
Weaving Generic Programming and Traversal Performance

Bryan Chadwick
chadwick@ccs.neu.edu

Karl Lieberherr
lieber@ccs.neu.edu

College of Computer & Information Science
Northeastern University, 360 Huntington Avenue

Boston, Massachusetts 02115 USA.

ABSTRACT
Developing complex software requires that functions be im-
plemented over a variety of recursively defined data struc-
tures. While the design (and modeling) of structures is it-
self difficult, complex data can require even more complex
functions. In this paper, we introduce a declarative form
of traversal-based generic programming that modularizes
functions over a structure using function-objects. Our ap-
proach is supported by a library and set of generative tools,
collectively called DemeterF, which are used to implement
modular, adaptive functions. While our traversals support
high-level abstractions resulting in modular and extensible
functions, we retain genericity, flexibility and performance
through traversal generation and inlining.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Data types and structures, Patterns

General Terms
Design, Performance

1. INTRODUCTION
The development of complex software requires the imple-
mentation of functions over a variety of recursively defined
data structures. The design (and modeling) of structures
can itself be difficult, but complex data can lead to even
more complex functions. In Object-Oriented (OO) Pro-
gramming Languages like Java and C# the dominant de-
composition of programs is classes, which encapsulate both
structure (data) and behavior (methods). This makes the
implementation of certain kinds of operations over a collec-
tion of classes difficult without breaking the standard ab-
straction boundaries in the language. Some operations are
easy, though tedious, to implement but are usually scattered
throughout classes and require a fair amount of extraneous
code dealing with sub-components.

AOSD ’10 Rennes, St. Malo, France

In contrast to OO encapsulation, the mantra of Aspect Ori-
ented Programming (AOP) is the modularization of cross-
cutting concerns [21], where we develop abstractions sup-
porting the separation of program aspects that typically
overlap. With aspects we can add methods to existing classes
and influence a running program by executing code at dy-
namic join points. While AOP is very useful, it can be tricky
to wield its power safely, as computation must typically be
performed using mutation (side-effects), making programs
difficult to reason about, even informally. This becomes in-
creasingly important when we wish to develop concurrent
programs with the advent of implicitly parallel processors.

In this paper we focus on the modularization of a particular
group of crosscutting concerns dealing with data structure
traversal in OO languages. We present a function-object
oriented approach to traversal-based generic programming
with the support of libraries and generative tools, collec-
tively called DemeterF. Our contributions can be summa-
rized as follows:

New Approach We introduce a new declarative form of
traversal-based generic programming that uses function-
objects to fold over data structures (Section 4). Function-
objects encapsulate an aspect of flexible, extensible,
traversal computation, and can be written generically
to adapt to different data structures (Section 5). Func-
tions are separated from traversals using an implicit
variation of multiple-dispatch that eliminates the scat-
tering of traditional OO methods.

Tool Support Our approach is supported by a class gener-
ator that understands Java generics (Section 6). Para-
metrized classes can be nested to any level, with spe-
cific and generic structure-based methods such as field
getters, parsers, and printers automatically injected
into class definitions.

Retargetability Our traversals support separate control
specifications and contexts that allow a purely func-
tional implementation. The elimination of side-effects
enables us to replace our reflective, recursive, stack-
based traversal with a number of semantically equiv-
alent alternatives, making parallelism, inlining, and
other forms of retargeting possible without modifica-
tions to function-objects.

Performance Function-objects can be type-checked against
data structure definitions, allowing us to weave inlined

traversal and dispatch code (Section 7). Function-
objects remain modular and resulting traversals per-
form as well as hand-written instance methods. Inlined
function dispatch that cannot be statically determined
results in dispatch residue that performs better than
traditional visitors.

Our contribution is a combination of approach and imple-
mentation. Traversal-based function-objects support mod-
ular, functional, adaptive programming while eliminating
some of the problems associated with operational exten-
sion in OO languages. The adaptive nature of our traver-
sals introduces flexibility that cannot be checked statically
in mainstream programming languages and, if implemented
naively, can hinder performance. Our implementation pro-
vides a type checker to verify safety and code generation
facilities to improve performance. Our functional approach
supports fully inlined and implicitly parallel traversals, in
many instances achieving execution times better than hand-
coded methods. Our traversals support high-level abstrac-
tions resulting in modular and extensible functions while
retaining flexibility and performance.

2. BACKGROUND
We begin by describing the problem with the help of an in-
teresting example. Consider the definition of an OO picture
library, similar to that discussed in [22]. Figure 1 contains
Java classes that form the base of our example: the ab-
stract class Pict has three subclasses representing Circles,
Squares, and Offset pictures respectively. For reference,
all the code examples from this paper are available on the
web [10].

abstract class Pict { }

class Ci r c l e extends Pict {
int rad ;
C i r c l e (int r){ rad = r ; }

}
class Square extends Pict {

int s i z e ;
Square (int s){ s i z e = s ; }

}
class Of f s e t extends Pict {

int dx , dy ;
Pict inner ;
O f f s e t (int x , int y , Pict in)
{ dx = x ; dy = y ; inner = in ; }

}

Figure 1: Picture Class Skeletons

Our Pict classes form a somewhat limited representation
of pictures, and we expand them soon, but first let’s write
a simple toString() function, usually referred to as pretty
printing. This can be somewhat difficult in Java once we
separate our classes into different files, since we insert a new
method into each class. Figure 2 shows the inserted code
with comments describing where each method belongs. If
our structures had contained other non-primitive classes we
would have to be sure that toString() is implemented in
them as well, to avoid nonsensical outputs.

Besides the fact that this code is scattered throughout our
classes, this simple operational extension illustrates a few
other issues that place unnecessary burden on programmers.
First, OO class definitions are generally closed. In Java this

// In Pict
abstract St r ing toS t r i ng () ;
// In Circ le
St r ing toS t r i ng (){ return ”C i r c l e (”+rad+”) ” ; }
// In Square
St r ing toS t r i ng (){ return ”Square (”+s i z e+”) ” ; }
// In Of f se t
St r ing toS t r i ng (){

return ”Of f s e t (”+dx+” , ”+dy+” , ”+
inner . t oS t r i ng ()+ ”) ” ;

}

Figure 2: Picture toString methods

is especially true for final classes and value types, since
these cannot be subclassed, though open classes are sup-
ported by some languages and tools including AspectJ [1],
MultiJava [15] and Ruby [7]. Second, our function follows
a very typical pattern of recursion that exactly mimics the
structure of the classes involved. We should be able to ab-
stract this pattern out, and parametrize over only the inter-
esting parts of our computation. Finally, the implementa-
tion of toString does not depend on anything outside the
class hierarchy. toString is, of course, a bit of a special case,
but in general, many functions can be written more gener-
ically to avoid mentioning certain details, allowing them to
adapt to structural changes without programmer interven-
tion.

This can’t be the whole story though, because OO program-
mers rely on extensible data structures: adding cooperating
functions/methods to a collection of classes may be difficult,
but adding a new subclass to extend our data types is com-
paratively easy. This function/data centric dilemma is usu-
ally known as the expression problem [40, 2]. For instance,
we can add a new picture subclass to represent composi-
tions. Figure 3 contains a class, Overlay, that represents an
overlaying of two pictures.

class Overlay extends Pict {
Pict top , bot ;
Overlay (Pict t , P ict b){ top = t ; bot = b ; }

St r ing toS t r i ng (){
return ”Overlay (”+top . t oS t r i ng ()+ ” , ”+

bot . t oS t r i ng ()+ ”) ” ;
}

}

Figure 3: Overlay picture extension

This brings us to a crossroads: if we use a function-centric
approach (like visitors), then adding to our data types is
difficult, but if we use a data-centric (OO) approach then
adding functions is difficult. Many abandon the function
centric approach believing that it is unsafe (e.g., casting [22])
or hinders performance (e.g., reflection [37]). In either case
we run into problems similar to those above, but is it possible
to have the best of both worlds, modularizing functions while
remaining general, safe, and efficient?

3. OUR SOLUTION
Our answer to this question is yes. We solve these problems
using a traversal-based approach that encapsulates func-
tions over a data structure into function-objects: instances
of classes that wrap a set of methods. For our original col-

lection of picture classes, Figure 4 shows a function-class
that implements toString using our DemeterF traversal li-
brary. Our function-class, ToString, extends the DemeterF
class ID, which provides identity combine methods for Java’s
primitive types; to that we add three methods to handle
the traversal of our hierarchy. In order to understand the
computation involved, we simply need to think like a traver-
sal. In contrast to the popular Law of Demeter: “Talk only
to your friends”, we prefer the slogan “Listen only to your
neighbors”, where neighbors refers to an object’s parents and
children.

class ToString extends ID{
St r ing combine (C i r c l e c , int r)
{ return ”C i r c l e (”+r+”) ” ; }
St r ing combine (Square s , int sz)
{ return ”Square (”+sz+”) ” ; }
St r ing combine (O f f s e t o , int dx , int dy , St r ing in)
{ return ”Of f s e t (”+dx+” , ”+dy+” , ”+in+”) ” ; }

St r ing toS t r i ng (Pict p)
{ return new Traversa l (this) . t r av e r s e (p) ; }

}

Figure 4: ToString using DemeterF

In this case, a generic Traversal is created in the toString

method given this function-object, an instance of ToString.
Our default Traversal implementation reflects on the given
function-object to determine the structures to which it is
applicable (Circles, Squares, Offsets, and primitives). The
traverse method then recursively walks the structure of the
given picture, depth-first, using reflection.

When traversal of a Circle or Square is complete, the in-
stance and the recursive result of its field are passed to the
matching combine method ((Circle,int) or (Square,int)
respectively). Because ToString does not add combine meth-
ods to handle int, traversal of a Circle or Square repre-
sents an unfolding, with method parameters r and sz repre-
senting instance variables rad and size. The same is done
when traversal reaches an Offset: the recursive field (in-
ner) is traversed before the combine method is selected and
called. The String resulting from the traversal of inner is
computed and passed with other fields (dx and dy) to the
matching method for Offset.

Our toString functionality is now nicely modularized in a
single function-class, which can be considered an aspect of
traversal computation. An added benefit of using function-
objects with a reflective traversal is that extending user function-
classes is no different than extending data types: when our
picture classes are extended with Overlay, we can subclass
ToString to handle the new case. The resulting extension is
shown in Figure 5. At the top level we need to use our new
ToStringOverlay for Picts that may contain overlays, but
we eliminate the need for casting found in other functional
visitor solutions [22].

class ToStringOverlay extends ToString{
St r ing combine (Overlay o , S t r ing t , S t r ing b)
{ return ”Overlay (”+t+” , ”+b+”) ” ; }

}

Figure 5: ToString extended for Overlay

An easier way of creating this particular print-like function
is to use the structure of our picture classes, and DemeterF,
to generate the function-class automatically. The generator
component of DemeterF accepts a textual representation of
class structures called a class dictionary (CD) [26], which
looks like a mix of BNF and algebraic data types, similar to
those found in Haskell [20] and ML [31]. While DemeterF
includes a reflective tool to infer CDs from hand-written
Java classes, instead, we typically write CDs first, in order
to generate source files. The CD for our Pict classes appears
in Figure 6.

// p i c t . cd
Pict = C i r c l e | Square | Of f s e t | Overlay .
C i r c l e = <rad> int .
Square = <s i z e > int .
O f f s e t = <dx> int <dy> int <inner> Pict .
Overlay= <top> Pict <bot> Pict .

Figure 6: Class Dictionary for Picts

Our abstract class Pict is described by a list of variants
separated by bars (|), while concrete classes list their field
names (in brackets) and types.1 Because a generic form of
ToString is included with DemeterF, our CD can be used
to generate Pict structures that automatically include a
toString method:

>% java demeterf pict.cd --dgp:ToString

The dgp stands for data-generic programming [17, 28, 19],
and the function-class that DemeterF generates for ToString
is almost exactly the same as what we wrote by hand, but
it can be generated for any CD. We can also generate other
functions, like parse, equals, and hashCode, or write our
own plug-in DGP class, but the most important generic
function that can be generated is traversal itself. Once we
have an implementation of ToString (generated or hand-
written), we can use the CD together with the function-class
definition to weave a specialized inlined traversal.

We use our type checker to calculate the return type of
each sub-traversal and generate code that traverses each
field of our classes and merges results by calling the appro-
priate matching combine method (in this case there are no
overlapping methods). The result is a semantically equiv-
alent Traversal class, that performs much better than our
generic, reflective implementation. In many cases our inlined
code can actually outperform hand-written instance meth-
ods. Figure 7 gives average performance numbers of four dif-
ferent implementations of ToString run 10 times on a very
large Pict instance. The results are collected using Sun’s
JDK 6 on a 2.2 Ghz Intel Core 2 Duo processor. The first
is the DemeterF inlined version; the second is hand-coded
methods from Figure 2; the third is a hand-written visitor
implemented using double-dispatch; and the final one, for
comparison, uses our DemeterF reflective Traversal imple-
mentation.

In the rest of this paper we provide the details of our traversal-
based approach, and how generic programming (Section 5)
and generative weaving (Sections 6 and 7) combine to pro-
vide modularity, flexibility, and performance.

1In fact, a CD can describe any Java class hierarchy, though
we won’t discuss all of our CD features in this paper.

Type Average Time

Inlined 48 ms
Hand 49 ms

Visitor 54 ms
Reflective 362 ms

Figure 7: Performance of ToString

4. DEMETERF TRAVERSALS
The traversal of data structures can be thought of simply
as a walk over a structure that performs some work. In our
case, we package our work into a function-object and let
the traversal handle the selection of methods and passing
of parameters (i.e., implicit invocation). In this section we
provide an overview of our traversal approach and use it as
a basis for implementing different kinds of functions.

4.1 Functions to Traversals
Going back to our Pict structures, let’s write a slightly sim-
pler function over pictures that counts the number of Cir-
cles it contains. Again, we add a new method to each class,
shown in Figure 8.

// In Pict
abstract int c i r c l e s () ;
// In Circ le
int c i r c l e s (){ return 1 ; }
// In Square
int c i r c l e s (){ return 0 ; }
// In Of f se t
int c i r c l e s (){ return i nner . c i r c l e s () ; }
// In Overlay
int c i r c l e s ()
{ return top . c i r c l e s ()+bot . c i r c l e s () ; }

Figure 8: Picture circles methods

Together the functions implement straight-forward struc-
tural recursion: at each point where the structure is recur-
sive, the function is also recursive. Similar to folds, typical
functional visitor approaches [8, 33] implement this sort of
computation using methods that essentially replace the con-
structors of concrete variants. If we added the correct scaf-
folding for picture Visitors, a visitor-based function could
look something like Figure 9.

class CircsVi s extends Visi tor<Integer >{
I n t eg e r v i s i t (C i r c l e c){ return 1 ; }
I n t eg e r v i s i t (Square s){ return 0 ; }
I n t eg e r v i s i t (O f f s e t o)
{ return o . inner . accept (this) ; }
I n t eg e r v i s i t (Overlay o)
{ return o . top . accept (this)+o . bot . accept (this) ;}

}

Figure 9: circles Visitor implementation

In order to abstract out the traversal, in DemeterF we pass
the recursive (sub-)traversal results from an object’s fields
after the original object itself. This makes combine method
selection/matching uniform, using a variant of type-based
multiple dispatch. For example, the implementation of cir-
cles using DemeterF is shown in Figure 10.

The hand-coded, visitor, and DemeterF functions look quite
similar, the major difference being that in the DemeterF

class Circ s extends ID{
int combine (C i r c l e c , int rad){ return 1 ; }
int combine (Square s , int s i z){ return 0 ; }
int combine (O f f s e t o , int x , int y , int inCs)
{ return inCs ; }
int combine (Overlay o , int topCs , int botCs)
{ return topCs+botCs ; }

}

Figure 10: circles DemeterF implementation

case, the recursion is done for us implicitly: the arguments
to the combine methods have already been traversed before
the combine method is called (similar to internal visitors [8],
where the data structure is responsible for traversal). More-
over, the interesting computation involved is precisely en-
capsulated in our function-class, with all the boilerplate
code left to the traversal implementation. As with visitors,
creating or extending functions over our data structures is
rather simple. For example, consider implementing a func-
tion squares that counts the number of Squares in a given
picture. The DemeterF version is shown in Figure 11; since
our computation is succinctly written, the more abstract,
adaptive traversal provides a platform for reuse.

class Squares extends Circs {
int combine (C i r c l e c , int rad){ return 0 ; }
int combine (Square s , int s i z){ return 1 ; }

}

Figure 11: squares implementation using Circs

4.2 Traversal Details
The idea of abstraction is to eliminate similarities by parametriz-
ing over differences. When abstracting traversal from com-
putation we use a depth-first approach that treats all values
as objects, i.e., primitives are treated as objects without
any fields. Our basic strategy is illustrated with an example
traversal method for Overlay:

ID func ;
<Ret ,P> Ret t raverse (Overlay o){

P top = t raverse (o . top) ;
P bot = t raverse (o . bot) ;
return func . combine (o , top , bot) ;

}

The traverse method is parametrized over the types returned
by the traversal of an Overlay and a Pict (Ret and P respec-
tively). In general traversal methods of this form cannot be
implicitly type checked by Java, but they suffice to show our
interpretation of structural recursion: each field is traversed
in turn, and the results are passed (along with the original
object) to the function-object’s combine method. The type
parameters (Ret and P) signify that the traversal of differ-
ent types may return different results. In this case, both top

and bot are Picts, so their traversals must return a common
(unified) type, but multiple or mutually recursive hierarchies
can be handled similarly. For primitive types and user de-
fined classes without fields the traversal just delegates to the
function-object, since sub-traversals are not needed.

<Ret> Ret t raverse (int i){
return func . combine (i) ;

}

Though these traverse methods illustrate our point, in
DemeterF the combine method chosen by the traversal is

based on the dynamic types of all arguments, including the
function-object itself. We choose the most specific combine

method that is applicable to the given arguments: the cur-
rent object and sub-traversal results. Our dispatch strat-
egy is termed asymmetric, as we resolve ambiguities using
the left-most differing argument position, similar to a lexi-
cographical ordering using extends (or subclass-of) as less-
than.

4.3 Control
Traversal that implements structural recursion everywhere
throughout an object is very useful, but other strategies are
certainly needed. DemeterF provides several types of control
(where to go) as a separate aspect of the traversal. Our con-
trol is a limited form of traversal strategies [26, 27], based on
the notion of bypassing. For example, consider implement-
ing a function topMost that returns the top most primitive
(Circle or Square) in a given picture. A traversal every-
where would be inefficient, but there’s no need to hand-code
the entire traversal. Instead we can bypass (or skip) the bot

field of all Overlay instances; our implementation is shown
in Figure 12.

class TopMost extends ID{
Pict combine (Pict p , int i){ return p ; }
Pict combine (O f f s e t o , int x , int y , Pict in)
{ return in ; }
Pict combine (Overlay o , Pict top , Pict bot)
{ return top ; }

Pict topMost (Pict s){
return Traversa l (this ,

Control . bypass (”Overlay . bot ”)) . t raverse (s) ;
}

}

Figure 12: TopMost using bypassing

Control.bypass accepts a string representing a list of fields
to be bypassed, just Overlay.bot in this case, and returns
a Control instance that is used by the Traversal to deter-
mine which parts of the structure should be traversed. The
combine methods look similar to those before, but the over-
all function becomes more efficient by eliminating unneeded
traversal. When an Overlay instance is reached the traver-
sal will not recur on its bot field, instead the untouched field
is passed to the matching combine method along with the
recursive result from top. Our asymmetric multiple dispatch
also allows us to abstract over multiple method cases; here
the circle and square methods are abstracted into a single
combine over Pict.

One form of control that is particularly useful is the special
case onestep, corresponding to the bypassing of all fields.
This allows programmers to efficiently implement a traver-
sal style closer to hand-coded recursion, but leaving the type
checks, casting, and call-backs to the traversal implemen-
tation. Figure 13 shows a function-class that returns the
bottom most primitive picture, using a one-step traversal.

Rather than letting the traversal implicitly control our path
through a picture, we make the recursive calls ourselves,
one step at a time. Traversal.onestep returns a traver-
sal that steps into an object and passes its fields to the
function-object’s matching combine method. This allows a
programmer to implement more ad hoc recursion schemes,

class BotMost extends ID{
Pict combine (Pict p , int i){ return p ; }
Pict combine (O f f s e t o , int x , int y , Pict in)
{ return botMost (in) ; }
Pict combine (Overlay o , Pict top , Pict bot)
{ return botMost (bot) ; }

Pict botMost (Pict s){
return Traversa l . onestep (this) . t raverse (s) ;

}
}

Figure 13: BotMost using a onestep Traversal

resulting in functionality similar to a more traditional visitor
solution, achieving modular functionality without unneeded
boilerplate or scaffolding.

4.4 Contexts
Traditional visitors [16] employ void visit methods to en-
capsulate computations over structures, which forces pro-
grammers to use mutation in order to communicate values
between different calls. In DemeterF we have designed our
traversal approach to eliminate side-effects in order to make
programs compositional and simpler to optimize and paral-
lelize, but this can limit the communication of context sen-
sitive (top-down) information over a structure. To facilitate
the passing and updating of information from a parent to a
child as a separate aspect, DemeterF supports the idea of
a traversal context. The traversal manages the context by
propagating it, passing it to combine methods, and updating
its value based on the function-object’s declared methods.

The initial (root) context is given as an extra argument to
traverse, and the function-object can declare update meth-
ods to produce a new context for children/fields of an object
being traversed. The context is then passed as an optional
last argument to a chosen combine method. For example,
if we attempt to generate a visual representation of a Pict

object using DemeterF, we notice that information gets lost
during traversal; an Offset instance contains positioning in-
formation for its children. Using traversal contexts we can
easily encapsulate this information into a drawing context.
A simple representation is shown in Figure 14.

class Ctx{
int x , y ;
Ctx (int xx , int yy){ x = xx ; y = yy ; }
Ctx move(int dx , int dy)
{ return new Ctx (x+dx , y+dy) ; }

}

Figure 14: Drawing contexts

We can now implement a function to convert a Pict into
a Scalable Vector Graphics (SVG) string. SVG is a pop-
ular XML format for representing visual elements that is
portable and simple to generate. Figure 15 shows a function-
class that implements the Pict conversion to SVG using
our drawing context, Ctx. The SVG class encapsulates static
methods that create the SVG specific formatting. The first
four combine methods are very similar to what we have writ-
ten before, except that the methods for Circle and Square

include a third parameter of type Ctx.

When traverse is called we pass an initial context represent-
ing the center of the canvas, (w/2, h/2). Before recursively

class ToSVG extends ID{
St r ing combine (C i r c l e c , int r , Ctx ctx)
{ return SVG. c i r c l e (ctx . x , ctx . y , r) ; }
St r ing combine (Square s , int sz , Ctx ctx)
{ return SVG. square (ctx . x , ctx . y , sz) ; }
St r ing combine (O f f s e t o , int dx , int dy , S t r ing in)
{ return in ; }
St r ing combine (Overlay o , S t r ing t , S t r ing b)
{ return t+b ; }

Ctx update (O f f s e t o f f , F i e l d s . any f , Ctx c)
{ return c . move(o f f . getDx () , o f f . getDy ()) ; }

St r ing toSVG(Pict p , int w, int h){
return SVG. head (w, h)+

new Traversa l (this)
. t raverse (p , new Ctx (w/2 ,h/2))+

SVG. f oo t () ;
}

}

Figure 15: Pict to SVG using Contexts

traversing the fields of an Offset, the traversal will call our
update method to produce a new context. The signature
of the update method can be read as: Before traversing
any field of an Offset, compute a new context from the par-
ent’s. In this case we move the context to include the current
Offset. If no matching update method is found, then the
parent’s context is passed recursively to each sub-traversal
unchanged. In this case, the update method’s second pa-
rameter type, Fields.any, corresponds to a DemeterF class
representing all fields. Alternatively, we can create represen-
tative field classes (e.g., Offset.inner) to allow more fine
grained context updates; classes generated using DemeterF
include appropriately named inner classes that are used for
this purpose.

5. GENERIC PROGRAMMING
We call the programming style of DemeterF generic because
it generalizes the shape of the data types being traversed:
functions do not necessarily rely on the specific types or
names of an object’s fields, but on the return types of the
traversal of those fields.2 For instance, in the ToString

function-class (Figure 4), the traversal of an instance of Pict
returns a String. Our function-class relies on this, and the
fact that the traversal of an integer will return an integer.

Abstracting from the typical uses of function-classes leads
us to two general cases: those which are type unifying, and
those that are type preserving [25], sometimes referred to
as queries and transformations [23]. The first category con-
tains functions similar to ToString and Circs, where sub-
traversals return the same type, and recursive results are
combined using a single function, e.g., String or int com-
bined using +. The second category contains certain kinds
of transformations and functional updates, where we may
change interesting parts of a data structure, while recon-
structing (or copying) others.

5.1 Type-Unifying Functions
To support generic type-unifying traversals in DemeterF we
provide a special function-class that abstracts computation
using two methods: a no argument combine method that
provides a default case, and a two argument fold method

2You could say our function-objects are near-sighted.

that is used to fold together multiple recursive results into
a single value. The skeleton of the TU class is shown in
Figure 16.

abstract class TU<X> extends ID{
abstract X combine () ;
abstract X fo l d (X a , X b) ;

X t raverse (Object o){ /* . . . */ }
}

Figure 16: Type-unifying function-class

How can we use this class? Figure 17 contains a new defini-
tion of our Circs function-class (from Figure 10) that counts
the Circles in a Pict. The first two methods implement
our necessary abstract methods of TU, providing a default
combine, and a fold that sums the resulting counts.3 The
final method describes the interesting part of our structure,
Circles, where we return 1.

class CircsTU extends TU<Integer >{
I n t eg e r combine (){ return 0 ; }
I n t eg e r f o l d (In t eg e r a , In t eg e r b){ return a+b ;}

I n t eg e r combine (C i r c l e c){ return 1 ; }
}

Figure 17: Generic circles count using TU

In our experience, TU is most useful for computations that
collect information over a complex data structure. This
usually involves some form of library structure to collect
instances (e.g., List, Set, etc.). Figure 18 shows a typi-
cal use of TU with DemeterF Lists to collect results over
a generic structure. Note that we use DemeterF functional
(immutable) Lists, so append returns a new instance.

abstract class ListTU<X> extends TU<List<X>>{
List<X> combine (){ return L i s t . c r e a t e () ; }
List<X> f o l d (List<X> a , List<X> b)
{ return a . append (b) ; }

}

Figure 18: Typical TU collection using lists

5.2 Type-Preserving Functions
While TU functions collect various results of a single type
together, type-preserving functions perform recursive trans-
formations over the traversal of a data structure. The basic
idea is easily demonstrated by writing a copy function for
our picture classes, shown in Figure 19.

class Copy extends ID{
Ci r c l e combine (C i r c l e c , int r)
{ return new Ci r c l e (r) ; }
Square combine (Square s , int sz)
{ return new Square (sz) ; }
Of f s e t combine (O f f s e t o , int dx , int dy , Pict in)
{ return new Of f s e t (dx , dy , in) ; }
Overlay combine (Overlay o , Pict t , P ict b)
{ return new Overlay (t , b) ; }

}

Figure 19: Copy function-class for Picts

3Java requires that we use Integer, a reference type, rather
than int, value type, though coercion is usually automatic.

For each concrete Pict subclass we write a combine method
that has parameters with the same types as its fields and
constructs a new instance with recursive results. While Copy
is specific to Picts, the completely generic version of this
function is implemented in the DemeterF class TP, which
uses reflection to dynamically call constructors of the object
being traversed. We can extend the generic function with
specific combine methods to implement our required trans-
formation. Figure 20 shows a function-class that recursively
scales a picture by a given factor. This function-class is com-
pletely generic and applicable to any data structure, though
in this case we only apply it to Picts to preserve its “scale”
meaning.

class Sca l e extends TP{
int s c l ;
Sca l e (int s){ s c l = s ; }
int combine (int i){ return i * s c l ; }

Pict s c a l e (Pict p)
{ return new Traversa l (this) . t raverse (p) ; }

}

Figure 20: Scale transformation for Picts

The benefit here is that we mention as little of our structure
as possible; we only write methods for the interesting parts
to be transformed. As another example, Figure 21 shows a
function-class that converts all the Circles in Pict instance
into Squares of the same size. We only refer to the important
structural elements, namely that Circle contains an int

radius, or more precisely, something for which our traversal
will return an int.

class Circ2Sqr extends TP{
Square combine (C i r c l e c , int rad)
{ return new Square (rad *2) ; }

}

Figure 21: Convert circles into squares

As a final TP example, Figure 22 shows a function-class that
reverses the top to bottom ordering of a Pict instance. This
example emphasizes the fact that the arguments passed to
the combine method are the recursive results of applying our
function-object over the traversal. The t and b arguments
to our combine method have already been Fliped once it is
called.

class Fl ip extends TP{
Overlay combine (Overlay o , Pict t , P ict b)
{ return new Overlay (b , t) ; }

}

Figure 22: Reverse top to bottom Pict ordering

6. DEMETERF GENERATION
DemeterF is not only a traversal library, but also a tool,
similar to DemeterJ [39], for developing, generating, and
managing complex class hierarchies. What we add to Deme-
terJ is extensive support for Java generics and parametrized
classes, and a framework for data-generic programming. Deme-
terF class dictionary (CD) files share much of their syntax
with DemeterJ. Though we include several new features for
parametrized classes, our behavior (BEH) files are a simpli-
fication of DemeterJ’s, supporting only a static form of open
classes.

A CD file consists of class definitions describing the struc-
ture of our classes. Each definition can contain any number
of subclasses, separated by bars (|), followed by field defi-
nitions and/or concrete syntax terminated by a period. For
example, typical LISP style structures for a list-of-integers
could be described by a CD such as:

// l i s t . cd
L i s t = Cons | Empty .
Cons = <head> int <t a i l > L i s t .

Empty = ” ; ” .

This defines an abstract class List (since it has a non-empty
list of subclass) and two concrete classes, Cons and Empty. In
addition to Java class definitions, DemeterF also generates
a parser using CD definitions as a modified form of BNF.
Of course, specific List definitions are not as useful as one
that is abstracted over the type of data that it stores:

L i s t (X) = Cons (X) | Empty(X) .
Cons (X) = <head> X <t a i l > L i s t (X) .

Empty(X) = ” ; ” .

Once we fully instantiate this parametrized definition, Deme-
terF will generate specific methods for parsing, printing, and
traversing that particular instantiation.

I n tL i s t = <l s t > L i s t (In t eg e r) .

The added benefit is that we can nest our instances, and even
parametrize over a new type parameter, letting DemeterF
handle the complicated details.

D2List (Y) = <l s t > L i s t (L i s t (Y)) .

6.1 Data-Generic Programming
Creating more concrete versions of reflection-based Deme-
terF classes like Traversal, TU, and TP only depends on
the specific structures involved. The key to overcoming
performance limitations of dynamic reflection is to replace
it with static information from a CD. DemeterF supports
two forms of data-generic programming over the structure
of data types allowing the injection of methods per-class, or
per-CD. Methods like getters and equals depend only locally
on a single class definition, while others like parsing, print-
ing, and traversal rely a global view of the CD. Both forms
of generation are specified as a function-class: instances of
the classes chosen on the command-line are used to traverse
a portion of the CD (either a single class definition, or the
entire CD) and generate the necessary code.

A typical DemeterF command line looks something like the
following:

>% java demeterf list.cd --dgp:Print --pcdgp:Getters

Which requests that a print method be generated (pretty-
printing based on CD syntax) and getters (like getHead())
be generated for all fields.

Static classes corresponding to TU and TP, named StaticTU

and StaticTP, can be generated by including them in the
command-line’s dgp list, since they require information from
the entire CD. For StaticTP, the result is very similar to
our Copy function from Figure 19, while StaticTU contains
inlined calls to TU’s fold for concrete class cases. The main
reason for generating these function-classes is to create type-
safe versions for precise inlining and improved performance.

7. INLINING AND PERFORMANCE
Types play a central role in DemeterF traversals, both in
guiding the traversal of data structures and in the selection
of combine methods. In order for a traversal to be safe we
must be sure that the selected methods over the traversal
fit together correctly. An added benefit of doing this safety
analysis statically is that with traversal return types in hand,
we can eliminate most the overhead of multiple dispatch
by generating a CD specific traversal with inlined calls to
combine methods.

7.1 Types
DemeterF function-classes are Java classes and must con-
form to Java’s typing rules, but things get more interesting
when we interpret combine methods as a coordinated func-
tion over a data structure traversal. For example, consider
our Circs function-class (Figure 10): each method returns
an int. This means that the traversal of each subclass of
Pict must also return an int. Using the CD from Figure 6
we can check that each combine method has the right types
and number of arguments and is applicable to the expected
field result types. A quick walk over the definitions in the
CD tells us how many arguments to expect, and the combine
methods tells us what types the recursive traversal will re-
turn for each. The type checker’s goal is then to prove that
an applicable combine method always exists during dispatch.
The type-unifying case described above generalizes for other
functions, including TP transformations like Copy (Figure 19)
and more ad hoc functions like Circ2Sqr (Figure 21).

The basis of our type system has been formalized [12, 11]
with a more algorithmic discussion here [9]. The most im-
portant cases deal with recursive types: when a recursive
type use (field) is encountered, there is no way to know
immediately what type the traversal will yield. As an ap-
proximation we assume that it could be anything, and con-
strain the return type based on the arguments of otherwise
matching combine methods. For instance, the field inner of
Offset is a recursive use of Pict; when calculating the type
returned by the traversal of an Offset, we know that the
traversal of the first two parameters is int, but the third is
unknown. We instead look for any combine applicable to:

(Of f set , int , int , *)

If such a method exists, then the traversal return type can be
constrained based on the argument type(s) in the recursive
positions. For Offset a constraint originates from the forth
argument: when checking Circs it constrains the traversal
of a Pict to return an int, whereas for Copy the traversal
must return a Pict.

In some cases there may be more than one applicable method,
which simply results in multiple constraints. For example,
consider a function-class Compress in Figure 23, that recur-
sively replaces nested Offsets with a single instance.

class Compress extends Copy{
Of f s e t combine (O f f s e t o , int x , int y , O f f s e t in)
{ return new Of f s e t (in . dx+x , in . dy+y , in . inner) ;}

}

Figure 23: Compress redundant Offsets

Our function-class contains two methods that may be ap-
plied after traversing an Offset: one inherited from Copy

and one implemented in Compress, which differ by their last
argument. When constraining the recursive field, we choose
the common supertype of Pict and Offset, Pict. For the
traversal of abstract classes like Pict, the return type is a
common supertype of the return types of the subclass traver-
sals.

7.2 Inlining
If the combine methods satisfy all constraints, we can cal-
culate the combine methods that might be called at each
point during traversal. To generate a specialized traversal
we insert calls to the correct combine method(s) at each
point, weaving code to dynamically resolve method selec-
tions when needed. For example, when inlining Compress,
after completing an Offset the traversal is left with a choice
between two methods. The method chosen depends on the
dynamic type of the recursive result for inner, so the Deme-
terF inliner produces code to disambiguate the methods like
the following:

i f (inner instanceof Of f s e t)
return func . combine (o , dx , dx , (O f f s e t) inner) ;

return func . combine (o , dx , dy , inner)

Where inner is the recursive traversal result. Our imple-
mentation uses a algorithm to recursively partition the set
of possible methods, generating if statements to narrow the
selections until all arguments are exhausted, or only one
method is applicable.

7.3 Performance
Similar to partial evaluation, the main motivation for weav-
ing traversals is to improve performance. As a thorough
performance test, we have implemented each of the func-
tions described previously three different ways: using Deme-
terF function-classes, hand written instance methods, and
double-dispatch visitors. Figure 24 contains the results of
running each implementation of the functions on a large gen-
erated Pict instance. We use Sun’s JDK 6 on a 2.2 Ghz Intel
Core 2 Duo processor; each time is an average of 10 runs,
on a picture with approximately 80,000 nodes.

The first row of the table shows DemeterF inlined traver-
sal results, the second is hand-coded instance methods, and
the third is a double-dispatch visitor implementation. For a
base comparison, the final row shows the DemeterF reflec-
tive traversal implementation, with the same function-class
used for both inlined and reflective traversals. DemeterF in-
lined traversal performance is comparable to the hand-coded
versions, actually doing better on most functions. The in-
lined CircsTU traversal has a reasonable amount of overhead
due to internal method calls, but inlined TP based functions
perform very well, without the need to write any traversal
code by hand.

8. EXAMPLE: EXPRESSION COMPILER
As a more sophisticated example using DemeterF, in this
section we discuss the implementation of a compiler for a
simple expression language. We write function-classes to
calculate the maximum local variable usage, simplify con-
stant expressions, and convert our arithmetic language into
a low level stack-based assembly language, similar to that
of the Java Virtual Machine. To keep things interesting,

Type CircsTU ToSVG Scale Circ2sqr Flip Compress

Inline 18 ms 489 ms 11 ms 11 ms 10 ms 11 ms
Hand 9 ms 488 ms 20 ms 19 ms 13 ms 13 ms

Visitor 47 ms 491 ms 63 ms 62 ms 59 ms 86 ms
Reflective 651 ms 15618 ms 648 ms 645 ms 650 ms 617 ms

Figure 24: Performance of Pict function implementations

our source language includes arithmetic expressions, vari-
able definitions, if expressions, and binary operations.

8.1 Structures
To build a compiler we need representations for both our
source and target languages. In this case, the abstract and
concrete syntax of both languages can be described with a
couple CDs. Figure 25 shows a CD that defines our target
language: a simple stack based assembly language with la-
bels, subtraction, and operations for manipulating control,
stack, and definitions.

// asm. cd
Op = Minus | Push | Pop | Def ine | Undef
| Load | Label | Jmp | IfNZ .

Minus = ”minus ” .
Push = ”push ” <i> int .
Pop = ”pop” .

Def ine = ”def ” .
Undef = ”undef ” .
Load = ”load ” <i> int .

Label = ” l a b e l ” <id> i dent .
Jmp = ”jump” <id> i dent .

IfNZ = ” i f n z e r o ” <id> i dent .

Figure 25: Assembly structures CD

We do not show the code associated with the assembly struc-
tures, but the full code for all the examples in the paper is
available on the web [10]. Figure 26 shows a CD file that
describes our expression data structures.

// exp . cd
Exp = I f z | Def | Bin | Var | Num.
I f z = ” i f z ” <cnd> Exp ”then ” <thn> Exp

” e l s e ” <e l s > Exp .
Def = <id> i dent ”=” <e> Exp ” ; ” <body> Exp .
Bin = ”(” <op> Oper < l e f t > Exp <r ight > Exp ”) ” .
Var = <id> i dent .
Num = <val> int .

Oper = Sub .
Sub = ”−” .

Figure 26: Expression structures CD

The command we would use to generate the class definitions
for our expression structures is shown below:

>% java DemeterF exp.cd --dgp:Print:StaticTU:StaticTP

A similar command would be used for the assembly struc-
tures; DemeterF uses the dgp functions to generate print

and parse methods, and static versions of our generic function-
classes. A simple term in this concrete expression syntax
would look something like:

i f z (− 4 3) then 5 else 7

and can be parsed with the Java statement below:

Exp e = Exp . parse (” i f z (− 4 3) then 5 e l s e 7 ”) ;

though for our compiler implementation we will parse ex-
pressions from a file.

8.2 Max Environment Size
A typical operation needed when compiling languages with
local definitions is to calculate the maximum number of vari-
ables used by a procedure. This allows the runtime to al-
locate the right amount of space for procedure frames and
verify that Load instructions are always in bounds. Fig-
ure 27 shows a function-class that calculates the maximum
local definition nesting for an expression.

class MaxEnv extends StaticTU<Integer >{
I n t eg e r combine (){ return 0 ; }
I n t eg e r f o l d (In t eg e r a , I n t eg e r b)
{ return Math .max(a , b) ; }

I n t eg e r combine (Def c , int id , int e , int b)
{ return f o l d (e , 1+b) ; }

}

Figure 27: Maximum local environment calculation.

Variables are bound by Defs, so we return the maximum of
(body+1) and the result from the binding expression. Our
superclass, StaticTU, handles other cases like Num and Bin,
so we can eventually generate inlined traversals.

8.3 Simplification
As a second example, Figure 28 shows a function-class that
implements bottom up simplification of constant expressions
in our mini language. We extend the generated class Stat-

icTP, so we can efficiently inline the function-class later.

class S impl i f y extends StaticTP{
class Zero extends Num{ Zero (){ super (0) ; } }
Num combine (Num n , int i)
{ return (i==0) ? new Zero () : new Num(i) ; }

Exp combine (Bin b , Sub p , Exp l , Zero r){ return l ;}
Exp combine (Bin b , Sub p , Num l , Num r)
{ return combine (l , l . val−r . va l) ; }

Exp combine (I f z f , Zero z , Exp t , Exp e){ return t ;}
Exp combine (I f z f ,Num n , Exp t , Exp e){ return e ; }

Exp combine (Def d , ident i , Exp e , Num b){ return b ;}
}

Figure 28: Recursive Simplification

The special cases for arithmetic expressions are each cap-
tured by our combine methods, while the rest of the recon-
struction is handled implicitly by StaticTP. Num instances
that contain zero are transformed into instances of the more
specific inner class Zero. Subtracting Zero from any Exp

yields just the left Exp; for subtraction consisting of only
numbers we can propagate the resulting constant as a new
Num. For Ifz expressions, when the condition is Zero or Num

we can simplify by returning the recursive result from thn

or els, respectively. Finally, for definitions involving only
numbers, we safely discard the binding.

8.4 The Exp Compiler
For the sake of code organization and modularity, we have
split the final example into four classes; one class for each
category of expression and a main, top-level entry-point.
Figure 29 shows the main compiler class, Compile, that ex-
tends our final function-class, Cond.

// Compile an Exp Fi l e
class Compile extends Cond{

List<Op> compile (S t r ing f i l e){
Exp e = Exp . parse (new Fi leInputStream (f i l e)) ;
return new Traversa l (this)

. t r av e r s e (e , L i s t .< ident>c r ea t e ()) ;
}

}

Figure 29: Main compile class

We have a single method, compile(String), that parses an
expression from the given file, and traverses it to produce
a list of representative opcodes, List<Op>. When compil-
ing, we use the traversal context to pass a stack of local
variable names (List<ident>) for nested definitions, start-
ing with the empty List as our root context. Here List

is a functional (immutable) list implementation provided by
the DemeterF library with typical methods like create, ap-
pend, and lookup. DemeterF library/container classes such
as List are also described by a CD file, with definitions sim-
ilar to those in Section 6; our generative/weaving approach
applies equally well to external and parametrized classes.

class Arith extends ID{
List<Op> one (Op o){ return L i s t .<Op>c r ea t e (o) ; }

List<Op> combine (Sub s){ return one (new Minus ()) ; }
List<Op> combine (Num n , int i)
{ return one (new Push (i)) ; }
List<Op> combine (Bin b , List<Op> o , List<Op> l ,

L i s t<Op> r)
{ return r . append (l) . append (o) ; }

}

Figure 30: Compile for arithmetic Ops

Figure 30 shows the combine methods for math related op-
erators in our expression language. The method one(..)

simplifies the creation of single Op lists. As is common in
stack based assembly languages we push operands onto the
stack, then call an arithmetic operator. For instance, the
expression (- 4 3) would generate the following instruction
sequence:

push 3
push 4
minus

The Defs class in Figure 31 implements the compilation of
variable definition related expressions, extending our Arith

compiler. We generate a Load operation for a variable refer-
ence with the offset of its identifier in the environment, which
is passed as the last argument to the combine method. Our
update method adds a defined variable to the environment
when traversing into the body of a definition, signified by the
use of the field class (Def.body), generated by DemeterF.

Once all sub-expressions have been compiled, the body code
is wrapped in Define/Undef and appended to the binding
evaluation code.

class Defs extends Arith{
List<ident> update (Def d , Def . body f , L i st<ident> s)
{ return s . push (d . id) ; }
List<Op> combine (Var v , ident id , List<ident> s)
{ return one (new Load (s . index (id))) ; }

List<Op> combine (Def d , ident id , L ist<Op> e ,
L ist<Op> bdy){

return e . append (new Def ine ()) . append (bdy)
. append (new Undef ()) ;

}
}

Figure 31: Compile for Variables

The final class, Cond shown in Figure 32, deals with con-
ditional expressions, extending Defs. We use local vari-
able (lnum) in the method fresh() to create unique Labels
within generated code. The IfNZ opcode is used to branch
to the els portion when the condition is not zero. Otherwise
the code produced for thn will be executed, and finally we
Jmp to the done label.

class Cond extends Defs{
int lnum = 0 ;
synchronized i dent f r e s h (St r ing s)
{ return new i dent (s+” ”+lnum++); }

List<Op> combine (I f z f , L i st<Op> c , L ist<Op> t ,
L is t<Op> e){

i dent l e = f r e s h (” e l s e ”) ,
ld = f r e s h (”done ”) ;

return c . append (new IfNZ (l e)) . append (t)
. append (new Jmp(ld))
. append (new Label (l e)) . append (e)
. append (new Label (ld)) ;

}
}

Figure 32: Compile for Conditionals

8.5 Performance
To demonstrate the performance of DemeterF inlined traver-
sals, we give timing results for three equivalent implementa-
tions of each of the functions, MaxEnv, Simplify, and Com-

pile. Figure 33 contains the average results of 10 runs of
each on a very large Exp instance with the same configura-
tion used previously. DemeterF inlined traversals perform
very competitively, beating both the hand-written and vis-
itor implementations in the Compile test. As before the
type-unifying case (MaxEnv) has a bit more overhead, but the
type-preserving case (Simplify) is very close. The times for
reflective traversal are also provided for a base comparison.

Type MaxEnv Simplify Compile

Inline 26 ms 25 ms 1130 ms
Hand 9 ms 21 ms 1160 ms

Visitor 34 ms 80 ms 1187 ms
Reflective 791 ms 893 ms 2723 ms

Figure 33: Performance of compile related functions

9. RELATED WORK
The traversal-based approach of DemeterF is similar to other
generic and generative programming projects. In OO pro-
gramming much work has been centered around the visitor

pattern [16] and related tools, while work in functional lan-
guages focus more on new forms of polymorphism and poly-
typic programming. Both components of DemeterF have
ties to AOP, supporting static AOP through open classes
and traversal inlining, and dynamic AOP with reflective
traversals and woven residual dispatch. Data-generic sup-
port in DemeterF allows methods to be injected based on
the shape of a data structure, providing a less general, but
still powerful form of advice.

Traversals in DemeterF (similar to DemeterJ [39]) also fall
under a more traditional AOP model. In [29] the authors
discuss the relations of several aspect oriented systems, in-
cluding DemeterJ. Following their description, we can define
the join point model of DemeterF as the entry (for update

methods) and exit (for combine methods) of objects dur-
ing the depth-first traversal of a data structure. DemeterF
function-objects can be seen as parametrizable advice, while
the control and combine method signatures are analogous to
pointcuts: selecting a set of dynamic join points correspond-
ing to the types of recursive results, which can be enhanced
by the type of the traversal context. In contrast to Deme-
terJ, we execute only the most specific pointcut/advice at a
given join point, similar to Fred [34] and Socrates [35].

Our goal is to provide a safer, functional alternative with
some of the power of AOP, while maintaining its dynamic
flexibility. Due to the functional nature of our traversals,
execution of advice affects later join point selection, but
function-classes can be checked to be sure that advice is
complete, meaning method selection will never fail. Since
reflection incurs steep runtime penalties, we can statically
weave most of our function-object advice to regain perfor-
mance.

9.1 Demeter Tools and Generators
Adaptive OO Programming [26] combines datatype descrip-
tions with a domain specific language that selects part of an
object instance over which a visitor is executed. The two
major implementations of adaptive programming, DJ [36]
and DemeterJ [39], are similar to DemeterF’s reflective and
static traversals, respectively. DemeterJ uses a similar class
dictionary syntax to generate Java classes, a parser, and
various default visitors. Ideas from both DemeterJ and DJ
have flown into the design of DemeterF, with a purely func-
tional flavor. DemeterF improves on those tools with safe
traversals, extensive support for generics, and customizable
data-generic function generation.

Other generational tools like JAXB [4] and XMLBeans [6]
are used to generate Java classes and XML parsers from
schemas. Though the design of the created classes enforces
good programming practices, the tools seem to have little
support for other generic or generative features, and do not
support a notion of parametrized structures. Parser genera-
tors like JavaCC [5] and ANTLR [3] have built in support for
generating code for tree based traversals. JavaCC includes
a tool JJTree that provides support for writing automatic
visitor methods, and ANTLR provides similar functionality
with tree parsers.

9.2 Visitors and Multi-methods
The visitor pattern is most commonly used in OO languages
to implement functions over datatypes without requiring in-
stance checks or casts. Typical implementations employ
double dispatch, though reflection has also been used [37,
36]. The visitor pattern has a sound type-theoretic back-
ground [8, 41], and has been at the center of discussions
of extensible functions [22] and the expression problem [40,
32]. There is an opinion that multi-methods [15, 13] elimi-
nate the need for the visitor pattern, but visitors can still be
used to abstract traversal code, similar to the Walkabout vis-
itor [37]. In DemeterF we use multiple dispatch to support
both abstraction and specialization within function-classes.
Type-checking of DemeterF function-classes over traversals
is similar to that employed in multi-method systems [14],
though we must infer more complex recursive cases.

9.3 Generic Programming
Gibbons [17] gives a comprehensive review of datatype generic
programming. It is well known that higher-order functions
such as fold [30] can be generalized [38, 18] to other datatype
shapes, and the result is something similar to DemeterF
traversals. Data-generic features in DemeterF are modeled
after functional languages that support forms of shape poly-
morphism. PolyP [19] has similarities to Generic Haskell [28],
both of which support the definition of functions over an
abstract view of a datatype. Light-weight generic program-
ming approaches such as Scrap Your Boilerplate [23] have
been developed, making use of modular extensions provided
by Haskell’s typeclasses. A later paper in the series [24]
presents a solution to extensible generic functions. The
type checking, extensibility, control, and contexts of Deme-
terF function-classes set it apart from other functional ap-
proaches, though our type system and tools are not inte-
grated into the underlying language.

10. CONCLUSION
We have introduced a new form of traversal-based generic
programming that uses function-classes to define both generic
and specific functions over data structures. Traversal func-
tions employ a type-based multiple-dispatch allowing func-
tions to be modular, flexible, and extensible. DemeterF
generates classes and functions from structural descriptions
of data types, including function-classes for generic pro-
gramming. Function-classes can be checked and woven with
data structure traversals to achieve performance that is com-
petitive with hand written instance methods. Our traver-
sals support high-level abstractions resulting in modular and
extensible functions, while retaining flexibility and perfor-
mance.

In the future we plan to use our weaving approach to imple-
ment implicitly parallel traversals that scale to multi-core
architectures, further increasing performance.

11. REFERENCES
[1] The AspectJ Project. Website.

http://www.eclipse.org/aspectj/.

[2] Independently Extensible Solutions to the Expression
Problem. ACM, 2005.

[3] ANother Tool for Language Recognition. Website,
2008. http://www.antlr.org/.

[4] JAXB reference implementation. Website, 2008.
https://jaxb.dev.java.net/.

[5] The Java Compiler Compiler�. Website, 2008.
https://javacc.dev.java.net/.

[6] XML Beans overview. Website, 2008.
http://xmlbeans.apache.org/overview.html.

[7] Ruby Programming Language. Website, 2009.
http://www.ruby-lang.org/en/.

[8] P. Buchlovsky and H. Thielecke. A type-theoretic
reconstruction of the visitor pattern. Electr. Notes
Theor. Comput. Sci., 155:309–329, 2006.

[9] B. Chadwick. Algorithms in DemeterF. http:
//www.ccs.neu.edu/home/chadwick/files/algo.pdf,
May 2009.

[10] B. Chadwick. AOSD-10 example code. Website, 2009.
http://www.ccs.neu.edu/home/chadwick/aosd10/.

[11] B. Chadwick and K. Lieberherr. A Model of
Functional Traversal-Based Generic Programming.
Submitted to Higher-Order and Symbolic
Computation, Festscrift for Mitch Wand http://www.

ccs.neu.edu/home/chadwick/files/mitchfest.pdf.

[12] B. Chadwick and K. Lieberherr. A Type System for
Functional Traversal-Based Aspects. In AOSD ’09,
FOAL Workshop. ACM, 2009.

[13] C. Chambers. Object-oriented multi-methods in cecil.
In ECOOP ’92, pages 33–56. Springer-Verlag, 1992.

[14] C. Chambers and G. T. Leavens. Typechecking and
modules for multimethods. TOPLAS ’95,
17(6):805–843, November 1995.

[15] C. Clifton, G. T. Leavens, C. Chambers, and T. D.
Millstein. Multijava: modular open classes and
symmetric multiple dispatch for java. In OOPSLA ’00,
pages 130–145, 2000.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[17] J. Gibbons. Datatype-generic programming. In
R. Backhouse, J. Gibbons, R. Hinze, and J. Jeuring,
editors, Spring School on Datatype-Generic
Programming, volume 4719 of Lecture Notes in
Computer Science. Springer-Verlag, 2007.

[18] R. Hinze. Efficient generalized folds. Technical Report
IAI-TR-99-8, Institut für Informatik III, Universität
Bonn, jun 1999.

[19] P. Jansson and J. Jeuring. PolyP - a polytypic
programming language extension. In POPL ’97, pages
470–482. ACM Press, 1997.

[20] S. P. Jones. Haskell 98 Language and Libraries: The
Revised Report. Cambridge University Press, May
2003.

[21] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. pages 220–242.
Springer-Verlag, 1997.

[22] S. Krishnamurthi, M. Felleisen, and D. P. Friedman.
Synthesizing object-oriented and functional design to
promote re-use. In ECOOP ’98, pages 91–113,
London, UK, 1998. Springer Verlag.

[23] R. Lämmel and S. Peyton Jones. Scrap your
boilerplate: a practical design pattern for generic
programming. volume 38, pages 26–37. ACM Press,

March 2003. TLDI ’03.

[24] R. Lämmel and S. Peyton Jones. Scrap your
boilerplate with class: extensible generic functions. In
ICFP ’05, pages 204–215. ACM Press, Sept. 2005.

[25] R. Lämmel and J. Visser. Typed Combinators for
Generic Traversal. In PADL ’02, volume 2257 of
LNCS, pages 137–154. Springer-Verlag, Jan. 2002.

[26] K. J. Lieberherr. Adaptive Object-Oriented Software:
The Demeter Method with Propagation Patterns. PWS
Publishing Company, Boston, 1996. 616 pages, ISBN
0-534-94602-X.

[27] K. J. Lieberherr, B. Patt-Shamir, and D. Orleans.
Traversals of object structures: Specification and
efficient implementation. ACM Trans. Program. Lang.
Syst., 26(2):370–412, 2004.

[28] A. Loeh, J. J. (editors); Dave Clarke, R. Hinze,
A. Rodriguez, and J. de Wit. Generic haskell user’s
guide. Technical Report UU-CS-2005-004, Department
of Information and Computing Sciences, Utrecht
University, 2005.

[29] H. Masuhara and G. Kiczales. Modeling crosscutting
in aspect-oriented mechanisms. In ECOOP ’03, pages
2–28, 2003.

[30] E. Meijer, M. Fokkinga, and R. Paterson. Functional
programming with bananas, lenses, envelopes and
barbed wire. In J. Hughes, editor, FPCA ’91, volume
523, pages 124–144. Springer Verlag, Berlin, 1991.

[31] R. Milner, M. Tofte, and D. Macqueen. The Definition
of Standard ML. MIT Press, Cambridge, MA, USA,
1997.

[32] B. C. Oliveira. Modular visitor components. In
ECOOP ’09, pages 269–293. Springer-Verlag, 2009.

[33] B. C. D. S. Oliveira, M. Wang, and J. Gibbons. The
visitor pattern as a reusable, generic, type-safe
component. In OOPSLA ’08, pages 439–456, 2008.

[34] D. Orleans. Incremental programming with extensible
decisions. In AOSD ’02, pages 56–64, New York, NY,
USA, 2002. ACM.

[35] D. Orleans. Programming Language Support for
Separation of Concerns. PhD thesis, Northeastern
University, June 2005.

[36] D. Orleans and K. J. Lieberherr. Dj: Dynamic
adaptive programming in java. In Reflection 2001,
Kyoto, Japan, September 2001. Springer Verlag.

[37] J. Palsberg and C. B. Jay. The essence of the visitor
pattern. In COMPSAC ’98, Washington, DC, USA,
1998.

[38] T. Sheard and L. Fegaras. A fold for all seasons. In
FPCA ’93, pages 233–242. ACM Press, New York,
1993.

[39] The Demeter Group. The DemeterJ website.
http://www.ccs.neu.edu/research/demeter, 2007.

[40] M. Torgersen. The expression problem revisited. In
ECOOP ’04, pages 123–143, 2004.

[41] T. VanDrunen and J. Palsberg. Visitor-oriented
programming. FOOL ’04, January 2004.

