
Algorithms in DemeterF

Bryan Chadwick

July 30, 2009

1 Background

In describing forms of static analysis for programming languages we often deal with meta-information repre-
senting types. In DemeterF we primarily deal with single inheritance, resulting in a tree (not a DAG) of types
where the parent/child relationship represents both inheritance and subtyping. Some typical examples would
be trees representing lisp-style cons lists and simple numerical expressions (Figures 1 and 2). We choose this
visual (and mental) representation for class hierarchies, which fits nicely into various graph problems related
to multi-method type checking.

abstract class L i s t { . . . }
class Cons extends L i s t { . . . }
class Empty extends L i s t { . . . }

List
!!!

aaa

Cons Empty

Figure 1: List classes and representative trees

abstract class Exp{ . . . }
class Li t extends Exp{ . . . }
class BinOp extends Exp{ . . . }
class Add extends BinOp{ . . . }
class Sub extends BinOp{ . . . }

Exp
!!!

aaa

Lit BinOp
�� QQ

Add Sub

Figure 2: Expression classes and representative trees

Graph cartesian products (GCPs) in particular are useful when reasoning about method coverage for
multiple dispatch in languages that support it. We define GCPs over trees of types, similar to the ones
above, but for consistency we describe a tree as a graph, T = (V,E), where every vertex except the root has
in-degree of 1, and the leaves of T are vertices with out-degree of 0. Note that there is no restriction on out
degree.

A GCP, G, is defined over a sequence of trees, (T1, . . . , Tn). With each Ti = (Vi, Ei), we define G as:

V = V1 × · · · × Vn

E = { (~u,~v) ∈ V × V | ∃i.(ui, vi) ∈ Ei ∧ ∀j ∈ [1..n] . i 6= j ⇒ uj = vj }

Vertices here are tuples (or vectors) containing vertices from each of the corresponding trees. Above is
actually just long-winded way of saying that there is an edge between vertices that differ by only one element
position, and there exists an edge in that corresponding tree. For example, the graph cartesian product of

1



the two earlier trees is shown in Figure 3. Because both trees are of height greater than one, we see sharing
at the leaves of the graph, meaning it can be characterized as a directed acyclic graph, or DAG.

Figure 3: Graph cartesian product.

2 Leaf Covering

Multi-methods in multiple dispatch languages like CLOS and MultiJava rely on selecting the most specific
method/function for the runtime types of its arguments. Interestingly, DemeterF (like CLOS) uses an
asymmetric (think lexicographic) multiple dispatch strategy where the leftmost argument is given precedence
in matching. MultiJava employs a symmetric strategy where all arguments are given equal weight, and
method ambiguity is not allowed at runtime. In either style dispatch, there are several checking algorithms
that can be reduced to various coverage problems on GCPs.

In DemeterF we want to be sure that for each sequence of argument types, all possible sequences of
concrete types (leaves of the GCP) have an applicable method. For example, if the sequence (List, Exp)
is encountered for dispatch, we want to be sure that there is a method applicable for each of the concrete
combinations:

(Cons, Lit), (Cons,Add), (Cons, Sub),
(Empty, Lit), (Empty,Add), (Empty, Sub)

.
To solve this problem, we reduce it to “leaf covering” for a GCP. As before, we view the class hierarchy

as a set of (possibly connected) trees. The sequence of argument types becomes the root of our GCP that
is generated from the corresponding type hierarchies. The type checker’s task is to decide given a set of
vertices, M , in the GCP, whether or not each leaf has some ancestor in M .

2.1 The Problem

The general algorithmic problem instance can be described as follows:

Given a sequence of directed trees, (T1, . . . , Tn), that implicitly define a GCP, G = (V, E), and
a set of vertices, M ⊆ V , we must decide whether or not each leaf of the GCP has some ancestor
in M .

Leaves in the GCP can be defined as the vertices of V with out-degree of 0: {~v ∈ V | ∀ ~u ∈ V . (~v, ~u) 6∈ E }.

2.2 Solution 1: Brute-Force

The brute-force solution is simply to enumerate all leaves of the implied GCP from the root, and check
that for each leaf, ~l, there exists a vertex ~m ∈ M such that each component of m is an ancestor of the

2



corresponding component of ~l in the corresponding tree. For a sequence of trees, (T1, . . . , Tn), the running
time of this algorithm is on the order of:

|M | ∗
i=1
∏

n

| leaves(Ti) |

In this case, the total number of leaves of (List, Exp) is 6, though in general this can be exponential in
the number of trees. In usual cases we foresee n usually being smaller than 10 and |M | being less than 3,
usually 1 or 2.

2.3 Solution 2: Counting

A second, more involved solution deals with set intersection and counting. If we think about the graph in
Figure 3 then we notice that there is leaf sharing amongst interior vertices. The number of overlapping
leaves covered by a pair of vertices, say ~u and ~v is just:

overlap(~u, ~v) =

i=1
∏

n

| leaves(Ti, ui) ∩ leaves(Ti, vi) |

For these two vertices, we can check if they cover all the leaves of the GCP by comparing the number of
leaves to the number of non overlapping leaves:

(

i=1
∏

n

| leaves(Ti)|

)

− overlap(~u, ~v)

If the difference of these two counts is 0, then the leaves of the GCP are covered by the two vertices, ~u and
~v. This solution idea scales to any number of vertices, though in general calculating the intersection of n sets
of leaves is exponential in n, using the set inclusion/exclusion principle. We believe that the leaf covering
problem is fixed parameter tractable, though analyzing the constant factors involved will be interesting to
determine which algorithm is better in practice. Given our probably values of n and |M | counting may be
our best strategy, though it doesn’t provide an immediate witness that can be shared with the programmer.

2.4 Leaf Covering is coNP-Complete

We can show that leaf covering is coNP-Complete by reducing DNF validity (tautology checking) to leaf
covering1. Consider a formula, F , in disjunctive normal form, where each li,j is either a positive or negative
assertion of a variable, e.g., a or ¬a.

F = (l1, 1 ∧ · · · ∧ l1, n1
) ∨ · · · ∨ (lm, 1 ∧ · · · ∧ lm, nm

)

With an ordering on the variables used in F , say alphabetic, we create a sequence of trees with the
variable names as roots, and the special symbols true and false as leaves. We then encode the clauses of our
formula as elements of M , which include an encoding of each of the variables in order. We encode a positive
literal as true, negative as false, and an unused variable as the root of its corresponding tree.

The leaves of the implied GCP contain all assignments of true and false to the variables of F . If the
elements of M cover all the leaves, then all concrete assignments are covered by the formula, which means
F is a tautology. If not, then one of the uncovered leaves represents an assignment that does not satisfy the
formula.

As a complete example, consider the following formula:

F = (a ∧ ¬b) ∨ (¬a ∧ c) ∨ (¬b ∧ c) ∨ (¬a ∧ ¬c)

1Thanks to Yannis Smaragdakis for suggesting and detailing this reduction.

3



To convert the validity of this formula into a leaf covering problem, we order the variables as (a, b, c) and
construct three corresponding trees:

A
!!!

aaa

true false

B
!!!

aaa

true false

C
!!!

aaa

true false

The root of our GCP is the triple (A, B, C), and our set M encodes the clauses of F as triples:

M = {(true, false, C), (false, B, true), (A, false, true), (false, B, false) }

The leaves of the GCP include all triple permutations of true and false. Are all the leaves covered
by the encodings of the selected clauses? The answer in this case is no; the leaves that are not covered,
(true, true, true) and (true, true, false). The corresponding assignments to a, b, and c do not satisfy F :
i.e., F is not valid.

3 Dead Node Cover

The second DemeterF algorithmic problem deals with the execution of methods with signatures that overlap
in some way. In general we want to be able to warn the programmer when the multi-methods that she writes
will never be executed. Since our methods are called over a traversal, we know most of the types that will
be encountered, and we can construct the corresponding leaf covering problem to match. But what if an
element of M is shadows another? Then the most specific, closest to the leaf at runtime, should be chosen.

3.1 The Problem

Similar to leaf covering, the general algorithmic problem instance of dead node cover can be described as
follows:

Given a sequence of directed trees, (T1, . . . , Tn), that implicitly define a GCP, G = (V, E), and
a set of vertices, M ⊆ V , the selected vertex ~m ∈ M is considered dead if for each path from ~m

to a leaf in the GCP, there exists another vertex in M .

3.2 Possible Solution

We must decide whether all the leaves that ~m ∈ M covers have another, more specific ancestor in M . If this
is the case, then the more specific vertices (methods) will always be chosen, so this vertex is dead. Though we
haven’t yet tackled the implementation of this problem, the description leads us toward a (still exponential)
bottom-up solution to both the dead node, and leaf covering problems.

Essentially, the idea is to recognize that if all the leaves below a vertex, v, of the GCP are covered by
M , then it is the same as if v itself was part of M . If we begin this analysis at the leaves of the GCP, with
an implied set of selected vertices, M ′, then each time the immediate neighbors of a vertex are in M ∪ M ′,
that vertex can also be added to M ′. If we code this algorithm recursively by traversing the GCP starting
at the root, then we need only to find the first uncovered leaf.

After we finish, if the root of the GCP is in M ′, then all leaves of the GCP are covered by M . Otherwise,
one of the vertices not in M ∪ M ′ can be given as a witness to the contrary. If during the course of running
algorithm, we attempt to add an element m ∈ M to M ′, then we know that all the leaves of m are already
covered by other selected vertices so m will never be chosen, and can be considered dead code.

4



4 Method Residue

The method selection process in DemeterF is based on a deterministic algorithm that chooses the most
specific signature based on the runtime types of its arguments. If there is only a single vertex selected then
this decision can be made statically. If two methods overlap or are applicable to similar types then we must
defer the selection to runtime. In DemeterF we want to generate traversal code statically by inlining method
selections when possible, and writing efficient decision procedures that will be executed at runtime when the
method cannot statically be determined.
For example, consider the following trees:

List
!!!

aaa

Cons Empty

Bool
!!!

aaa

True False

And selected vertices:

M = { (List, True), (Empty, False), (Cons, False) }

The first question is: does M cover the 4 leaves of the implied GCP? The answer is yes; the first tuple covers
two of the leaves, and the second and third each cover one. The second question is: given an instance of the
abstract tuple, (List, Bool), give a decision procedure that selects the most specific element of M , using
the static information from the trees (subtype relationships), tuple selectors ([1]), and dynamic instance
checks using is.

One possible efficient decision could be written as:

dec ide t =
i f t [ 2 ] i s True

then (List, True)
else i f t [ 1 ] i s Cons

then (Cons, False)
else (Empty, False)

An example of a slightly less efficient, but correct, decision would be something like:

dec ide t =
i f t [ 1 ] i s Cons

i f t [ 2 ] i s False

then (Cons, False)
else (List, True)

else

i f t [ 2 ] i s False

then (Empty, False)
else (List, True)

Our task is to create a decision that minimizes the depth (both average, and maximum) of the if statements,
while maintaining the correctness of dispatch. We currently have an algorithm for determining the decision,
but it can generate inefficient code in some cases, and is rather ad-hoc. One key idea remains to be formalized:
that of a correct dispatch decision. I believe this can be formulated by a specific ordering on the vertices of
the GCP, but the details still need to be worked out.

5



5 Conclusion

That concludes a somewhat (in)formal description of the abstract algorithms involved in DemeterF. Many of
them have been touched in the multi-method and predicate dispatch communities, but immediate application
to our specific problems was not clear. We will continue working out the details, and look forward to
discussing them further.

6


