
Alan Mislove amislove at ccs.neu.edu Northeastern University1

CS4700/CS5700
Fundamentals of Computer Networks

Lecture 11: Intra-domain routing

Slides used with permissions from Edward W. Knightly,
T. S. Eugene Ng, Ion Stoica, Hui Zhang

Alan Mislove amislove at ccs.neu.edu Northeastern University2

What is Routing?

• To ensure information is delivered to the correct
destination at a reasonable level of performance

• Forwarding
– Given a forwarding table, move information from input ports

to output ports of a router
– Local mechanical operations

• Routing
– Acquires information in the forwarding tables
– Requires knowledge of the network
– Requires distributed coordination of routers

Alan Mislove amislove at ccs.neu.edu Northeastern University3

Viewing Routing as a Policy

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5

Alan Mislove amislove at ccs.neu.edu Northeastern University3

Viewing Routing as a Policy

• Given multiple alternative paths, how to route
information to destinations should be viewed as a
policy decision

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5

Alan Mislove amislove at ccs.neu.edu Northeastern University3

Viewing Routing as a Policy

• Given multiple alternative paths, how to route
information to destinations should be viewed as a
policy decision

• What are some possible policies?
– Shortest path (RIP, OSPF)
– Most load-balanced
– QoS routing (satisfies app requirements)
– etc

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5

Alan Mislove amislove at ccs.neu.edu Northeastern University4

Internet Routing

• Internet topology roughly organized as a two level
hierarchy

• First lower level – autonomous systems (AS’s)
– AS: region of network under a single administrative domain

• Each AS runs an intra-domain routing protocol
– Distance Vector, e.g., Routing Information Protocol (RIP)
– Link State, e.g., Open Shortest Path First (OSPF)
– Possibly others

• Second level – inter-connected AS’s
• Between AS’s runs inter-domain routing protocols,

e.g., Border Gateway Routing (BGP)
– De facto standard today, BGP-4

Alan Mislove amislove at ccs.neu.edu Northeastern University5

Example

AS-1

AS-2

AS-3

Interior router

BGP router

Alan Mislove amislove at ccs.neu.edu Northeastern University6

Why Need the Concept of AS or Domain?

Alan Mislove amislove at ccs.neu.edu Northeastern University6

Why Need the Concept of AS or Domain?

• Routing algorithms are not efficient enough to deal
with the size of the entire Internet

Alan Mislove amislove at ccs.neu.edu Northeastern University6

Why Need the Concept of AS or Domain?

• Routing algorithms are not efficient enough to deal
with the size of the entire Internet

• Different organizations may want different internal
routing policies

Alan Mislove amislove at ccs.neu.edu Northeastern University6

Why Need the Concept of AS or Domain?

• Routing algorithms are not efficient enough to deal
with the size of the entire Internet

• Different organizations may want different internal
routing policies

• Allow organizations to hide their internal network
configurations from outside

Alan Mislove amislove at ccs.neu.edu Northeastern University6

Why Need the Concept of AS or Domain?

• Routing algorithms are not efficient enough to deal
with the size of the entire Internet

• Different organizations may want different internal
routing policies

• Allow organizations to hide their internal network
configurations from outside

• Allow organizations to choose how to route across
multiple organizations (BGP)

Alan Mislove amislove at ccs.neu.edu Northeastern University6

Why Need the Concept of AS or Domain?

• Routing algorithms are not efficient enough to deal
with the size of the entire Internet

• Different organizations may want different internal
routing policies

• Allow organizations to hide their internal network
configurations from outside

• Allow organizations to choose how to route across
multiple organizations (BGP)

Alan Mislove amislove at ccs.neu.edu Northeastern University6

Why Need the Concept of AS or Domain?

• Routing algorithms are not efficient enough to deal
with the size of the entire Internet

• Different organizations may want different internal
routing policies

• Allow organizations to hide their internal network
configurations from outside

• Allow organizations to choose how to route across
multiple organizations (BGP)

• Basically, easier to compute routes, more flexibility,
more autonomy/independence

Alan Mislove amislove at ccs.neu.edu Northeastern University7

Outline

• Two intra-domain routing protocols

• Both try to achieve the “shortest path” routing policy
• Quite commonly used

• OSPF: Based on Link-State routing algorithm

• RIP: Based on Distance-Vector routing algorithm

• In Project 2, you will get to implement and play
around with these algorithms!
– Distributed coordination in action

Alan Mislove amislove at ccs.neu.edu Northeastern University8

Intra-domain Routing Protocols

• Based on unreliable datagram delivery
• Distance vector

– Routing Information Protocol (RIP), based on Bellman-Ford
algorithm

– Each neighbor periodically exchange reachability information
to its neighbors

– Minimal communication overhead, but it takes long to
converge, i.e., in proportion to the maximum path length

• Link state
– Open Shortest Path First (OSPF), based on Dijkstra’s

algorithm
– Each router periodically floods immediate reachability

information to other routers
– Fast convergence, but high communication and computation

overhead

Alan Mislove amislove at ccs.neu.edu Northeastern University9

Routing on a Graph

• Goal: determine a “good” path through the
network from source to destination

– Good often means the shortest path

• Network modeled as a graph
– Routers  nodes
– Link edges

• Edge cost: delay, congestion level,…

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5

Alan Mislove amislove at ccs.neu.edu Northeastern University10

Link State Routing (OSPF): Flooding

• Each node knows its connectivity and cost to a direct
neighbor

• Every node tells every other node this local
connectivity/cost information
– Via flooding

• In the end, every node learns the complete topology
of the network

• E.g. A floods message

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5

A connected to B cost 2
A connected to D cost 1
A connected to C cost 5

Alan Mislove amislove at ccs.neu.edu Northeastern University11

Flooding Details

Alan Mislove amislove at ccs.neu.edu Northeastern University11

Flooding Details
• Each node periodically generates Link State Packet (LSP)

contains
– ID of node created LSP
– List of direct neighbors and costs

– Sequence number (64 bit, assume to never wrap around)

– Time to live

Alan Mislove amislove at ccs.neu.edu Northeastern University11

Flooding Details
• Each node periodically generates Link State Packet (LSP)

contains
– ID of node created LSP
– List of direct neighbors and costs

– Sequence number (64 bit, assume to never wrap around)

– Time to live

• Flood is reliable
– Use acknowledgement and retransmission

Alan Mislove amislove at ccs.neu.edu Northeastern University11

Flooding Details
• Each node periodically generates Link State Packet (LSP)

contains
– ID of node created LSP
– List of direct neighbors and costs

– Sequence number (64 bit, assume to never wrap around)

– Time to live

• Flood is reliable
– Use acknowledgement and retransmission

• Sequence number used to identify *newer* LSP
– An older LSP is discarded

– What if a router crash and sequence number reset to 0?

Alan Mislove amislove at ccs.neu.edu Northeastern University11

Flooding Details
• Each node periodically generates Link State Packet (LSP)

contains
– ID of node created LSP
– List of direct neighbors and costs

– Sequence number (64 bit, assume to never wrap around)

– Time to live

• Flood is reliable
– Use acknowledgement and retransmission

• Sequence number used to identify *newer* LSP
– An older LSP is discarded

– What if a router crash and sequence number reset to 0?

• Receiving node flood LSP to all its neighbors except the
neighbor where the LSP came from

Alan Mislove amislove at ccs.neu.edu Northeastern University11

Flooding Details
• Each node periodically generates Link State Packet (LSP)

contains
– ID of node created LSP
– List of direct neighbors and costs

– Sequence number (64 bit, assume to never wrap around)

– Time to live

• Flood is reliable
– Use acknowledgement and retransmission

• Sequence number used to identify *newer* LSP
– An older LSP is discarded

– What if a router crash and sequence number reset to 0?

• Receiving node flood LSP to all its neighbors except the
neighbor where the LSP came from

• LSP is also generated when a link’s state changes (failed or
restored)

Alan Mislove amislove at ccs.neu.edu Northeastern University12

Link State Flooding Example

6

7

8

5

4

31

2

12

10

13

11

Alan Mislove amislove at ccs.neu.edu Northeastern University13

Link State Flooding Example

6

7

8

5

4

31

2

12

10

13

11

Alan Mislove amislove at ccs.neu.edu Northeastern University14

Link State Flooding Example

6

7

8

5

4

31

2

12

10

13

11

Alan Mislove amislove at ccs.neu.edu Northeastern University15

Link State Flooding Example

6

7

8

5

4

31

2

12

10

13

11

Alan Mislove amislove at ccs.neu.edu Northeastern University16

A Link State Routing Algorithm

Dijkstra’s algorithm
• Net topology, link costs known

to all nodes
– Accomplished via “link state

flooding”
– All nodes have same info

• Compute least cost paths from
one node (‘source”) to all other
nodes

• Repeat for all sources

Notations
• c(i,j): link cost from node i to

j; cost infinite if not direct
neighbors

• D(v): current value of cost of
path from source to node v

• p(v): predecessor node
along path from source to v,
that is next to v

• S: set of nodes whose least
cost path definitively known

Alan Mislove amislove at ccs.neu.edu Northeastern University17

Dijsktra’s Algorithm (A “Greedy” Algorithm)

1 Initialization:
2 S = {A};
3 for all nodes v
4 if v adjacent to A
5 then D(v) = c(A,v);
6 else D(v) = ;
7
8 Loop
9 find w not in S such that D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent to w and not in S:
12 D(v) = min(D(v), D(w) + c(w,v));
 // new cost to v is either old cost to v or known
 // shortest path cost to w plus cost from w to v
13 until all nodes in S;

Alan Mislove amislove at ccs.neu.edu Northeastern University18

Example: Dijkstra’s Algorithm

Step
0
1
2
3
4
5

start S
A

D(B),p(B)
2,A

D(C),p(C)
5,A

D(D),p(D)
1,A

D(E),p(E) D(F),p(F)

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5 1 Initialization:
2 S = {A};
3 for all nodes v
4 if v adjacent to A
5 then D(v) = c(A,v);
6 else D(v) = ;
…

Alan Mislove amislove at ccs.neu.edu Northeastern University19

Example: Dijkstra’s Algorithm

Step
0
1
2
3
4
5

start S
A

AD

D(B),p(B)
2,A

D(C),p(C)
5,A
4,D

D(D),p(D)
1,A

D(E),p(E)

2,D

D(F),p(F)

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5
…
8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent
 to w and not in S:
12 D(v) = min(D(v), D(w) + c(w,v));
13 until all nodes in S;

Alan Mislove amislove at ccs.neu.edu Northeastern University20

Example: Dijkstra’s Algorithm

Step
0
1
2
3
4
5

start S
A

AD
ADE

D(B),p(B)
2,A

D(C),p(C)
5,A
4,D
3,E

D(D),p(D)
1,A

D(E),p(E)

2,D

D(F),p(F)

4,E

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5
…
8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent
 to w and not in S:
12 D(v) = min(D(v), D(w) + c(w,v));
13 until all nodes in S;

Alan Mislove amislove at ccs.neu.edu Northeastern University21

Example: Dijkstra’s Algorithm

Step
0
1
2
3
4
5

start S
A

AD
ADE

ADEB

D(B),p(B)
2,A

D(C),p(C)
5,A
4,D
3,E

D(D),p(D)
1,A

D(E),p(E)

2,D

D(F),p(F)

4,E

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5
…
8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent
 to w and not in S:
12 D(v) = min(D(v), D(w) + c(w,v));
13 until all nodes in S;

Alan Mislove amislove at ccs.neu.edu Northeastern University22

Example: Dijkstra’s Algorithm

Step
0
1
2
3
4
5

start S
A

AD
ADE

ADEB
ADEBC

D(B),p(B)
2,A

D(C),p(C)
5,A
4,D
3,E

D(D),p(D)
1,A

D(E),p(E)

2,D

D(F),p(F)

4,E

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5
…
8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent
 to w and not in S:
12 D(v) = min(D(v), D(w) + c(w,v));
13 until all nodes in S;

Alan Mislove amislove at ccs.neu.edu Northeastern University23

Example: Dijkstra’s Algorithm

Step
0
1
2
3
4
5

start S
A

AD
ADE

ADEB
ADEBC

ADEBCF

D(B),p(B)
2,A

D(C),p(C)
5,A
4,D
3,E

D(D),p(D)
1,A

D(E),p(E)

2,D

D(F),p(F)

4,E

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5
…
8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent
 to w and not in S:
12 D(v) = min(D(v), D(w) + c(w,v));
13 until all nodes in S;

Alan Mislove amislove at ccs.neu.edu Northeastern University24

Distance Vector Routing (RIP)

• What is a distance vector?
– Current best known cost to get to a destination

• Idea: Exchange distance vectors among neighbors to
learn about lowest cost paths

Dest. Cos
tA 7

B 1

D 2

E 5

F 1

G 3

Node C

Note no vector entry for C itself

At the beginning, distance vector only
has information about directly
attached neighbors, all other dests
have cost ∞

Eventually the vector is filled

Alan Mislove amislove at ccs.neu.edu Northeastern University25

Distance Vector Routing Algorithm

• Iterative: continues until no nodes exchange info

• Asynchronous: nodes need not exchange info/iterate in lock
steps

• Distributed: each node communicates only with directly-
attached neighbors

• Each router maintains
– Row for each possible destination
– Column for each directly-attached neighbor to node
– Entry in row Y and column Z of node X  best known distance from X

to Y, via Z as next hop

• Note: for simplicity in this lecture examples we show only the
shortest distances to each destination

Alan Mislove amislove at ccs.neu.edu Northeastern University26

Distance Vector Routing

• Each local iteration caused by:
– Local link cost change
– Message from neighbor: its least cost

path change from neighbor to
destination

• Each node notifies neighbors only
when its least cost path to any
destination changes

– Neighbors then notify their neighbors if
necessary

wait for (change in local link
cost or msg from neighbor)

recompute distance table

if least cost path to any dest
has changed, notify
neighbors

Each node:

Alan Mislove amislove at ccs.neu.edu Northeastern University27

Distance Vector Algorithm (cont’d)

1 Initialization:
2 for all nodes V do
3 if V adjacent to A
4 D(A, V, V) = c(A,V); /* Distance from A to V via neighbor V */
5 else
• D(A, V, *) = ∞;
 loop:
8 wait (until A sees a link cost change to neighbor V
9 or until A receives update from neighbor V)
10 if (c(A,V) changes by d)
11 for all destinations Y through V do
12 D(A,Y, V) = D(A,Y,V) + d
13 else if (update D(V, Y) received from V)
 /* shortest path from V to some Y has changed */
14 D(A,Y,V) = c(A,V) + D(V, Y);
15 if (there is a new minimum for destination Y)
16 send D(A, Y) to all neighbors /* D(A,Y) denotes the min D(A,Y,*) */
17 forever

Alan Mislove amislove at ccs.neu.edu Northeastern University28

Example: Distance Vector Algorithm

A C
12

7

B D3

1

Dest. Cost NextHop

B 2 B

C 7 C

D ∞ -

Node A

Dest. Cost NextHo
pA 2 A

C 1 C

D 3 D

Node B

Dest. Cost NextHo
pA 7 A

B 1 B

D 1 D

Node C

Dest. Cost NextHo
pA ∞ -

B 3 B

C 1 C

Node D
1 Initialization:
2 for all nodes V do
3 if V adjacent to A
4 D(A, V, V) = c(A,V);
5 else
6 D(A, V, *) = ∞;
…

Alan Mislove amislove at ccs.neu.edu Northeastern University29

Dest. Cost NextHop

B 2 B

C 7 C

D 8 C

Node A

Example: 1st Iteration (C  A)

A C
12

7

B D3

1 Dest. Cost NextHo
pA 2 A

C 1 C

D 3 D

Node B

Dest. Cost NextHo
pA 7 A

B 1 B

D 1 D

Node C

Dest. Cost NextHo
pA ∞ -

B 3 B

C 1 C

Node D

D(A,D,C) = c(A, C) + D(C,D) = 7 + 1 = 8

(D(C,A), D(C,B), D(C,D))

7 loop:
 …
13 else if (update D(V, Y) received from V)
14 D(A,Y,V) = c(A,V) + D(V, Y);
15 if (there is a new min. for destination Y)
16 send D(A, Y) to all neighbors
17 forever

Alan Mislove amislove at ccs.neu.edu Northeastern University30

Dest. Cost NextHop

B 2 B

C 3 B

D 5 B

Node A

Example: 1st Iteration (BA, CA)

A C
12

7

B D3

1

Dest. Cost NextHo
pA 2 A

C 1 C

D 3 D

Node B

Dest. Cost NextHo
pA 7 A

B 1 B

D 1 D

Node C

Dest. Cost NextHo
pA ∞ -

B 3 B

C 1 C

Node D

D(A,D,B) = c(A,B) + D(B,D) = 2 + 3 = 5 D(A,C,B) = c(A,B) + D(B,C) = 2 + 1 = 3

7 loop:
 …
13 else if (update D(V, Y) received from V)
14 D(A,Y,V) = c(A,V) + D(V, Y)
15 if (there is a new min. for destination Y)
16 send D(A, Y) to all neighbors
17 forever

Alan Mislove amislove at ccs.neu.edu Northeastern University31

Example: End of 1st Iteration

A C
12

7

B D3

1

Dest. Cost NextHop

B 2 B

C 3 B

D 5 B

Node A

Dest. Cost NextHo
pA 2 A

C 1 C

D 2 C

Node B

Dest. Cost NextHo
pA 3 B

B 1 B

D 1 D

Node C

Dest. Cost NextHo
pA 5 B

B 2 C

C 1 C

Node D

7 loop:
 …
13 else if (update D(V, Y) received from V)
14 D(A,Y,V) = c(A,V) + D(V, Y);
15 if (there is a new min. for destination Y)
16 send D(A, Y) to all neighbors
17 forever

Alan Mislove amislove at ccs.neu.edu Northeastern University32

Example: End of 2nd Iteration

A C
12

7

B D3

1
Dest. Cost NextHop

B 2 B

C 3 B

D 4 B

Node A

Dest. Cost NextHo
pA 2 A

C 1 C

D 2 C

Node B

Dest. Cost NextHo
pA 3 B

B 1 B

D 1 D

Node C

Dest. Cost NextHo
pA 4 C

B 2 C

C 1 C

Node D

7 loop:
 …
13 else if (update D(V, Y) received from V)
14 D(A,Y,V) = c(A,V) + D(V, Y);
15 if (there is a new min. for destination Y)
16 send D(A, Y) to all neighbors
17 forever

Alan Mislove amislove at ccs.neu.edu Northeastern University33

Example: End of 3rd Iteration

A C
12

7

B D3

1

Dest. Cost NextHop

B 2 B

C 3 B

D 4 B

Node A

Dest. Cost NextHo
pA 2 A

C 1 C

D 2 C

Node B

Dest. Cost NextHo
pA 3 B

B 1 B

D 1 D

Node C

Dest. Cost NextHo
pA 4 C

B 2 C

C 1 C

Node D

Nothing changes  algorithm terminates

7 loop:
 …
13 else if (update D(V, Y) received from V)
14 D(A,Y,V) = c(A,V) + D(V, Y);
15 if (there is a new min. for destination Y)
16 send D(A, Y) to all neighbors
17 forever

Alan Mislove amislove at ccs.neu.edu Northeastern University34

Distance Vector: Link Cost Changes

A C

14

50

B
1

“good
news
travels
fast”

D C N

A 4 A

C 1 B

Node B

D C N

A 5 B

B 1 B

Node C

D C N

A 1 A

C 1 B

D C N

A 5 B

B 1 B

D C N

A 1 A

C 1 B

D C N

A 2 B

B 1 B

D C N

A 1 A

C 1 B

D C N

A 2 B

B 1 B

Link cost changes here
time

7 loop:
8 wait (until A sees a link cost change to neighbor V
9 or until A receives update from neighbor V)
10 if (c(A,V) changes by d)
11 for all destinations Y through V do
12 D(A,Y,V) = D(A,Y,V) + d
13 else if (update D(V, Y) received from V)
14 D(A,Y,V) = c(A,V) + D(V, Y);
15 if (there is a new minimum for destination Y)
16 send D(A, Y) to all neighbors
17 forever

Algorithm terminates

Alan Mislove amislove at ccs.neu.edu Northeastern University35

Distance Vector: Count to Infinity Problem

A C

14

50

B
60

“bad
news
travels
slowly”

D C N

A 4 A

C 1 B

Node B

D C N

A 5 B

B 1 B

Node C

D C N

A 6 C

C 1 B

D C N

A 5 B

B 1 B

D C N

A 6 C

C 1 B

D C N

A 7 B

B 1 B

D C N

A 8 C

C 1 B

D C N

A 7 B

B 1 B

Link cost changes here; recall that B also maintains
shortest distance to A through C, which is 6. Thus D(B, A) becomes 6 !

time

7 loop:
8 wait (until A sees a link cost change to neighbor V
9 or until A receives update from neighbor V)
10 if (c(A,V) changes by d)
11 for all destinations Y through V do
12 D(A,Y,V) = D(A,Y,V) + d ;
13 else if (update D(V, Y) received from V)
14 D(A,Y,V) = c(A,V) + D(V, Y);
15 if (there is a new minimum for destination Y)
16 send D(A, Y) to all neighbors
17 forever

…

Alan Mislove amislove at ccs.neu.edu Northeastern University36

Distance Vector: Poisoned Reverse

A C

14

50

B
60 If C routes through B to get to A:

- C tells B its (C’s) distance to A is infinite
(so B won’t route to A via C)

- Will this completely solve count to
infinity problem?

D C N

A 4 A

C 1 B

Node B

D C N

A 5 B

B 1 B

Node C

D C N

A 60 A

C 1 B

D C N

A 5 B

B 1 B

D C N

A 50 A

B 1 B

Link cost changes here; B updates D(B, A) = 60 as
C has advertised D(C, A) = ∞

time

D C N

A 60 A

C 1 B

D C N

A 50 A

B 1 B

D C N

A 51 C

C 1 B

D C N

A 50 A

B 1 B

D C N

A 51 C

C 1 B

Algorithm terminates

Alan Mislove amislove at ccs.neu.edu Northeastern University37

Link State vs. Distance Vector

Per node message complexity
• LS: O(n*d) messages; n –

number of nodes; d – degree
of node

• DV: O(d) messages; where d
is node’s degree

Complexity
• LS: O(n2) with O(n*d)

messages (with naïve priority
queue)

• DV: convergence time varies
– may be routing loops
– count-to-infinity problem

Robustness: what happens if
router malfunctions?

• LS:
– node can advertise incorrect

link cost
– each node computes only its

own table
• DV:

– node can advertise incorrect
path cost

– each node’s table used by
others; error propagate
through network

