
Lecture 9: UDP/TCP

Revised 2/9/2014

CS 3700 
Networks and Distributed Systems

Transport Layer
2

Function:
! Demultiplexing of data streams
Optional functions:
! Creating long lived connections
! Reliable, in-order packet delivery
! Error detection
! Flow and congestion control
Key challenges:
! Detecting and responding to congestion
! Balancing fairness against high utilization

Application

Presentation

Session

Transport

Network

Data Link

Physical

❑ UDP
❑ TCP

Outline3

The Case for Multiplexing
4

Datagram network
! No circuits
! No connections

Network

Data Link

Physical

The Case for Multiplexing
4

Datagram network
! No circuits
! No connections
Clients run many applications at the
same time
! Who to deliver packets to?

Packet

Network

Data Link

Physical

The Case for Multiplexing
4

Datagram network
! No circuits
! No connections
Clients run many applications at the
same time
! Who to deliver packets to?
IP header “protocol” field
! 8 bits = 256 concurrent streams

Packet

Network

Data Link

Physical

The Case for Multiplexing
4

Datagram network
! No circuits
! No connections
Clients run many applications at the
same time
! Who to deliver packets to?
IP header “protocol” field
! 8 bits = 256 concurrent streams
Insert Transport Layer to handle
demultiplexing

Packet

Network

Data Link

Physical

Transport

Demultiplexing Traffic
5

Application

Host 1 Host 2 Host 3

Demultiplexing Traffic
5

Transport

Application

P1 P2 P3 P4 P6 P7P5

Host 1 Host 2 Host 3
Unique port for
each application

Demultiplexing Traffic
5

Network

Transport

Application

P1 P2 P3 P4 P6 P7P5

Host 1 Host 2 Host 3

Applications share
the same network

Demultiplexing Traffic
5

Network

Transport

Application

P1 P2 P3 P4 P6 P7P5

Host 1 Host 2 Host 3

Server applications
communicate with multiple

clients

Demultiplexing Traffic
5

Endpoints identified by <src_ip, src_port, dest_ip, dest_port>

Network

Transport

Application

P1 P2 P3 P4 P6 P7P5

Host 1 Host 2 Host 3

Layering, Revisited
6

Application

Transport

Network

Data Link

Physical

Host 1 Router Host 2

Physical

Lowest level end-to-end protocol (in theory)
! Transport header only read by source and destination
! Routers view transport header as payload

Application

Transport

Network

Data Link

Physical

Network

Data Link

Layering, Revisited
6

Application

Transport

Network

Data Link

Physical

Host 1 Router Host 2

Physical

Lowest level end-to-end protocol (in theory)
! Transport header only read by source and destination
! Routers view transport header as payload

Application

Transport

Network

Data Link

Physical

Network

Data Link

Layers communicate peer-
to-peer

Layering, Revisited
6

Application

Transport

Network

Data Link

Physical

Host 1 Router Host 2

Physical

Lowest level end-to-end protocol (in theory)
! Transport header only read by source and destination
! Routers view transport header as payload

Application

Transport

Network

Data Link

Physical

Network

Data Link

User Datagram Protocol (UDP)
7

Simple, connectionless datagram
! C sockets: SOCK_DGRAM
Port numbers enable demultiplexing
! 16 bits = 65535 possible ports
! Port 0 is invalid
Checksum for error detection
! Detects (some) corrupt packets
! Does not detect dropped, duplicated, or reordered packets

Destination Port
0 16 31

Payload Length
Source Port

Checksum

Uses for UDP
8

Invented after TCP
! Why?

Uses for UDP
8

Invented after TCP
! Why?
Not all applications can tolerate TCP

Uses for UDP
8

Invented after TCP
! Why?
Not all applications can tolerate TCP
Custom protocols can be built on top of UDP
! Reliability? Strict ordering?
! Flow control? Congestion control?
Examples
! RTMP, real-time media streaming (e.g. voice, video)
! Facebook datacenter protocol

❑ UDP
❑ TCP

Outline9

Options

Transmission Control Protocol
10

Reliable, in-order, bi-directional byte streams
! Port numbers for demultiplexing
! Virtual circuits (connections)
! Flow control
! Congestion control, approximate fairness

Destination Port
0 16 31

Sequence Number
Source Port

Acknowledgement Number
Advertised Window

Urgent Pointer
Flags

Checksum

4

HLen

Options

Transmission Control Protocol
10

Reliable, in-order, bi-directional byte streams
! Port numbers for demultiplexing
! Virtual circuits (connections)
! Flow control
! Congestion control, approximate fairness

Destination Port
0 16 31

Sequence Number
Source Port

Acknowledgement Number
Advertised Window

Urgent Pointer
Flags

Checksum

Why these
features?

4

HLen

Connection Setup
11

Why do we need connection setup?

Connection Setup
11

Why do we need connection setup?
! To establish state on both hosts
! Most important state: sequence numbers
■ Count the number of bytes that have been sent
■ Initial value chosen at random
■ Why?

Connection Setup
11

Why do we need connection setup?
! To establish state on both hosts
! Most important state: sequence numbers
■ Count the number of bytes that have been sent
■ Initial value chosen at random
■ Why?

Important TCP flags (1 bit each)
! SYN – synchronization, used for connection setup
! ACK – acknowledge received data
! FIN – finish, used to tear down connection

Three Way Handshake
12

Each side:
! Notifies the other of starting sequence number
! ACKs the other side’s starting sequence number

Client Server

Three Way Handshake
12

Each side:
! Notifies the other of starting sequence number
! ACKs the other side’s starting sequence number

Client Server
SYN <SeqC, 0>

Three Way Handshake
12

Each side:
! Notifies the other of starting sequence number
! ACKs the other side’s starting sequence number

Client Server
SYN <SeqC, 0>

SYN/ACK <SeqS, SeqC+1>

Three Way Handshake
12

Each side:
! Notifies the other of starting sequence number
! ACKs the other side’s starting sequence number

Client Server
SYN <SeqC, 0>

SYN/ACK <SeqS, SeqC+1>

ACK <SeqC+1, SeqS+1>

Three Way Handshake
12

Each side:
! Notifies the other of starting sequence number
! ACKs the other side’s starting sequence number

Client Server
SYN <SeqC, 0>

SYN/ACK <SeqS, SeqC+1>

ACK <SeqC+1, SeqS+1>

Why
Sequence # +1?

Connection Setup Issues
13

Connection confusion
! How to disambiguate connections from the same host?
! Random sequence numbers

Connection Setup Issues
13

Connection confusion
! How to disambiguate connections from the same host?
! Random sequence numbers
Source spoofing
! Kevin Mitnick
! Need good random number generators!

Connection Setup Issues
13

Connection confusion
! How to disambiguate connections from the same host?
! Random sequence numbers
Source spoofing
! Kevin Mitnick
! Need good random number generators!
Connection state management
! Each SYN allocates state on the server
! SYN flood = denial of service attack
! Solution: SYN cookies

Connection Tear Down
14

Either side can initiate
tear down

Client Server

Connection Tear Down
14

Either side can initiate
tear down

Client Server
FIN <SeqA, *>

ACK <*, SeqA+1>

Connection Tear Down
14

Either side can initiate
tear down
Other side may continue
sending data
! Half open connection
! shutdown()

Client Server
FIN <SeqA, *>

ACK <*, SeqA+1>

ACK

Data

Connection Tear Down
14

Either side can initiate
tear down
Other side may continue
sending data
! Half open connection
! shutdown()
Acknowledge the last FIN
! Sequence number + 1

Client Server
FIN <SeqA, *>

ACK <*, SeqA+1>

ACK

Data

FIN <SeqB, *>

ACK <*, SeqB+1>

Sequence Number Space
15

TCP uses a byte stream abstraction
! Each byte in each stream is numbered
! 32-bit value, wraps around
! Initial, random values selected during setup

Sequence Number Space
15

TCP uses a byte stream abstraction
! Each byte in each stream is numbered
! 32-bit value, wraps around
! Initial, random values selected during setup
Byte stream broken down into segments (packets)
! Size limited by the Maximum Segment Size (MSS)
! Set to limit fragmentation

Sequence Number Space
15

TCP uses a byte stream abstraction
! Each byte in each stream is numbered
! 32-bit value, wraps around
! Initial, random values selected during setup
Byte stream broken down into segments (packets)
! Size limited by the Maximum Segment Size (MSS)
! Set to limit fragmentation
Each segment has a sequence number

Segment 8 Segment 9 Segment 10

13450 14950 16050 17550

Bidirectional Communication
16

Each side of the connection can send and receive
! Different sequence numbers for each direction

Client ServerSeq. Ack. Seq. Ack.

Bidirectional Communication
16

Each side of the connection can send and receive
! Different sequence numbers for each direction

Client ServerSeq. Ack. Seq. Ack.
1 23 23 1

Bidirectional Communication
16

Each side of the connection can send and receive
! Different sequence numbers for each direction

Client Server
Data (1460 bytes)

Seq. Ack. Seq. Ack.
1 23

23 1461

23 1

Bidirectional Communication
16

Each side of the connection can send and receive
! Different sequence numbers for each direction

Client Server
Data (1460 bytes)

Data/ACK (730 bytes)

Seq. Ack. Seq. Ack.
1 23

23 1461

1461 753

Data and ACK in the
same packet

23 1

Bidirectional Communication
16

Each side of the connection can send and receive
! Different sequence numbers for each direction

Client Server
Data (1460 bytes)

Data/ACK (730 bytes)

Data/ACK (1460 bytes)

Seq. Ack. Seq. Ack.
1 23

23 1461

1461 753

753 2921

23 1

Flow Control
17

Problem: how many packets should a sender transmit?
! Too many packets may overwhelm the receiver
! Size of the receivers buffers may change over time

Flow Control
17

Problem: how many packets should a sender transmit?
! Too many packets may overwhelm the receiver
! Size of the receivers buffers may change over time
Solution: sliding window
! Receiver tells the sender how big their buffer is
! Called the advertised window
! For window size n, sender may transmit n bytes without

receiving an ACK
! After each ACK, the window slides forward

Flow Control
17

Problem: how many packets should a sender transmit?
! Too many packets may overwhelm the receiver
! Size of the receivers buffers may change over time
Solution: sliding window
! Receiver tells the sender how big their buffer is
! Called the advertised window
! For window size n, sender may transmit n bytes without

receiving an ACK
! After each ACK, the window slides forward
Window may go to zero!

Flow Control: Sender Side
18

Sequence Number

Src. Port

Acknowledgement Number

Window
Urgent Pointer

Flags

Checksum

HL

Packet Sent
Dest. PortSrc. Port

Acknowledgement Number
Window

Urgent Pointer

Flags

Checksum

HL

Packet Received
Dest. Port

Sequence Number

Flow Control: Sender Side
18

Sequence Number

Src. Port

Acknowledgement Number

Window
Urgent Pointer

Flags

Checksum

HL

Packet Sent
Dest. PortSrc. Port

Acknowledgement Number
Window

Urgent Pointer

Flags

Checksum

HL

Packet Received
Dest. Port

Sequence Number

App Write

Flow Control: Sender Side
18

Sequence Number

Src. Port

Acknowledgement Number

Window
Urgent Pointer

Flags

Checksum

HL

Packet Sent
Dest. PortSrc. Port

Acknowledgement Number
Window

Urgent Pointer

Flags

Checksum

HL

Packet Received
Dest. Port

Sequence Number

ACKed

App Write

Flow Control: Sender Side
18

Sequence Number

Src. Port

Acknowledgement Number

Window
Urgent Pointer

Flags

Checksum

HL

Packet Sent
Dest. PortSrc. Port

Acknowledgement Number
Window

Urgent Pointer

Flags

Checksum

HL

Packet Received
Dest. Port

Sequence Number

ACKed Sent

App Write

Flow Control: Sender Side
18

Sequence Number

Src. Port

Acknowledgement Number

Window
Urgent Pointer

Flags

Checksum

HL

Packet Sent
Dest. PortSrc. Port

Acknowledgement Number
Window

Urgent Pointer

Flags

Checksum

HL

Packet Received
Dest. Port

Sequence Number

ACKed Sent

App Write
Must be buffered

until ACKed

Flow Control: Sender Side
18

Sequence Number

Src. Port

Acknowledgement Number

Window
Urgent Pointer

Flags

Checksum

HL

Packet Sent
Dest. PortSrc. Port

Acknowledgement Number
Window

Urgent Pointer

Flags

Checksum

HL

Packet Received
Dest. Port

Sequence Number

ACKed Sent To Be Sent Outside Window

Window

App Write

Sliding Window Example
19

Time Time

Sliding Window Example
19

1
2
3

Time Time

Sliding Window Example
19

1
2
3

Time Time

Sliding Window Example
19

1
2
3

4
5
6

Time Time

Sliding Window Example
19

1
2
3

4
5
6

7

Time Time

Sliding Window Example
19

1
2
3

4
5
6

7

Time Time

Sliding Window Example
19

1
2
3

4
5
6

7

5
6
7

Time Time

Sliding Window Example
19

1
2
3

4
5
6

7

5
6
7

Time Time

Sliding Window Example
19

1
2
3

4
5
6

7

5
6
7

Time Time

TCP is ACK Clocked
• Short RTT ! quick ACK ! window slides quickly
• Long RTT ! slow ACK ! window slides slowly

What Should the Receiver ACK?

1. ACK every packet

20

20

What Should the Receiver ACK?

1. ACK every packet
2. Use cumulative ACK, where an ACK for sequence n

implies ACKS for all k < n
3. Use negative ACKs (NACKs), indicating which packet did

not arrive

20

20

What Should the Receiver ACK?

1. ACK every packet
2. Use cumulative ACK, where an ACK for sequence n

implies ACKS for all k < n
3. Use negative ACKs (NACKs), indicating which packet did

not arrive
4. Use selective ACKs (SACKs), indicating those that did

arrive, even if not in order
! SACK is an actual TCP extension

20

20

What Should the Receiver ACK?

1. ACK every packet
2. Use cumulative ACK, where an ACK for sequence n

implies ACKS for all k < n
3. Use negative ACKs (NACKs), indicating which packet did

not arrive
4. Use selective ACKs (SACKs), indicating those that did

arrive, even if not in order
! SACK is an actual TCP extension

20

20

What Should the Receiver ACK?

1. ACK every packet
2. Use cumulative ACK, where an ACK for sequence n

implies ACKS for all k < n
3. Use negative ACKs (NACKs), indicating which packet did

not arrive
4. Use selective ACKs (SACKs), indicating those that did

arrive, even if not in order
! SACK is an actual TCP extension

20

20

Sequence Numbers, Revisited
21

32 bits, unsigned
! Why so big?

Sequence Numbers, Revisited
21

32 bits, unsigned
! Why so big?
For the sliding window you need…
! |Sequence # Space| > 2 * |Sending Window Size|
! 232 > 2 * 216

Sequence Numbers, Revisited
21

32 bits, unsigned
! Why so big?
For the sliding window you need…
! |Sequence # Space| > 2 * |Sending Window Size|
! 232 > 2 * 216

Guard against stray packets
! IP packets have a maximum segment lifetime (MSL) of 120

seconds
■ i.e. a packet can linger in the network for 3 minutes

! Sequence number would wrap around at 286Mbps

Sequence Numbers, Revisited
21

32 bits, unsigned
! Why so big?
For the sliding window you need…
! |Sequence # Space| > 2 * |Sending Window Size|
! 232 > 2 * 216

Guard against stray packets
! IP packets have a maximum segment lifetime (MSL) of 120

seconds
■ i.e. a packet can linger in the network for 3 minutes

! Sequence number would wrap around at 286Mbps
■ What about GigE? PAWS algorithm + TCP options

Silly Window Syndrome
22

Problem: what if the window size is very small?

Silly Window Syndrome
22

Problem: what if the window size is very small?
! Multiple, small packets, headers dominate data

Header Data Header Data Header Data Header Data

Silly Window Syndrome
22

Problem: what if the window size is very small?
! Multiple, small packets, headers dominate data

Equivalent problem: sender transmits packets one byte at
a time

1. for (int x = 0; x < strlen(data); ++x)
2. write(socket, data + x, 1);

Header Data Header Data Header Data Header Data

Nagle’s Algorithm
23

1. If the window >= MSS and available data >= MSS:
 Send the data

2. Elif there is unACKed data:
 Enqueue data in a buffer (send after a timeout)

3. Else: send the data

Nagle’s Algorithm
23

1. If the window >= MSS and available data >= MSS:
 Send the data

2. Elif there is unACKed data:
 Enqueue data in a buffer (send after a timeout)

3. Else: send the data Send a non-full packet if
nothing else is happening

Nagle’s Algorithm
23

1. If the window >= MSS and available data >= MSS:
 Send the data

2. Elif there is unACKed data:
 Enqueue data in a buffer (send after a timeout)

3. Else: send the data

Send a full
packet

Send a non-full packet if
nothing else is happening

Nagle’s Algorithm
23

1. If the window >= MSS and available data >= MSS:
 Send the data

2. Elif there is unACKed data:
 Enqueue data in a buffer (send after a timeout)

3. Else: send the data

Problem: Nagle’s Algorithm delays transmissions
! What if you need to send a packet immediately?
1. int flag = 1;
2. setsockopt(sock, IPPROTO_TCP, TCP_NODELAY, (char *)

&flag, sizeof(int));

Send a full
packet

Send a non-full packet if
nothing else is happening

Error Detection
24

Checksum detects (some) packet corruption
! Computed over IP header, TCP header, and data

Error Detection
24

Checksum detects (some) packet corruption
! Computed over IP header, TCP header, and data
Sequence numbers catch sequence problems
! Duplicates are ignored
! Out-of-order packets are reordered or dropped
! Missing sequence numbers indicate lost packets

Error Detection
24

Checksum detects (some) packet corruption
! Computed over IP header, TCP header, and data
Sequence numbers catch sequence problems
! Duplicates are ignored
! Out-of-order packets are reordered or dropped
! Missing sequence numbers indicate lost packets
Lost segments detected by sender
! Use timeout to detect missing ACKs
! Need to estimate RTT to calibrate the timeout
! Sender must keep copies of all data until ACK

Retransmission Time Outs (RTO)
25

Problem: time-out is linked to round trip time

Retransmission Time Outs (RTO)
25

Problem: time-out is linked to round trip time

Initial Send

Retransmission Time Outs (RTO)
25

Problem: time-out is linked to round trip time

Initial Send

ACK

Retry

RT
O

Retransmission Time Outs (RTO)
25

Problem: time-out is linked to round trip time

Initial Send

ACK

Retry

RT
O

Initial Send

ACK

Retransmission Time Outs (RTO)
25

Problem: time-out is linked to round trip time

Initial Send

ACK

Retry

RT
O

Initial Send

ACK
Retry

RT
O

Retransmission Time Outs (RTO)
25

Problem: time-out is linked to round trip time

Initial Send

ACK

Retry

RT
O

Initial Send

ACK
Retry

RT
O

Timeout is
too short

Retransmission Time Outs (RTO)
25

Problem: time-out is linked to round trip time

Initial Send

ACK

Retry

RT
O

Initial Send

ACK
Retry

RT
O

Timeout is
too short

What about if
timeout is too

long?

Round Trip Time Estimation
26

Data

ACKSample

Round Trip Time Estimation
26

Original TCP round-trip estimator
! RTT estimated as a moving average
! new_rtt = α (old_rtt) + (1 – α)(new_sample)
! Recommended α: 0.8-0.9 (0.875 for most TCPs)
RTO = 2 * new_rtt (i.e. TCP is conservative)

Data

ACKSample

RTT Sample Ambiguity
27

Initial Send

ACK

Retry

RT
O

Initial Send

ACK
Retry

RT
O

RTT Sample Ambiguity
27

Initial Send

ACK

Retry

RT
O

Initial Send

ACK
Retry

RT
O

Sa
m

pl
e

RTT Sample Ambiguity
27

Initial Send

ACK

Retry

RT
O

Initial Send

ACK
Retry

RT
O

Sa
m

pl
e Sample?

RTT Sample Ambiguity
27

Karn’s algorithm: ignore samples for retransmitted
segments

Initial Send

ACK

Retry

RT
O

Initial Send

ACK
Retry

RT
O

Sa
m

pl
e Sample?

