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ABSTRACT
We present a programming language model of the ideas be-
hind Functional Adaptive Programming (AP-F) and our
Java implementation, DemeterF. Computation in AP-F is
encapsulated in sets of functions that implement a fold over
a data structure with the help of a generic traversal. In this
paper we define the syntax, semantics, and typing rules of
a simple AP-F model, together with a proof of soundness
that guarantees that traversal expressions result in a value
of the expected type. Applying a function set to a different
structure can then be statically checked to eliminate some
runtime tests and sources of program errors.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory

General Terms
Languages,Theory

Keywords
Adaptive Programming, Functional Aspects, Traversals, Type
Soundness

1. INTRODUCTION
Aspect Oriented Languages provide an enormous amount

of flexibility to programmers, which comes from the spec-
ification of aspects over a join point model using point-
cuts and advice. In [9] the authors discuss different models
that fall under this view, one of which is data structure
traversal specifications in DemeterJ [12], called Adaptive
Programming (AP) [8]. In AP, join points (traversal entry
and exit points) are selected using a strategy, which directs
traversal, while advice is encapsulated in visitors with be-

fore and after methods. Computation remains adaptable
to data structure changes, but computing via side effects
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(void methods) means that adaptability goes unchecked,
since structural assumptions are implicit in order dependen-
cies between advice.

We have recently developed a functional formulation of
AP that maintains the separate traversal, control (strate-
gies), and computation of DemeterJ, but with traversals
that return values. Computation in Functional Adaptive
Programming [3] (AP-F) and our implementation, Deme-
terF [2], is encapsulated in sets of functions (or function
objects) that, together with a generic traversal function, im-
plement a fold over a data structure. This limits a pro-
gram’s adaptability, but provides more structural informa-
tion about the flow of data, through argument and return
types. Function objects can then be checked statically to
ensure safety. In this paper we present a limited model of
AP-F, describing its syntax, semantics, and typing rules. We
prove the type system sound, meaning that function objects
always contain applicable functions (advice is complete) and
that the resulting program returns a value of the expected
type. Applying a function object to a different structure can
then be statically checked to eliminate some runtime tests
and sources of program errors.

2. SYNTAX
Figure 1 shows our model syntax including definitions,

functions, and simple expressions: variable references, in-
stance construction, and traversals. A program begins with
a number of definitions. The types in concrete definitions
represent constructor arguments, while each Ti in the defi-
nition of an abstract type A becomes a subtype of A.

x ::= variable names
C ::= concrete type names
A ::= abstract type names

P ::= D1 . . . Dn e
D ::= concrete C (T1, . . . , Tn )

| abstract A (T1, . . . , Tn )

T ::= C | A

e ::= x | new C ( e1, . . . , en ) | traverse( e0, F )

F ::= funcset(f1 . . . fn)

f ::= (T0 x0, . . . , Tn xn){ return e; }

Figure 1: AP-F Model Language Syntax

For simplicity there are no local variables, fields in ab-



// Double a given number representation
abstract Int (Succ , Zero)
concrete Succ (Int)
concrete Zero ()

traverse(new Succ(new Succ(new Succ(new Zero ()))),
funcset ((Succ s, Int i)

{ return new Succ(new Succ(i)); }
(Zero z)

{ return z; }))

Figure 2: Example Program : Double

stract types, non-traversal functions, or traversal control,
since these do not add anything new to the type system or
proofs. Function sets correspond to DemeterF function ob-
jects (sets of methods) and are used to compute over traver-
sals of constructed values. Each function provides its argu-
ments with their types and a single body expression, which
becomes the function’s result. A function set is similar to
a list of lambda expressions (anonymous functions), though
we require that all functions have no free variables.

A simple example program is given in Figure 2 with a
traversal that doubles a given number representation; in
this case calculating 3 ∗ 2. For each successor object that
is traversed we return a nested double successor with the
same inner integer, bottom up. The function for Zero is
applied first, and the result is subsequently passed to the
Succ function three times, along with each original nested
Succ instance. This looks very similar to fold in functional
languages, but the traversal function expression implicitly
adapts to different data structure shapes.

2.1 Well Formed Rules
We introduce rules similar to [5] and [4] to ensure that a

given program is well formed, before type checking and/or
evaluation. The rules are shown below with informal de-
scriptions; the formal definitions are elided for space reasons.
With a well formed program, we can now define evaluation
of expressions (the program body) in the context of a pro-
gram’s definitions.

TypesOnce(P ): Each type is only defined once

SingleSuper(P ): Each type is used in at most one
abstract definition

InductiveTypes(P ): Objects of concrete types are
constructible without mutation, i.e., abstract types in-
clude at least one non-recursive subtype, and data
structure cycles contain at least one abstract type.

CompleteTypes(P ): Each type in an abstract defi-
nition is itself defined

ClosedFunctions(P ): All functions in P contain no
free variables

3. SEMANTICS
Our semantics describes object creation and a depth-first

(bottom up) traversal scheme that applies a function from
the given set when applicable. Figure 3 shows the syntax
of runtime expressions, values, and evaluation contexts. For
recursive traversals and function dispatch we add two ex-
pression forms not in the surface syntax. The first gives a

e ::= · · ·
| recur(F, v0, e1, . . . , en )

| apply( f, v0, e1, . . . , en )

v ::= new C ( v1, . . . , vn )

E ::= [ ]
| new C ( v . . . , E, e . . . )
| traverse(E, F )

| recur(F, v0, v . . . , E , e . . . )

Figure 3: Runtime Expressions, Values, and Evalu-
ation Contexts

reduction context for the recursive step when traversing a
value and the second separates the recursive traversal from
function application. Values, v, are defined as a subset of
the expression forms, including only constructed objects.
Rather than congruence rules, we present evaluation con-
texts, E, under which reduction is permitted. A context is
not used for apply(. . . ) since reduction proceeds directly
from apply to argument substitution.

We define the operational semantics as a single step re-
duction relation between contexts, → , which is shown in
Figure 4. Traversal of a constructed value proceeds by re-
curring on each field. Once all recursive results are com-
pleted (i.e., reduce to values), a function is chosen based on
the original object’s type. For a simplified presentation and
proof, a function is selected based only on the type of the
originally traversed value (single dispatch)1.

The meta-functions type, types, and choose are defined
along with substitution in Figure 5. The type function sim-
ply returns the type name used in value construction (i.e.,
reflection), while types returns the declared argument types
of the given function. The implementation of choose selects
the function in a set with a first argument that matches
the given type. Substitution is the typical replacement of
e′ for all free occurrences of x in e. Note that variables are
bound in functions, but functions are not the same as typical
functional closures, since substitution does not occur inside
function sets. This simplifies the traversal typing rules and
proof by eliminating the need for a type environment in the
traversal judgment, providing symmetry between runtime
traversals and static traversal typings.

4. TYPE SYSTEM
For ease of presentation, our type system is divided into

three separate judgments: expressions (`e), functions (`F ),
and traversals (`T ). All judgments are made in the context
of a program’s definitions, which provide a basis for the sub-
type relation (≤).

4.1 Expressions : `e

Our type system is typical for non-traversal expressions,
shown in Figure 6. Variables are looked up in a type en-
vironment, Γ, which is a list of variable/type pairs. The
construction of objects requires each field to be a subtype of

1In later formulations (future work) choose will use the types
of all recursive results, in addition to the original value’s type
(multiple dispatch).



the declared type. For traversal expressions we delegate to
our traversal judgment, which determines the return type
of a traversal of an instance of type T with function set F ,
notated 〈T0, F 〉. It begins with no recursive types (∅) and
the typing derivation must discharge all recursive traversal
constraints.

4.2 Functions: `F

Functions are typed in the normal manner, typing the
body expression with the argument names bound to their
assumed types. The result type of a function is inferred
from the argument types and body expression, though sub-
stitution could cause a subtype to be returned at runtime
(considered in Section 5).

4.3 Traversals : `T
The traversal typing judgment uses a set, X , of recursed

types (i.e., a stack) to identify recursive type uses in con-
crete type definitions. A set of pairs, Φ, represents traversal
constraints collected from recursive type uses. A constraint
of (T, T ′) means the traversal of a value of type T must
result in a subtype of T ′.

We read the judgment X `T 〈T, F 〉 : T ′; Φ as :

With recurred types X , the traversal of a value of type
T with function set F , returns a value of type T ′ with
traversal constraints Φ.

It is split into two rules shown in Figure 8; one each for
concrete and abstract types. Essentially we connect the
traversal of values to the static structural definitions in the
program.

For traversal of a concrete type, C, we select the parame-
ter types of the matching function in the given set, F . The
meta-function choose(F,C) selects a function in the set F
which has C as the type of its first argument, and types
returns the sequence of argument types. The type of the
function eventually becomes the type of the traversal, but
there are several conditions to be checked.

The recursive traversal of each non-recursive field with
type Ti is typed by including C in the recursive type set.
The result types, T ′i , are required to be subtypes of the
function’s argument types, T ′′i . If the recursive traversals
generate constraints on C then we require the function’s re-
sult type to be a subtype of the constrained type(s). New
constraints are created for field types that exist in the set of
recursed types, X . Since the types of traversals of recursed
types are unknown, we assume that the function argument
types are the correct sub-traversal result types. The final
constraint set is constructed from the union of field con-
straints by discharging those that involve C; the underscore
(_) stands for any type.

The typing of the traversal of an abstract type, A, is
slightly simpler since the traversal depends only on the re-
sults of the subtypes of A. Subtype traversals are typed by
including A in the set of recursive types. The final return
type is a common supertype, T , of the subtype traversal
results. Constraints on A are checked the same as in the
concrete case and new constraints are generated from recur-
sive subtypes in X , requiring a subtype of T as a traversal
result. Constraints on A are likewise discharged.

5. TYPE SOUNDNESS
To prove type soundness we use the standard technique

from [15] of proving preservation and progress. Most rules
are similar to those in [5]. We begin with required lemmas.

Lemma 1 (Substitution Preserves Type). If
(Γ, x :Tx) `e e : T , `e e

′ : T ′x, and T ′x ≤ Tx then
Γ `e e[e

′/x] : T ′ and T ′ ≤ T .

Proof: By straight-forward induction on the structure
of e, using the definition of substitution (Figure 5) and
Lemma 3. For a traversal expression we require that the
traversal of a subtype return a subtype of the originally as-
signed type.

When we apply a function during traversal, substitution
into the body always results in a subtype of the expected
return type. The proof extends to the runtime expressions
(recur and apply).

Lemma 2 (Complete Functions). For any well
typed traversal expression e = traverse( e0, F ), the call
choose(F, C) will not fail.

Proof: By straight-forward induction on the typing deriva-
tion of e, using the traversal judgment (`T ) rules, T-CTrav
and T-ATrav (Figure 8).

In our implementation, DemeterF, the main concern is
actually Lemma 2, since at runtime we must be able to se-
lect an applicable function (i.e., advice) from a given func-
tion object during traversal. Other lemmas/theorems give
the stronger result that the type of the value returned from
traversal is predictable.

Lemma 3 (Subtype Traversals Return Subtypes).
For any well typed traversal expression
e = traverse( e0, F ) with Γ `e e0 : T0 and result type T ,
the traversal of e′0, where Γ `e e

′
0 : T ′0 and T ′0 ≤ T0, has

result type T ′ with T ′ ≤ T .

Proof: By induction on the typing derivation of e, using
the traversal judgment rules, T-CTrav and T-ATrav.

Note that by our syntax and well-formed rules, there are
no subtypes of a concrete type C, so the type of a con-
struction expression will not change during evaluation. Our
function selection (choose(F , C)) is deterministic and com-
plete by Lemma 2, and as such will return the same type for
a given concrete traversal. The T-ATrav rule also requires
that the result of all subtype traversals be a subtype of the
result type.

Lemma 4 (Well Typed Contexts). For any closed
expressions e, e′, and context E, if `e e : T , `e e

′ : T ′ with
T ′ ≤ T , and Γ `e E[e] : T0, then Γ `e E[e′] : T ′0 and
T ′0 ≤ T0.

Proof: By induction on the structure of the context E
and the typing derivation of E[e], using Lemma 3.

This aids the preservation proof below, since each reduc-
tion occurs on limited expression forms and contexts.

Theorem 1 (Preservation). If `e E[e] : T and
E[e] → E[e′] then `e E[e′] : T ′ with T ′ ≤ T .

Proof: By straight-forward induction on the structure
and typing derivation of E[e], using Lemmas 1, 3, and 4.

This gives the first half of soundness: reduction preserves
type, also referred to as subject reduction.



Theorem 2 (Progress). Suppose that e is a closed
expression. If `e e : T then either e is a value, or e = E[e0]
and E[e0] → E[e′0].

Proof: By straight-forward induction on the structure
and typing derivation of e.

We now have all requirements for the full theorem: well
typed terms reduce to values of the expected type.

Theorem 3 (Type Soundness). Suppose that e is a
closed expression and `e e : T , then either e is a value of
type T , or e → e′ and `e e : T ′, with T ′ ≤ T .

Proof: By Progress and Preservation theorems: e is
either a value or can be reduced. If e reduces to e′, then the
type of e′ (T ′) must be a subtype of T .

By Progress and Preservation we conclude that a well
formed, well typed program will reduce to a value of pre-
dicted type, which allows us to precalculate the selection of
certain functions from a set, or eliminate error checking from
our dispatch implementation.

6. RELATED WORK
Most related work on semantics of Aspect Oriented Pro-

gramming (AOP) Languages differs from our approach in
that we do not describe a weaving semantics in order to
provide a cleaner soundness proof. What we do share is a
notion of dynamically selected advice (i.e., choose), which is
sometimes referred to as advice lookup [1, 6], implemented
as match-pcd in [14].

In [7] the authors discuss the formulation of type safety
for an AOP language in the theorem prover Coq, developing
a more typical model. Our approach is specific to adaptive
programming using traversals, which simplifies our sound-
ness proof, but reduces the overall power of our model.

Similarly, in [13] the authors discuss an aspect extension
to ML [10]. Labels are used to provide explicit join points,
with first-class advice and side effects, providing most, if not
all, of the flexibility of mainstream AOP languages. Around
advice is similar to our function dispatch, though our syntax
has been simplified as a first step in modeling our AP-F
implementation.

Object Oriented type inference [11] has been used to pro-
vide a sound type system for a pure OO language using
constraints. Constraints are generated and solved to estab-
lish that a message-not-understood error cannot occur. We
have adapted typical typing rules based on their work and
our experience with traversals. Ultimately their approach
might lead to a simpler type checker, but full investigation
is an item of future work.

7. CONCLUSION
We have presented the syntax, semantics, and type sys-

tem of a restricted model of Functional Adaptive Program-
ming (AP-F) and proven it type sound. AP-F provides a
limited form of safe adaptive programming by way of func-
tional, traversal-based aspects. The complication in the ap-
proach comes from the generalization of function set dis-
patch (choose), which delays function selection until recur-
sive values are computed. This is done in order to later
support a simple extension to unrestricted dispatch, as ex-
ists in our implementation.

7.1 Future Work
We are currently working on an unrestricted proof of type

soundness with a full version of choose that selects a func-
tion based on all function arguments. With these results we
hope to develop an approach for static dispatch of function
objects during traversal, eliminating some of the overhead
of reflection.
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E[ traverse( new C ( v1, . . . , vn ) , F ) ]
→ E[ recur(F, new C ( v1, . . . , vn ), traverse( v1, F ), . . . , traverse( vn, F ) ) ]

E[ recur(F, v0, v1, . . . , vn ) ] → E[ apply( choose(F, type( v0)) , v0, v1, . . . , vn ) ]

E[ apply( (T0 x0, . . . , Tn xn){ return e; } , v0, v1, . . . , vn ) ] → E[ e[vi/xi] ]

Figure 4: Reduction Rules

type (new C ( v1, . . . , vn )) = C

types ((T0 x0, . . . , Tn xn){ return e; }) = (T0, . . . , Tn)

choose (funcset(f . . . , (C x0, . . . ){ return e; }, f . . . ), C) = (C x0, . . . ){ return e; }

x[e′/x] = e′

x′[e′/x] = x′ if x′ 6= x
new C ( e1, . . . , en )[e′/x] = new C ( e1[e′/x], . . . , en[e′/x] )
recur(F, v0, e1, . . . , en )[e′/x] = recur(F, v0, e1[e′/x], . . . , en[e′/x] )
apply( f, v0, e1, . . . , en )[e′/x] = apply( f, v0, e1[e′/x], . . . , en[e′/x] )
traverse( e0, F )[e′/x] = traverse( e0[e′/x], F )

Figure 5: Reflection, Function Selection and Substitution Definitions

[T-Var]
x : T ∈ Γ
Γ `e x : T

[T-New]
concrete C (T1, . . . , Tn ) ∈ P

Γ `e ei : T ′i T ′i ≤ Ti for all i ∈ 1..n
Γ `e new C ( e1, . . . , en ) : C

[T-Trav]
Γ `e e0 : T0 ∅ `T 〈T0, F 〉 : T ; ∅

traverse( e0 , F ) : T

[T-Recur]
`e v0 : C Γ `e apply( choose(F, C), v0, e1, . . . , en ) : T

Γ `e recur(F, v0, e1, . . . , en ) : T

[T-Apply]
`e v0 : C types(f) = (C, T ′′1 , . . . , T

′′
n ) `F f : T

for all i ∈ 1..n Γ `e ei : T ′i ∧ T ′i ≤ T ′′i
Γ `e apply( f, v0, e1, . . . , en ) : T

Figure 6: Expression Typing Rules

[T-Func]

xi : Ti `e e0 : T
`F (T0 x0, . . . , Tn xn){ return e0; } : T

Figure 7: Function Typing Rule

[T-CTrav]
concrete C (T1, . . . , Tn ) ∈ P types(choose(F,C)) = (C, T ′′1 , . . . , T

′′
n ) `F choose(F,C) : T

for all i ∈ 1..n Ti 6∈ X ⇒ X ∪ {C} `T 〈Ti, F 〉 : T ′i ; Φi ∧ T ′i ≤ T ′′i
(C, T ′) ∈ (Φ1 ∪ · · · ∪ Φn) ⇒ T ≤ T ′ Φ = { (Tj , T

′′
j ) | j ∈ 1..n ∧ Tj ∈ X } Φ′ = Φ ∪ (Φ1 ∪ · · · ∪ Φn)\(C, _ )

X `T 〈C,F 〉 : T ; Φ′

[T-ATrav]
abstract A (T1, . . . , Tn ) ∈ P

for all i ∈ 1..n Ti 6∈ X ⇒ X ∪ {A} `T 〈Ti, F 〉 : T ′i ; Φi ∧ T ′i ≤ T
(A, T ′) ∈ (Φ1 ∪ · · · ∪ Φn) ⇒ T ≤ T ′ Φ = { (Tj , T ) | j ∈ 1..n ∧ Tj ∈ X } Φ′ = Φ ∪ (Φ1 ∪ · · · ∪ Φn)\(A, _ )

X `T 〈A,F 〉 : T ; Φ′

Figure 8: Traversal Typing Rules


