2
t1 <x t2

Definition 20. ρ−x(y) =

{

Absent y = x

ρ(y) y 6= x

Note 7 ρ0 is an environment such that ∀x.ρ0(x) = Absent

Note 8 a∈̂ t means that trace t contains event a. a 6∈̂ t means that trace t does
not contain event a.

Definition 21. Ordering of pairs of integers
(i, j) ⊏ (k, l) when (i < k) ∨ (i = k ∧ j < l)

18

B Continuity Proofs

Lemma 9. The union of prefix-closed sets is prefix-closed

Lemma 10. P is a CPO under inclusion

Proof. Let X ⊆ P be directed and B =
⋃

S∈X S. Then, B is prefix-closed by
Lemma 9 and is an ub of X . Let B′ be an ub of X
=⇒ ∀S ∈ X.S ⊆ B′

=⇒
⋃

S∈X S ⊆ B′

=⇒
⊔

X = B ⊓⊔

Lemma 11. Merge : Pow (Traces)×Pow (Traces) → Pow (Traces) is continuous

Proof. It suffices to show that it is continuous in each argument separately. Let
X ⊆ Pow (Traces) be directed, T ∈ Pow (Traces)
(
⊔

X) ‖T = (
⋃

S∈X S) ‖T

,
⋃

s∈(
S

S∈X S)

⋃

t∈T s ‖ t

=
⋃

S∈X

⋃

s∈S

⋃

t∈T s ‖ t

,
⋃

S∈X(S ‖T)
=

⊔

S∈X(S ‖T)
The proof is similar for the right argument ⊓⊔

Lemma 12. Extend-env is continuous

Note 13 [Val → NoRecv] is a CPO and if X ⊆ [Val → NoRecv] is directed,
then

⊔

X = λv.
⊔

f∈X f(v) = λv.
⋃

f∈X f(v)

Note 14 Fenv is a CPO and if X ⊆ Fenv is directed, then
⊔

X = (λv.
⋃

ϕ∈X ϕ1(v)) × · · · × (λv.
⋃

ϕ∈X ϕk(v))

Note 15 Similar results to Note 13 hold for [Val → P], [Val → Pow (Traces)]

Lemma 16. ≫: Traces × [Val → Pow (Traces)] → Pow (Traces) is continuous

Proof. Show continuity in each argument separately. Over the left argument it
is trivial, since Traces is a discrete CPO.
Over the right argument:
Let X ⊆ [Val → Pow(Traces)] be directed and s ∈ Traces
Proceed by induction on the number of publications in s
If P̄ (s),
=⇒ s ≫

⊔

X = {s} =
⊔

F∈X(s ≫ F)
If s ≡ s1!vs2 and P̄ (s1),
s ≫

⊔

X = s1τ ((s2 ≫
⊔

X) ‖
⋃

F∈X F (v)) by Note 15
= s1τ ((

⋃

F∈X s2 ≫ F) ‖
⋃

F∈X F (v)) by IH
= s1τ

⋃

F∈X((s2 ≫ F) ‖F (v)) by Lemma 11
=

⋃

F∈X s1τ ((s2 ≫ F) ‖F (v))
=

⊔

F∈X s ≫ F ⊓⊔

19

Corollary 1. Let S ∈ Pow(Traces) and F ∈ [Val → Pow (Traces)]. Then,
⋃

s∈S s ≫ F is continuous

Lemma 17. Prefixing : Pow (Traces) → P is continuous

Lemma 18. Removing an event from a trace-set is a continuous operation.

Note 19 <x: Traces × Traces → Pow(Traces) is continuous

Corollary 2. <x: Pow (Traces) × Pow (Traces) → Pow (Traces)
is continuous

Note 20 All the functions proved to be continuous are also monotonic

Theorem 5. For all f , [[f]] is continuous

Proof. We know that [[f]] ∈ [Fenv → [Env → P]]. We will show the continuity
of [(Fenv × Env) → P] and this is enough because currying is a continuous
operation.
By structural induction on f .
Let Xϕ, Xρ be directed subsets of Fenv and Env respectively.

a) let(v)
=⇒ [[f]](

⊔

Xϕ)(
⊔

Xρ) = {!v}p =
⊔

ϕ∈Xϕ

⊔

ρ∈Xρ
[[let(v)]]ϕρ

b) 0 or M(v) or ?k
as above

c) let(x)
[[let(x)]](

⊔

Xϕ)(
⊔

Xρ) =
⊔

ϕ∈Xϕ
[[let(x)]]ϕ(

⊔

Xρ) (c1)
Cases on Xρ:

– If ∃ρ ∈Xρ. ρ(x) = Absent then ∀ρ ∈Xρ. ρ(x) = Absent because Xρ is
directed.
(c1) ⇒

⊔

ϕ∈Xϕ
{ε} =

⊔

ϕ∈Xϕ

⊔

ρ∈Xρ
[[let(x)]]ϕρ

– If ∃ρ∈Xρ. ρ(x) = v then ∀ρ∈Xρ. ρ(x) = v because Xρ is directed.
(c1) ⇒

⊔

ϕ∈Xϕ
{[v/x] !v}p =

⊔

ϕ∈Xϕ

⊔

ρ∈Xρ
[[let(x)]]ϕρ

d) M(x)
as above

e) Ei(v)
[[Ei(v)]](

⊔

Xϕ)(
⊔

Xρ) =
=

⊔

ρ∈Xρ
[[Ei(v)]](

⊔

Xϕ)ρ

=
⊔

ρ∈Xρ
{ τ t | t ∈ (

⊔

Xϕ)i(v)}
p

=
⊔

ρ∈Xρ
{ τ t | t ∈

⋃

ϕ∈Xϕ
ϕi(v)}

p
by Note 15

=
⊔

ρ∈Xρ

⋃

ϕ∈Xϕ
{ τ t | t ∈ ϕi(v)}p by Lemma 17

=
⊔

ϕ∈Xϕ

⊔

ρ∈Xρ
[[Ei(v)]]ϕρ

f) Ei(x)
Cases on Xρ and similar to the previous case

20

g) h | g
[[h | g]](

⊔

Xϕ)(
⊔

Xρ) =
= [[h]](

⊔

Xϕ)(
⊔

Xρ) ‖ [[g]](
⊔

Xϕ)(
⊔

Xρ)
= (

⊔

ϕ∈Xϕ

⊔

ρ∈Xρ
[[h]]ϕρ) ‖ (

⊔

ϕ∈Xϕ

⊔

ρ∈Xρ
[[g]]ϕρ) by IH

=
⊔

ϕ∈Xϕ

⊔

ρ∈Xρ
([[h]]ϕρ ‖ [[g]]ϕρ) by Lemma 11

=
⊔

ϕ∈Xϕ

⊔

ρ∈Xρ
[[h | g]]ϕρ

h) h >x> g
[[h >x> g]](

⊔

Xϕ)(
⊔

Xρ) =
=

⋃

s∈[[h]](
F

Xϕ)(
F

Xρ) s ≫ λv.([[g]](
⊔

Xϕ)(
⊔

Xρ)[x = v])\[v/x] (h1)
But by IH,
[[h]](

⊔

Xϕ)(
⊔

Xρ) =
⊔

ϕ∈Xϕ

⊔

ρ∈Xρ
[[h]]ϕρ (h2)

Also, by IH and Lemmas 12, 18 we get
λv.([[g]](

⊔

Xϕ)(
⊔

Xρ)[x = v])\[v/x] =
= λv.

⊔

ϕ∈Xϕ

⊔

ρ∈Xρ
([[g]]ϕρ[x = v])\[v/x]

=
⊔

ϕ∈Xϕ

⊔

ρ∈Xρ
λv.([[g]]ϕρ[x = v])\[v/x] by Note 15

Using the above and h2 and Corollary 1, we get the desired result by h1.
i) h where x :∈ g

By Lemma 12 and IH,
[[h]](

⊔

Xϕ)(
⊔

Xρ)[x = v] =
⊔

ϕ∈Xϕ

⊔

ρ∈Xρ
[[h]]ϕρ[x = v]

=⇒
⋃

v∈Val

⊔

ϕ∈Xϕ

⊔

ρ∈Xρ
[[h]]ϕρ[x = v] =

=
⊔

ϕ∈Xϕ

⊔

ρ∈Xρ

⋃

v∈Val
[[h]]ϕρ[x = v]

By this, IH for g and Corollary 2 we get the result ⊓⊔

21

C Prefix-Closure Proofs

Lemma 21. t1 ‖ t2 = t1 ‖̆ t2

Proof. By induction on |t1| + |t2|.
The only interesting case is when |t1| ≥ 2 and |t2| ≥ 2 i.e. t1 = a1t

′
1a2 and

t2 = b1t
′
2b2

=⇒ t1 ‖ t2 = a1(t
′
1a2 ‖ t2) ∪ b1(t1 ‖ t′2b2)

= a1(t
′
1a2 ‖̆ t2) ∪ b1(t1 ‖̆ t′2b2) by IH

= a1((t
′
1 ‖̆ t2)a2 ∪ (t′1a2 ‖̆ b1t

′
2)b2) ∪ b1((a1t

′
1 ‖̆ t′2b2)a2 ∪ (t1 ‖̆ t′2)b2)

= a1(t
′
1 ‖̆ t2)a2 ∪ a1(t

′
1a2 ‖̆ b1t

′
2)b2 ∪ b1(a1t

′
1 ‖̆ t′2b2)a2 ∪ b1(t1 ‖̆ t′2)b2

= (a1(t
′
1 ‖̆ t2) ∪ b1(a1t

′
1 ‖̆ t′2b2))a2 ∪ (a1(t

′
1a2 ‖̆ b1t

′
2) ∪ b1(t1 ‖̆ t′2))b2

= (a1(t
′
1 ‖ t2) ∪ b1(a1t

′
1 ‖ t′2b2))a2 ∪ (a1(t

′
1a2 ‖ b1t

′
2) ∪ b1(t1 ‖ t′2))b2 by IH

= (a1t
′
1 ‖ t2)a2 ∪ (t1 ‖ b1t

′
2)b2

= (a1t
′
1 ‖̆ t2)a2 ∪ (t1 ‖̆ b1t

′
2)b2 by IH

= t1 ‖̆ t2 ⊓⊔

By this lemma, we can use the operators ‖ and ‖̆ interchangeably.

Lemma 22. T1, T2 ∈ P implies T1 ‖T2 ∈ P

Proof. By Lemma 21, suffices to show that T1 ‖̆T2 ∈ P , i.e. suffices to show that

for all t ∈ T1 ‖̆T2, tp ⊆ T1 ‖̆T2

By induction on |t|

Since t ∈ T1 ‖̆T2, then ∃t1∈T1, t2∈T2. t ∈ t1 ‖̆ t2 (1)
The only interesting case is when |t| ≥ 2 and t1 = t′1a and t2 = t′2b

=⇒ t ∈ ((t′1 ‖̆ t2)a ∪ (t1 ‖̆ t′2)b)

=⇒ tp ⊆ ((t′1 ‖̆ t2)a ∪ (t1 ‖̆ t′2)b)p

=⇒ tp ⊆ ((t′1 ‖̆ t2)p ∪ (t′1 ‖̆ t2)a ∪ (t1 ‖̆ t′2)p ∪ (t1 ‖̆ t′2)b) (2)
But T1 ∈ P ⇒ t′1 ∈ T1 and T2 ∈ P ⇒ t′2 ∈ T2

=⇒ by IH, (t′1 ‖̆ t2)p ⊆ T1 ‖̆T2 and (t1 ‖̆ t′2)p ⊆ T1 ‖̆T2

=⇒ by 2, suffices to show that ((t′1 ‖̆ t2)a ∪ (t1 ‖̆ t′2)b) ⊆ T1 ‖̆T2

i.e. that t1 ‖̆ t2 ⊆ T1 ‖̆T2 which holds by 1 ⊓⊔

Lemma 23. If F ∈ [Val → P] and s ∈ Traces, then (
⋃

s′∈sp
s′ ≫ F) ∈ P

Proof. By induction on the number of publications in s.
If no publications in s,
=⇒

⋃

s′∈sp
s′ ≫ F =

⋃

s′∈sp
{s′} = sp ∈ P

If s = s1!vs2 and no publications in s1,
=⇒

⋃

s′∈sp
s′ ≫ F = (

⋃

s′∈(s1)p
s′ ≫ F) ∪ (s1!v ≫ F) ∪ (

⋃

s′∈s1!v(s2)p
s′ ≫ F)

= (s1)p ∪ {s1τ} ∪ s1τ((
⋃

s′∈(s2)p
s′ ≫ F) ‖F (v))

= {s1τ}p ∪ s1τ((
⋃

s′∈(s2)p
s′ ≫ F) ‖F (v))

=⇒ suffices to show that ((
⋃

s′∈(s2)p
s′ ≫ F) ‖F (v)) ∈ P

which, by Lemma 22, follows by (
⋃

s′∈(s2)p
s′ ≫ F) ∈ P and F (v) ∈ P , which

holds by IH for s2

22

Corollary 3. If T ∈ P and F ∈ [Val → P], then (
⋃

s∈T s ≫ F) ∈ P ⊓⊔

Lemma 24. T1, T2 ∈ P implies T1 <x T2 ∈ P

Proof. If t ∈ T1 <x T2 then ∃t1∈T1, t2∈T2. t ∈ t1 <x t2
We must show that tp ⊆ T1 <x T2.
Cases depending on which branch of the definition of <x was used

a) t ∈ t1 ‖ t2, R̄(x, t1), P̄ (t2) (1)
=⇒ t ∈

⋃

t′
1
∈(t1)p,t′

2
∈(t2)p

t′1 ‖ t′2 = (t1)p ‖ (t2)p by Note 20

=⇒ tp ⊆ ((t1)p ‖ (t2)p)p = (t1)p ‖ (t2)p by Lemma 22
By 1, (t1)p <x (t2)p = (t1)p ‖ (t2)p
=⇒ tp ⊆ (t1)p <x (t2)p
=⇒ tp ⊆ T1 <x T2 by Note 20

b) t ∈ t1 ‖ t21τ , R̄(x, t1), t2 = t21!v t22, P̄ (t21)
=⇒ t ∈ (t1)p ‖ (t21τ)p by Note 20
=⇒ tp ⊆ ((t1)p ‖ (t21τ)p)p = (t1)p ‖ (t21τ)p by Lemma 22
=⇒ tp ⊆ ((t1)p ‖ (t21)p) ∪ ((t1)p ‖ {t21τ})
=⇒ tp ⊆ ((t1)p <x (t21)p) ∪ ((t1)p <x {t21!v})
=⇒ tp ⊆ (t1)p <x (t21!v)p
=⇒ tp ⊆ T1 <x T2 by Note 20

c) t ∈ (t11 ‖ t21τ)(t12\[v/x]),
t1 = t11[v/x]t12, R̄(x, t11), t2 = t21!v t22, P̄ (t21)
=⇒ tp ∈ (t11 ‖ t21τ)p ∪ (t11 ‖ t21τ)(t12\[v/x])p
=⇒ tp ∈ ({t11}p ‖ {t21τ}p)p ∪ (t11 ‖ t21τ)(t12\[v/x])p by Note 20
=⇒ tp ∈ ({t11}p ‖ {t21τ}p) ∪ (t11 ‖ t21τ)(t12\[v/x])p by Lemma 22
By the previous case, this can be written
=⇒ tp ∈ ({t11}p <x {t21!v}p) ∪ (t11[v/x]{t12}p <x {t21!v})
=⇒ tp ∈ ({t11}p <x {t21!v}p) ∪ (t11[v/x]{t12}p <x {t21!v}p) by Note 20
=⇒ tp ⊆ {t1}p <x {t21!v}p

=⇒ tp ⊆ T1 <x T2 by Note 20 ⊓⊔

Theorem 6. For all f , [[f]]ϕρ ∈ P

Proof. By structural induction on f , using Lemmas 22, 24 and Corollary 3 ⊓⊔

23

D Denotational Lemmas

Lemma 25. Let t ∈ [[f]]ϕρ
Then, [v/x]∈̂ t implies ρ(x) = v and x ∈ fv(f)

Proof. By structural induction on f . The interesting cases are:

a) f ≡ let(x)
Clearly, x ∈ fv(f).
Also, [v/x]∈̂ t implies t ∈ {[v/x] !v}p

=⇒ ρ(x) = v
b) f ≡ Ei(v)

There are no receives in the traces of ϕi(v) so this case is vacuously true.
c) f ≡ h | g

t ∈ [[h | g]]ϕρ
=⇒ ∃ t1 ∈ [[h]]ϕρ, t2 ∈ [[g]]ϕρ. t ∈ t1 ‖ t2
Therefore, either [v/x]∈̂ t1 or [v/x]∈̂ t2
• [v/x]∈̂ t1

=⇒ ρ(x) = v, x ∈ fv(h) by IH for h
=⇒ x ∈ fv(f)

• [v/x]∈̂ t2 similarly
d) f ≡ h >y> g, x 6= y

t ∈ [[h >y> g]]ϕρ
=⇒ ∃ s ∈ [[h]]ϕρ. t ∈ s ≫ λw.([[g]]ϕρ[y = w])\[w/y]
• [v/x] is an event of s

=⇒ ρ(x) = v, x ∈ fv(h) by IH for h
=⇒ x ∈ fv(f)

• [v/x] comes from the traces of ([[g]]ϕρ[y = w])\[w/y] for some w
=⇒ x ∈ fv(g), ρ[y = w](x) = v by IH for g
=⇒ x ∈ fv(f), ρ(x) = v

Similarly if f is h >x> g ⊓⊔

Corollary 4. If t ∈ [[f]]ϕρ, [v/x]∈̂ t and v 6= w then [w/x] 6∈̂ t

Proof. [v/x]∈̂ t
=⇒ ρ(x) = v by Lemma 25
=⇒ ρ(x) 6= w
=⇒ [w/x] 6∈̂ t by the contrapositive of Lemma 25 ⊓⊔

Lemma 26. Let t ∈ [[f]]ϕρ.

Then, R̄(x, t) implies t ∈ [[f]]ϕρ′ where ρ′(y) =

{

ρ(y) x 6= y

anything x = y

Proof. By structural induction on f . The interesting cases are:

a) f ≡ let(x)
R̄(x, t) ⇒ t = ε ⇒ t ∈ [[f]]ϕρ′

24

b) f ≡ [[h | g]]ϕρ
=⇒ ∃ t1 ∈ [[h]]ϕρ, t2 ∈ [[g]]ϕρ. t ∈ t1 ‖ t2
We know R̄(x, t)
=⇒ R̄(x, t1), R̄(x, t2)
=⇒ t1 ∈ [[h]]ϕρ′, t2 ∈ [[g]]ϕρ′ by IH for h, g
=⇒ t ∈ [[h | g]]ϕρ′

c) f ≡ h where x :∈ g
t ∈ [[h where x :∈ g]]ϕρ
=⇒ ∃ t1 ∈

⋃

w∈Val
[[h]]ϕρ[x = w], t2 ∈ [[g]]ϕρ. t ∈ t1 <x t2

We must proceed by cases depending on which branch of the definition of
<x was used. We examine only one case, the others are similar.
Suppose t1 = t11[v/x]t12, R̄(x, t11), t2 = t21!v t22, P̄ (t21)
=⇒ t ∈ (t11 ‖ t21τ)(t12\[v/x]) (c1)
=⇒ t ∈ t1 <x t′2 where t′2 = t21!v
It suffices to show that that t1 ∈

⋃

w∈Val
[[h]]ϕρ′[x = w], t′2 ∈ [[g]]ϕρ′

By Corollary 4, [v′/x] 6∈̂ t1 when v 6= v′

Then, by c1, R̄(x, t) implies R̄(x, t21)
=⇒ R̄(x, t′2) (c2)
But by Theorem 6, t′2 ∈ [[g]]ϕρ
=⇒ t′2 ∈ [[g]]ϕρ′ by c2 and IH for g
Also, by Lemma 25 t1 ∈ [[h]]ϕρ[x = v]
=⇒ t1 ∈ [[h]]ϕρ′[x = v]
=⇒ t1 ∈

⋃

w∈Val
[[h]]ϕρ′[x = w]

Similarly when f is (h where y :∈ g) and x 6= y ⊓⊔

Corollary 5 (Weakening).
If x /∈ fv(f) then [[f]]ϕρ = [[f]]ϕρ[x = v] for any v

Proof. Let t ∈ [[f]]ϕρ and x /∈ fv(f)
=⇒ R̄(x, t) by the contrapositive of Lemma 25
=⇒ t ∈ [[f]]ϕρ[x = v] for any v by Lemma 26
=⇒ [[f]]ϕρ ⊆ [[f]]ϕρ[x = v]
Similarly, [[f]]ϕρ[x = v] ⊆ [[f]]ϕρ ⊓⊔

Corollary 6. [[f]]ϕρ−x ⊆ [[f]]ϕρ[x = v] for any v

Proof. t ∈ [[f]]ϕρ−x

=⇒ R̄(x, t) by the contrapositive of Lemma 25
=⇒ t ∈ [[f]]ϕρ[x = v] for any v by Lemma 26
=⇒ [[f]]ϕρ−x ⊆ [[f]]ϕρ[x = v] ⊓⊔

Lemma 27. (t1 ‖ t2)\a = t1\a ‖ t2\a

Proof. By induction on |t1| + |t2|
The interesting case is when |t1| + |t2| ≥ 2 and t1 = bt′1, t2 = ct′2
Then, (t1 ‖ t2)\a = (b(t′1 ‖ t2) ∪ c(t1 ‖ t′2))\a
= (b(t′1 ‖ t2))\a ∪ (c(t1 ‖ t′2))\a
If b 6= a and c 6= a the above becomes

25

= b(t′1 ‖ t2)\a ∪ c(t1 ‖ t′2)\a
= b(t′1\a ‖ t2\a) ∪ c(t1\a ‖ t′2\a) by IH
= t1\a ‖ t2\a
Similarly when b and/or c is equal to a ⊓⊔

Corollary 7. (T1 ‖T2)\a = T1\a ‖T2\a ⊓⊔

Lemma 28. Let s ∈ Traces, x ∈ Var, v ∈ Val and F : Val → Pow (Traces).
Then, (s ≫ F)\[v/x] = s\[v/x] ≫ λw.F (w)\[v/x]

Proof. By induction on the number of publications in s
If P̄ (s) then (s ≫ F)\[v/x] = {s}\[v/x] = s\[v/x] ≫ λw.F (w)\[v/x]
If s = s1!us2 and P̄ (s1) then
(s ≫ F)\[v/x] = (s1τ)\[v/x]((s2 ≫ F) ‖F (u))\[v/x]
= (s1τ)\[v/x]((s2 ≫ F)\[v/x] ‖F (u)\[v/x]) by Corollary 7
= (s1τ)\[v/x]((s2\[v/x] ≫ λw.F (w)\[v/x]) ‖F (u)\[v/x]) by IH for s2

= (s1!us2)\[v/x] ≫ λw.F (w)\[v/x]
= s\[v/x] ≫ λw.F (w)\[v/x] ⊓⊔

Lemma 29. (t1 <y t2)\[v/x] = t1\[v/x] <y t2\[v/x], when y 6= x and
(t1 <x t2)\[v/x] = t1 <x t2\[v/x]

Proof. Assume a well-formedness constraint for t1, t2 similar to Corollary 4.
Cases depending on which branch of the definition of <x was used:

a) R̄(y, t1), P̄ (t2), t1 <y t2 = t1 ‖ t2
=⇒ holds by Lemma 27

b) R̄(y, t1), t2 = t21!w t22, P̄ (t21) t1 <y t2 = t1 ‖ t21 τ
=⇒ holds by Lemma 27

c) t1 = t11[w/y] t12, R̄(y, t11), t2 = t21!w t22, P̄ (t21),
t1 <y t2 = (t11 ‖ t21 τ)(t12\[w/y]) (c1)
When x 6= y, by c1 ⇒ ((t11 ‖ t21 τ)(t12\[w/y]))\[v/x]
= (t11 ‖ t21 τ)\[v/x] (t12\[w/y])\[v/x]
= (t11\[v/x] ‖ (t21 τ)\[v/x]) (t12\[w/y])\[v/x] by Corollary 7
= t1\[v/x] <y t2\[v/x]
When x = y, by c1 ⇒ ((t11 ‖ t21 τ)(t12\[w/x]))\[v/x]
= (t11 ‖ t21 τ)\[v/x] (t12\[w/x])\[v/x] (c2)
By the well-formedness constraint, [v/x] 6∈̂ t12 when v 6= w,
therefore (t12\[w/x])\[v/x] = t12\[w/x]
(c2) ⇒ (t11 ‖ (t21 τ)\[v/x]) (t12\[w/x])
= t1 <x t2\[v/x] ⊓⊔

Lemma 30 (Substitution). [[[v/x]f]]ϕρ = ([[f]]ϕρ[x = v])\[v/x]

Proof. By structural induction on f .

a) f is let(x) or let(v) or M (x) . . .
by inspection of the trace definitions

26

b) f ≡ h | g
[[[v/x]h | [v/x]g]]ϕρ = [[[v/x]h]]ϕρ ‖ [[[v/x]g]]ϕρ
= ([[h]]ϕρ[x = v])\[v/x] ‖ ([[g]]ϕρ[x = v])\[v/x] by IH
= ([[h]]ϕρ[x = v] ‖ [[g]]ϕρ[x = v])\[v/x] by Corollary 7
= ([[h | g]]ϕρ[x = v])\[v/x]

c) f ≡ h >x> g (Similarly when f ≡ h >y> g, x 6= y)
[v/x]f ≡ [v/x]h >x> g, so
[[[v/x]h >x> g]]ϕρ =

⋃

s∈[[[v/x]h]]ϕρ s ≫ λw.([[g]]ϕρ[x = w])\[w/x]

=
⋃

s∈([[h]]ϕρ[x=v])\[v/x] s ≫ λw.([[g]]ϕρ[x = w])\[w/x] by IH (c1)

By Lemma 25, if v 6= w then [v/x] is not in the traces of [[g]]ϕρ[x = w]
=⇒ ([[g]]ϕρ[x = w])\[w/x] = ([[g]]ϕρ[x = w])\[w/x]\[v/x]
= ([[g]]ϕρ[x = v][x = w])\[w/x]\[v/x]
The above also holds trivially if v = w, so
c1 ⇒

⋃

s∈[[h]]ϕρ[x=v] s\[v/x] ≫ λw.([[g]]ϕρ[x = v][x = w])\[w/x]\[v/x]

=
⋃

s∈[[h]]ϕρ[x=v](s ≫ λw.([[g]]ϕρ[x = v][x = w])\[w/x])\[v/x] by Lem. 28

= ([[h >x> g]]ϕρ[x = v])\[v/x]
d) f ≡ h where x :∈ g (Similarly when f ≡ h where y :∈ g, x 6= y)

[v/x]f ≡ h where x :∈ [v/x]g, so
[[h where x :∈ [v/x]g]]ϕρ =
=

⋃

w∈Val
[[h]]ϕρ[x = w] <x [[[v/x]g]]ϕρ

=
⋃

w∈Val
[[h]]ϕρ[x = w] <x ([[g]]ϕρ[x = v])\[v/x] by IH

Let T1 =
⋃

w∈Val
[[h]]ϕρ[x = w], T2 = [[g]]ϕρ[x = v]

then the above becomes T1 <x T2\[v/x]
=

⋃

t1∈T1,t2∈T2\[v/x] t1 <x t2
=

⋃

t1∈T1,t2∈T2
t1 <x t2\[v/x]

=
⋃

t1∈T1,t2∈T2
(t1 <x t2)\[v/x] by Lemma 29

= (
⋃

t1∈T1,t2∈T2
t1 <x t2)\[v/x]

= (T1 <x T2)\[v/x]
= (

⋃

w∈Val
[[h]]ϕρ[x = w] <x [[g]]ϕρ[x = v])\[v/x]

= ([[h where x :∈ g]]ϕρ[x = v])\[v/x] ⊓⊔

27

E Operational Lemmas

All Lemmas in this section are proved by induction on the height of the derivation
and the proofs are straightforward.

Lemma 31 (Take a receive step). If ∆, Γ ⊢ f
[v/x]
→ f ′ then

1. x ∈ fv(f)
2. Γ (x) = v
3. [v/x]f ′ ≡ [v/x]f

Lemma 32 (Take a non-receive step). If ∆, Γ ⊢ f
a
→ f ′ and R̄(x, a) then

1. ∆, Γ ⊢ [v/x]f
a
→ [v/x]f ′ for any v

2. ∆, Γ ′ ⊢ f
a
→ f ′ where Γ ′(y) =

{

Γ (y) x 6= y

unspecified/anything x = y

Lemma 33. ∆, Γ ⊢ f
a
→ f ′ implies fv(f ′) ⊆ fv(f)

Proof. By induction on the height of the derivation. The interesting cases are

– (DEF)
∆, Γ ⊢ Ei(v)

τ
→ [v/x]fi

(Ei(x) = fi) ∈ ∆

fv(Ei(v)) = ∅ = fv([v/x]fi) by the constraint fv(fi) ⊆ {x}

– (ASYM-L)
∆, Γ ⊢ h

a
→ h′

∆, Γ ⊢ h where x :∈ g
a
→ h′ where x :∈ g

a 6= [v/x]

fv(h′) ⊆ fv(h) by IH (I)
fv(h′ where x :∈ g) = (fv(h′) − {x}) ∪ fv(g)
⊆ (fv(h) − {x}) ∪ fv(g) by I
= fv(h where x :∈ g) ⊓⊔

Lemma 34. If ∆, Γ ⊢ [v/x]f
a
→ f ′ then

a) either ∆, Γ ⊢ f
a
→ f ′′ where [v/x]f ′′ ≡ f ′

b) or ∆, Γ [x = v] ⊢ f
[v/x]
→ f1

a
→ f2 where [v/x]f ≡ [v/x]f1, [v/x]f2 ≡ f ′

28

F Soundness - Adequacy

The following lemma is the key lemma for proving soundness. The soundness
theorem is an easy corollary of this lemma.

Lemma 35. If ∆, Γ ⊢ f
a
→ f ′ and t ∈ [[f ′]][[∆]]ρ then at ∈ [[f]][[∆]]ρ

where ρ = ρ0[x1 = v1] . . . [xm = vm] and Γ = {(x1, v1), . . . , (xm, vm)}.

Proof. Since Γ is a partial function from Var to Val we can assume that the
xi’s are pairwise distinct. We proceed by structural induction on f and cases on
the reduction rule used

a) (SITEC)
∆, Γ ⊢ M (v)

Mk(v)
→ ?k

k fresh

[[?k]][[∆]]ρ = { τ !w | w ∈ Val}p

Consider only the case when t = τ !w
Then, (Mk (v) τ !w) ∈ [[M (v)]][[∆]]ρ

b) (SITEC-VAR)
∆, Γ ⊢ M (x)

[v/x]
→ M (v)

Γ (x) = v

[[M (v)]][[∆]]ρ = {Mk (v) τ !w | w ∈ Val , k fresh}p

Consider only the case when t = Mk (v) τ
We know Γ (x) = v, therefore ρ(x) = v
=⇒ ([v/x] Mk (v) τ) ∈ [[M (x)]][[∆]]ρ when ρ(x) = v

c) SITERET, LET, LET-VAR, DEF-VAR similarly

d) (DEF)
∆, Γ ⊢ Ei(v)

τ
→ [v/x]fi

(Ei(x) , fi) ∈ ∆

Let t ∈ [[[v/x]fi]][[∆]]ρ
Lem. 30
=⇒ t ∈ ([[fi]][[∆]]ρ[x = v])\[v/x] (d1)

Also, [[Ei (v)]][[∆]]ρ = { τ t′ | t′ ∈ [[∆]]i(v)}p

where [[∆]]i(v) = ([[fi]][[∆]]ρ0[x = v])\[v/x] by ∆̂([[∆]]) = [[∆]] (d2)
By d2, it suffices to show that t ∈ ([[fi]][[∆]]ρ0[x = v])\[v/x], which holds by
d1 and Corollary 5, because x1, . . . , xm are not free in fi

e) (SYM-L)
∆, Γ ⊢ h

a
→ h′

∆, Γ ⊢ h | g
a
→ h′ | g

Let t ∈ [[h′ | g]][[∆]]ρ, then there exist t1 ∈ [[h′]][[∆]]ρ, t2 ∈ [[g]][[∆]]ρ
such that t ∈ t1 ‖ t2 (e1)

By IH for h, at1 ∈ [[h]][[∆]]ρ
e1

=⇒ at ∈ at1 ‖ t2
=⇒ at ∈ [[h | g]][[∆]]ρ

f) Similarly for (SYM-R)

g) (ASYM-L)
∆, Γ ⊢ h

a
→ h′

∆, Γ ⊢ h where x :∈ g
a
→ h′ where x :∈ g

a 6= [v/x]

Let t ∈ [[h′ where x :∈ g]][[∆]]ρ, then there exist
t1 ∈

⋃

v∈Val
[[h′]][[∆]]ρ[x = v], t2 ∈ [[g]][[∆]]ρ such that t ∈ t1 <x t2 (g1)

Also, by Lemma 32, ∆, Γ [x = w] ⊢ h
a
→ h′ for any w (g2)

Cases depending on which branch of the definition of <x was used for t:

29

• 1st branch was used,
=⇒ R̄(x, t1), P̄ (t2), t ∈ t1 ‖ t2 (g3)
By g1, g2 and IH for h we get at1 ∈

⋃

v∈Val
[[h]][[∆]]ρ[x = v] (g4)

=⇒ at ∈ at1 ‖ t2 by g3
=⇒ at ∈ [[h where x :∈ g]][[∆]]ρ by g1, g4

• 2nd branch was used,
=⇒ R̄(x, t1), t2 = t21!u t22, P̄ (t21),

t ∈ t1 ‖ t21τ (g5)
By g1, g2 and IH for h we get at1 ∈

⋃

v∈Val
[[h]][[∆]]ρ[x = v] (g6)

=⇒ at ∈ at1 <x t2 by g5
=⇒ at ∈ [[h where x :∈ g]][[∆]]ρ by g1, g6

• 3rd branch was used,
=⇒ t1 = t11[u/x] t12, R̄(x, t11),

t2 = t21!u t22, P̄ (t21), t ∈ (t11 ‖ t21τ)(t12\[u/x]) (g7)
t1 ∈ [[h′]][[∆]]ρ[x = u] by Lemma 25
=⇒ by g2 and IH for h we get at1 ∈ [[h]][[∆]]ρ[x = u]
=⇒ at1 ∈

⋃

v∈Val
[[h]][[∆]]ρ[x = v] (g8)

=⇒ at ∈ at1 <x t2 by g7
=⇒ at ∈ [[h where x :∈ g]][[∆]]ρ by g1, g8

• 4th branch was used,
This case is impossible because t /∈ ∅

h) (ASYM-R) Similar to the previous case

i) (ASYM-P)
∆, Γ ⊢ g

!v
→ g′

∆, Γ ⊢ h where x :∈ g
τ
→ [v/x]h

Let t ∈ [[[v/x]h]][[∆]]ρ
=⇒ ∃ t′ ∈ [[h]][[∆]]ρ[x = v]. t = t′\[v/x] by Lemma 30 (i1)
ε ∈ [[g′]][[∆]]ρ by Thm. 6
=⇒ !v ∈ [[g]][[∆]]ρ by IH (i2)

• R̄(x, t′)
=⇒ t = t′ and τ t ∈ t <x!v
=⇒ τ t ∈ [[h where x :∈ g]][[∆]]ρ by i1, i2

• t′ = t′1[v/x]t′2, R̄(x, t′1) (i3)
=⇒ τ t′1(t

′
2\[v/x]) ∈ t′ <x!v

=⇒ τ t ∈ t′ <x!v by i1, i3
=⇒ τ t ∈ [[h where x :∈ g]][[∆]]ρ by i1, i2

j) (SEQ)
∆, Γ ⊢ h

a
→ h′

∆, Γ ⊢ h >x> g
a
→ h′ >x> g

a 6=!v

Let t ∈ [[h′ >x> g]][[∆]]ρ, then there exists s ∈ [[h′]][[∆]]ρ
such that t ∈ s ≫ λv.([[g]][[∆]]ρ[x = v])\[v/x] (j1)
Cases on s:

• P̄ (s) ⇒ t ∈ {s} ⇒ t = s (j2)
By IH for h, as ∈ [[h]][[∆]]ρ
=⇒ at ∈ as ≫ λv.([[g]][[∆]]ρ[x = v])\[v/x] by j2
=⇒ at ∈ [[h >x> g]][[∆]]ρ

30

• s = s1!u s2, P̄ (s1)
Then by j1 we get,
t ∈ s1τ((s2 ≫ λv.([[g]][[∆]]ρ[x = v])\[v/x]) ‖ ([[g]][[∆]]ρ[x = u])\[u/x])
=⇒ at ∈ as ≫ λv.([[g]][[∆]]ρ[x = v])\[v/x] (j3)
By IH for h, as ∈ [[h]][[∆]]ρ
=⇒ at ∈ [[h >x> g]][[∆]]ρ by j3

k) (SEQ-P)
∆, Γ ⊢ h

!u
→ h′

∆, Γ ⊢ h >x> g
τ
→ (h′ >x> g) | [u/x]g

Let t ∈ [[(h′ >x> g) | [u/x]g]][[∆]]ρ, then there exist
t1 ∈ [[h′ >x> g]][[∆]]ρ, t2 ∈ [[[u/x]g]][[∆]]ρ such that t ∈ t1 ‖ t2 (k1)
By Lemma 30, t2 ∈ ([[g]][[∆]]ρ[x = u])\[u/x] (k2)
By k1, ∃s ∈ [[h′]][[∆]]ρ. t1 ∈ s ≫ λv.([[g]][[∆]]ρ[x = v])\[v/x] (k3)
By IH for h, !u s ∈ [[h]][[∆]]ρ (k4)
By k1, k2, k3 t ∈ (s ≫ λv.([[g]][[∆]]ρ[x = v])\[v/x]) ‖ ([[g]][[∆]]ρ[x = u])\[u/x]
=⇒ τ t ∈ τ((s ≫ λv.([[g]][[∆]]ρ[x = v])\[v/x]) ‖ ([[g]][[∆]]ρ[x = u])\[u/x])
=⇒ τ t ∈ !u s ≫ λv.([[g]][[∆]]ρ[x = v])\[v/x]
=⇒ τ t ∈ [[h >x> g]][[∆]]ρ by k4 ⊓⊔

Lemma 36. If ∆, Γ ⊢ f
t1→∗ f ′ and t2 ∈ [[f ′]][[∆]]ρ then t1 t2 ∈ [[f]][[∆]]ρ

where ρ = ρ0[x1 = v1] . . . [xm = vm] and Γ = {(x1, v1), . . . , (xm, vm)}, xi’s are
pairwise distinct.

Proof. By induction on |t1| ⊓⊔

Theorem 7 (Soundness). If Γ = {(x1, v1), . . . , (xm, vm)},
ρ = ρ0[x1 = v1] . . . [xm = vm], x’s are pairwise distinct, then

∆, Γ ⊢ f
t
→∗ f ′ implies t ∈ [[f]][[∆]]ρ

Proof. By induction on |t|

– If |t| = 0 ⇔ t = ε
=⇒ ε ∈ [[f]][[∆]]ρ by Thm. 6

– If t = a t′

=⇒ ∆, Γ ⊢ f
a
→ f ′′ t′

→∗ f ′

By IH for t′, t′ ∈ [[f ′′]][[∆]]ρ therefore t ∈ [[f]][[∆]]ρ by Lemma 35 ⊓⊔

The following is the key lemma for proving adequacy. Observe that it is the
converse of the soundness lemma.

Lemma 37. If at ∈ [[f]][[∆]]ρ then ∆, Γ ⊢ f
a
→ f ′ and t ∈ [[f ′]][[∆]]ρ

where ρ = ρ0[x1 = v1] . . . [xm = vm] and Γ = {(x1, v1), . . . , (xm, vm)}

Proof. By structural induction on f

a) f ≡ 0 vacuously true

31

b) f ≡ let(v)
=⇒ [[let(v)]][[∆]]ρ = {!v}p

=⇒ a =!v and t = ε
Also, ∆, Γ ⊢ let(v)

!v
→ 0 and ε ∈ [[0]][[∆]]ρ

c) f ≡ M (v) or ?k similarly

d) f ≡ let(x)
For a non-empty trace of f , we know ρ(x) = v
=⇒ [[let(x)]][[∆]]ρ = {[v/x] !v}p

Consider only the case when a = [v/x] and t =!v

Then, by LET-VAR, ∆, Γ ⊢ let(x)
[v/x]
→ let(v) and !v ∈ [[let(v)]][[∆]]ρ

e) f ≡ M (x) similarly
f) f ≡ Ei(v)

=⇒ [[Ei(v)]][[∆]]ρ = { τ t | t ∈ [[∆]]i(v)}p

By DEF, ∆, Γ ⊢ Ei(v)
τ
→ [v/x]fi

=⇒ suffices to show that for any t ∈ [[∆]]i(v) then t ∈ [[[v/x]fi]][[∆]]ρ

We know [[∆]] = fix(∆̂) ⇒ ∆̂([[∆]]) = [[∆]]
Then, t ∈ [[∆]]i(v) implies t ∈ ([[fi]][[∆]]ρ0[x = v])\[v/x]
=⇒ t ∈ [[[v/x]fi]][[∆]]ρ0 by Lemma 30
=⇒ t ∈ [[[v/x]fi]][[∆]]ρ by Corollary 5 because fv([v/x]fi) = ∅

g) f ≡ h | g
Let a t ∈ [[h | g]][[∆]]ρ, then there exist
t1 ∈ [[h]][[∆]]ρ, t2 ∈ [[g]][[∆]]ρ such that a t ∈ t1 ‖ t2 (g1)

• ‘a’ is an event of t1, i.e. t1 = a t′1, and by g1, t ∈ t′1 ‖ t2 (g2)

By IH for h, ∆, Γ ⊢ h
a
→ h′ and t′1 ∈ [[h′]][[∆]]ρ (g3)

=⇒ ∆, Γ ⊢ h | g
a
→ h′ | g by SYM-L

=⇒ t ∈ [[h′ | g]][[∆]]ρ by g1, g2, g3
• ‘a’ is an event of t2, similarly

h) f ≡ h >x> g
Let a t ∈ [[h >x> g]][[∆]]ρ then there exists
s ∈ [[h]][[∆]]ρ such that a t ∈ s ≫ λw.([[g]][[∆]]ρ[x = w])\[w/x] (h1)

• P̄ (s)
=⇒ a t = s by h1
=⇒ ∆, Γ ⊢ h

a
→ h′ and t ∈ [[h′]][[∆]]ρ by IH for h (h2)

=⇒ ∆, Γ ⊢ h >x> g
a
→ h′ >x> g by SEQ

=⇒ suffices to show that t ∈ [[h′ >x> g]][[∆]]ρ which holds by h2

• s = s1 !v s2, P̄ (s1)
Then, by h1
a t ∈ s1τ ((s2 ≫ λw.([[g]][[∆]]ρ[x = w])\[w/x]) ‖

([[g]][[∆]]ρ[x = v])\[v/x])
(h3)

∗ ‘a’ is the first event of s1, s1 = a s′1
=⇒ ∆, Γ ⊢ h

a
→ h′ and s′1!vs2 ∈ [[h′]][[∆]]ρ by IH for h (h4)

=⇒ ∆, Γ ⊢ h >x> g
a
→ h′ >x> g by SEQ

We know that, t ∈ s′1!vs2 ≫ λw.([[g]][[∆]]ρ[x = w])\[w/x] by h3
=⇒ t ∈ [[h′ >x> g]][[∆]]ρ by h4

32

∗ s1 is empty, therefore s =!v s2 and by h3 a = τ

=⇒ ∆, Γ ⊢ h
!v
→ h′ and s2 ∈ [[h′]][[∆]]ρ by IH for h (h6)

Then, by SEQ-P
∆, Γ ⊢ h >x> g

τ
→ (h′ >x> g) | [v/x]g

By h3,
t ∈ (s2 ≫ λw.([[g]][[∆]]ρ[x = w])\[w/x]) ‖ ([[g]][[∆]]ρ[x = v])\[v/x]
=⇒ t ∈ [[h′ >x> g]][[∆]]ρ ‖ ([[g]][[∆]]ρ[x = v])\[v/x] by h6
=⇒ t ∈ [[(h′ >x> g) | [v/x]g]][[∆]]ρ by Lemma 30

i) f ≡ h where x :∈ g
Let a t ∈ [[h where x :∈ g]][[∆]]ρ, then there exist
t1 ∈

⋃

v∈Val
[[h]][[∆]]ρ[x = v], t2 ∈ [[g]][[∆]]ρ such that a t ∈ t1 <x t2 (i1)

Cases on the branch of the definition of <x used for a t

• R̄(x, t1), P̄ (t2) =⇒ a t ∈ t1 ‖ t2 (i2)

∗ ‘a’ is an event of t1, i.e. t1 = a t′1 and t ∈ t′1 ‖ t2 (i3)
We know that, a t′1 ∈ [[h]][[∆]]ρ by i2 and Lemma 26

=⇒ ∆, Γ ⊢ h
a
→ h′ and t′1 ∈ [[h′]][[∆]]ρ by IH (i4)

ASYM-L
=⇒ ∆, Γ ⊢ h where x :∈ g

a
→ h′ where x :∈ g

By i1, ∃u ∈ Val . a t′1 ∈ [[h]][[∆]]ρ[x = u]

=⇒ ∆, Γ [x = u] ⊢ h
a
→ h′ and t′1 ∈ [[h′]][[∆]]ρ[x = u] by IH

=⇒ t′1 ∈
⋃

v∈Val
[[h′]][[∆]]ρ[x = v]

=⇒ t ∈ [[h′ where x :∈ g]][[∆]]ρ by i1, i3
∗ ‘a’ is an event of t2, i.e. t2 = a t′2 and t ∈ t1 ‖ t′2 (i5)

∆, Γ ⊢ g
a
→ g′ and t′2 ∈ [[g′]][[∆]]ρ by IH for g (i6)

ASYM-R
=⇒ ∆, Γ ⊢ h where x :∈ g

a
→ h where x :∈ g′

Also, t ∈ t1 <x t′2 by i2, i5
=⇒ t ∈ [[h where x :∈ g′]][[∆]]ρ by i1, i6

• R̄(x, t1), t2 = t21!w t22, P̄ (t21)
=⇒ a t ∈ t1 ‖ t21 τ (i7)

∗ ‘a’ is an event of t1, i.e. t1 = a t′1 and t ∈ t′1 ‖ t21 τ
. . . It’s exactly the same as the previous case for t1

∗ ‘a’ is an event of t21, i.e. t21 = a t′21 and t ∈ t1 ‖ t′21 τ
. . . It’s exactly the same as the previous case for t2

∗ t21 is empty, a = τ and t = t1

∆, Γ ⊢ g
!w
→ g′ and t22 ∈ [[g′]][[∆]]ρ by IH for g

ASYM-P
=⇒ ∆, Γ ⊢ h where x :∈ g

τ
→ [w/x]h

Suffices to show that t1 ∈ [[[w/x]h]][[∆]]ρ
We know that t1 ∈ [[h]][[∆]]ρ–x by i7 and Lemma 26
=⇒ t1 ∈ [[h]][[∆]]ρ[x = w] by Corollary 6
But R̄(x, t1) so t1 ∈ [[[w/x]h]][[∆]]ρ by Lemma 30

• t1 = t11[w/x] t12, R̄(x, t11), t2 = t21!w t22, P̄ (t21)
=⇒ a t ∈ (t11 ‖ t21τ)(t12\[w/x])

∗ ‘a’ is an event of t11,
i.e. t11 = a t′11 and t ∈ (t′11 ‖ t21 τ)(t12\[w/x])
=⇒ t ∈ (t′11[w/x]t12 <x t2) (i8)

33

By Lemma 25, t1 ∈ [[h]][[∆]]ρ[x = w]

=⇒ ∆, Γ [x = w] ⊢ h
a
→ h′ and

t′11[w/x]t12 ∈ [[h′]][[∆]]ρ[x = w] by IH (i9)

=⇒ ∆, Γ ⊢ h
a
→ h′ by Lemma 32

ASYM-L
=⇒ ∆, Γ ⊢ h where x :∈ g

a
→ h′ where x :∈ g

Also, by i8 and i9 t ∈ [[h′ where x :∈ g]][[∆]]ρ
∗ ‘a’ is an event of t21,

i.e. t21 = a t′21 and t ∈ (t11 ‖ t′21 τ)(t12\[w/x])
=⇒ t ∈ (t1 <x t′21!w t22) (i10)

∆, Γ ⊢ g
a
→ g′ and t′21!w t22 ∈ [[g′]][[∆]]ρ by IH (i11)

ASYM-R
=⇒ ∆, Γ ⊢ h where x :∈ g

a
→ h where x :∈ g′

and t ∈ [[h where x :∈ g′]][[∆]]ρ by i10, i11
∗ t21 is empty, a = τ and t = t11(t21\[w/x]) = t1\[w/x] (i12)

∆, Γ ⊢ g
!w
→ g′ and t22 ∈ [[g′]][[∆]]ρ by IH

ASYM-P
=⇒ ∆, Γ ⊢ h where x :∈ g

τ
→ [w/x]h

By Lemma 25, t1 ∈ [[h]][[∆]]ρ[x = w]
=⇒ t1\[w/x] ∈ ([[h]][[∆]]ρ[x = w])\[w/x]
=⇒ t ∈ [[[w/x]h]][[∆]]ρ by i12 and Lemma 30

⊓⊔

Lemma 38. If t1 t2 ∈ [[f]][[∆]]ρ then ∆, Γ ⊢ f
t1→∗ f ′ and t2 ∈ [[f ′]][[∆]]ρ

where ρ = ρ0[x1 = v1] . . . [xm = vm] and Γ = {(x1, v1), . . . , (xm, vm)}

Proof. By induction on |t1| ⊓⊔

Theorem 8 (Adequacy). If Γ = {(x1, v1), . . . , (xm, vm)},
ρ = ρ0[x1 = v1] . . . [xm = vm], x’s are pairwise distinct, then

t ∈ [[f]][[∆]]ρ implies ∆, Γ ⊢ f
t
→∗ f ′

Proof. By induction on |t|

– If |t| = 0 ⇔ t = ε, then f reduces to itself in 0 steps.
– If t = a t′ then a t′ ∈ [[f]][[∆]]ρ

=⇒ ∆, Γ ⊢ f
a
→ f ′ and t′ ∈ [[f ′]][[∆]]ρ by Lemma 37

=⇒ ∆, Γ ⊢ f ′ t′
→∗ f ′′ by IH for t′

=⇒ ∆, Γ ⊢ f
a
→ f ′ t′ ∗

→ f ′′

=⇒ ∆, Γ ⊢ f
t
→∗ f ′′ ⊓⊔

34

G Strong Bisimulation

To improve readability, in this section we use the notation 〈a, b〉 for ordered pairs
instead of (a, b).

Definition 22 (Strong Bisimulation). The binary relation R on processes
is a ∆-bisimulation iff

1. R is symmetric

2. for any 〈f, g〉 ∈ R and for any Γ if ∆, Γ ⊢ f
a
→ f ′ then ∆, Γ ⊢ g

a
→ g′

and 〈f ′, g′〉 ∈ R

Definition 23 (Largest Strong-Bisimulation). ∼∆ ,
⋃

{R | R is a ∆-bisim.}

Definition 24 (Strong-Bisimulation up to ∼∆). The binary relation R on
processes is a ∆-bisimulation up to ∼∆, if ∼∆ R ∼∆ is a ∆-bisimulation

Lemma 39. ∼∆ is an equivalence relation

Lemma 40. f | 0 ∼∆ f

Lemma 41. f | g ∼∆ g | f

Lemma 42. f | (g | h) ∼∆ (f | g) | h

Proof. R1 = {〈f | (g | h), (f | g) | h〉}
R = R1 ∪ R1

−1 is a ∆-bisimulation
If f takes a step, ∆, Γ ⊢ f

a
→ f ′ then

=⇒ ∆, Γ ⊢ f | (g | h)
a
→ f ′ | (g | h) ≡ f ′ | (g | h)

Also,
=⇒ ∆, Γ ⊢ f | g

a
→ f ′ | g

=⇒ ∆, Γ ⊢ (f | g) | h
a
→ (f ′ | g) | h

But 〈f ′ | (g | h), (f ′ | g) | h〉 ∈ R. Similarly if g or h takes a step ⊓⊔

Lemma 43. [v/x]f ∼∆ [v/x]g when f ∼∆ g

Proof. R = { 〈[v/x]f, [v/x]g〉 | f ∼∆ g} is a ∆-bisimulation.

R is clearly symmetric. When [v/x]f takes a step, ∆, Γ ⊢ [v/x]f
a
→ f ′

we must show that for some g′ ∆, Γ ⊢ [v/x]g
a
→ g′ and f ′

R g′

By the contrapositive of Lemma 31 we know that R̄(x, a) because x /∈ fv([v/x]f)
Then, by Lemma 34 there are two cases for the steps of f .

a) ∆, Γ ⊢ f
a
→ f ′′ and [v/x]f ′′ ≡ f ′

But f ∼∆ g so ∆, Γ ⊢ g
a
→ g′′ and f ′′ ∼∆ g′′ (I)

By Lemma 32 we get, ∆, Γ ⊢ [v/x]g
a
→ [v/x]g′′

=⇒ f ′ ≡ [v/x]f ′′
R [v/x]g′′ ≡ g′ by I

35

b) ∆, Γ [x = v] ⊢ f
[v/x]
→ f1

a
→ f2 [v/x]f ≡ [v/x]f1, f ′ ≡ [v/x]f2

But f ∼∆ g so

∆, Γ [x = v] ⊢ g
[v/x]
→ g1 f1 ∼∆ g1, [v/x]g ≡ [v/x]g1 by Lem. 31 (II)

=⇒ ∆, Γ [x = v] ⊢ g1
a
→ g2 f2 ∼∆ g2 (III)

=⇒ ∆, Γ ⊢ g1
a
→ g2 by Lemma 32.2

=⇒ ∆, Γ ⊢ [v/x]g1
a
→ [v/x]g2 by Lemma 32.1

=⇒ ∆, Γ ⊢ [v/x]g
a
→ [v/x]g2 by II

=⇒ f ′ ≡ [v/x]f2 R [v/x]g2 ≡ g′ by III ⊓⊔

Lemma 44. f ∼∆ (f where x :∈ 0) when x /∈ fv(f)

Lemma 45. ∼∆ is a congruence relation

Proof. We show appropriate bisimulations for all possible contexts:

a) R = { 〈f | h, g | h〉 | f ∼∆ g} is a ∆-bisimulation.
If h takes a step, trivial.
If f takes a step, ∆, Γ ⊢ f

a
→ f ′

=⇒ ∆, Γ ⊢ f | h
a
→ f ′ | h

But f ∼∆ g so, ∆, Γ ⊢ g
a
→ g′ and f ′ ∼∆ g′

=⇒ ∆, Γ ⊢ g | h
a
→ g′ | h

and 〈f ′ | h, g′ | h〉 ∈ R

Similarly for the transitions of g.
b) R = { 〈h | f, h | g〉 | f ∼∆ g} is a ∆-bisimulation.

As above.
c) R = { 〈(f >x> h) | d, (g >x> h) | d〉 | f ∼∆ g}

R is a ∆-bisimulation up to ∼∆.

The only interesting case is when f publishes, ∆, Γ ⊢ f
!v
→ f ′

=⇒ ∆, Γ ⊢ f >x> h
τ
→ (f ′ >x> h) | [v/x]h

=⇒ ∆, Γ ⊢ (f >x> h) | d
τ
→ ((f ′ >x> h) | [v/x]h) | d

But f ∼∆ g so, ∆, Γ ⊢ g
!v
→ g′ and f ′ ∼∆ g′

=⇒ ∆, Γ ⊢ g >x> h
τ
→ (g′ >x> h) | [v/x]h

=⇒ ∆, Γ ⊢ (g >x> h) | d
τ
→ ((g′ >x> h) | [v/x]h) | d

Then,
((f ′ >x> h) | [v/x]h) | d ∼∆ by Lemma 42
(f ′ >x> h) | ([v/x]h | d) R

(g′ >x> h) | ([v/x]h | d) ∼∆ by Lemma 42
((g′ >x> h) | [v/x]h) | d
Similarly for g’s transitions.
The desired result follows by Lemma 40 when d ≡ 0.

d) R = { 〈(h >x> f) | d1, (h >x> g) | d2〉 | f ∼∆ g, d1 ∼∆ d2}
R is a ∆-bisimulation up to ∼∆.

The only interesting case is when h publishes, ∆, Γ ⊢ h
!v
→ h′

=⇒ ∆, Γ ⊢ h >x> f
τ
→ (h′ >x> f) | [v/x]f

=⇒ ∆, Γ ⊢ (h >x> f) | d1
τ
→ ((h′ >x> f) | [v/x]f) | d1

36

Also, ∆, Γ ⊢ h >x> g
τ
→ (h′ >x> g) | [v/x]g

=⇒ ∆, Γ ⊢ (h >x> g) | d2
τ
→ ((h′ >x> g) | [v/x]g) | d2

By Lemma 43, [v/x]f ∼∆ [v/x]g
Then,
((h′ >x> f) | [v/x]f) | d1 ∼∆ by case b
((h′ >x> f) | [v/x]f) | d2 ∼∆ by Lemma 42
(h′ >x> f) | ([v/x]f | d2) ∼∆ by cases a,b
(h′ >x> f) | ([v/x]g | d2) R

(h′ >x> g) | ([v/x]g | d2) ∼∆ by Lemma 42
((h′ >x> g) | [v/x]g) | d2

The desired result follows by Lemma 40 when d1 ≡ 0, d2 ≡ 0.

e) R = { 〈f where x :∈ h, g where x :∈ h〉 | f ∼∆ g}
R is a ∆-bisimulation up to ∼∆.

The only interesting case is when h publishes, ∆, Γ ⊢ h
!v
→ h′

=⇒ ∆, Γ ⊢ f where x :∈ h
τ
→ [v/x]f

Also, ∆, Γ ⊢ g where x :∈ h
τ
→ [v/x]g

[v/x]f ∼∆ by Lemma 44
[v/x]f where x :∈ 0 R by Lemma 43
[v/x]g where x :∈ 0 ∼∆ by Lemma 44
[v/x]g

f) R1 = { 〈h where x :∈ f, h where x :∈ g〉 | f ∼∆ g}
R = R1 ∪ ID is a ∆-bisimulation.

If f publishes, ∆, Γ ⊢ f
!v
→ f ′

=⇒ ∆, Γ ⊢ h where x :∈ f
τ
→ [v/x]h

But f ∼∆ g so, ∆, Γ ⊢ g
!v
→ g′ and f ′ ∼∆ g′

=⇒ ∆, Γ ⊢ h where x :∈ g
τ
→ [v/x]h

and 〈[v/x]h, [v/x]h〉 ∈ R

If f takes a non-publication step, ∆, Γ ⊢ f
a
→ f ′

=⇒ ∆, Γ ⊢ h where x :∈ f
a
→ h where x :∈ f ′

But f ∼∆ g so, ∆, Γ ⊢ g
a
→ g′ and f ′ ∼∆ g′

=⇒ ∆, Γ ⊢ h where x :∈ g
a
→ h where x :∈ g′

and 〈h where x :∈ f ′, h where x :∈ g′〉 ∈ R ⊓⊔

Lemma 46. (f | g) >x> h ∼∆ (f >x> h) | (g >x> h)

Proof. R1 = {〈((f | g) >x> h) | d, ((f >x> h) | (g >x> h)) | d〉}
R = R1 ∪ R1

−1 is a ∆-bisimulation up to ∼∆

The only interesting case is when f publishes, ∆, Γ ⊢ f
!v
→ f ′

=⇒ ∆, Γ ⊢ f | g
!v
→ f ′ | g

=⇒ ∆, Γ ⊢ (f | g) >x> h
τ
→ ((f ′ | g) >x> h) | [v/x]h

=⇒ ∆, Γ ⊢ ((f | g) >x> h) | d
τ
→ (((f ′ | g) >x> h) | [v/x]h) | d

Also,
=⇒ ∆, Γ ⊢ f >x> h

τ
→ (f ′ >x> h) | [v/x]h

=⇒ ∆, Γ ⊢ (f >x> h) | (g >x> h)
τ
→ ((f ′ >x> h) | [v/x]h) | (g >x> h)

37

=⇒ ∆, Γ ⊢ ((f >x> h) | (g >x> h)) | d
τ
→

(((f ′ >x> h) | [v/x]h) | (g >x> h)) | d
But then,
(((f ′ >x> h) | [v/x]h) | (g >x> h)) | d ∼∆ by Lemmas 41,42
((f ′ >x> h) | (g >x> h)) | ([v/x]h | d) R

((f ′ | g) >x> h) | ([v/x]h | d)
The desired result follows by Lemma 40 when d ≡ 0. ⊓⊔

Lemma 47. f >x> (g >y> h) ∼∆ (f >x> g) >y> h if x /∈ fv(h)

Proof. R1 = {〈(f >x> (g >y> h)) | d, ((f >x> g) >y> h) | d〉}
R = R1 ∪ R1

−1 is a ∆-bisimulation up to ∼∆ if x /∈ fv(h)

The only interesting case is when f publishes, ∆, Γ ⊢ f
!v
→ f ′

=⇒ ∆, Γ ⊢ f >x> (g >y> h)
τ
→

(f ′ >x> (g >y> h)) | [v/x](g >y> h)

=⇒ ∆, Γ ⊢ ((f >x> g) >y> h) | d
τ
→

((f ′ >x> (g >y> h)) | [v/x](g >y> h)) | d
Also,
=⇒ ∆, Γ ⊢ f >x> g

τ
→ (f ′ >x> g) | [v/x]g

=⇒ ∆, Γ ⊢ (f >x> g) >y> h
τ
→ ((f ′ >x> g) | [v/x]g) >y> h

=⇒ ∆, Γ ⊢ ((f >x> g) >y> h) | d
τ
→

(((f ′ >x> g) | [v/x]g) >y> h) | d
By Lemma 46,
(((f ′ >x> g) | [v/x]g) >y> h) | d ∼∆

(((f ′ >x> g) >y> h) | ([v/x]g >y> h)) | d R

((f ′ >x> (g >y> h)) | [v/x](g >y> h)) | d ⊓⊔

Lemma 48. (f | g) where x :∈ h ∼∆ (f where x :∈ h) | g if x /∈ fv(g)

Proof. R1 = {〈(f | g) where x :∈ h, (f where x :∈ h) | g〉}
R = R1 ∪ R1

−1 ∪ ID is a ∆-bisimulation if x /∈ fv(g)

Let ∆, Γ ⊢ g
a
→ g′

We know that x /∈ fv(g) so, by Lemma 31, ‘a’ is not a receive for x. Then,

=⇒ ∆, Γ ⊢ f | g
a
→ f | g′

=⇒ ∆, Γ ⊢ (f | g) where x :∈ h
a
→ (f | g′) where x :∈ h

Also, ∆, Γ ⊢ g
a
→ g′

=⇒ ∆, Γ ⊢ (f where x :∈ h) | g
a
→ (f where x :∈ h) | g′

But by Lemma 33, x /∈ fv(g′)
=⇒ ((f | g′) where x :∈ h) R ((f where x :∈ h) | g′)

The only interesting case left is when h publishes, ∆, Γ ⊢ h
!v
→ h′

=⇒ ∆, Γ ⊢ (f | g) where x :∈ h
τ
→ [v/x](f | g)

≡ [v/x]f | g because x /∈ fv(g)
Also,
=⇒ ∆, Γ ⊢ f where x :∈ h

τ
→ [v/x]f

=⇒ ∆, Γ ⊢ (f where x :∈ h) | g
τ
→ [v/x]f | g

And obviously, 〈[v/x]f | g, [v/x]f | g〉 ∈ ID ⊓⊔

38

Lemma 49. (f >y> g) where x :∈ h ∼∆ (f where x :∈ h) >y> g
if x /∈ fv(g)

Proof.
R1 = {〈((f >y> g) where x :∈ h) | d, ((f where x :∈ h) >y> g) | d〉}
R = R1 ∪ R1

−1 ∪ ID is a ∆-bisimulation up to ∼∆ if x /∈ fv(g)
We look only at the publication steps of h and f .

∆, Γ ⊢ h
!v
→ h′

=⇒ ∆, Γ ⊢ (f >y> g) where x :∈ h
τ
→ [v/x](f >y> g)

=⇒ ∆, Γ ⊢ ((f >y> g) where x :∈ h) | d
τ
→ [v/x](f >y> g) | d

Also,
=⇒ ∆, Γ ⊢ f where x :∈ h

τ
→ [v/x]f

=⇒ ∆, Γ ⊢ (f where x :∈ h) >y> g
τ
→ [v/x]f >y> g

=⇒ ∆, Γ ⊢ ((f where x :∈ h) >y> g) | d
τ
→ ([v/x]f >y> g) | d

But x /∈ fv(g) so
〈[v/x](f >y> g) | d, ([v/x]f >y> g) | d〉 ∈ ID

If f publishes, ∆, Γ ⊢ f
!v
→ f ′ then,

=⇒ ∆, Γ ⊢ f >y> g
τ
→ (f ′ >y> g) | [v/y]g

=⇒ ∆, Γ ⊢ (f >y> g) where x :∈ h
τ
→ ((f ′ >y> g) | [v/y]g) where x :∈ h

=⇒ ∆, Γ ⊢ ((f >y> g) where x :∈ h) | d
τ
→

(((f ′ >y> g) | [v/y]g) where x :∈ h) | d
Also,

∆, Γ ⊢ f where x :∈ h
!v
→ f ′ where x :∈ h

∆, Γ ⊢ (f where x :∈ h) >y> g
τ
→ ((f ′ where x :∈ h) >y> g) | [v/y]g

∆, Γ ⊢ ((f where x :∈ h) >y> g) | d
τ
→

(((f ′ where x :∈ h) >y> g) | [v/y]g) | d
But x /∈ fv(g) so by Lemma 48
((f ′ >y> g) | [v/y]g) where x :∈ h ∼∆

((f ′ >y> g) where x :∈ h) | [v/y]g
which by Lemma 45 yields
(((f ′ >y> g) | [v/y]g) where x :∈ h) | d ∼∆

(((f ′ >y> g) where x :∈ h) | [v/y]g) | d
By Lemma 42, the last process is strongly bisimilar to
((f ′ >y> g) where x :∈ h) | ([v/y]g | d) R

((f ′ where x :∈ h) >y> g) | ([v/y]g | d) ∼∆

(((f ′ where x :∈ h) >y> g) | [v/y]g) | d
The desired result follows by Lemma 40 when d ≡ 0. ⊓⊔

Lemma 50. (f where x :∈ g) where y :∈ h ∼∆ (f where y :∈ h) where x :∈ g
if x /∈ fv(h), y /∈ fv(g)

Proof. The proof is similar to the previous proofs ⊓⊔

Lemma 51. If Γ = {〈x1, v1〉, . . . , 〈xm, vm〉} then

f ∼∆ g ⇒ (∆, Γ ⊢ f
t
→∗ f ′ ⇔ ∆, Γ ⊢ g

t
→∗ g′)

39

Proof. By induction on |t|. Note that since Γ is a partial function, and not an
arbitrary relation, we can assume that xi’s are pairwise distinct. ⊓⊔

Theorem 9. If f ∼∆ g then for any ρ it holds that [[f]][[∆]]ρ = [[g]][[∆]]ρ

Proof. Let t ∈ [[f]][[∆]]ρ

=⇒ ∆, Γ ⊢ f
t
→∗ f ′ by Theorem 8

=⇒ ∆, Γ ⊢ g
t
→∗ g′ by Lemma 51

=⇒ t ∈ [[g]][[∆]]ρ by Theorem 7
=⇒ [[f]][[∆]]ρ ⊆ [[g]][[∆]]ρ
In the same way we get [[g]][[∆]]ρ ⊆ [[f]][[∆]]ρ ⊓⊔

The next lemma may seem counterintuitive on a first reading. It is the main
lemma in order to show that the events following a publication are not caused
by it; they could have preceded it.

Lemma 52. If ∆, Γ ⊢ f
!v
→ f ′ then f ∼∆ let(v) | f ′

Proof. By induction on the height of the derivation

–
∆, Γ ⊢ let(v)

!v
→ 0

Clearly, let(v) ∼∆ let(v) | 0

–
∆, Γ ⊢ h

!v
→ h′

∆, Γ ⊢ h | g
!v
→ h′ | g

By IH, h ∼∆ let(v) | h′

=⇒ h | g ∼∆ (let(v) | h′) | g by Lemma 45
=⇒ h | g ∼∆ let(v) | (h′ | g) by Lemma 42
Similarly for SYM-R

–
∆, Γ ⊢ h

!v
→ h′

∆, Γ ⊢ h where x :∈ g
!v
→ h′ where x :∈ g

By IH, h ∼∆ let(v) | h′

=⇒ h where x :∈ g ∼∆ (let(v) | h′) where x :∈ g by Lemma 45
=⇒ h where x :∈ g ∼∆ (h′ where x :∈ g) | let(v) by Lemma 48
=⇒ h where x :∈ g ∼∆ let(v) | (h′ where x :∈ g) by Lemma 41

These are the only rules where f can publish ⊓⊔

40

H Various properties of the trace-semantics

Lemma 53. If s = !v s′ and s ∈ [[f]][[∆]]ρ then (!v ‖ s′) ⊆ [[f]][[∆]]ρ

Proof. By Lemma 37, ∆, Γ ⊢ f
!v
→ f ′ and s′ ∈ [[f ′]][[∆]]ρ

=⇒ f ∼∆ let(v) | f ′ by Lemma 52
=⇒ [[f]][[∆]]ρ = [[let(v) | f ′]][[∆]]ρ by Theorem 9
=⇒ [[let(v)]][[∆]]ρ ‖ [[f ′]][[∆]]ρ ⊆ [[f]][[∆]]ρ
=⇒ (!v ‖ s′) ⊆ [[f]][[∆]]ρ by monotonicity of ‖ ⊓⊔

Lemma 54. If s = s1!v s2 and P̄ (s1) and s ∈ [[f]][[∆]]ρ
then s1(!v ‖ s2) ⊆ [[f]][[∆]]ρ

Proof. By induction on |s1|

– If |s1| = 0 immediate by Lemma 53
– If s1 = a s′1

By Lemma 37 we get ∆, Γ ⊢ f
a
→ f ′ and s′1 !v s2 ∈ [[f ′]][[∆]]ρ

By IH s′1 (!v ‖ s2) ⊆ [[f ′]][[∆]]ρ (I)
Let t ∈ s1(!v ‖ s2)
=⇒ t ∈ a s′1(!v ‖ s2)
=⇒ t ≡ a t′ ∧ t′ ∈ s′1(!v ‖ s2)
=⇒ t ≡ a t′ ∧ t′ ∈ [[f ′]][[∆]]ρ by I
=⇒ a t′ ∈ [[f]][[∆]]ρ by Lemma 35
=⇒ t ∈ [[f]][[∆]]ρ
=⇒ s1(!v ‖ s2) ⊆ [[f]][[∆]]ρ ⊓⊔

We showed the non-causality of the first publication in a trace, but this can be
generalized to any publication.

Lemma 55. If s = s1!v s2 and s ∈ [[f]][[∆]]ρ then s1(!v ‖ s2) ⊆ [[f]][[∆]]ρ

Proof. By induction on the number of publications in s

– If s has one publication then we get a special case of Lemma 54
– If s has more than one publication then it is of the form s1 !v1 s2 !v2 s3 where

!v1 is the first publication and !v2 isn’t necessarily the second publication.
By Lemma 54 we know s1(!v1 ‖ s2 !v2 s3) ⊆ [[f]][[∆]]ρ
so it suffices to show that s1 !v1 s2(!v2 ‖ s3) ⊆ [[f]][[∆]]ρ
By Lemma 38 we get

∆, Γ ⊢ f
s1 !v1→ ∗ f ′ and s2 !v2 s3 ∈ [[f ′]][[∆]]ρ

=⇒ s2(!v2 ‖ s3) ⊆ [[f ′]][[∆]]ρ by IH (I)
Let t ∈ s1 !v1 s2(!v2 ‖ s3)
=⇒ t = s1 !v1 t′ and t′ ∈ s2(!v2 ‖ s3)
=⇒ t = s1 !v1 t′ and t′ ∈ [[f ′]][[∆]]ρ by I
=⇒ s1 !v1 t′ ∈ [[f]][[∆]]ρ by Lemma 36
=⇒ t ∈ [[f]][[∆]]ρ
=⇒ s1 !v1 s2(!v2 ‖ s3) ⊆ [[f]][[∆]]ρ ⊓⊔

41

Lemma 56. {|f |}{|∆|}ρ = {|f >x> let(x)|}{|∆|}ρ

Proof. It suffices to show that one side is a subset of the other.
(⇒) easy
(⇐) This is the interesting case of the Lemma.
If t ∈ [[f >x> let(x)]][[∆]]ρ we must show that t\τ ∈ {|f |}{|∆|}ρ
We know that there exists s ∈ [[f]][[∆]]ρ such that t ∈ s ≫ λv.{[v/x] !v}p\[v/x]
therefore t ∈ s ≫ λv.{!v}p

We proceed by induction on the number of publications in s

– If s has no publications, then t = s, trivial
– s = s1 !u s2, P̄ (s1)

=⇒ t ∈ s1 τ((s2 ≫ λv.{!v}p) ‖ {!u}p)

Also, by Lemma 38, ∆, Γ ⊢ f
s1!u
→ ∗ f ′ and s2 ∈ [[f ′]][[∆]]ρ (I)

We take two separate cases because of the prefix-closed set {!u}p

• t ∈ s1 τ((s2 ≫ λv.{!v}p) ‖ ε)
so there exists t′′ ∈ (s2 ≫ λv.{!v}p) such that t ∈ s1 τ t′′

Then, it suffices to show that (s1 t′′)\τ ∈ {|f |}{|∆|}ρ
Since s2 ∈ [[f ′]][[∆]]ρ we know t′′ ∈ [[f ′ >x> let(x)]][[∆]]ρ
=⇒ ∃ t′ ∈ [[f ′]][[∆]]ρ. t′′\τ = t′\τ by IH for s2 (II)
=⇒ s1 !u t′ ∈ [[f]][[∆]]ρ by I and Lemma 36
=⇒ s1(!u ‖ t′) ⊆ [[f]][[∆]]ρ by Lemma 55
=⇒ s1 t′ !u ∈ [[f]][[∆]]ρ
=⇒ s1 t′ ∈ [[f]][[∆]]ρ by Theorem 6
=⇒ (s1 t′)\τ ∈ {|f |}{|∆|}ρ
=⇒ (s1 t′′)\τ ∈ {|f |}{|∆|}ρ by II
which is what we needed to show

• t ∈ s1 τ((s2 ≫ λv.{!v}p) ‖ !u)
similar to the previous case ⊓⊔

42

