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What is Routing?

• To ensure information is delivered to the correct 
destination at a reasonable level of performance

• Forwarding
– Given a forwarding table, move information from input ports 

to output ports of a router
– Local mechanical operations

• Routing
– Acquires information in the forwarding tables
– Requires knowledge of the network
– Requires distributed coordination of routers
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Viewing Routing as a Policy
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Viewing Routing as a Policy

• Given multiple alternative paths, how to route 
information to destinations should be viewed as a 
policy decision
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Viewing Routing as a Policy

• Given multiple alternative paths, how to route 
information to destinations should be viewed as a 
policy decision

• What are some possible policies?
– Shortest path (RIP, OSPF)
– Most load-balanced
– QoS routing (satisfies app requirements)
– etc
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Internet Routing

• Internet topology roughly organized as a two level 
hierarchy

• First lower level – autonomous systems (AS’s)
– AS: region of network under a single administrative domain

• Each AS runs an intra-domain routing protocol
– Distance Vector, e.g., Routing Information Protocol (RIP)
– Link State, e.g., Open Shortest Path First (OSPF)
– Possibly others

• Second level – inter-connected AS’s
• Between AS’s runs inter-domain routing protocols, 

e.g., Border Gateway Routing (BGP)
– De facto standard today, BGP-4 
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Example

AS-1

AS-2

AS-3

Interior router

BGP router
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Why Need the Concept of AS or Domain?
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• Routing algorithms are not efficient enough to deal 
with the size of the entire Internet
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Why Need the Concept of AS or Domain?

• Routing algorithms are not efficient enough to deal 
with the size of the entire Internet

• Different organizations may want different internal 
routing policies

• Allow organizations to hide their internal network 
configurations from outside

• Allow organizations to choose how to route across 
multiple organizations (BGP)

• Basically, easier to compute routes, more flexibility, 
more autonomy/independence
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Outline

• Two intra-domain routing protocols

• Both try to achieve the “shortest path” routing policy
• Quite commonly used

• OSPF: Based on Link-State routing algorithm

• RIP: Based on Distance-Vector routing algorithm

• In Project 2, you will get to implement and play 
around with these algorithms!
– Distributed coordination in action
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Intra-domain Routing Protocols

• Based on unreliable datagram delivery
• Distance vector

– Routing Information Protocol (RIP), based on Bellman-Ford 
algorithm

– Each neighbor periodically exchange reachability information 
to its neighbors

– Minimal communication overhead, but it takes long to 
converge, i.e., in proportion to the maximum path length

• Link state
– Open Shortest Path First (OSPF), based on Dijkstra’s 

algorithm
– Each router periodically floods immediate reachability 

information to other routers
– Fast convergence, but high communication and computation 

overhead
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Routing on a Graph

• Goal: determine a “good” path through the 
network from source to destination

– Good often means the shortest path

• Network modeled as a graph
– Routers  nodes
– Link edges

• Edge cost: delay, congestion level,…
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Link State Routing (OSPF): Flooding

• Each node knows its connectivity and cost to a direct 
neighbor

• Every node tells every other node this local 
connectivity/cost information
– Via flooding

• In the end, every node learns the complete topology 
of the network

• E.g. A floods message
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A connected to B cost 2
A connected to D cost 1
A connected to C cost 5
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Flooding Details
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Flooding Details
• Each node periodically generates Link State Packet (LSP) 

contains
– ID of node created LSP
– List of direct neighbors and costs

– Sequence number (64 bit, assume to never wrap around)

– Time to live
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Flooding Details
• Each node periodically generates Link State Packet (LSP) 

contains
– ID of node created LSP
– List of direct neighbors and costs

– Sequence number (64 bit, assume to never wrap around)

– Time to live

• Flood is reliable
– Use acknowledgement and retransmission

• Sequence number used to identify *newer* LSP
– An older LSP is discarded

– What if a router crash and sequence number reset to 0?

• Receiving node flood LSP to all its neighbors except the 
neighbor where the LSP came from

• LSP is also generated when a link’s state changes (failed or 
restored)
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Link State Flooding Example
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Link State Flooding Example
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A Link State Routing Algorithm 

Dijkstra’s algorithm
• Net topology, link costs known 

to all nodes
– Accomplished via “link state 

flooding” 
– All nodes have same info

• Compute least cost paths from 
one node (‘source”) to all other 
nodes

• Repeat for all sources

Notations
• c(i,j): link cost from node i to 

j; cost infinite if not direct 
neighbors

• D(v): current value of cost of 
path from source to node v

• p(v): predecessor node 
along path from source to v, 
that is next to v

• S: set of nodes whose least 
cost path definitively known
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Dijsktra’s Algorithm (A “Greedy” Algorithm)

1  Initialization: 
2    S = {A};
3    for all nodes v 
4      if v adjacent to A 
5        then D(v) = c(A,v); 
6        else D(v) =     ;
7 
8   Loop 
9      find w not in S such that D(w) is a minimum; 
10    add w to S; 
11    update D(v) for all v adjacent to w and not in S: 
12       D(v) = min( D(v), D(w) + c(w,v) );
            // new cost to v is either old cost to v or known 
            // shortest path cost to w plus cost from w to v 
13  until all nodes in S; 
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Example: Dijkstra’s Algorithm

Step
0
1
2
3
4
5

start S
A

D(B),p(B)
2,A

D(C),p(C)
5,A

D(D),p(D)
1,A

D(E),p(E) D(F),p(F)
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2    S = {A};
3    for all nodes v 
4      if v adjacent to A 
5        then D(v) = c(A,v); 
6        else D(v) =     ;
…
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Example: Dijkstra’s Algorithm

Step
0
1
2
3
4
5

start S
A

AD

D(B),p(B)
2,A

D(C),p(C)
5,A
4,D

D(D),p(D)
1,A

D(E),p(E)

2,D

D(F),p(F)
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…
8   Loop 
9      find w not in S s.t. D(w) is a minimum; 
10    add w to S; 
11 update D(v) for all v adjacent 
        to w and not in S: 
12       D(v) = min( D(v), D(w) + c(w,v) );
13    until all nodes in S; 
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Example: Dijkstra’s Algorithm

Step
0
1
2
3
4
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start S
A

AD
ADE

D(B),p(B)
2,A

D(C),p(C)
5,A
4,D
3,E

D(D),p(D)
1,A
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D(F),p(F)

4,E
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Example: Dijkstra’s Algorithm

Step
0
1
2
3
4
5

start S
A

AD
ADE

ADEB
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4,D
3,E

D(D),p(D)
1,A
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Example: Dijkstra’s Algorithm

Step
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AD
ADE

ADEB
ADEBC

D(B),p(B)
2,A

D(C),p(C)
5,A
4,D
3,E

D(D),p(D)
1,A
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13    until all nodes in S; 



Alan Mislove  amislove at ccs.neu.edu            Northeastern University23

Example: Dijkstra’s Algorithm

Step
0
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5

start S
A

AD
ADE

ADEB
ADEBC

ADEBCF

D(B),p(B)
2,A

D(C),p(C)
5,A
4,D
3,E

D(D),p(D)
1,A

D(E),p(E)

2,D

D(F),p(F)

4,E
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8   Loop 
9      find w not in S s.t. D(w) is a minimum; 
10    add w to S; 
11 update D(v) for all v adjacent 
        to w and not in S: 
12       D(v) = min( D(v), D(w) + c(w,v) );
13    until all nodes in S; 
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Distance Vector Routing (RIP)

• What is a distance vector?
– Current best known cost to get to a destination

• Idea: Exchange distance vectors among neighbors to 
learn about lowest cost paths

Dest. Cos
tA 7

B 1

D 2

E 5

F 1

G 3

Node C

Note no vector entry for C itself

At the beginning, distance vector only 
has information about directly 
attached neighbors, all other dests 
have cost ∞

Eventually the vector is filled
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Distance Vector Routing Algorithm

• Iterative: continues until no nodes exchange info

• Asynchronous: nodes need not exchange info/iterate in lock 
steps

• Distributed: each node communicates only with directly-
attached neighbors

• Each router maintains
– Row for each possible destination
– Column for each directly-attached neighbor to node
– Entry in row Y and column Z of node X  best known distance from X 

to Y, via Z as next hop

• Note: for simplicity in this lecture examples we show only the 
shortest distances to each destination
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Distance Vector Routing

• Each local iteration caused by: 
– Local link cost change 
– Message from neighbor: its least cost 

path change from neighbor to 
destination

• Each node notifies neighbors only 
when its least cost path to any 
destination changes

– Neighbors then notify their neighbors if 
necessary

wait for (change in local link 
cost or msg from neighbor)

recompute distance table

if least cost path to any dest 
has changed, notify 
neighbors 

Each node:
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Distance Vector Algorithm (cont’d)

1 Initialization: 
2    for all nodes V  do
3      if V adjacent to A 
4        D(A, V, V) = c(A,V);     /* Distance from A to V via neighbor V */
5      else 
•           D(A, V, *) = ∞; 
    loop: 
8    wait (until A sees a link cost change to neighbor V 
9            or until A receives update from neighbor V) 
10   if (c(A,V) changes by d) 
11      for all destinations Y through V do   
12         D(A,Y, V) =  D(A,Y,V) + d 
13   else if (update D(V, Y) received from V) 
         /* shortest path from V to some Y has changed  */ 
14     D(A,Y,V) = c(A,V) + D(V, Y);
15   if (there is a new minimum for destination Y)
16     send D(A, Y) to all neighbors  /* D(A,Y) denotes the min D(A,Y,*) */
17  forever 
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Example: Distance Vector Algorithm

A C
12

7

B D3

1

Dest. Cost NextHop

B 2 B

C 7 C

D ∞ -

Node A

Dest. Cost NextHo
pA 2 A

C 1 C

D 3 D

Node B

Dest. Cost NextHo
pA 7 A

B 1 B

D 1 D

Node C

Dest. Cost NextHo
pA ∞ -

B 3 B

C 1 C

Node D
1 Initialization: 
2    for all nodes V  do
3      if V adjacent to A 
4        D(A, V, V) = c(A,V); 
5 else 
6    D(A, V, *) = ∞; 
…
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Dest. Cost NextHop

B 2 B

C 7 C

D 8 C

Node A

Example: 1st Iteration (C  A)

A C
12

7

B D3

1 Dest. Cost NextHo
pA 2 A

C 1 C

D 3 D

Node B

Dest. Cost NextHo
pA 7 A

B 1 B

D 1 D

Node C

Dest. Cost NextHo
pA ∞ -

B 3 B

C 1 C

Node D

D(A,D,C) = c(A, C) + D(C,D) = 7 + 1 = 8

(D(C,A), D(C,B), D(C,D))

7 loop:
     …
13   else if (update D(V, Y) received from V) 
14     D(A,Y,V) = c(A,V) + D(V, Y);
15   if (there is a new min. for destination Y)
16     send D(A, Y) to all neighbors 
17  forever 
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Dest. Cost NextHop

B 2 B

C 3 B

D 5 B

Node A

Example: 1st Iteration (BA, CA)

A C
12

7

B D3

1

Dest. Cost NextHo
pA 2 A

C 1 C

D 3 D

Node B

Dest. Cost NextHo
pA 7 A

B 1 B

D 1 D

Node C

Dest. Cost NextHo
pA ∞ -

B 3 B

C 1 C

Node D

D(A,D,B) = c(A,B) + D(B,D) = 2 + 3 = 5 D(A,C,B) = c(A,B) + D(B,C) = 2 + 1 = 3 

7    loop:
     …
13   else if (update D(V, Y) received from V) 
14     D(A,Y,V) = c(A,V) + D(V, Y)
15   if (there is a new min. for destination Y)
16     send D(A, Y) to all neighbors 
17  forever 
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Example: End of 1st Iteration

A C
12

7

B D3

1

Dest. Cost NextHop

B 2 B

C 3 B

D 5 B

Node A

Dest. Cost NextHo
pA 2 A

C 1 C

D 2 C

Node B

Dest. Cost NextHo
pA 3 B

B 1 B

D 1 D

Node C

Dest. Cost NextHo
pA 5 B

B 2 C

C 1 C

Node D

7    loop:
     …
13   else if (update D(V, Y) received from V) 
14     D(A,Y,V) = c(A,V) + D(V, Y);
15   if (there is a new min. for destination Y)
16     send D(A, Y) to all neighbors 
17  forever 
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Example: End of 2nd Iteration

A C
12

7

B D3

1
Dest. Cost NextHop

B 2 B

C 3 B

D 4 B

Node A

Dest. Cost NextHo
pA 2 A

C 1 C

D 2 C

Node B

Dest. Cost NextHo
pA 3 B

B 1 B

D 1 D

Node C

Dest. Cost NextHo
pA 4 C

B 2 C

C 1 C

Node D

7    loop:
     …
13   else if (update D(V, Y) received from V) 
14     D(A,Y,V) = c(A,V) + D(V, Y);
15   if (there is a new min. for destination Y)
16     send D(A, Y) to all neighbors 
17  forever 
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Example: End of 3rd Iteration

A C
12

7

B D3

1

Dest. Cost NextHop

B 2 B

C 3 B

D 4 B

Node A

Dest. Cost NextHo
pA 2 A

C 1 C

D 2 C

Node B

Dest. Cost NextHo
pA 3 B

B 1 B

D 1 D

Node C

Dest. Cost NextHo
pA 4 C

B 2 C

C 1 C

Node D

Nothing changes  algorithm terminates

7    loop:
     …
13   else if (update D(V, Y) received from V) 
14     D(A,Y,V) = c(A,V) + D(V, Y);
15   if (there is a new min. for destination Y)
16     send D(A, Y) to all neighbors 
17  forever 
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Distance Vector: Link Cost Changes

A C

14

50

B
1

“good
news 
travels
fast”

D C N

A 4 A

C 1 B

Node B

D C N

A 5 B

B 1 B

Node C

D C N

A 1 A

C 1 B

D C N

A 5 B

B 1 B

D C N

A 1 A

C 1 B

D C N

A 2 B

B 1 B

D C N

A 1 A

C 1 B

D C N

A 2 B

B 1 B

Link cost changes here
time

7   loop:
8    wait (until A sees a link cost change to neighbor V 
9            or until A receives update from neighbor V) 
10   if (c(A,V) changes by d) 
11      for all destinations Y through V do   
12         D(A,Y,V) =  D(A,Y,V) + d 
13   else if (update D(V, Y) received from V) 
14     D(A,Y,V) = c(A,V) + D(V, Y);
15   if (there is a new minimum for destination Y)
16     send D(A, Y) to all neighbors 
17  forever 

Algorithm terminates
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Distance Vector: Count to Infinity Problem 

A C

14

50

B
60

“bad
news 
travels
slowly”

D C N

A 4 A

C 1 B

Node B

D C N

A 5 B

B 1 B

Node C

D C N

A 6 C

C 1 B

D C N

A 5 B

B 1 B

D C N

A 6 C

C 1 B

D C N

A 7 B

B 1 B

D C N

A 8 C

C 1 B

D C N

A 7 B

B 1 B

Link cost changes here; recall that B also maintains 
shortest distance to A through C, which is 6. Thus D(B, A) becomes 6 !

time

7   loop:
8    wait (until A sees a link cost change to neighbor V 
9            or until A receives update from neighbor V) 
10   if (c(A,V) changes by d) 
11      for all destinations Y through V do   
12         D(A,Y,V) =  D(A,Y,V) + d ;
13   else if (update D(V, Y) received from V) 
14     D(A,Y,V) = c(A,V) + D(V, Y);
15   if (there is a new minimum for destination Y)
16     send D(A, Y) to all neighbors 
17  forever 

…
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Distance Vector: Poisoned Reverse

A C

14

50

B
60 If C routes through B to get to A:

- C tells B its (C’s) distance to A is infinite 
(so B won’t route to A via C)

- Will this completely solve count to 
infinity problem? 

D C N

A 4 A

C 1 B

Node B

D C N

A 5 B

B 1 B

Node C

D C N

A 60 A

C 1 B

D C N

A 5 B

B 1 B

D C N

A 50 A

B 1 B

Link cost changes here; B updates D(B, A) = 60 as 
C has advertised D(C, A) = ∞

time

D C N

A 60 A

C 1 B

D C N

A 50 A

B 1 B

D C N

A 51 C

C 1 B

D C N

A 50 A

B 1 B

D C N

A 51 C

C 1 B

Algorithm terminates
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Link State vs. Distance Vector

Per node message complexity
• LS: O(n*d) messages; n – 

number of nodes; d – degree 
of node

• DV: O(d) messages; where d 
is node’s degree

Complexity
• LS: O(n2) with O(n*d) 

messages (with naïve priority 
queue)

• DV: convergence time varies
– may be routing loops
– count-to-infinity problem

Robustness: what happens if 
router malfunctions?

• LS: 
– node can advertise incorrect 

link cost
– each node computes only its 

own table
• DV:

– node can advertise incorrect 
path cost

– each node’s table used by 
others; error propagate 
through network


