CS 3700

Networks and Distributed Systems

Lecture 7: Intra-Domain Routing

I Revised 7/30/13

Network Layer, Control Plane
7

o Function:

Data Plane O Set up routes within a single network
= Key challenges:

Application O Distributing and updating routes
O Convergence time

Presentation

O Avoiding loops
Session

IR e | osvF | sor P

Data Link

Physical

Internet Routing
N

2 Internet organized as a two level hierarchy

2 First level — autonomous systems (AS’s)
O AS — region of network under a single administrative domain

O Examples: Comcast, AT&T, Verizon, Sprint, etc.

Internet Routing
N

2 Internet organized as a two level hierarchy

2 First level — autonomous systems (AS’s)
O AS — region of network under a single administrative domain
O Examples: Comcast, AT&T, Verizon, Sprint, etc.

2 AS’s use infra-domain routing protocols internally

O Distance Vector, e.g., Routing Information Protocol (RIP)
O Link State, e.g., Open Shortest Path First (OSPF)

Internet Routing
N

9 Internet organized as a two level hierarchy

2 First level — autonomous systems (AS’s)
O AS — region of network under a single administrative domain
O Examples: Comcast, AT&T, Verizon, Sprint, etc.

2 AS’s use infra-domain routing protocols internally
O Distance Vector, e.g., Routing Information Protocol (RIP)
O Link State, e.g., Open Shortest Path First (OSPF)

o Connections between AS’s use inter-domain routing protocols
O Border Gateway Routing (BGP)
O De facto standard today, BGP-4

AS Example
e

AS Example

Interior
Routers

Routers

Why Do We Need ASs?

2 Routing algorithms are not efficient enough to execute on
the entire Internet topology

Why Do We Need ASs?

2 Routing algorithms are not efficient enough to execute on
the entire Internet topology

o Different organizations may use different routing policies

Why Do We Need ASs?
N

2 Routing algorithms are not efficient enough to execute on
the entire Internet topology

o Different organizations may use different routing policies

2 Allows organizations to hide their internal network
structure

Why Do We Need ASs?
N

2 Routing algorithms are not efficient enough to execute on
the entire Internet topology

o Different organizations may use different routing policies

2 Allows organizations to hide their internal network
structure

2 Allows organizations to choose how to route across each
other (BGP)

Why Do We Need ASs?
N

2 Routing algorithms are not efficient enough to execute on
the entire Internet topolog

. volicies
e Easier to compute routes

e Greater flexibility

SN * More autonomy /independence each

Routing on a Graph

2 Goal: determine a “good” path through the network from
source to destination

2 What is a good path?
O Usually means the shortest path

O Load balanced
O Lowest $3$9 cost

Routing on a Graph

2 Goal: determine a “good” path through the network from
source to destination

2 What is a good path?
O Usually means the shortest path
O Load balanced
O Lowest $$9$ cost

2 Network modeled as a graph
O Routers =2 nodes
O Link 2 edges

= Edge cost: delay, congestion level, etc.

Routing Problems

0 Assume

O A network with N nodes
O Each node only knows

= |ts immediate neighbors
= The cost to reach each neighbor

7 How does each node learn the
shortest path to every other
node?

Intra-domain Routing Protocols
T

Intra-domain Routing Protocols

2 Distance vector
O Routing Information Protocol (RIP), based on Bellman-Ford

O Routers periodically exchange reachability information with
neighbors

Intra-domain Routing Protocols

2 Distance vector
O Routing Information Protocol (RIP), based on Bellman-Ford
O Routers periodically exchange reachability information with
neighbors
2 Link state

O Open Shortest Path First (OSPF), based on Dijkstra

O Each network periodically floods immediate reachability
information to all other routers

O Per router local computation to determine full routes

Coue

4 Distance Vector Routing
2 RIP

2 Link State Routing

d OSPF
Q 1S-IS

Distance Vector Routing

5 What is a distance vector?
O Current best known cost to reach a destination

2 ldea: exchange vectors among neighbors to learn about
lowest cost paths

Distance Vector Routing

5 What is a distance vector?
O Current best known cost to reach a destination

2 ldea: exchange vectors among neighbors to learn about
lowest cost paths

EIEENNCEE - No entry for C
A 7

2 Initially, only has info for

DV Table B I immediate neighbors

at Node C D 2
£ s B Other destinations cost = 00
F 1 2 Eventually, vector is filled

Distance Vector Routing

5 What is a distance vector?
O Current best known cost to reach a destination

7 ldea: exchange vectors among neighbors to learn about
lowest cost paths

EIEENNCEE - No entry for C
A 7

2 Initially, only has info for

DV Table B I immediate neighbors

at Node C D 2
£ s B Other destinations cost = 00
F 1 2 Eventually, vector is filled

2 Routing Information Protocol (RIP)

Distance Vector Routing Algorithm

1. Wait for change in local link cost or
message from neighbor

2. Recompute distance table

v

3. If least cost path to’ any destination has
changed, notify neighbors

Distance Vector Initialization
T

Node A Node B

-0 CECEIE TS
1 B 2 B A 2 A

2
] C 7 C C | C
7 D - D 3 D

Initialization:
for all neighbors V do Node C Node D

1.

2.

L BA MY CETEDE NG
5. A 7 A A 00

6

else
D(A, V) = =; B 1 B B 3 B

D 1 D

Distance Vector: 15 lteration

3 Node A Node B
B g D JREOest [Cost [Nexi [EDest. |Cost [Next
2 1 : B 2 B A 2 A
C 7 C C 1 C
D 00 D 3 D
7 loop:
12 else if (update D(V, Y) received from V)
13. for all destinations Y do
14. if (destination Y through V)
15. D(A,Y) = D(A,V) + D(V, Y); Node C Node D

16. else
7 o= Dest. | Cost |Next [SIDest. |Cost |Next
min(D(A, Y), A 7 A A 00
D(A, V) + D(V, Y));
18. if (there is a new min. for dest. Y) B 1 B B 3 B

19. send D(A, Y) to all neighbors D] D
20. forever

Distance Vector: 15 lteration

BT
Node A Node B

3
, B D JEEMOest. [Cost |Next [MMDest. |Cost [Next
1 B 2 B A 2 A

1

C 7 C C 1 C
D 00 D 3 D
7. loop:
12. else if (update D(V, Y) received from V)
13. for all destinations Y do
14. if (destination Y through V)
15. D(A,Y) = D(A,V) + D(V, Y); Node C Node D

16. else
7 o= Dest. | Cost |Next [SIDest. |Cost |Next
min(D(A, Y), A 7 A A 00
D(A, V) + D(V, Y));
18. if (there is a new min. for dest. Y) B 1 B B 3 B

19. send D(A, Y) to all neighbors D] D
20. forever

Distance Vector: 15 lteration
N

Node A Node B
H mmm mmm
] C 7 C C 1 C
D 00 D 3 D

7. loop:

12. else if (update D(V, Y) received from V)
13. for all destinations Y do

14. if (destination Y through V)
15. D(A,Y) = it
o e';fA' Y = D(A,D) = min(D(A, D), D(A,C)+D(C,D))

= min(o, 7 +1)=8

18. if (there is a new min. for dest. Y)
19. send D(A, Y) to all neighbors D] D C 1
20. forever

Distance Vector: 15 lteration
N

Node A Node B
H mmm mmm
1
C C C 1 C
D C D 3 D

7. loop:

12. else if (update D(V, Y) received from V)
13. for all destinations Y do

14. if (destination Y through V)
15. D(A,Y) = it
o e';fA' Y = D(A,D) = min(D(A, D), D(A,C)+D(C,D))

= min(o, 7 +1)=8

18. if (there is a new min. for dest. Y)
19. send D(A, Y) to all neighbors D] D C 1
20. forever

Distance Vector: 15 lteration

BT
Node A Node B

3
B gy D Dot [Cost |Next [EEMDest. [Cost [Next
1 : B 2 B A 2 A
C 7 c <€ 1 C
D ﬂ D 3 D

7
7 loop:
12 else if (update D(V, Y) received from V)
13. for all destinations Y do
T Nor) Node G Node D

16. else
7 o= Dest. | Cost |Next [SIDest. |Cost |Next
min(D(A, Y), A 7 A A 00
D(A, V) + D(V, Y));
18. if (there is a new min. for dest. Y) B 1 B B 3 B

19. send D(A, Y) to all neighbors D] D
20. forever

Distance Vector: 15 lteration
N

Ly

3 Node A Node B
B gy D JEEMDest. [Cost [Next [EENDest. [Cost [Next
1 B 2 B A 2 A
7 c <€ 1 C
ﬂ D 3 D

C
D,

loop:

else if (update D(V, Y) recei
for all desti

if (destina D(A,C) — min(D(AIC)I D(AIB)+D(BIC))

D(A,Y) = — . —
o) =min(7,2+1)=3
D(A, Y) =
min(D(A, Y), A 7 A A 00
D(A, V) + D[V, Y));
if (there is a new min. for dest. Y) B I B B 3 B
send D(A, Y) to all neighbors D 1 C
forever

Distance Vector: 15 lteration
N

Ly

3 Node A Node B
B a=2 D JEEMDest. [Cost [Next [MEMDest. [Cost [Next
1 B 2 B 2 A

A
ﬂéc 1 C
D 3 D

C
D,

loop:

else if (update D(V, Y) recei
for all desti

if (destina D(A,C) — min(D(AIC)I D(AIB)+D(BIC))

D(A,Y) = — . —
o) =min(7,2+1)=3
D(A, Y) =
min(D(A, Y), A 7 A A 00
D(A, V) + D[V, Y));
if (there is a new min. for dest. Y) B I B B 3 B
send D(A, Y) to all neighbors D 1 C
forever

Distance Vector: 15 lteration

BT
Node A Node B

loop:

else if (update D(V, Y) received from V
for all destinations Y do
if (destination Y through V)

D(A,D) = min(D(A,D), D(A, B)+D(B »)
= min(8, 2 + 3) =
if (there is a new min. for dest. Y) : :

send D(A, Y) to all neighbors D | D C 1
forever

Distance Vector: 15 lteration

BT
Node A Node B

loop:

else if (update D(V, Y) received from V
for all destinations Y do
if (destination Y through V)

D(A,D) = min(D(A,D), D(A, B)+D(B »)
= min(8, 2 + 3) =
if (there is a new min. for dest. Y) : :

send D(A, Y) to all neighbors D | D C 1
forever

Distance Vector: 15 lteration

12.
13.
14.
15.
16.
17.

18.
19.

Node A Node B

B S
7 > B

loop:
else if (update D(V, Y) received from V)
for all destinations Y do

if (destination Y through V)
D(A,Y) = D(A,V) + D(V, Y); Node C Node D

else
v = Dest. [Cost |Next [Dest. [Cost |Next |
min(D/(A, Y), A B A B
if (there is a new min. for dest. Y)
send D(A, Y) to all neighbors D 1 D C 1 C
forever

Distance Vector: End of 3'9 lteration

a4y
Node A Node B

3
B D JEEMOest. [Cost |Next [MMDest. |Cost [Next
1 B 2 B A 2 A

2
7 B D 2 C

D 4
7 loop:
12 else if (update D(V, Y) received from V)
13. for all destinations Y do
T Nor) Node G Node D

7 “Biav- Dest. |Cost |Next [EIDest. |Cost |Next
min(D(A, Y), A 3 B E A 4 C
B 1 B B 2 C

D(A, V) + D[V, Y));
18. if (there is a new min. for dest. Y)

19. send D(A, Y) to all neighbors D] D C 1 C
20. forever

Distance Vector: End of 3'9 lteration

a4y
Node A Node B

3
B D JEEMOest. [Cost |Next [MMDest. |Cost [Next
1 B 2 B A 2 A

2
7 D B D 2 C

4
7.
12 * Nothing changes, algorithm terminates
13.
ES * Until something changes...
15.
16.
17.
min(D(A, Y), A 3 B A 4 C
D(A, V) + DV, Y)); <
18. if (there is a new min. for dest. Y) B ! B B 2 9
19. send D(A, Y) to all neighbors D 1 D C 1 C

20. forever

7. loop:

8. wait (link cost update or update message)
9. if (c(A,V) changes by d)

10. for all destinations Y through V do

11. D(A,Y) = D(AY) +d

12. else if (update D(V, Y) received from V)
13. for all destinations Y do

14. if (destination Y through V)

15. D(A,Y) = D(A,V) + D(V, Y);

16. else

17. D(A, Y) = min(D(A, Y), D(A, V) + D(V, Y));
18. if (there is a new minimum for destination Y)
19. send D(A, Y) to all neighbors

20. forever

Node B A 4 A
C 1 B

NodeC A 5 B
B 1 B

_——m$§Smmmmm—m—p

Time

7. loop:

8. wait (link cost update or update message)
9. if (c(A,V) changes by d)

10. for all destinations Y through V do

11. D(A,Y) = D(AY) +d

12. else if (update D(V, Y) received from V)
13. for all destinations Y do

14. if (destination Y through V)

15. D(A,Y) = D(A,V) + D(V, Y);

16. else

17. D(A, Y) = min(D(A, Y), D(A, V) + D(V, Y));
18. if (there is a new minimum for destination Y)
19. send D(A, Y) to all neighbors

20. forever

Node B A 4 A
C 1 B

NodeC A 5 B
B 1 B

_——m$§Smmmmm—m—p

Time

7. loop:

8. wait (link cost update or update message)

9. if (c(A,V) changes by d)

10. for all destinations Y through V do

11. D(A,Y) = D(AY) +d

12. else if (update D(V, Y) received from V)

13. for all destinations Y do

14. if (destination Y through V)

15. D(A,Y) = D(A,V) + D(V, Y);

16. else

17. D(A, Y) = min(D(A, Y), D(A, V) + D(V, Y));

Link Cost Changes,
Algorithm Starts

NodeB A 4 A A 1 A
C 1 B C 1 B
D [C N JEND C N

NodeC A 5 B A 5 B
B 1 B B 1 B

- >

Time

7. loop:

8. wait (link cost update or update message)

9. if (c(A,V) changes by d)

10. for all destinations Y through V do

11. D(A,Y) = D(AY) +d

12. else if (update D(V, Y) received from V)

13. for all destinations Y do

14. if (destination Y through V)

15. D(A,Y) = D(A,V) + D(V, Y);

16. else

17. D(A, Y) = min(D(A, Y), D(A, V) + D(V, Y));

Link Cost Changes,
Algorithm Starts

Node B A 4 A A 1 A A1 A
C 1 B C 1 B C 1 B

™\

CHCECE CECECE " CHCECE
NodeC A 5 B A 5 B A 2 B
B 1 B B 1 B B 1 B

S

Time

7. loop:

8. wait (link cost update or update message)
9. if (c(A,V) changes by d)

10. for all destinations Y through V do

11. D(A,Y) = D(AY) +d

12. else if (update D(V, Y) received from V)
13. for all destinations Y do

14. if (destination Y through V)

15. D(A,Y) = D(A,V) + D(V, Y);

16. else

D(A, Y) = min(D(A, Y), D(A, V) + D(V, Y));

Link Cost Changes, Algorithm
Algorithm Starts Terminates

NodeB A 4 A

C 1 B C 1 B C 1 /
D [C N JEND C N ="EEIII D [C N
NodeC A 5 B A 5 B A 2 B A 2 B
B 1 B B 1 B B 1 B B 1 B

- 0

Time

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

loop:
wait (link cost update or update message)
if (c(A,V) changes by d)
for all destinations Y through V do
D(A,Y) = D(AY) +d
else if (update D(V, Y) received from V)
for all destinations Y do
if (destination Y through V)
D(A,Y) = D(A,V) + D(V, Y);
else
D(A, Y) = mln(D(A Y), D(A V) + D(V Y));
if (there is agag - -
send D(A,
forever

Good news travels fast

NodeB A 4 A

C 1 B C 1 B C 1 B C 1 B

D [c N ﬂﬂﬂ\ﬂﬂﬂ/ﬂﬂﬂ

NodeC A 5 B A 5 B A 2 B A 2 B

B 1 B B 1 B B 1 B B 1 B

-_—>

Time

Count to Infinity Problem
o

3—&)
50

CECECH
NodeB A 4 A
C 1 B

NodeC A 5 B
B 1 B

- 05

Time

Count to Infinity Problem
o

=4S
50

CECECH
NodeB A 4 A
C 1 B

NodeC A 5 B
B 1 B

- 05

Time

Count to Infinity Problem

Node B knows D(C, A) = 5

However, B does not know the
pathisC 2> B 2 A
Thus, D(B,A) = 6 |

NodeB A 4 A
C 1 B

D

A

C
[NCECE CH

A

B

NodeC A 5 B

uawE w 0 P

6

1
c_
5

1

B 1 B

- 05

Time

Count to Infinity Problem

Node B knows D(C, A) = 5
However, B does not know the

pathisC 2> B 2 A

Thus, D(B,A) = 6 |

D [C N N
NodeB A 4 A A 6 C
C 1 B C 1 B
D [C [N D [c [N
NodeC A 5 B
B 1 B B 1 B

Time

Count to Infinity Problem
o

=4S
50

CHCECE CHCECE CHCECH

NodeB A 4 A A 6 C A 6 C
C 1 B C 1 B C 1 B
D [C N JEND C N sEEIII
NodeC A 5 B A 5 B A 7 B

B 1 B B 1 B B 1 B

- 05

Time

Count to Infinity Problem
o

=4S
50

D |c IN N0 (c N B0 [c [N [0 [c [N_

NodeB A 4 A A 6 C A 6 C A 8 C
C 1 B C 1 B C 1 B C 1 B
CHCECE CHCECH sEEIII‘ D [C N

NodeC A 5 B A 5 B A 7 B A 7 B

B 1 B B 1 B B 1 B B 1 B

_—

Time

Count to Infinity Problem
o

Bad news travels slowly

NodeB A 4 A A 6 C A 6 C A 8 C
C 1 B C 1 B C 1 B C 1 B
CHCECE CHCECH sEEIII‘ D [C N

NodeC A 5 B A 5 B A 7 B A 7 B

B 1 B B 1 B B 1 B B 1 B

- >

Time

Poisoned Reverse

2 If C routes through B to get to A

O C tells B that D(C, A) = o 4 1
O Thus, B won’t route to A via C A
50

NodeB A 4 A
C 1 B

NodeC A 5 B
B 1 B

e ———

Time

Poisoned Reverse

2 If C routes through B to get to A

H C tells B that D(C, A) = @ m |
O Thus, B won'’t route to A via C A
50

NodeB A 4 A
C 1 B

NodeC A 5 B
B 1 B

—_— >

Time

Poisoned Reverse

2 If C routes through B to get to A

H C tells B that D(C, A) = @ m |
O Thus, B won'’t route to A via C A
50

CECECE CHCECH
NodeB A 4 A A 60 A

C 1 B C 1 B

CHCECE CHCECH
NodeC A 5 B A 5 B

B 1 B B 1 B

—_— >

Time

Poisoned Reverse

2 If C routes through B to get to A

H C tells B that D(C, A) = @ m |
O Thus, B won'’t route to A via C A
50

NodeB A 4 A A 60 A A 60 A
C 1 B C 1 B \c 1 B
CHCECE CHCECE CHCECE

NodeC A 5 B A 5 B A 50 A

B 1 B B 1 B B 1 B

>

Time

Poisoned Reverse

2 If C routes through B to get to A

H C tells B that D(C, A) = @ m |
O Thus, B won'’t route to A via C A
50

NodeB A 4 A A 60 A A 60 A A 51
C 1 B C 1 B C 1 B C 1 B
Y P4
CHCECE CHCECH CHCECE® CHCECE

NodeC A 5 B A 5 B A 50 A A 50 A
B 1 B B 1 B B 1 B B I B

e

Time

Poisoned Reverse

T2 I —
2 If C routes through B to get to A ==

Does this completely solve this count to infinity
problem?

NO

Multipath loops can still trigger the issue

NodeC A 5 B A 5 B A 50 A A 50 A
B 1 B B 1 B B 1 B B I B

T oue

4 Distance Vector Routing
2 RIP

2 Link State Routing

d OSPF
Q 1S-IS

Link State Routing

2 Each node knows its connectivity and cost to direct
neighbors

Link State Routing

2 Each node knows its connectivity and cost to direct
neighbors

2 Each node tells every other node this information

Link State Routing

2 Each node knows its connectivity and cost to direct
neighbors

2 Each node tells every other node this information

Link State Routing

2 Each node knows its connectivity and cost to direct
neighbors

2 Each node tells every other node this information

Link State Routing

2 Each node knows its connectivity and cost to direct
neighbors

2 Each node tells every other node this information

Link State Routing

2 Each node knows its connectivity and cost to direct
neighbors

2 Each node tells every other node this information

2 Each node learns complete network topology

Link State Routing

2 Each node knows its connectivity and cost to direct
neighbors

2 Each node tells every other node this information
2 Each node learns complete network topology

2 Use Dijkstra to compute shortest paths

Flooding Details

7 Each node periodically generates Link State Packet
O ID of node generating the LSP
O List of direct neighbors and costs
O Sequence number (64-bit, assumed to never wrap)
O Time to live

Flooding Details

7 Each node periodically generates Link State Packet
O ID of node generating the LSP
O List of direct neighbors and costs
O Sequence number (64-bit, assumed to never wrap)
O Time to live

2 Flood is reliable (ack + retransmission)

Flooding Details

7 Each node periodically generates Link State Packet
O ID of node generating the LSP
O List of direct neighbors and costs
O Sequence number (64-bit, assumed to never wrap)
O Time to live

2 Flood is reliable (ack + retransmission)

2 Sequence number “versions” each LSP

Flooding Details

2 Each node periodically generates Link State Packet
O ID of node generating the LSP
O List of direct neighbors and costs
O Sequence number (64-bit, assumed to never wrap)
O Time to live

2 Flood is reliable (ack + retransmission)
2 Sequence number “versions” each LSP

2 Receivers flood LSPs to their own neighbors
O Except whoever originated the LSP

Flooding Details

2 Each node periodically generates Link State Packet
O ID of node generating the LSP
O List of direct neighbors and costs
O Sequence number (64-bit, assumed to never wrap)
O Time to live

2 Flood is reliable (ack + retransmission)
2 Sequence number “versions” each LSP

2 Receivers flood LSPs to their own neighbors
O Except whoever originated the LSP

2 LSPs also generated when link states change

Dijkstra’s Algorithm

L
step _starts __[>B___|>C__ 5D DE____>F
0] A 2,A 5 A 1,A 00 00

5
3 1. Initialization:
C 2. S={A}
2
/ \ 3. for all nodes v
4. if v adjacent to A
2 3 |] 5 then D(v) = c(A,v);
e . seoti=m
1

Dijkstra’s Algorithm
21

step _starts __[>B___|>C__ 5D DE____>F
0] A 2,A 5 A 1,A 00 00

Loop
find w not in S s.t. D(w) is a minimum;
add w to S;
update D(v) for all v adjacent
to w and not in S:
D(v) = min(D(v), D(w) + c(w,v));
. until all nodes in S;

Dijkstra’s Algorithm

21 |
S loers o8 e oo ot Lot
(0) A 2, A 5 A 1, A 00 00
1 AD 4, D 2,D 00

Loop
find w not in S s.t. D(w) is a minimum;
add w to S;
update D(v) for all v adjacent
to w and not in S:
D(v) = min(D(v), D(w) + c(w,v));
. until all nodes in S;

Dijkstra’s Algorithm

21
step _starts __[>B___|>C__ 5D DE____>F
0] A 2,A 5 A 1,A 00 00
AD 4,D 2,D 00
2 ADE 3,E 4, E

Loop
find w not in S s.t. D(w) is a minimum;
add w to S;
update D(v) for all v adjacent
to w and not in S:
D(v) = min(D(v), D(w) + ¢(w,v));
. until all nodes in S;

Dijkstra’s Algorithm

_21 |
step _starts __[>B___|>C__ 5D DE____>F
(0] A 2,A 5 A 1,A 00 00
| AD 4,D 2,D 00
2 ADE 3, E 4, E
3 ADEB

Loop
find w not in S s.t. D(w) is a minimum;
add w to S;
update D(v) for all v adjacent
to w and not in S:
D(v) = min(D(v), D(w) + ¢(w,v));
. until all nodes in S;

Dijkstra’s Algorithm

21 |
S loers o8 e oo ot Lot
(0) A 2, A 5 A 1, A 00 00
1 AD 4, D 2,D 00
2 ADE 3,E 4, E
3 ADEB
4 ADEBC

8. Loop
9. find w not in S s.t. D(w) is a minimum;
10. addwtosS;
11 update D(v) for all v adjacent

to w and not in S:
12. D(v) = min(D(v), D(w) + ¢(w,v));
13. wuntil all nodes in S;

5
=

Dijkstra’s Algorithm

_21 |

Step ___[StartS 5B |>C____ 5D DE ____OF
1 AD 4,D PaE _
2 ADE 3,E 4 F
3 ADEB
4 ADEBC
5 ADEBCF

5 LI)

3 8. Loop
M 5 9. find w not in S s.t. D(w) is a minimum;
\ 10. addwtosS;
2 1 F 11 update D(v) for all v adjacent
\ 3 / to w and not in S:

1 9 12. D(v) = min(D(v), D(w) + c(w,v));
oTo 13. wuntil all nodes in S;

OSPF vs. 1S-1S

2 Two different implementations of link-state routing

OSPF vs. 1S-1S

2 Two different implementations of link-state routing

2 Favored by companies,
datacenters

OSPF vs. 1S-1S

2 Two different implementations of link-state routing

2 Favored by companies,
datacenters

© More optional features

OSPF vs. 1S-1S

2 Two different implementations of link-state routing

2 Favored by companies, 2 Favored by ISPs
datacenters
= More optional features - Less “chatty”

O Less network overhead

O Supports more devices

2 Built on top of IPv4 ~ Not tied to IP
O LSAs are sent via |IPv4 0 Works with IPv4 or IPv6

0 OSPFv3 needed for IPvé

Different Organizational Structure
N

2 QOrganized around overlapping
areds

o Area O is the core network

Different Organizational Structure

2 QOrganized around overlapping
areds

o Area O is the core network

Different Organizational Structure

2 QOrganized around overlapping
areds

o Area O is the core network

Different Organizational Structure

2 QOrganized around overlapping 2 Organized as a 2-level
areds hierarchy

o Area O is the core network

Different Organizational Structure

2 QOrganized around overlapping 2 Organized as a 2-level
areds hierarchy

5 Area O is the core network

T [9A97

Different Organizational Structure

2 QOrganized around overlapping 2 Organized as a 2-level
areds hierarchy

5 Area O is the core network

T [9A97

Different Organizational Structure

2 QOrganized around overlapping 2 Organized as a 2-level
areds hierarchy
o Area O is the core network 7 Level 2 is the backbone

T [9A97

Link State vs. Distance Vector
el

Message Complexity O(n%*e) O(d*n*k)
Time Complexity O(n*log n) O(n)
Convergence Time o(1) O(k)
Robustness « Nodes may advertise e Nodes may advertise incorrect
incorrect link costs path cost

n = number of nodes in the graph
d = degree of a given node
k = number of rounds

Link State vs. Distance Vector
el

Message Complexity O(n%*e) O(d*n*k)
Time Complexity O(n*log n) O(n)
Convergence Time o(1) O(k)
Robustness ¢ !\lodes may advertise e Nodes may advertise incorrect

* Which is best?

* In practice, it depends.

 In general, link state is more popular.

