CS4/700/CS5700

Fundamentals of Computer Networks

Lecture 15: Congestion Control

Slides used with permissions from Edward W. Knightly,
T. S. Eugene Ng, lon Stoica, Hui Zhang

J

Alan Mislove

amislove at ccs.neu.edu

Northeastern University

Abstract View

A g " B
Buffer in bottleneck Router
Sending Host Receiving Host

* We ignore internal structure of network and model it
as having a single bottleneck link

J

Alan Mislove amislove at ccs.neu.edu Northeas?ern University

Three Congestion Control Problems

* Adjusting to bottleneck bandwidth
* Adjusting to variations in bandwidth

« Sharing bandwidth between flows

J

Alan Mislove amislove at ccs.neu.edu Northeas3ern University

Single Flow, Fixed Bandwidth

100 Mbps

A g " B

* Adjust rate to match bottleneck bandwidth
— without any a priori knowledge
— could be gigabit link, could be a modem

J

Alan Mislove amislove at ccs.neu.edu Northeastern University

Single Flow, Varying Bandwidth

BW(t)

» Adjust rate to match instantaneous bandwidth
 Bottleneck can change because of a routing change

J

Alan Mislove amislove at ccs.neu.edu Northeasbern University

Two Issues:

Multiple Flows

« Adjust total sending rate to match bottleneck

bandwidth
* Allocation of bandwidth between flows

J

Al Bl
100 Mbps
A2 - B2
A3 B3
Alan Mislove amislove at ccs.neu.edu Northeasdern University

General Approaches

« Send without care
— many packet drops
— could cause congestion collapse

* Reservations
— pre-arrange bandwidth allocations
— requires negotiation before sending packets

* Pricing
— don’t drop packets for the high-bidders
— requires payment model

J

Alan Mislove amislove at ccs.neu.edu

Northeasfern University

General Approaches (cont'd)

* Dynamic Adjustment (TCP)
— Every sender probe network to test level of congestion
— speed up when no congestion
— slow down when congestion
— suboptimal, messy dynamics, simple to implement

— Distributed coordination problem!

J

Alan Mislove

amislove at ccs.neu.edu NortheasBern University

TCP Congestion Control

TCP connection has window
— controls number of unacknowledged packets

Sending rate: ~Window/RTT

Vary window size to control sending rate

Introduce a new parameter called congestion window
(cwnd) at the sender

— Congestion control is mainly a sender-side operation

J

Alan Mislove amislove at ccs.neu.edu Northeas®ern University

 Limits how much data can be in transit

Congestion Window (cwnd)

* Implemented as # of bytes

« Described as # packets in this lecture

= MaxWindow — (LastByteSent — LastByteAcked)

MaxWindow = min(cwnd, AdvertisedWindow)

MaxWindow
_A

~

LastByteAcked |
LastByteSent

sequence number increases

EffectiveWindow

J

Alan Mislove

amislove at ccs.neu.edu

Northead@rn University

Two Basic Components

» Detecting congestion

« Rate adjustment algorithm (change cwnd size)
— depends on congestion or not

J

Alan Mislove amislove at ccs.neu.edu Northeadtern University

Detecting Congestion

J

Alan Mislove

amislove at ccs.neu.edu

Northeadtrn University

Detecting Congestion

« Packet dropping is best sign of congestion
— delay-based methods are hard and risky

« How do you detect packet drops? ACKs
— TCP uses ACKs to signal receipt of data

— ACK denotes last contiguous byte received
« actually, ACKs indicate next segment expected

« Two signs of packet drops
— No ACK after certain time interval: time-out
— Several duplicate ACKs (ignore for now)

J

Alan Mislove

amislove at ccs.neu.edu

Northeadtrn University

Detecting Congestion

« Packet dropping is best sign of congestion
— delay-based methods are hard and risky

« How do you detect packet drops? ACKs
— TCP uses ACKs to signal receipt of data

— ACK denotes last contiguous byte received
« actually, ACKs indicate next segment expected

« Two signs of packet drops
— No ACK after certain time interval: time-out
— Several duplicate ACKs (ignore for now)

J

Alan Mislove

amislove at ccs.neu.edu

Northeadtrn University

Detecting Congestion

Packet dropping is best sign of congestion
— delay-based methods are hard and risky

How do you detect packet drops? ACKs
— TCP uses ACKs to signal receipt of data

— ACK denotes last contiguous byte received
« actually, ACKs indicate next segment expected

Two signs of packet drops
— No ACK after certain time interval: time-out
— Several duplicate ACKs (ignore for now)

May not work well for wireless networks, why?

J

Alan Mislove amislove at ccs.neu.edu Northeadtrn University

Sliding (Congestion) Window

« Sliding window: each ACK = permission to send a

new packet
— Ex.cwnd =3
4 ack-2
11234156 data-4 data-3 —-
<4— ack-3 ack-4
1 23 45]6 data-5 —p

J

Alan Mislove amislove at ccs.neu.edu Northeadt@rn University

Self-clocking

 If we have a large window, ACKs “self-clock” the data
to the rate of the bottleneck link

« Observe: received ACK spacing = bottleneck

bandwidth p
P T
b —
receiver
sender
\
A Tiny ACK
Ar (very thin)
\.
Alan Mislove amislove at ccs.neu.edu Northeadtern University

Rate Adjustment

e Basic structure:

— Upon receipt of ACK (of new data): increase rate
» Data successfully delivered, perhaps can send faster

— Upon detection of loss: decrease rate

« But what increase/decrease functions should we use?

— Depends on what problem we are solving

J

Alan Mislove amislove at ccs.neu.edu

Northeadfern University

Fairness?

Connection 2 throughput >g

Connection 1 throughput R

J

Alan Mislove amislove at ccs.neu.edu Northeadrn University

Fairness?

equal bandwidth share

Connection 2 throughput >g

Connection 1 throughput R

J

Alan Mislove amislove at ccs.neu.edu Northeadrn University

Fairness?

Two competing sessions:

equal bandwidth share

Connection 2 throughput >g

Connection 1 throughput R

J

Alan Mislove amislove at ccs.neu.edu Northeadrn University

Fairness?

Two competing sessions:
« Additive increase (Al) gives slope of 1, as throughout increases

equal bandwidth share

Connection 2 throughput >g

Connection 1 throughput R

J

Alan Mislove amislove at ccs.neu.edu Northeadrn University

Fairness?

Two competing sessions:
« Additive increase (Al) gives slope of 1, as throughout increases
« multiplicative decrease (MD) decreases throughput proportionally

equal bandwidth share

Connection 2 throughput >g

Connection 1 throughput R

J

Alan Mislove amislove at ccs.neu.edu Northeadrn University

Fairness?

Two competing sessions:

« Additive increase (Al) gives slope of 1, as throughout increases
« multiplicative decrease (MD) decreases throughput proportionally

equal bandwidth share

congestion avoidance: additive increase

Connection 2 throughput >g

Connection 1 throughput R

J

Alan Mislove amislove at ccs.neu.edu Northeadrn University

Fairness?

Two competing sessions:
« Additive increase (Al) gives slope of 1, as throughout increases
« multiplicative decrease (MD) decreases throughput proportionally

equal bandwidth share

Connection 2 throughput >g

Connection 1 throughput R

J

Alan Mislove amislove at ccs.neu.edu Northeadrn University

Fairness?

Two competing sessions:
« Additive increase (Al) gives slope of 1, as throughout increases
« multiplicative decrease (MD) decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2

Connection 2 throughput >g

Connection 1 throughput R

J

Alan Mislove amislove at ccs.neu.edu Northeadrn University

Fairness?

Two competing sessions:
« Additive increase (Al) gives slope of 1, as throughout increases
« multiplicative decrease (MD) decreases throughput proportionally

equal bandwidth share

Connection 2 throughput >g

Connection 1 throughput R

J

Alan Mislove amislove at ccs.neu.edu Northeadrn University

Fairness?

Two competing sessions:

« Additive increase (Al) gives slope of 1, as throughout increases
« multiplicative decrease (MD) decreases throughput proportionally

equal bandwidth share

Fair and link fully utilized (rate R)

Connection 2 throughput >g

Connection 1 throughput R

J

Alan Mislove amislove at ccs.neu.edu Northeadrn University

|

O
<

J

Alan Mislove

amislove at ccs.neu.edu

Northeadtérn University

|

O
<

J

Alan Mislove

amislove at ccs.neu.edu

Northeadtérn University

|

O
<

J

Alan Mislove

amislove at ccs.neu.edu

Northeadtérn University

|

O
<

J

Alan Mislove

amislove at ccs.neu.edu

Northeadtérn University

J

Alan Mislove

amislove at ccs.neu.edu

Northeadtérn University

J

Alan Mislove

amislove at ccs.neu.edu

Northeadtérn University

J

Alan Mislove

amislove at ccs.neu.edu

Northeadtérn University

J

Alan Mislove

amislove at ccs.neu.edu

Northeadtérn University

J

Alan Mislove

amislove at ccs.neu.edu

Northeadtérn University

J

Alan Mislove

amislove at ccs.neu.edu

Northeadtérn University

J

Alan Mislove

amislove at ccs.neu.edu

Northeadtérn University

J

Alan Mislove

amislove at ccs.neu.edu

Northeadtérn University

J

Alan Mislove

amislove at ccs.neu.edu

Northeadtérn University

J

Alan Mislove

amislove at ccs.neu.edu

Northeadtérn University

J

Alan Mislove

amislove at ccs.neu.edu

Northeadtérn University

J

Alan Mislove

amislove at ccs.neu.edu

Northeadtérn University

AIMD Sharing Dynamics

A

D

X
- —

* No congestion - rate increases by one packet/RTT every RTT
» Congestion - decrease rate by factor 2

60.0000

45.0000

30.0000

15.0000

Ly

'Rates equalize - fair share

WYY

Wi

Alan Mislove

amislove at ccs.neu.edu

J

Northead@rn University

C

|

O
<

J

Alan Mislove

amislove at ccs.neu.edu

Northead®@rn University

C

|

O
<

J

Alan Mislove

amislove at ccs.neu.edu

Northead®@rn University

C

|

O
<

J

Alan Mislove

amislove at ccs.neu.edu

Northead®@rn University

C

|

O
<

J

Alan Mislove

amislove at ccs.neu.edu

Northead®@rn University

C

|

O
<

J

Alan Mislove

amislove at ccs.neu.edu

Northead®@rn University

C

|

O
<

J

Alan Mislove

amislove at ccs.neu.edu

Northead®@rn University

AIAD Sharing Dynamics

A2 1B

D —E

* No congestion - x increases by one packet/RTT every RTT
» Congestion - decrease x by 1

45 AAAAAA AAAAAAA
WA AN RANIAL

J

Alan Mislove amislove at ccs.neu.edu Northea&@rn University

TCP Model

« Derive an expression for the steady state throughput
as a function of
— RTT
— Loss probability

* Assumptions
— Each packet dropped with jid probability p

* Methodology: analyze “average” cycle in steady state

— How many packets are transmitted per cycle?
— What is the duration of a cycle?

J

Alan Mislove amislove at ccs.neu.edu Northea&ttrn University

Cycles in Steady State

Window

A

Time

>

* Denote W as the (mean) maximum achieved window
* What is the slope of the line?
« What are the key values on the time axis?

J

Alan Mislove amislove at ccs.neu.edu Northea&@rn University

Cycle Analysis

WindZW
Time (RTT)
>
W increase by 1 per RTT
2 2
pkts xmitted/cycle = area = K\— + 1 K\— = iW2
2) 2\2) 8

J

Alan Mislove amislove at ccs.neu.edu Northea&@rn University

throughput =

Throughput

é W2
pkts xmitted/cycle g
time/cycle RTT VZ)_

* What is W as a function of p?
How long does a cycle last until a drop?

J

Alan Mislove

amislove at ccs.neu.edu

Northea&&rn University

Cycle Length

Let Ol index packet loss that ends cycle.

P(o = k) = P(k —1pkts not lost, kth pkt lost)
-1
-(1-p)7'p

= E)= Ski-p)'p=—
= P
=> 1=3W2 = W = i
p 3 3p

J

Alan Mislove amislove at ccs.neu.edu Northea&ern University

TCP Model

)

p ~ 1

RTT><1 8 RTTW/%p
2\ 3p 3

*Note role of RTT. Is it “fair”?

throughput T(p) =

*A “macroscopic’ model

*Achieving this throughput is referred to as “TCP Friendly”

J

Alan Mislove amislove at ccs.neu.edu Northea&@rn University

Adapting cwin

« So far: sliding window + self-clocking of ACKs

* How to know the best cwnd (and best transmission
rate)?

* Phases of TCP congestion control
1. Slow start (getting to equilibrium)

1. Want to find this very very fast and not waste time

2. Congestion Avoidance

— Additive increase - gradually probing for additional
bandwidth

— Multiplicative decrease - decreasing cwnd upon loss/
timeout

J

Alan Mislove amislove at ccs.neu.edu Northea&érn University

Phases of Congestion Control

« Congestion Window (cwnd)
Initial value is 1 MSS (=maximum segment size) counted as
bytes

« Slow-start threshold Value (ss_thresh)

Initial value is the advertised window size

* slow start (cwnd < ssthresh)
« congestion avoidance (cwnd >= ssthresh)

J

Alan Mislove amislove at ccs.neu.edu Northea&@rn University

TCP: Slow Start

« Goal: discover roughly the proper sending rate
quickly

* Whenever starting traffic on a new connection, or
whenever increasing traffic after congestion was

experienced:
* Intialize cwnd =1
« Each time a segment is acknowledged, increment
cwnd by one (cwnd++).

e Continue until
— Reach ss_thresh
— Packet loss

J

Alan Mislove amislove at ccs.neu.edu Northea&@rn University

Slow Start lllustration

The congestion window
size grows very rapidly

TCP slows down the
increase of cwnd when
cwnd >= ss_thresh

Observe:

— Each ACK generates two
packets

— slow start increases rate
exponentially fast
(doubled every RTT)!

J

Alan Mislove amislove at ccs.neu.edu Northea8@rn University

Slow Start lllustration

The congestion window
size grows very rapidly
cwnd = 1 segment 1

TCP slows down the
increase of cwnd when
cwnd >= ss_thresh

Observe:

— Each ACK generates two
packets

— slow start increases rate
exponentially fast
(doubled every RTT)!

J

Alan Mislove amislove at ccs.neu.edu Northea8@rn University

Slow Start lllustration

The congestion window
size grows very rapidly
cwnd = 1 segment 1

TCP slows down the
increase of cwnd when
cwnd >= ss_thresh

Observe:

— Each ACK generates two
packets

— slow start increases rate
exponentially fast
(doubled every RTT)!

I

ACK for segment 1

J

Alan Mislove amislove at ccs.neu.edu Northea8@rn University

Slow Start lllustration

The congestion window
size grows very rapidly
cwnd = 1 segment 1

ACK for segment 1

cwnd = 2
TCP slows down the

increase of cwnd when
cwnd >= ss_thresh

Observe:

— Each ACK generates two
packets

— slow start increases rate
exponentially fast
(doubled every RTT)!

J

Alan Mislove amislove at ccs.neu.edu Northea8@rn University

Slow Start lllustration

The congestion window
size grows very rapidly

cwnd = 1 segment 1
ACK for segment 1
cwnd = 2 segment 2

segment 3

TCP slows down the
increase of cwnd when
cwnd >= ss_thresh

Observe:

— Each ACK generates two
packets

— slow start increases rate
exponentially fast
(doubled every RTT)!

J

Alan Mislove amislove at ccs.neu.edu Northea8@rn University

Slow Start lllustration

The congestion window
size grows very rapidly

TCP slows down the
increase of cwnd when
cwnd >= ss_thresh

Observe:

— Each ACK generates two

packets

— slow start increases rate

exponentially fast
(doubled every RTT)!

cwnd = 1 segment 1
ACK for segment 1

cwnd = 2 segment 2

segment 3

ACK for segments 2+ 3 '

J

Alan Mislove

amislove at ccs.neu.edu

Northea8@rn University

Slow Start lllustration

The congestion window
size grows very rapidly

TCP slows down the
increase of cwnd when
cwnd >= ss_thresh

Observe:

— Each ACK generates two

packets

— slow start increases rate

exponentially fast
(doubled every RTT)!

cwnd = 1 segment 1
W
cwnd = 2 segment 2
segment 3
W '
cwnd =4

J

Alan Mislove

amislove at ccs.neu.edu

Northea8@rn University

Slow Start lllustration

The congestion window
size grows very rapidly

TCP slows down the
increase of cwnd when
cwnd >= ss_thresh

Observe:

— Each ACK generates two

packets

— slow start increases rate

exponentially fast
(doubled every RTT)!

cwnd = 1

segment 1

I

cwnd = 2

ACK for segment 1

segment 2

segment 3

cwnd =4

ACK for segments 2+ 3 '

segment 4

segment 5

segment 6

segment 7

=

J

Alan Mislove

amislove at ccs.neu.edu

Northea8@rn University

Slow Start lllustration

The congestion window
size grows very rapidly

TCP slows down the
increase of cwnd when
cwnd >= ss_thresh

Observe:

— Each ACK generates two

packets

— slow start increases rate

exponentially fast
(doubled every RTT)!

cwnd = 1

segment 1

cwnd = 2

ACK for segment 1

segment 2

I

segment 3

cwnd =4

2+3

ACK for segments '

segment 4

segment 5

segment 6

segment 7

6+7

ACK for segments a+o* i

=

J

Alan Mislove

amislove at ccs.neu.edu

Northea8@rn University

Slow Start lllustration

The congestion window
size grows very rapidly

cwnd = 1

segment 1

ACK for segment 1

I

cwnd = 2 segment 2
t3
TCP slows down the =29men

increase of cwnd when W_

cwnd >=ss_thresh cwnd = 4 segment 4

segment 5

segment 6

Observe: segment 7
— Each ACK generates two AGK for segments 4+5+6+7 _
packets cwnd = 8 ‘/

— slow start increases rate

exponentially fast
(doubled every RTT)!

J

Alan Mislove

amislove at ccs.neu.edu

Northea8@rn University

Congestion Avoidance (After Slow Start)

« Slow Start figures out roughly the rate at which the
network starts getting congested

« Congestion Avoidance continues to react to network
condition

— Probes for more bandwidth, increase cwnd if more
bandwidth available

— If congestion detected, aggressive cut back cwnd

J

Alan Mislove amislove at ccs.neu.edu Northea8tern University

Congestion Avoidance: Additive Increase

After exiting slow start, slowly increase cwnd to probe
for additional available bandwidth

— Competing flows may end transmission

— May have been “unlucky” with an early drop

If cwnd > ss _thresh then
each time a segment is acknowledged
Increment cwnd by 1/cwnd (cwnd += 1/cwnd).

cwnd is increased by one only if all segments have been
acknowledged
— Increases by 1 per RTT, vs. doubling per RTT

J

Alan Mislove amislove at ccs.neu.edu Northea8&rn University

Cwnd (in segments)

Example of Slow Start +
Congestion Avoidance

Assume that ss _thresh = 8 ewnd =1 D —

cwnd =2

cwnd =4

A
(8]
#
\ \
\
|
|
|
|
|
|
|
|
|
|
|
|
|

cwnd =8

_» —

o / —

8 ——
/ cwnd =9 <

4 // — —

\{/Q

A
-—

(¢

(,'\ \{/‘L {,‘5 {)‘ \{,‘5 \{;0 (,'\ -
Roundftrip times cwnd =10

J

Alan Mislove amislove at ccs.neu.edu Northea8&rn University

Detecting Congestion via Timeout

 If there is a packet loss, the ACK for that packet will
not be received

* The packet will eventually timeout
— No ack is seen as a sign of congestion

J

Alan Mislove amislove at ccs.neu.edu Northea8tern University

Congestion Avoidance: Multiplicative Decrease
« Timeout = congestion

« Each time when congestion occurs,
— ss_thresh is set to half the current size of the congestion
window:
ss thresh =cwnd /2
— cwnd is reset to one:
cwnd = 1
— and slow-start is entered

J

Alan Mislove amislove at ccs.neu.edu Northea8fern University

TCP illustration

J

cwnd ss_thresh
Timeout
Congestion
Avoidance
ss_thresh
Slow Start /
Time
Alan Mislove amislove at ccs.neu.edu Northea8trn University

Responses to Congestion (Loss)

* There are algorithms developed for TCP to respond
to congestion

— TCP Tahoe - the basic algorithm (discussed previously)

— TCP Reno - Tahoe + fast retransmit & fast recovery
* Most end hosts today implement TCP Reno

* and many more:

— TCP Vegas (research: use timing of ACKs to avoid loss)
— TCP SACK (future deployment: selective ACK)

J

Alan Mislove amislove at ccs.neu.edu Northea8térn University

TCP Reno

* Problem with Tahoe: If a segment is lost, there is a
long wait until timeout

 Reno adds a fast retransmit and fast recovery
mechanism

* Upon receiving 3 duplicate ACKs, retransmit the
presumed lost segment (“fast retransmit”)

» But do not enter slow-start. Instead enter congestion
avoidance (“fast recovery”)

J

Alan Mislove amislove at ccs.neu.edu Northea8&rn University

Fast Retransmit

Resend a segment
after 3 duplicate ACKs

— remember a duplicate

ACK means that an
out-of sequence
segment was
received

— ACK-n means
packets 1, ..., n all
received

Notes:

cwnd = 1 segment 1

[

ACK 1

cwnd =2 segment 2
segment 3

. ACK2Z _—
_AK3
cwnd =4

segment 4 Ve
segment 5
segment 6

ACK 3 ______segment7
«—

!

— duplicate ACKs due tc

packet reordering!

3 duplicate
ACKs

J

Alan Mislove

amislove at ccs.neu.edu Northea8&rn University

Fast Recovery

« After a fast-retransmit
— cwnd = cwnd/2 (vs. 1in Tahoe)
— ss_thresh = cwnd

— l.e. starts congestion avoidance at new cwnd
* Not slow start from cwnd = 1

« After a timeout
— 8S_thresh = cwnd/2
— cwnd =1
— Do slow start
— Same as Tahoe

J

Alan Mislove amislove at ccs.neu.edu Northead@rn University

cwnd

Fast Retransmit and Fast Recovery

Slow Start

Congestion

* Retransmit after 3 duplicate ACKs

— prevent expensive timeouts
« Slow start only once per session (if no timeouts)

* In steady state, cwnd oscillates around the ideal
window size.

Time

J

Alan Mislove

amislove at ccs.neu.edu

Northeadtern University

TCP Congestion Control Summary

 Measure available bandwidth
— slow start: fast, hard on network
— AIMD: slow, gentle on network

» Detecting congestion

— timeout based on RTT
* robust, causes low throughput

— Fast Retransmit: avoids timeouts when few packets lost
» can be fooled, maintains high throughput

« Recovering from loss
— Fast recovery: don’t set cwnd=1 with fast retransmits

J

Alan Mislove amislove at ccs.neu.edu Northeadrn University

TCP Reno Quick Review

» Slow-Start if cwnd < ss_thresh
— cwnd++ upon every new ACK (exponential growth)
— Timeout: ss_thresh = cwnd/2 and cwnd = 1

« Congestion avoidance if cwnd >= ss_thresh
— Additive Increase Multiplicative Decrease (AIMD)
— ACK: cwnd = cwnd + 1/cwnd
— Timeout: ss_thresh = cwnd/2 and cwnd = 1

« Fast Retransmit & Recovery
— 3 duplicate ACKS (interpret as packet loss)
— Retransmit lost packet
— cwnd=cwnd/2, ss_thresh = cwnd

J

Alan Mislove amislove at ccs.neu.edu Northead{@rn University

TCP Reno Saw Tooth Behavior

Congestion _
Window Timeouts
3 may still
5 occur
Initial lowstart Fast Time
Slowstart to pace Retransmit
packets and Recovery

J

Alan Mislove amislove at ccs.neu.edu Northead#ern University

Summary

« TCP Reno is the de facto standard for congestion control on
the Internet

« AIMD or “TCP friendliness” is expected of distributed
applications

J

Alan Mislove amislove at ccs.neu.edu Northeadfern University

