
Functional Adaptive Programming

Bryan Chadwick
College of Computer & Information Science

Northeastern University, 360 Huntington Avenue
Boston, Massachusetts 02115 USA.

chadwick@ccs.neu.edu

Karl Lieberherr
College of Computer & Information Science

Northeastern University, 360 Huntington Avenue
Boston, Massachusetts 02115 USA.

lieber@ccs.neu.edu

ABSTRACT
We present a functional extension of Adaptive Programming
(AP-F), supported by a library and set of tools (collectively
called DemeterF) that provide a safe form of static and dy-
namic AOP over data structure traversals. A code genera-
tor (DemFGen) statically merges structural, behavioral, and
data-generic descriptions into class definitions, while a dy-
namic parametrized traversal library (DemeterF) supports
three aspects of functional traversals: contexts, folding, and
control. A custom multiple dispatch dynamically chooses
functions of our aspects (function objects) based on their
declared signature and the types of recursive traversal re-
sults. Programmers can define each aspect separately while
types capture dependencies between them, assuring that the
traversal computation cannot “go wrong”. Functional OO
programs written using DemeterF become easily paralleliz-
able and can automatically adapt to some changes to the
underlying data structures, which can be confirmed by our
type checker.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Data types and structures; D.2.13 [Software

Engineering]: Reusable Software—Reusable libraries

General Terms
Languages,Design

Keywords
Data structure traversal, functional adaptive programming,
object oriented programming

1. INTRODUCTION
Functional Adaptive Programming (AP-F) is a program-
ming technique improving both object-oriented program-
ming (we have a polished implementations in both Java and
C#) as well as functional programming (we have a proto-
type Scheme implementation). AP-F extends the original

notions of adaptive programming [16] providing three key
innovations: supurb abstraction of programmer controlled
traversals, immediate support for parallelization of func-
tional traversals, and a fine-grained type checker to control
the development and evolution of structure-shy programs.

Traversals are everywhere in programs, from simple for-loops
to full blown mutually recursive data structures. In Object-
Oriented (OO) Programming Languages like Java and C#
the dominant decomposition of programs is classes, which
encapsulate both structure (data) and behavior (functions).
This makes certain kinds of operations over a collection of
classes difficult to perform without breaking the standard
abstraction boundaries present in the language. When using
encapsulation, some operations are easy (though tedious) to
implement, but are usually spread throughout classes and
require a fair amount of extraneous code dealing with sub-
components. For these instances there has been much work
on visitors [11] to allow the implementation of operations
from outside a given hierarchy. Visitors can be made more
structure shy [16] to allow them to adapt to data structure
changes.

In contrast to OO encapsulation, the mantra of Aspect Ori-
ented Programming (AOP) is the modularization of cross-
cutting concerns [14], where we develop with abstractions
that support the separation of program aspects that typi-
cally overlap. With aspects we can declare methods that im-
plement a new operation, wrap existing methods to support
a new interface, and influence a running program by execut-
ing code at dynamic join points. While AOP is very useful, it
can be tricky to wield its power safely [29]. Typically compu-
tation is performed using mutation (side-effects), which can
be difficult to reason about, even informally. This becomes
increasingly important when we wish to develop concurrent
programs with the advent of implicitly parallel processors.

As a compromise, we present a functional extension of Adap-
tive Programming [16, 17] (AP-F), supported by a library
and set of tools (collectively called DemeterF [8]) that pro-
vide a safe form of static and dynamic AOP over data struc-
ture traversals. A code generator (DemFGen) statically
merges structural, behavioral, and data-generic descriptions
into class definitions, with particular support for modular-
ity and generics. Generated classes are, by design, well
suited for use with a dynamic parametrized traversal library
(DemeterF) that supports three aspects of functional traver-
sals: contexts, folding, and control. Traversal contexts can

1

be functionally updated for sub-components at specific types
and recursive traversal results can be folded into a single re-
turn value. The control aspect guides the generic traversal
function through the data structure, while a custom multi-
ple dispatch dynamically chooses functions (methods) from
the aspects based on their declared signatures and the types
of recursive sub-traversal results. Programmers can provide
each aspect separately, while types capture the dependen-
cies between them, assuring that the traversal computation
cannot “go wrong”.

A particular advantage of our functional traversal organiza-
tion is the ease at which we can parallelize a seemingly se-
quential computation. In addition to sequential traversals,
DemeterF contains a parallel traversal class that executes
the traversal of fields independently in separate threads. Im-
plicit synchronization gives the traversal the ability to pro-
vide plugable heuristics for branching to limit the overhead
of extraneous thread creation. Though we have only be-
gun to explore library optimizations, the parallel nature of
DemeterF traversals allows us to make up for some of slow-
downs associated with Java reflection. Limited experiments
with DemeterF have shown average improvements of 20% on
a dual-core system, with up to 40% using our C# version.

As proof of our system’s usability, the class generator (Dem-
FGen) is written using our traversal library and is now im-
plemented in itself. Our type checker is written using the
generator and the library, and has been used to ensure that
added features and changes to the DemeterF structures re-
main safe with respect to the traversal based implementa-
tion. We have also used the DemeterF system successfully in
both graduate and undergraduate level classes at Northeast-
ern University, implementing various programming language
problems and artificial market simulations.

The rest of this paper is organized as follows: Section 2 in-
troduces a motivating example and compares other solutions
to our approach. Section 3 details DemeterF parametrized
functional traversals, our type checking, and discusses pre-
liminary parallel traversal results. Section 4 describes our
class generator DemFGen, and Section 5 presents a more
complex DemeterF example of an expression compiler. We
review related work in Section 6, and conclude in Section 7
with a suggestion of future work.

2. MOTIVATION
To motivate our traversal abstractions and development tools,
we present a simple data structure representing arithmetic
expressions. Figure 1 shows a bit of Java syntax that de-
scribes the structures involved.

abstract class exp{}
class num extends exp{

int val;
}
class bin extends exp{

oper op;
exp left , right;

}
abstract class oper{}

class var extends exp{
ident id;

}
class def extends exp{

ident id;
exp e, body;

}

class sub extends oper{}

Figure 1: Expression Structures

For the sake of brevity we elide constructors and access mod-
ifiers (e.g., public). These structures represent a simple
language with any number (a chain) of variable definitions
followed by an expression. Using the classes as our abstract
syntax, we could construct a simple term representing the
definition:

x = 5; (- 4 x)

As the Java expression:

new def(new ident("x"), new num(5),
new bin(new sub(), new num(4),

new var(new ident("x"))))

The writing of class definitions can become tedious, and
tends to interleave both structure (inheritance/containment)
and behavioral (method) concerns. There are also structure
based functions, operations such as parsing, printing, and
equality, that can be written generically based on the struc-
ture itself, rather than any specific instance. The DemFGen
class generator merges these three separate aspects of class
definitions into Java code, allowing the programmer to give
a succinct description of the structure along with internal
behavior and generic functions. An added benefit of our or-
ganization is that we can provide different target languages
for DemFGen, in particular, we support both Java and C#
versions of DemeterF.

Once we have an exp instance, we probably want to be able
to calculate its final result by recursively evaluating each
def, and applying the accumulated bindings in the final
expression (body). An operation such as eval(...) can
be implemented in a number of ways. Assuming a func-
tional implementation of environments (i.e., the env class),
Figure 2 shows a straight-forward OO-style implementa-
tion with comments describing in which class to place each
snippet. For each abstract class we introduce an abstract
method; for each concrete class we implement the specific
version of eval(...), recursively calling where needed. If
we didn’t happen to have access to the original program
text we could use something similar to AspectJ inter-type
declarations [1].

/* exp */ abstract int eval(env ev);
/* oper*/ abstract int eval(int l, int r);

/* num */ int eval(env ev){ return val; }
/* var */ int eval(env ev){ return ev.apply(id); }
/* sub */ int eval(int l, int r){ return l-r; }

/* bin */ int eval(env ev)
{ return op.eval(left.eval(ev), right.eval(ev)); }
/* def */ int eval(env ev)
{ return body.eval(ev.extend(id, e.eval(ev))); }

Figure 2: OO exp Internal Evaluation

A few things to notice from this simple implementation are:

1. Cooperating methods are scattered throughout the classes

2. The method argument, representing context, is passed
everywhere, though it is not used often

3. Recursive calls are explicit

4. The true direction of the traversal is somewhat hidden

5. Traversal order is encoded in nested calls

2

While inter-type declarations (or static aspects) certainly
solve the first issue, visitor based techniques [11, 16, 17, 25]
have been developed in order to address the others. In its
original incarnation, the Visitor Pattern [11] only requires a
simple accept(visitor) method to aid in the implementa-
tion of a double dispatch mechanism. Using accept(...),
different operations over the structures can be implemented
by encoding traversal within the visitor. Figure 3 shows a
visitor implementation of the same eval(...) functionality.

class EvalVis extends visitor{
Stack <Integer > stk = new Stack <Integer >();
env ev = env.empty ();

void visit(num n){ stk.push(n.val); }
void visit(sub s){ stk.push(stk.pop()-stk.pop ()); }
void visit(bin b){

b.right.accept(this);
b.left.accept(this);
b.op.accept(this);

}

void visit(var v){ stk.push(ev.apply(v.id)); }
void visit(def d){

d.e.accept(this);
ev = ev.extend(d.id,stk.pop ());
d.body.accept(this);
ev = ev.unextend ();

}
static int eval(exp e){

EvalVis v = new EvalVis ();
e.accept(v);
return v.stk.peek ();

}
}

Figure 3: Visitor exp Evaluation

The tedium of the visitor solution comes from the fact that
we must write out the traversal ourselves (the calls to ac-

cept), even if they can be inferred from the structural def-
initions. What is also clear from this visitor is that any
implementation using mutation must encode traversal or-
der in side-effects. In this instance, values on the stack
must be pushed/popped in the right order. Due to the
java.util.Stack implementation, we traverse the right ex-
pression of a bin first, so that the left will be placed on the
top of the stack last. Though the use of side-effects allows
us to eliminate the passing of the environment, there is no
warning when data structures change. If, for instance, we
add a new variant of exp, the visitor continues to compute a
value, though it will probably not be the one we want. The
compositional nature of the hand-written traversal makes
it reasonable (though tedious) to parallelize, but the par-
allelization of visitors is difficult since side-effects are very
sensitive to traversal order.

To eliminate the problems associated with both visitors and
hand-coded traversals, we introduce the DemeterF traver-
sal library. DemeterF provides a generic traversal that can
be advised by three different aspects. The first, of type
Augmentor, is responsible for updating the context informa-
tion (i.e., a traversal argument) for child nodes of a data
structure. The second, Builder, folds together the recur-
sive results from children and its context into a single value.
Finally, Control guides the traversal through the data struc-
ture by describing which fields should be traversed.

Figure 4 shows a complete DemeterF implementation of exp
evaluation. The Eval class extends ID, a DemeterF class
that implements both the Builder and Augmentor interfaces.
To evaluate an expression, we create a static Traversal ob-
ject that uses a new Eval, and bypasses (skips) the body

field of def instances.

class Eval extends ID{
static Traversal trav = new Traversal(new Eval(),

Control.bypass("def.body"));

static int eval(exp e, env ev)
{ return trav.<Integer >traverse(e, ev); }

int combine(num n, int i){ return i; }
sub combine(sub s){ return s; }
int combine(bin b, sub s, int l, int r){ return l-r;}

int combine(var v, ident i, env ev)
{ return ev.apply(i); }
int combine(def d, ident id, int e, exp b, env ev)
{ return eval(b, ev.extend(id, e)); }

}

Figure 4: DemeterF exp Evaluation

After recursively traversing the selected fields of each in-
stance, the traversal passes the results along with the con-
text (the env) to the most specific combine method in Eval.
The original object is included as the first parameter to allow
methods to match the type of the parent instance that was
traversed. Essentially, while traversing an object, we com-
pute the results at leafs, and push the results up to contain-
ing nodes. As a result, the computation contains almost no
traversal code and mentions the context only when needed.
The functional nature of our computation allows the exter-
nal traversal to execute in parallel and provides more type
information about expected data structures, which can be
checked to ensure safety.

3. DEMETERF TRAVERSALS
To introduce DemeterF traversals and control, we use typical
OO binary search tree (BST) structures, with a functional
interpretation. Figure 5 shows simple Java classes imple-
menting a BST class with two variants: leaf and node.
Again, we leave out constructors and access modifiers for
space.

abstract class bst{}

class leaf extends bst{}

class node extends bst{
int data;
bst left , right;

}

Figure 5: BST Structures

The main contribution of the DemeterF system is our traver-
sal library. The library includes interfaces and classes that
implement a generic, depth-first traversal through an in-
stance of a data structure. The traversal is parametrized by
three function objects (instances of function classes), which
provide advice in the form of specially named methods. When
creating a Traversal, the programmer passes instances of
the interfaces, Builder and Augmentor, and a class, Con-

trol. For programmer convenience the implementation uses
defaults if Augmentor or Control is not specified.

3

3.1 Basics
Builders implement combine methods that fold recursive
traversal results into a single value. Because we often want
to describe both the Builder and Augmentor in a single class,
the library provides one, ID, that implements both and in-
cludes methods for primitive types (i.e., int, boolean, etc.),
that act as the identity function. The first parameter passed
to a combine method is the original object being traversed,
while the others are the result of recursively traversing each
of its fields. Our implementation uses Java reflection, so
fields are traversed in the order they are defined in the pro-
gram text. Figure 6 shows a simple toString function over
BSTs that returns a string of nested named parenthesis rep-
resenting the given tree.

class ToString extends ID{
String combine(leaf l){ return "(leaf)"; }
String combine(node n, int d, String l, String r)
{ return "(node "+d+" "+l+" "+r+")"; }

static String toString(bst t){
return new Traversal(new ToString ())

.<String >traverse(t);
}

}

Figure 6: BST toString

The static method ToString.toString(...) creates a
new Traversal, passing a ToString function object (in-
stance). The default Control directs the traversal to con-
tinue everywhere, which corresponds to the static creator
Control.everywhere(). We call the traverse method, pass-
ing the object we wish to traverse; in this case, there no
context needed. The default Augmentor implemented within
ID is the identity function for contexts and is unused when
traverse is only given a single parameter.

Augmentors implement update methods that are called be-
fore traversing each field of an object. The update methods
allow programmers to modify the context (or traversal argu-
ment) for separate fields of a specific type. Figure 7 shows a
top-down calculation of bst height. The update method in-
crements the traversal context (dp, representing the current
depth) for any field of a node.

class Height extends ID{
int combine(leaf l, int dp){ return dp; }

int update(node n, Fields.any f, int dp)
{ return dp+1; }
int combine(node n, int d, int l, int r)
{ return Math.max(l,r); }

static int height(bst t){
return new Traversal(new Height ())

.<Integer >traverse(t, 0);
}

}

Figure 7: BST Top Down Height

While traversing, the Traversal match’s the update signa-
ture by looking for an inner class with the same name as the
field, a field class, e.g., node.left. If this class is defined
then an instance is created, and the signature is matched
with the traversal context passed as the last parameter. If

the field class is not defined, we match against the DemeterF
class Fields.any. In this case the field class does not exist,
but we can still update the context for any field of a node.
When calling the traverse method we must pass a second
argument that represents the root context, in this case, the
integer zero (0).

When a traversal context is used, it is passed as the last
parameter to combine methods, after any recursive results.
The combine methods within Height pass the maximum cal-
culated depth back up the bst: at a leaf the context is the
current depth; at a node, we chose the maximum depth of
the left and right bsts. Note that the context is not men-
tioned in the combine method for nodes; any parameters
that are not needed can be left off the end of update and
combine method signatures.

3.2 Control
Until now we have only shown two of the three traver-
sal parametrizations, Builder and Augmentor, with imple-
mentations that are subclasses of ID. In DemeterF we also
provide separate traversal control similar to that found in
DemeterJ and DJ[28, 25], but through the use of static cre-
ators, rather than a domain specific strategy language1. Fig-
ure 8 shows a function class that traverses a bst using the
onestep traversal. Traversal.onestep() returns a traver-
sal that allows the programmer to step into an object, and
retrieve the values of its fields as parameters for matching.
In this case, the function only needs the first parameter to
determine the result, so the other parameters are not in-
cluded in the method signature for node.

class IsLeaf extends ID{
boolean combine(leaf l){ return true; }
boolean combine(node n){ return false; }

static boolean isLeaf(bst t){
return Traversal.onestep(new IsLeaf ())

.<Boolean >traverse(t);
}

}

Figure 8: BST IsLeaf

Using onestep, we can completely eliminate field accesses
and instance checks, allowing the traversal matching to do
all the hard work, similar to pattern matching in functional
programming languages. Figure 9 shows a class that im-
plements a functional insert for bsts using the onestep

traversal.

In this case the traversal context is used to pass the int value
to be inserted. The traversal calls the matching combine

method after stepping into each object. For a leaf we return
a new node containing the inserted data. If the method for
node matches, then we compare the inserted value to be sure
it goes into the correct sub-tree, reconstructing resulting the
node after insertion. When traversing with onestep, the
Control object used is actually Control.nowhere(), telling
the traversal not to explore any edges, but there are several
other useful creators for various scenarios. Figure 10 shows a

1Support for DemeterJ style strategies is available in a sep-
arate (non-default) DemeterF build.

4

class Insert extends ID{
bst combine(leaf l, int nd)
{ return new node(nd,l,l); }
bst combine(node n, int d, bst l, bst r, int nd){

if(nd <= d)
return new node(d, insert(l,nd), r);

return new node(d, l, insert(r,nd));
}

static Traversal
trav = Traversal.onestep(new Insert ());

static bst insert(bst t, int d)
{ return trav.<bst >traverse(t, d); }

}

Figure 9: BST Insert

traversal implementation of minimum, returning the small-
est value stored in a given bst. To guide the traversal we
pass a control object, constructed with Control.only(...)

that tells the traversal to recurse into the left field of a
node, which is exactly where the minimum value will be.

class Min extends ID{
leaf combine(leaf l){ return l; }
int combine(node n, int d, leaf l){ return d; }
int combine(node n, int d, int mn){ return mn; }

static int min(bst t){
return new Traversal(new Min(),

Control.only("node.left")).<Integer >traverse(t);
}

}

Figure 10: BST Min

To eliminate conditionals from our methods, we return the
left-most leaf, and match based on the type of the calcu-
lated value of a to choose the leftmost data. Because the
right field of a node is not relevant in the calculation we
leave it out of our method signatures. It is worth pointing
out that this traversal may actually return a leaf if it is
called on one. We leave it up to the programmer to call
Min.min on non-leafs, though we could throw an exception
within the static min method to be sure the return value is
safe2.

if(IsLeaf.isLeaf(t))
throw new RuntimeException("No Min for Leafs");

The opposite of Control.only(...) is the creator Con-

trol.bypass(...), which describes the fields that should
not be traversed. Figure 11 shows a similar implementation
that returns the maximum value in a bst. The main dif-
ference here is that we ignore the left field of a node, but
it is kept in the signature as a place holder. Because the
bypassed field could be any bst, we use the more general
type to avoid handling all cases in separate methods.

3.3 Transformations
When traversing functional data structures we usually want
to make a change to a specific part, reconstructing the rest
of the structure, leaving it otherwise unchanged. In order
to support functional updates using DemeterF, our library

2The Java compiler actually inserts an Integer cast before
returning, though a class-cast exception is less informative
than a custom description.

class Max extends ID{
leaf combine(leaf l){ return l; }
int combine(node n, int d, bst l, leaf r){ return d; }
int combine(node n, int d, bst l, int mx){ return mx;}

static int max(bst t){
return new Traversal(new Max(),

Control.bypass("node.left")).<Integer >traverse(t);
}

}

Figure 11: BST Max

provides a function class, Bc, that reconstructs a copy of the
traversed structure. The inherited combine methods can be
overridden to transform a particular type or section of a
structure.

class Incr extends Bc{
int combine(int i){ return i+1; }

static bst incr(bst t)
{ return new Traversal(new Incr()).<bst >traverse(t);}

}

Figure 12: BST Increment

As an example, Figure 12 shows a function class that extends
Bc, incrementing each data field in a given bst. One of the
benefits of extending Bc (the constructing Builder), is the
fact that is can easily adapt to changes in the structures
and any adjustments to traversal control, which can be used
to both optimize and limit the extent of transformations.
Figure 13 shows a method that uses our Incr function class
to increment just the right spine of a given bst.

static bst incrRight(bst t){
return new Traversal(new Incr(),

Control.bypass("node.left")).<bst >traverse(t);
}

Figure 13: BST Right Increment

More complex transformations are possible, simply by over-
riding the combine methods for compound types. Figure 14
shows a function class that implements left rotation over
bsts. When the right branch of a node is also a node, we
can rotate it to the left, maintaining the invariant. When
used in traversal, Bc supports the implementation of generic-
map and type-based transformations, similar to Scrap Your
Boilerplate (SYB) [15] in Haskell.

class RotL extends Bc{
bst combine(node n, int d, bst l, node r){

return new node(r.data , new node(d, l, r.left),
r.right);

}
static bst rotLeft(bst t){

return new Traversal(new RotL()).<bst >traverse(t);
}

}

Figure 14: BST Left Rotate

3.4 Types

5

As a model of our functional traversals we view a function
object as a set of functions. Given the complete traversal
information: function signatures, data structures, a control
description, and a starting class, we can type-check the func-
tions with respect to the implied traversal. In the case of
Insert (Figure 9) this checking is straight forward because
the onestep traversal is used: we check the types of each
class’ fields against the methods to be sure all cases are
handled and they return the correct types. When checking
ToString (Figure 6) the situation is only slightly different,
as the String values for the left and right node fields are
calculated recursively by the traversal.

Each method signature of the form:

R_0 combine(C c, R_1 f1, ..., R_n fn)

with a class definition of:

class C{
F_1 f1;
...

F_n fn;
}

places constraints on both the return type (e.g., R_1) of a
traversal of each corresponding field type of C (e.g., F_1),
and the possible return type(s) (here just R_0) of a traversal
of an instance of C. In the case of ToString, the constraints
from the method parameter types amount to the following:

· Traversal of a bst should return a String

· Traversal of an int should return an int

Because there are only two sub-classes of bst, we conclude
from the return types of the methods that traversal of a bst

does indeed return a String, and the implementation of ID
actually contains a method for int that returns int.

For Min and Max (Figures 10 and 11), the situation is a little
more complicated, since the return types of the combines
are different. For Min, the Control used specifies that the
left field of a node will not be traversed, but we can infer
the following constraints for the other fields:

· Traversal of an int should return an int

· Traversal of a bst should return one of {int, leaf}

The return types of the methods give us information about
what the traversals will return:

· Traversal of a leaf returns a leaf

· Traversal of a node returns an int

In general, it is possible to type check traversals over non-
recursive types with a simple depth-first walk of the data
structure description. With recursive types, constraints are
required to capture what parameter types the methods han-
dle, so they can be checked after inferring the actual traver-
sal return types. We consider a sums-of-products represen-
tation of types, similar to ML [22] and Haskell [13], rather
than adhoc inheritence, though these techniques are applica-
ble to both given a consistent traversal order over inherited
fields. Generated constraints are of the form:

· Traversal of an X returns a subtype-of Y

where Y is set of classes. The subtype-of relation in this case
is defined over sets of classes:

(X, Y) ∈ subtype-of if ∀ x ∈ X . ∃y ∈ Y . x <: y

with <: defined as the reflexive, transitive closure of the
extends relation over classes in the data structure. If the
constraints are satisfied by the traversal return types then
we can be sure that the traversal will not produce an error,
meaning that selection of an applicable method will never
fail.

Similar constraint based type-checking systems have been
used to type-check pure object oriented programs [26], though
here we solve a slightly simpler problem. Following these
ideas we have implemented a type-checker that computes
the return type of a given traversal. It has been used suc-
cessfully to verify the examples in this paper, and our class
generator, which is implemented using DemeterF traversals.
The commands used to type check the examples in this pa-
per are available with the rest of the code [7].

3.5 Parallelization
One of the major draws of functional programming is its
potential for parallel computation. Eliminating side-effects
also seems to have a profound effect on multi-processor per-
formance. The DemeterF traversal model was designed with
these issues in mind to keep traversal separate from compu-
tation. This separation allows programmers to substitute
a provided multi-threaded traversal (ParTraversal) for any
instance of Traversal without affecting traversal return val-
ues.

As a preliminary test we have implemented a bst sum op-
eration and run a series of DemeterF traversals on a dual-
core machine3. Figure 15 shows our Sum function class, with
static methods for sequential and parallel data structure
traversal. As expected, the methods for node and leaf add
up all the values stored in the bst. The novel feature here is
that we can use the same function class, Sum, for both single
and multi-threaded traversals.

class Sum extends ID{
int combine(leaf l){ return 0; }
int combine(node n, int d, int l, int r){

return d+l+r;
}

static int sum(bst t, Traversal trv)
{ return trv.<Integer >traverse(t); }

static int seqsum(bst t)
{ return sum(t, new Traversal(new Sum ())); }
static int parsum(bst t)
{ return sum(t, new ParTraversal(new Sum ())); }

}

Figure 15: BST Sequential and Parallel Sum

To measure the difference between the two traversals, we ran
a series of tests with bsts of various heights. Figure 16 shows
our preliminary results for DemeterF sequential and parallel
traversals. The calculated times (for Seq. and Par.) are

3An Intel® Core� 2 Dou desktop

6

milliseconds, averaged over 10 runs of a balanced bst with
the given number of nodes.

BST Size Seq. Par. Speedup

25 49 49 0.0 %

26 54 52 3.7 %

27 67 60 10.4 %

28 90 72 20.0 %

29 126 95 24.6 %

210 165 129 21.8 %

211 255 190 25.4 %

212 417 322 22.7 %

213 575 444 22.7 %

Figure 16: Performance of BST Sum

We compare only the two DemeterF traversals due to the
cost of Java reflection when comparing method signatures.
There is room for optimizations within the library, but the
consistency of speedup with multiple threads is very promis-
ing.

4. DATA DESCRIPTION
Separating data structures from class behavior and imple-
mentation is important for program readability, modular-
ity, and reuse. To support a static aspect oriented style of
programming, we have developed a class generator, named
DemFGen, specifically for use with DemeterF. Incidentally,
the generator is written in DemeterF, and has been a good
test/benchmark of the library, the type checker, and now, it-
self. In the spirit of other adaptive programming tools such
as DemeterJ [28], our class generator accepts a class dic-
tionary (CD) file that specifies the structure of data types
and a behavior (BEH) file that describes static code to be
injected into the generated classes.

4.1 Basics
Our class dictionary syntax is slightly simplified from Deme-
terJ, but includes all of the main features, with a few of
its own. Figure 17 shows a CD file that describes the bst

structures defined earlier. Abstract classes are defined with
a colon (:), separating variants with a vertical bar (|). Con-
crete classes are defined using equals (=), with field names in
brackets (<·>), followed by their type. All definitions are ter-
minated with a period (.), and concrete syntax strings are
allowed before and after field definitions, supporting the cre-
ation of customized parsers/printers for the generated struc-
tures.

// bst.cd
bst: node | leaf.
node = "(node" <data > int <left > bst

<right > bst ")".
leaf = .

Figure 17: BST Class Dictionary

The behavior injection permits a static form of advice, sim-
ilar to AspectJ’s inter-type declarations. Figure 18 shows a
BEH file that completes the bst class definition by insert-
ing a few method stubs calling our earlier external imple-
mentations. For improved modularity, DemFGen supports

the inclusion of other CD and BEH files. Previously writ-
ten/generated classes can be used by writing a CD file with
definitions preceded by the nogen or extern keywords.

// bst.beh
bst{{

boolean isLeaf (){ return IsLeaf.isLeaf(this); }
int min(){ return Min.min(this); }
int max(){ return Max.max(this); }

}}

Figure 18: BST Added Behavior

4.2 Parametrized Classes
DemFGen also has extended support for parametrized classes.
We allow type parameter bounds, any depth of nested type
parameters, and can generate parsing and printing methods
for all classes. Figure 19 shows a generic version of the bst

CD file, storing Comparable elements.

// genbst.cd
extern interface Comparable(X): .
bst(X:Comparable(X)) : node(X) | leaf(X).
node(X:Comparable(X)) = <data > X <left > bst(X)

<right > bst(X).
leaf(X:Comparable(X)) = .

Figure 19: Generic BST Structure

Type parameters are introduced in parenthesis with an op-
tional bound placed after the colon; multiple parameters can
be separated by commas. The extern keyword tells DemF-
Gen not to generate anything for this definition; it is used to
complete other definitions and for the checking of names and
number of type parameters. Once we have a generic class,
we can use it to generate parsers/printers for specific uses of
the data structure. Figure 20 shows a CD file that includes
the generic bst definitions, and wraps it in a concrete class.
Once generated, the intbst class contains static parse(...)
methods that support parsing instances of bst<Integer>.

// usebst.cd
include "genbst.cd";

intbst = <tree > bst(Integer).

Figure 20: Generic BST Use

The power of correctly parametrized classes can be fully
realized when mixing syntax with definitions. Figure 21
shows CD and BEH files that describes a generic parenthe-
sis wrap class. The uses of wrap allow us to parse Strings
and Integers within two sets of parenthesis. When nesting
parametrized classes we must avoid left recursion and other
pitfalls dealing with recursive parameter substitution [18].

Other modifier keywords in DemFGen (nogen and noparse)
specify not to generate code or a parser (respectively) for
the given definition. For previously written library classes,
nogen allows us to create parsers and printers based on the
structure and syntax in the given CD file. Developers can
then change the concrete syntax without needing access to
previously created code. To support large-scale functional

7

// nest.cd
wrap(B) = "(" <body > B ")".
S = <s> wrap(wrap(String)).
I = <i> wrap(wrap(Integer)).

// nest.beh
wrap{{ B inner (){ return body; } }}

Figure 21: Nested Parametrization

OO development we have created a DemFGen library (dem-
fgen.lib) that includes useful parametrized classes (like
List(X), Map(K,V), and Set(X)), implementing various con-
tainer classes in a functional OO style. The library is de-
scribed by a CD file included in the DemeterF distribution
that programmers can include and modify to create cus-
tomized parsers/printers. The DemeterF type checker was
developed with the library in this manner, using DemFGen
creating the structures and the traversal library to generate
and check the constraints discussed in Section 3.4.

5. EXAMPLE: EXPRESSION COMPILER
As a more complicated example of the usefulness of Dem-
FGen and DemeterF we discuss the implementation of a
simple compiler for the exp data structures from Section 2.
To make the discussion more interesting we add a new ifz

(“if zero”) conditional construct. We first examine our tar-
get data structures, then discuss the source structures and
the various operations involved in the transformation from
one to the other.

5.1 Structures
To build a compiler, we need a definition of our target lan-
guage representation. In this case the abstract and concrete
syntax can be neatly represented using the DemFGen CD
notation. Figure 22 shows a CD file that defines our tar-
get language: a simple stack based assembly language with
labels, math, stack, and control operations/branches.

// asm.cd
Op: MathOp | StkOp | CtrlOp.

MathOp: Minus.
StkOp: Push | Pop | Def | Undef | Load.
CtrlOp: Label | Jmp | IfNZ.

Minus = "minus".

Push = "push" <i> int.
Pop = "pop".
Def = "def".
Undef= "undef".
Load = "load" <i> int.

Label= "label" <id> ident.
Jmp = "jump" <id> ident.
IfNZ = "ifnzero" <id> ident.

Figure 22: Assembly Structures CD

We do not show the asm.beh file, but the full code for all the
examples is available on the web [7]. It contains methods to
evaluate a list of Ops used in testing our compiler implemen-
tation. For the main expression (source) language, we make
use of all the assembly operators by adding ifz to our data
structures.

// exp.cd
exp : ifz | def | bin | var | num.
ifz = "ifz" <cnd > exp

"then" <thn > exp
"else" <els > exp.

def = <id> ident "=" <e> exp ";" <body > exp.
bin = "(" <op> oper <left > exp <right > exp ")".
var = <id> ident.
num = <val > int.

oper : sub.
sub = "-".

Figure 23: Expression Structures CD

Figure 23 shows the full CD file, which includes the defi-
nitions from Section 2 combined with their concrete syntax
and the new ifz expression. Once DemFGen has been run
and the Java files are compiled, we can use the generated
methods to parse an exp from a String or an InputStream.
A simple term in this expression syntax would look some-
thing like:

ifz (- 4 3) then 5 else 7

And could be parsed with a Java statement such as:

exp e = exp.parse("ifz (- 4 3) then 5 else 7");

5.2 Compiler Classes
For the sake of code organization, we have divided the com-
piler implementation into four classes: one for each type
of expression, and a main class named Compile. Figure 24
shows the main compiler class containing a single method,
compile.

class Compile{
// Compile an Expression File
static List <Op> compile(String file){

exp e = exp.parse(new FileInputStream(args));
return new Traversal(new Cond ())

.traverse(e, List.<ident >create ());
}

}

Figure 24: Main Compile Class

We produce a List<Op> where List is actually a functional
list implementation from the demfgen.lib package. The
traversal context starts as an empty List<ident>, and will
contain the defined variables for each nested expression. The
final code generation function class is named Cond and an
instance is passed when creating the traversal. Figure 25
shows the code generation for math related operators. The
static field empty and the method one(...) simplify the
creation of single Op lists. As is common in stack based
assembly languages we push operands onto the stack, then
call an arithmetic operator.

For example, the expression:

(- 4 3)

will compile into the Op list:

push 3
push 4
minus

8

class Arith extends ID{
static List <Op> empty = List.create ();
static List <Op> one(Op o){ return empty.append(o); }

List <Op> combine(sub s){ return one(new Minus ()); }

List <Op> combine(num n, int i)
{ return one(new Push(i)); }
List <Op> combine(bin b, List <Op> o,

List <Op> l, List <Op> r){
return r.append(l). append(o);

}
}

Figure 25: Compile for Arith Ops

The append(...) methods within the List class return a
new list with the given element or list placed on the end;
the original list is not mutated.

The Defs class in Figure 26 implements the compilation of
environment based operators. When compiling a variable
reference we generate a Load operation with the offset of the
identifier in the environment. The update method adds a
defined variable to the environment stack when traversing
into the body of a definition. Once all sub-expressions have
been compiled, we wrap the body code in Def/Undef and
append it to the code for evaluating the binding.

class Defs extends Arith{
List <ident > update(def d, def.body f, List <ident > s)
{ return s.push(d.id); }
List <Op> combine(var v, ident id, List <ident > s){

return one(new Load(s.index(id)));
}
List <Op> combine(def d, ident id,

List <Op> e, List <Op> b){
return e.append(new Def())

.append(b)

.append(new Undef ());
}

}

Figure 26: Compile for Variables

The final, more complicated portion of the compiler deals
with our conditional expression, implemented in the Cond

class shown in Figure 27. Because we need to generate
unique Labels within the generated structures, we use side-
effects rather than passing lots of state around. The syn-

chronized (locked) method fresh(...) creates an unused
ident in a thread-safe manner. The IfNZ Op is used to
branch to the else portion if the condition is not zero. If
the then portion was executed we can safely Jmp to the done
label.

The use of the synchronized keyword is the only portion
of our compiler code that has to do with thread safety; all
other parts are completely functional, so we can run our
compiler traversal in multiple threads for expressions with
multiple sub-expressions. Figure 28 shows the results of run-
ning sequentially (using Traversal) and in parallel (using
ParTraversal) on large expressions. Each time is an aver-
age of 20 different compiles for a file of the specified number
of lines (Size); the times are in milliseconds. Again, the im-
mediate gains are quite promising, but more exploration is
needed to completely understand the numbers.

class Cond extends Defs{
int lnum = 0;
synchronized ident fresh(String s)
{ return new ident(s+"_"+lnum ++); }
List <Op> combine(ifz f, List <Op> c,

List <Op> t, List <Op> e){
ident le = fresh("else"),

ld = fresh("done");
return c.append(new IfNZ(le)). append(t)

.append(new Jmp(ld))

.append(new Label(le)). append(e)

.append(new Label(ld));
}

}

Figure 27: Compile for Conditionals

File Size Seq. Par. Speedup

400 182 154 15.3 %
800 255 211 17.2 %
1200 384 294 23.4 %

Figure 28: Parallel Compile Results

As a final DemeterF example, we present expression simpli-
fication. Functional languages are famous for, among other
things, their ability to match patterns and optimize pro-
grams. Here we examine a DemeterF function class that
implements simple constant propagation using the method
signature matching of the DemeterF traversal. Figure 29
shows a function class that implements (bottom up) con-
stant propagation for our simple expression language.

class ConstProp extends Bc{
class zero extends num{ zero (){ super(0); } }
num combine(num n, int i)
{ return (i==0) ? new zero() : n; }

exp combine(bin b, sub p, exp l, zero r){ return l;}
exp combine(bin b, sub p, num l, num r)
{ return new num(l.val -r.val); }

exp combine(ifz f, zero z, exp t, exp e){ return t;}
exp combine(ifz f, num n, exp t, exp e){ return e; }

static exp simplify(exp e){
return new Traversal(new ConstProp ())

.traverse(e);
}

}

Figure 29: Constant Propagation

The special cases in our arithmetic language are nicely cap-
tured by each combine method, the rest of the reconstruction
is handled implicitly by Bc. Instances of num that contain
zero are transformed into instances of the more specific in-
ner class zero. Subtracting a zero from any exp yields just
the left exp; for subtraction consisting of only numbers we
can propagate the resulting constant as a new num. For ifz
expressions, our two constant cases for the test, zero and
num, are optimized by returning the then and else fields, re-
spectively.

6. RELATED WORK
Both components of the DemeterF system have ties to AOP,
supporting static AOP through to open classes, and dynamic

9

AOP with function objects and traversals. As mentioned,
DemFGen supports static injection of behavior, including
a bit of generic programming used to implement functions
(like printing) over all data types. DemeterF traversals (sim-
ilar to DemeterJ [28]) fall under a more traditional AOP
model. In [20] the authors discuss the relations of different
AO systems, of which DemeterJ is one.

Following their description, we can define the join point
model of DemeterF as the entry (for update methods) and
exit (for combine methods) of objects during a depth-first
traversal of a data structure. DemeterF function objects
can be seen as parametrizable advice, while the control and
method signatures are analogous to pointcuts, selecting a
set of dynamic join points corresponding to the types that
result from the previous executions of advice. Pointcuts are
enhanced through programmer controlled traversal contexts
and allow programmers to select more join points with later
method parameters being optional. In contrast to Deme-
terJ, we execute only the most specific pointcut/advice at a
given join point, similar to Socrates [24].

Our goal is to provide a safer, functional alternative with the
power of AOP, while maintaining some of its dynamic flexi-
bility. Due to the functional nature of the traversal, execu-
tion of advice affects later join point selection, but function
classes can be checked to be sure that applicable advice can
always be found. With the use of reflection we eliminate an
extra compile step, at the price of runtime penalties. In the
future we are interested in exploring the static compilation
possibilities that AOP provides in order to reduce reflection
overhead.

6.1 DemeterF Library
As traversals have been around a long time, there are many
different related projects, usually centered around visitors
and higher-order functions. The original description of the
Visitor Pattern [11] has been implemented in both static and
dynamic settings as libraries and tools.

DemeterJ [28, 17] and DJ [25] make up the static and dy-
namic Demeter imperative visitor tools. DemeterJ compiles
static traversal control descriptions in a domain specific lan-
guage (strategies) and visitor definitions into so-called adap-
tive methods. Depending on the nature of changes to an un-
derlying data structure, the traversal computation can auto-
matically adapt (upon recompilation) without programmer
interference. DJ is a traversal library that uses reflection to
dynamically traverse objects with control specified using the
same strategy language. Visitors perform computation us-
ing before(...) and after(...) methods which are called
during a depth-first traversal of a data structure.

In DemeterF, update methods take the place of before and
combine methods take the place of after, but the major dif-
ferences between DemeterF and DemeterJ/DJ are its func-
tional traversal computation and type checking. Adaptive
methods and visitors in DemeterJ are type checked by the
Java compiler, while strategies can be checked to be sure
that valid paths in that data structure exist, but due to
the side-effecting nature of the visitors, not much about the
actual computation to be performed is captured by the def-
initions themselves. With DemeterF the programmer gives

more information about the traversal computation in the
form of types. Though this constrains the computation
more, making it less adaptive, it also allows us to check more
of the programmers assumptions against the data struc-
ture, and gives the traversal implementation freedom to or-
der sub-computations. There is a DJ based library that
adds functional visitors [30] to traversals, but this library
is focused more on integrating functions and control using
around methods, and distinct types are not used, as combine
methods accept an Object array. This mixes computation
and control, which eliminates their ability to check the safety
of traversals, though it may be possible to infer control from
the function object signatures.

Recent work in visitors has focused on using OO languages
with richer type systems. In [10], the language Scala is used
to create a visitor library that captures the types involved
in functional visitors. The library they describes the return
type of a visitor traversal, based on where the traversal code
is placed: internal to the structure, or external, in the vis-
itor. Assuming structures and traversals are implemented
correctly by programmers, a visitor program is type safe
based on Scala’s type safety guarantees. Multi-methods are
used to implement visitor methods with traversals that re-
turn values, which eliminates the need for mutation. Though
their visitor implementations look quite similar to DemeterF
function objects, there are differences in traversal flexibility,
control, and contexts. In their model, visitors are restricted
to return a single type, visitor control must be implemented
completely by hand, the equivalent of our onestep traversal,
and mutually recursive data types require separate visitors
that maintain programmer assigned mutual references. In
addition to fine grained control, DemeterF provides support
for parametrized and mutually recursive data types without
programmer intervention. In order to guarantee safety, our
system requires an external type checker because of our sep-
arate traversal, but eliminates the need for programmers to
write any traversal code.

There has been much work in the area of specialized XML
processing languages, which share roots in tree transducers
and automata [23]. XDuce [12] and CDuce [6] are both func-
tional XML processing languages that use regular-expression
types and pattern matching to transform labeled trees. CDuce
adds first class and overloaded functions in hopes of allow-
ing programmers to express a larger class of transformations
directly in the language. The DemeterF system has similar
aims at functional transformations of data structures, but we
confine our implementation to a library with code written
in a target language (i.e., Java or C#). The type systems
used in both XDuce and CDuce result in type safe languages
and have given us ideas for developing the DemeterF type
system. One of the key goals of DemeterF is to remove
traversal code from programs, though it would certainly be
interesting to apply our ideas to these and other XML based
languages.

In the functional programming community, higher order func-
tions are nothing new, and programmers have been using
similar techniques to avoid writing boilerplate traversal code
for decades. Theoretical results regarding generalized folds [27,
21] and implementations in the statically typed functional
language Haskell have lead to the Scrap Your Boilerplate

10

(SYB) [15] approach, and Generic Haskell [19]. While our
generic traversal is an OO mapping of a higher order func-
tion, the ideas of generalized folds can be mapped directly to
DemeterF function objects with a small type extension, since
the traversal (or fold) of an instance of the same type can
return different types of results (e.g., Min from Figure 10).
Compared to SYB, DemeterF has very similar goals, though
we aim to be slightly more general, supporting transfor-
mations (via Bc) and queries (i.e., folds to a single type)
as special cases. Our contribution is an implementation of
generalized folds in a (functional) OO setting, with support
for separate traversals and control with extensible functions
and automatic context passing. Though we suffer somewhat
from the explicitly typed syntax of Java, our approach is suf-
ficiently general to support similar fold-like idioms.

6.2 DemFGen
DemFGen inherits much of its input syntax from Deme-
terJ [28] and was originally developed as an upgrade of
DemeterJ’s existing features. The CD syntax has been sim-
plified to eliminate complex parser annotations and adhoc
inheritance in order to support concise traversal type check-
ing. Some notable DemeterJ features missing from Dem-
FGen are common fields for abstract classes and null-able
(optional) fields, but these features can be written in a safe
way using the parametrization found in DemFGen. One
of the major drawbacks of DemeterJ is its limited support
for nested parametrized classes: parameters are only substi-
tuted a single level, meaning abstract classes with variants
cannot truely be parametrized. Concrete classes for each
case are generated with parameter classes included in their
names (e.g., Integer_List), and incorrect uses of parame-
ters are not checked. DemFGen uses generics to represent
parametrized classes and instantiates specific uses only for
parser and printer genration, providing arbitrary nesting to
any depth, and parameter definitions and uses are checked
at generation time.

Larger differences exist in the two implementations, as both
DemFGen and DemeterJ are implemented in themselves.
DemeterJ uses a visitor approach with OutputStreams to
generate class sources. This can be very difficult to modify,
and nearly impossible to parallelize given the size and inter-
action of the various visitors. In DemFGen we use separate,
functional traversals for each aspect of the generated code
(classes, parser, printer, and visuals). Since each traversal is
independent and eventually uses a number of file operations,
we can easily speed up generation, even on a single proces-
sor, by using a multi-threaded traversal. One drawback of
our dynamic traversal approach is the overhead of Java re-
flection during sub-traversal and method dispatch, but we
are currently exploring static compilation alternatives simi-
lar to those used in DemeterJ to minimize reflection and to
optimize traversal paths and computation.

Tools like XML Beans [5] and JAXB [3] operate on XML
schemas, generating Java classes and using specialized XML
parsers to read an XML document into memory. These two
implementations specifically focus on generating classes and
factories with parsing/printing (unmarshalling/marshalling)
available in a library for use with standard XML documents.
The schema format accepted by the tools is standardized by
the World Wide Web Consortium (W3C) [9], and output

classes are structured with empty constructors and set/get
methods. In contrast, DemFGen uses a custom schema for-
mat, but in other respects is quite similar, though our target
is functional OO programs so we do not generate empty con-
structors or set methods. DemFGen users are free to provide
any concrete syntax, even for previously generated classes,
which makes it very easy to transform a CD into XML syn-
tax by adding start and end tags.

It is not initially clear whether XML Schema definitions sup-
port true generics or parametrized classes. Though a lim-
ited form of generic/collection classes can be simulated using
unions and/or sub-classing, this can introduce unsafe hetero-
geneous parametrization. As DemFGen was implemented
with generics and type safe parametrization in mind, these
features are primary. DemFGen’s meta-programming facili-
ties make it simple for us to add factory based construction,
though we leave it up to users to develop larger frameworks
from the generated classes/interfaces.

There are several tools for parser and tree generation from
application specific grammars. Two notable implementa-
tions are ANTLR [2] and JJTree, which is part of the JavaCC
distribution [4]. Both of these tools are able to create a
generic abstract syntax tree (AST) that corresponds to the
parsed tokens, allowing programmers to walk the created
structure support customizations. It seems possible, though
overly verbose, to create a specific data structure, but when
specific tree building is needed it is probably easier to hand-
code node construction during parsing, rather than using
the generic AST creation. When given a CD, DemFGen
actually generates parser grammar intended for compilation
using JavaCC, but we target the more specific problem of
creating a specific tree directly from the input language in-
ferred by the CD. Our traversal library does the walking
and the function matching, which frees programmers from
writing tests based on types. This forces the programmer
to be more verbose when annotating functions, but allows
us to check the traversal computation, giving programmers
static safety guarantees.

7. CONCLUSION
We have introduced DemeterF, an easy to learn library and
set of tools for functional adaptive programming, which sup-
ports a safe limited version of static and dynamic AOP ap-
plied to data structure traversal and significantly improves
on previous AP tools. First, DemeterF supports the ab-
straction of a larger class of traversal functionality, e.g.,
Bc, which supports translations and transformations in a
structure-shy manner. Second, DemeterF has a fine-grained
typechecker that facilitates the development and evolution
of adaptive programs in a controlled way. The typechecker
verifies that the flow of information during computation is
consistent with the data structures and traversal control.
Third, DemeterF supports the manipulation of program-
mer controlled traversal contexts in a flexible, structure shy
way. And fourth, because of its functional nature, Deme-
terF makes it easy to take immediate advantage of parallel
and multi-core processors. Our class generator, DemFGen,
supports the traversal library by creating class definitions
from concise structural, behavioural, and data generic de-
scriptions, supporting a form of static AOP with enhanced
support for parametrized classes and generics. In all Deme-

11

terF supports a safe limited version static and dynamic AOP
applied to data structure traversal.

7.1 Future Work
We are currently exploring performance enhancements in the
library including static traversal generation and the impact
of parallel traversals. We believe that our functional ap-
proach is amenable to multi-core architectures even with se-
quential traversals and we are investigating the comparative
performance of functional and traditional OO data struc-
tures in various applications.

8. REFERENCES
[1] The AspectJ Project. Website.

http://www.eclipse.org/aspectj/.

[2] ANother Tool for Language Recognition. Website,
2008. http://www.antlr.org/.

[3] JAXB reference implementation. Website, 2008.
https://jaxb.dev.java.net/.

[4] The Java Compiler Compiler�. Website, 2008.
https://javacc.dev.java.net/.

[5] XML Beans overview. Website, 2008.
http://xmlbeans.apache.org/overview.html.

[6] V. Benzaken, G. Castagna, and A. Frisch. Cduce: An
xml-centric general-purpose language, 2003.

[7] B. Chadwick. Aosd-09 submission example code.
Website, 2008.
http://www.ccs.neu.edu/home/chadwick/aosd09/.

[8] B. Chadwick. DemeterF: The functional adaptive
programming library. Website, 2008.
http://www.ccs.neu.edu/home/chadwick/demeterf/.

[9] W. W. W. Consortium. Xml schema primer. Website,
2008. http://www.w3.org/TR/xmlschema-0/.

[10] B. C. d. S. Oliveira, M. Wang, and J. Gibbons. The
visitor pattern as a reusable, generic, type-safe
component. Accepted at OOPSLA 2008, May 2008.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[12] H. Hosoya and B. Pierce. Xduce: A statically typed
xml processing language, 2002.

[13] S. P. Jones. Haskell 98 Language and Libraries: The
Revised Report. Cambridge University Press, May
2003.

[14] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. marc Loingtier, and J. Irwin.
Aspect-oriented programming. pages 220–242.
Springer-Verlag, 1997.

[15] R. Lämmel and S. Peyton Jones. Scrap your
boilerplate: a practical design pattern for generic
programming. volume 38, pages 26–37. ACM Press,
March 2003. Proceedings of the ACM SIGPLAN
(TLDI 2003).

[16] K. J. Lieberherr. Adaptive Object-Oriented Software:
The Demeter Method with Propagation Patterns. PWS
Publishing Company, Boston, 1996. 616 pages, ISBN
0-534-94602-X.

[17] K. J. Lieberherr, B. Patt-Shamir, and D. Orleans.
Traversals of object structures: Specification and
efficient implementation. ACM Trans. Program. Lang.
Syst., 26(2):370–412, 2004.

[18] K. J. Lieberherr and A. J. Riel. Demeter: A CASE
study of software growth through parameterized
classes. Journal of Object-Oriented Programming,
1(3):8–22, August, September 1988.

[19] A. Loeh, J. J. (editors); Dave Clarke, R. Hinze,
A. Rodriguez, and J. de Wit. Generic haskell user’s
guide – version 1.42 (coral). Technical Report
UU-CS-2005-004, Department of Information and
Computing Sciences, Utrecht University, 2005.

[20] H. Masuhara and G. Kiczales. Modeling crosscutting
in aspect-oriented mechanisms. In ECOOP, pages
2–28, 2003.

[21] E. Meijer, M. Fokkinga, and R. Paterson. Functional
programming with bananas, lenses, envelopes and
barbed wire. In J. Hughes, editor, Proceedings 5th
ACM, FPCA’91, Cambridge, MA, USA, 26–30 Aug
1991, volume 523, pages 124–144. Springer-Verlag,
Berlin, 1991.

[22] R. Milner, M. Tofte, and D. Macqueen. The Definition
of Standard ML. MIT Press, Cambridge, MA, USA,
1997.

[23] T. Milo, D. Suciu, and V. Vianu. Typechecking for
XML transformers. In Proceedings of the Nineteenth
ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, pages 11–22. ACM,
2000.

[24] D. Orleans. Incremental programming with extensible
decisions. In AOSD ’02: Proceedings of the 1st
international conference on Aspect-oriented software
development, pages 56–64, New York, NY, USA, 2002.
ACM.

[25] D. Orleans and K. J. Lieberherr. DJ: Dynamic
Adaptive Programming in Java. In Reflection 2001:
Meta-level Architectures and Separation of
Crosscutting Concerns, Kyoto, Japan, September
2001. Springer Verlag. 8 pages.

[26] J. Palsberg and M. I. Schwartzbach. Object-oriented
type inference. In OOPSLA ’91: Conference
proceedings on Object-oriented programming systems,
languages, and applications, pages 146–161, New York,
NY, USA, 1991. ACM.

[27] T. Sheard and L. Fegaras. A fold for all seasons. In
Proceedings 6th ACM SIGPLAN/SIGARCH,
FPCA’93, Copenhagen, Denmark, 9–11 June 1993,
pages 233–242. ACM Press, New York, 1993.

[28] The Demeter Group. The DemeterJ website.
http://www.ccs.neu.edu/research/demeter, 2007.

[29] M. Wand. Understanding aspects (extended abstract).
In Proc. ACM SIGPLAN International Conference on
Functional Programming, Aug. 2003.

[30] P. Wu, S. Krishnamurthi, and K. Lieberherr.
Traversing recursive object structures: The functional
visitor in demeter. In AOSD 2003, Software
engineering Properties for Languages and Aspect
Technologies (SPLAT) Workshop, 2003.

12

