
Fundamentals of Computer Networking Project : Selfish BitTorrent Client
CS/CS Spring March

This project is due at :pm on April , .

 Description

You will modify the trading policy of a BitTorrent client in order to improve the download per-
formance. Unlike previous projects, the majority of your grade in this project will come from
performance. Part of your grade will come from how your code performs when run against the
solutions of your the course staff, and part will come from how your code performs against your
peers.

In this project, you will have to do background reading on BitTorrent. Since we are providing
you with a working implementation, you are expected to research the BitTorrent trading scheme,
improvements to it, and possible attacks. Simply turning in the code that we provide (or a slightly
modified implementation) will result in a very low grade. You should write selfish code, the goal of
which is to improve your download speed.

 Requirements

We will provide you with the code you will need to make the project functional. Thus, all you
must do is increase the performance of your client. In particular, your code must

• Outperform the client provided by the TAs, in terms of download speed.

• Outperform the client provided by the TAs, in terms of the upload to download ratio.

• Outperform the the solutions of your peers.

As before, you should not assume that other peers will follow the protocol. Since these are the
solutions of your peers, they may be malicious, they may upload bad data, they may lie to you,
and the certainly will be greedy and selfish. Your solution should handle these errors gracefully,
recover, download the file correctly, and not crash.

 Your program

For this project, you will submit a complete BitTorrent program. It is recommended that you
use the starter code provided by the TAs; however, you may implement a BitTorrent client from
scratch if you so wish (and are crazy). If you do so, you are welcome to use a language of your
choice. However, all of the code must be your own; you are not allowed to use code from other
BitTorrent implementations.

The command line syntax for your sending is given below. The program takes either a filename
or a url pointing to a tracker. The syntax for launching your sending program is therefore:

Usage: java -jar snark.jar [--debug [level]] [--port <port>] [--show-peers] [--share

<ip> <file>] [<url>]

with the following details:

--debug (Optional) Shows some extra info and stacktraces. Argument level is how much debug
details to show (defaults to SEVERE, other options INFO and ALL).

--port (Optional) The port to listen on for incoming connections (if not given defaults to first
free port between -).

--show-peers (Optional) If enabled, periodically prints peer information.

--share (Optional) Start torrent tracker with the provided file..

file (Required if --share) The file to share.

url (Required if no --share) URL pointing to .torrent metainfo file to download/share..

Luckily, the code we provide to you already does all of the argument parsing and supports these
options. You should develop your BitTorrent program on the CCIS Linux machines, as these
have the necessary compiler and library support. You are welcome to use your own Linux/OS
X/Windows machines, but you are responsible for getting your code working, and your code must
work when graded on the CCIS Linux machines. If you do not have a CCIS account, you should
get one ASAP in order to complete the project.

 Testing your code

In order for you to test your code, the code we provide can be used to set up a private torrent for
you to test with. In order to start a torrent, you will execute

java -jar snark.jar --share <ip> <filename>

where <ip> is the IP address that you want snark to bind to, and <filename> is the name of the
file you wish to share via the torrent. In the output, you will see the line

Torrent available on <url>

Leave this process running (as it is serving as the seeder). In order to connect clients to this torrent,
you simply run

java -jar snark.jar <url>

Since BitTorrent is a scalable protocol, you can run any number of clients. When testing, it’s easy
to leave old snark processes running in the background. To clean these up, you can run killall

-KILL java (note that this will kill any other Java programs you have running as well).

 Undergraduate student version

The undergraduate version of this project can make the following simplifying assumptions: You
may assume that other clients will not say they have pieces that they don’t, and you may assume
that other clients will not upload junk data to you (i.e., all file hashes will match).

Students enrolled in the graduate version of this project may not make either of these assumptions.

 Shark Tank

In order for you to test your code against others’, we will be providing a simulator that will pe-
riodically run your code against the code of your peers. Called the Shark Tank, it will allow you
to try out new approaches to maximize your performance, to test how well your code is working,
and to make sure that your code works in the test harness that we will use to grade. More details
on how to submit to the Shark Tank will be provided as the course progresses.

 Grading

Your grade in this project will be composed by the following components:

• % Implementation of techniques to maximize download capacity while minimizing up-
load required. In other words, what techniques did you employ in order to get better per-
formance?

• % Performance in the Shark Tank of best version submitted on April , at :pm

• % Performance of final version in the Shark Tank

• % Documentation and coding style

 Advice

A few pointers that you may find useful while working on this project:

• Start by familiarizing yourself with the operation of the BitTorrent protocol. This will be
covered in class, but you are responsible for learning this yourself as well. Then familiarize
yourself with the code provided. You will need to modify this code, so you should take some
time to familiarize yourself with it.

• Check the Blackboard forum for question and clarifications. You should post project-specific
questions there first, before emailing the course staff.

• Do not, under any circumstances, test your code by downloading copyrighted or illegal con-
tent. Any such behavior is likely to result in both legal and academic penalities. Instead,

only join torrents that you create yourself, and share junk data (e.g., created via head -

c /dev/urandom).

• If you use the snark BitTorrent implementation, note that the code is not configured to exit as
soon as the download is complete. Given that you are judged by how quickly you download
the file and exit, you probably want to do so. The easiest way to do this is to modify line
of PeerCoordinator.java to add a

if (completed()) {

client.interrupt();

+ System.exit();
}

• Finally, get started early and come to the TA lab hours - these are held from :pm - :pm
on Wednesdays in the lab at West Village H. You are welcome to come to the lab and
work, and ask the TA and instructor any questions you may have.

 Submitting your project

You should submit your project by running the /net/course/cs/bin/turnin script. Specif-
ically, you should create a project directory, and place all of your code and README files in it.
Then, run

/net/course/cs/bin/turnin <group> project <dir>

Where <group> is the usernames of your group concatenated together with dashes (e.g., amislove-aghayev,
note NO SPACES), and <dir> is the name of the directory with your submission. If using a com-
piled language (e.g., C, Java, C++), you should include a Makefile or build.xml that will compile
your code. The README should have a brief description and explanation of the approach you use,
a list of properties/features of your design that you think is good, as well as examples of how to
run your code.

BitTorrent resources

There is a large amount of BitTorrent literature out on the Web. A few relevant documents and
papers:

• http://wiki.theory.org/BitTorrentSpecification Documentation of the low-level Bit-
Torrent protocol.

• http://www.bittorrent.org/bittorrentecon.pdfDescription on BitTorrent’s original in-
centive mechanism.

• http://www.dcg.ethz.ch/publications/hotnets.pdf Description of BitThief, a client
which tries to never upload any data.

• http://www.cs.washington.edu/homes/arvind/papers/bittyrant.pdf Paper describing
the BitTyrant client.

• http://www.cs.umd.edu/˜dml/papers/bittorrent_sigcomm.pdf Paper describing the
PropShare client.

