
The BitTorrent Protocol

Taken from

http://www.cs.uiowa.edu/~ghosh/bittorrent.ppt

http://www.cs.uiowa.edu/~ghosh/bittorrent.ppt
http://www.cs.uiowa.edu/~ghosh/bittorrent.ppt

What is BitTorrent?

Efficient content distribution system using

file swarming. Usually does not perform

all the functions of a typical p2p system,

like searching.

BitTorrent traffic

CacheLogic estimated that BitTorrent traffic

accounts for roughly 35% of all traffic on the

Internet.

File sharing
To share a file or group of files, a peer first
creates a .torrent file, a small file that contains

(1)metadata about the files to be shared, and
(2) Information about the tracker, the computer
	

 that coordinates the file distribution.

Peers first obtain a .torrent file, and then connect
to the specified tracker, which tells them from which
other peers to download the pieces of the file.

BT Components

• On a public domain site, obtain .torrent file.
for example:
– http://bt.LOR.net
– http://bt.HarryPotter.com/ Web Server

Harry Potter.torrent
Transformer.torrent

The Lord of Ring.torrent

http://bt.LOR.net/
http://bt.LOR.net/

File sharing
Large files are broken into pieces of size between

64 KB and 1 MB

1 2 3 4 5 6 7 8

BT: publishing a file

Web Server

Bob

BT: publishing a file

Web Server

Bob

BT: publishing a file

Web Server

Bob

BT: publishing a file

Web Server

Bob
Harry Potter.torrent

BT: publishing a file

Bob

Tracker

Harry Potter.torrent

BT: publishing a file

Bob

Tracker

Harry Potter.torrent

BT: publishing a file

Bob

Tracker

Harry Potter.torrent

BT: publishing a file

Bob

Tracker

Harry Potter.torrent

BT: publishing a file

Bob

Tracker

Harry Potter.torrent

BT: publishing a file

Bob

Tracker

Downloader:

A
Seeder:

B
Downloader:

C

Harry Potter.torrent

BT: publishing a file

Bob

Tracker

Downloader:

A
Seeder:

B
Downloader:

C

Harry Potter.torrent

The .torrent file

• The URL of the tracker
• Pieces <hash1,hash 2,….hash n>
• Piece length
• Name
• Length of the file

The Tracker

• IP address, port, peer id
• State information (Completed or Downloading)
• Returns a random list of peers

BitTorrent Lingo
Seeder = a peer that provides the complete file.
Initial seeder = a peer that provides the initial copy.

Initial seeder

Seeder

Leecher

One who is downloading
(not a derogatory term)

Leecher

Simple example

Seeder: A

{1,2,3,4,5,6,7,8,9,10}

Simple example

Seeder: A

Downloader B

{1,2,3,4,5,6,7,8,9,10}

{}

Simple example

Seeder: A

Downloader B

{1,2,3,4,5,6,7,8,9,10}

{}

Simple example

Seeder: A

Downloader B

{1,2,3,4,5,6,7,8,9,10}

{1,2,3}

Simple example

Seeder: A

Downloader B

{1,2,3,4,5,6,7,8,9,10}

{1,2,3}

Downloader C

{}

Simple example

Seeder: A

Downloader B

{1,2,3,4,5,6,7,8,9,10}

{1,2,3}

Downloader C

{}

Simple example

Seeder: A

Downloader B

{1,2,3,4,5,6,7,8,9,10}

Downloader C

{1,2,3}

{1,2,3,4}

Simple example

Seeder: A

Downloader B

{1,2,3,4,5,6,7,8,9,10}

Downloader C

{1,2,3}

{1,2,3,4}

Simple example

Seeder: A

Downloader B

{1,2,3,4,5,6,7,8,9,10}

Downloader C
{1,2,3,4}

{1,2,3,5}

Simple example

Seeder: A

Downloader B

{1,2,3,4,5,6,7,8,9,10}

Downloader C
{1,2,3,4}

{1,2,3,5}

Simple example

Seeder: A

Downloader B

{1,2,3,4,5,6,7,8,9,10}

Downloader C

{1,2,3,5}

{1,2,3,4,5}

Basic Idea
• Initial seeder chops file into many pieces.
• Leecher first locates the .torrent file that directs it to a

tracker, which tells which other peers are downloading
that file. As a leecher downloads pieces of the file, replicas
of the pieces are created. More downloads mean more
replicas available

• As soon as a leecher has a complete piece, it can
potentially share it with other downloaders. Eventually
each leecher becomes a seeder by obtaining all the pieces,
and assembles the file. Verifies the checksum.

Operation

Pieces and Sub-Pieces

• A piece is broken into sub-pieces ...
typically 16KB in size

• Until a piece is assembled, only download
the sub-pieces of that piece only

• This policy lets pieces assemble quickly

Pipelining

• When transferring data over TCP, always have

several requests pending at once, to avoid a delay

between pieces being sent. At any point in time, some

number, typically 5, are requested simultaneously.

• Every time a piece or a sub-piece arrives, a new

request is sent out.

Piece Selection

• The order in which pieces are selected by different
peers is critical for good performance

• If an inefficient policy is used, then peers may end
up in a situation where each has all identical set of
easily available pieces, and none of the missing
ones.

• If the original seed is prematurely taken down,
then the file cannot be completely downloaded!
What are “good policies?”

BT: internal Chunk Selection
mechanisms

• Strict Priority
– First Priority

• Rarest First
– General rule

• Random First Piece
– Special case, at the beginning

• Endgame Mode
– Special case

Random First Piece

• Initially, a peer has nothing to trade
• Important to get a complete piece ASAP
• Select a random piece of the file and

download it

Rarest Piece First

• Determine the pieces that are most rare
among your peers, and download those first.

• This ensures that the most commonly
available pieces are left till the end to
download.

Endgame Mode

• Near the end, missing pieces are requested from
every peer containing them. When the piece
arrives, the pending requests for that piece are
cancelled.

• This ensures that a download is not prevented
from completion due to a single peer with a slow
transfer rate.

• Some bandwidth is wasted, but in practice, this is
not too much.

BT: internal mechanism

• Built-in incentive mechanism (where all the

magic happens):

– Choking Algorithm

– Optimistic Unchoking

Choking
• Choking is a temporary refusal to upload. It is

one of BitTorrent’s most powerful idea to deal

with free riders (those who only download but

never upload).

• Tit-for-tat strategy is based on game-theoretic

concepts.

Choking

Reasons for choking:
– Avoid free riders
– Network congestion

A good choking algorithm
caps the number of simultaneous
uploads for good TCP performance.
Avoids choking and unchoking
too quickly, (known as fibrillation)..

Choking

Reasons for choking:
– Avoid free riders
– Network congestion

A good choking algorithm
caps the number of simultaneous
uploads for good TCP performance.
Avoids choking and unchoking
too quickly, (known as fibrillation)..

Choking

Reasons for choking:
– Avoid free riders
– Network congestion

A good choking algorithm
caps the number of simultaneous
uploads for good TCP performance.
Avoids choking and unchoking
too quickly, (known as fibrillation)..

Alice

Choking

Reasons for choking:
– Avoid free riders
– Network congestion

A good choking algorithm
caps the number of simultaneous
uploads for good TCP performance.
Avoids choking and unchoking
too quickly, (known as fibrillation)..

Alice

Choking

Reasons for choking:
– Avoid free riders
– Network congestion

A good choking algorithm
caps the number of simultaneous
uploads for good TCP performance.
Avoids choking and unchoking
too quickly, (known as fibrillation)..

Alice

Bob

Choking

Reasons for choking:
– Avoid free riders
– Network congestion

A good choking algorithm
caps the number of simultaneous
uploads for good TCP performance.
Avoids choking and unchoking
too quickly, (known as fibrillation)..

Alice

Bob

Choking

Reasons for choking:
– Avoid free riders
– Network congestion

A good choking algorithm
caps the number of simultaneous
uploads for good TCP performance.
Avoids choking and unchoking
too quickly, (known as fibrillation)..

Alice

Bob

Choking

Reasons for choking:
– Avoid free riders
– Network congestion

A good choking algorithm
caps the number of simultaneous
uploads for good TCP performance.
Avoids choking and unchoking
too quickly, (known as fibrillation)..

Alice

Bob

Choking

Reasons for choking:
– Avoid free riders
– Network congestion

A good choking algorithm
caps the number of simultaneous
uploads for good TCP performance.
Avoids choking and unchoking
too quickly, (known as fibrillation)..

Alice

Bob

Choked

Choking

Reasons for choking:
– Avoid free riders
– Network congestion

A good choking algorithm
caps the number of simultaneous
uploads for good TCP performance.
Avoids choking and unchoking
too quickly, (known as fibrillation)..

Alice

Bob

Choked

Choking

Reasons for choking:
– Avoid free riders
– Network congestion

A good choking algorithm
caps the number of simultaneous
uploads for good TCP performance.
Avoids choking and unchoking
too quickly, (known as fibrillation)..

Alice

Bob

ChokedChoked

More on Choking

	

 Peers try out unused connections once in a
while to find out if they might be better than
the current ones (optimistic unchoking).

Optimistic unchoking

Optimistic unchoking

• A BitTorrent peer has a single “optimistic
unchoke” to which it uploads regardless of the
current download rate from it. This peer rotates
every 30s

Optimistic unchoking

• A BitTorrent peer has a single “optimistic
unchoke” to which it uploads regardless of the
current download rate from it. This peer rotates
every 30s

Optimistic unchoking

• A BitTorrent peer has a single “optimistic
unchoke” to which it uploads regardless of the
current download rate from it. This peer rotates
every 30s

• Reasons:

Optimistic unchoking

• A BitTorrent peer has a single “optimistic
unchoke” to which it uploads regardless of the
current download rate from it. This peer rotates
every 30s

• Reasons:
– To discover currently unused connections are better

than the ones being used

Optimistic unchoking

• A BitTorrent peer has a single “optimistic
unchoke” to which it uploads regardless of the
current download rate from it. This peer rotates
every 30s

• Reasons:
– To discover currently unused connections are better

than the ones being used
– To provide minimal service to new peers

Upload-Only mode

• Once download is complete, a peer has no
download rates to use for comparison nor
has any need to use them. The question is,
which nodes to upload to?

• Policy: Upload to those with the best upload
rate. This ensures that pieces get replicated
faster, and new seeders are created fast

Questions about BT

Questions about BT

• Which features contribute to the efficiency of BitTorrent?

Questions about BT

• Which features contribute to the efficiency of BitTorrent?

• What is the effect of bandwidth constraints?

Questions about BT

• Which features contribute to the efficiency of BitTorrent?

• What is the effect of bandwidth constraints?

• Is the Rarest First policy really necessary?

Questions about BT

• Which features contribute to the efficiency of BitTorrent?

• What is the effect of bandwidth constraints?

• Is the Rarest First policy really necessary?

• Must nodes perform seeding after downloading is complete?

Questions about BT

• Which features contribute to the efficiency of BitTorrent?

• What is the effect of bandwidth constraints?

• Is the Rarest First policy really necessary?

• Must nodes perform seeding after downloading is complete?

• How serious is the Last Piece Problem?

Questions about BT

• Which features contribute to the efficiency of BitTorrent?

• What is the effect of bandwidth constraints?

• Is the Rarest First policy really necessary?

• Must nodes perform seeding after downloading is complete?

• How serious is the Last Piece Problem?

• Does the incentive mechanism affect the performance much?

One more example

peer A

peer B

peer C

peer D

peer E

One more example

peer A

peer B

peer C

peer D

peer E

HELLO

HELLO

HELLO

HELLO

One more example

peer A

peer B

peer C

peer D

peer E

Bitmap

Bitmap

Bitmap

Bitmap

One more example

peer A

peer B

peer C

peer D

peer E

Request C1

Request C5

One more example

peer A

peer B

peer C

peer D

peer E

Request C1

Request C5

Without upload constraint

One more example

peer A

peer B

peer C

peer D

peer E

C1

C5

Without upload constraint

One more example

peer A

peer B

peer C

peer D

peer E

C1

C5

Without upload constraint

With upload constraint

Trackerless torrents

 BitTorrent also supports "trackerless" torrents,
featuring a DHT implementation that allows the
client to download torrents that have been created
without using a BitTorrent tracker.

