CS 3700 Networks and Distributed Systems

Lecture 5: Bridging

Just Above the Data Link Layer

Application

Presentation

Session

Transport

Network

Data Link

Physical

- Bridging
 - How do we connect LANs?
- Function:
 - Route packets between LANs
- Key challenges:
 - Plug-and-play, self configuration
 - How to resolve loops

- Need a device that can bridge different LANs
 - Only forward packets to intended recipients
 - No broadcast!

- Need a device that can bridge different LANs
 - Only forward packets to intended recipients
 - No broadcast!

- Need a device that can bridge different LANs
 - Only forward packets to intended recipients
 - No broadcast!

- Need a device that can bridge different LANs
 - Only forward packets to intended recipients
 - No broadcast!

- Need a device that can bridge different LANs
 - Only forward packets to intended recipients
 - No broadcast!

- Need a device that can bridge different LANs
 - Only forward packets to intended recipients
 - No broadcast!

Hub Hub Bridging limits the size of collision domains Vastly improves scalability

- Question: could the whole Internet be one bridging domain?
- Tradeoff: bridges are more complex than hubs
 - Physical layer device vs. data link layer device
 - Need memory buffers, packet processing hardware, routing tables

Bridge

Bridge

6

Bridges have memory buffers to queue packets

- Bridges have memory buffers to queue packets
- Bridge is intelligent, only forwards packets to the correct output

- Bridges have memory buffers to queue packets
- Bridge is intelligent, only forwards packets to the correct output
- Bridges are high performance, full N x line rate is possible

- Original form of Ethernet switch
- Connect multiple IEEE 802 LANs at layer 2
- Goals
 - Reduce the collision domain
 - Complete transparency
 - "Plug-and-play," self-configuring
 - No hardware of software changes on hosts/hubs
 - Should not impact existing LAN operations

- Original form of Ethernet switch
 - Connect multiple IFFF 202 LANG at layer 2
 - 1. Forwarding of frames
 - 2. Learning of (MAC) Addresses
 - 3. Spanning Tree Algorithm (to handle loops)
 - Should not impact existing LAN operations

MAC Address	Port	Age
00:00:00:00:AA	1	1 minute
OO:00:00:00:BB	2	7 minutes
00:00:00:00:CC	3	2 seconds

	MAC Address	Port	Age	
	00:00:00:00:AA	1	1 minute	
	00:00:00:00:BB	2	7 minutes	
	00:00:00:00:CC	3	2 seconds	
Illin		e 5		2 1 9V.800mA DC
	8 7	6 5		
Illillin	2-3-	4	<u>*</u> * *	⊝⊕⊕
	■ ************************************			

MAC Address	Port	Age
00:00:00:00:AA	1	1 minute
OO:OO:OO:OO:BB	2	7 minutes
00:00:00:00:CC	3	2 seconds
00:00:00:00:DD	1	3 minutes

Frame Forwarding in Action

Assume a frame arrives on port 1

Frame Forwarding in Action

Assume a frame arrives on port 1

Frame Forwarding in Action

- Assume a frame arrives on port 1
- If the destination MAC address is in the forwarding table, send the frame on the correct output port

Frame Forwarding in Action

- Assume a frame arrives on port 1
- If the destination MAC address is in the forwarding table, send the frame on the correct output port

Frame Forwarding in Action

- Assume a frame arrives on port 1
- If the destination MAC address is in the forwarding table, send the frame on the correct output port
- If the destination MAC isn't in the forwarding table, broadcast the frame on all ports except 1

Frame Forwarding in Action

- Assume a frame arrives on port 1
- If the destination MAC address is in the forwarding table, send the frame on the correct output port
- If the destination MAC isn't in the forwarding table, broadcast the frame on all ports except 1

- Manual configuration is possible, but...
 - Time consuming
 - Error Prone
 - Not adaptable (hosts may get added or removed)

00:00:00:00:AA

- Manual configuration is possible, but...
 - Time consuming
 - Error Prone
 - Not adaptable (hosts may get added or removed)
- Instead, learn addresses using a simple heuristic
 - Look at the source of frames that arrive on each port

00:00:00:00:AA

- Manual configuration is possible, but...
 - Time consuming
 - Error Prone
 - Not adaptable (hosts may get added or removed)
- Instead, learn addresses using a simple heuristic
 - Look at the source of frames that arrive on each port

00:00:00:00:AA

- Manual configuration is possible, but...
 - Time consuming
 - Error Prone
 - Not adaptable (hosts may get added or removed)
- Instead, learn addresses using a simple heuristic
 - Look at the source of frames that arrive on each port

- Manual configuration is possible, but...
 - Time consuming
 - Error Prone
 - Not adaptable (hosts may get added or removed)
- Instead, learn addresses using a simple heuristic
 - Look at the source of frames that arrive on each port

- Manual configuration is possible, but...
 - Time consuming
 - Error Prone
 - Not adaptable (hosts may get added or removed)
- Instead, learn addresses using a simp
 - Look at the source of frames that arriv

Delete old entries after a timeout

				MAC Address	Port	Age	
00:00:00:00:00:A	^			00:00:00:00:AA	1	0 minu	tes
00:00:00:00:00:A	Α			00:00:00:00:00:BB	2	0 minu	tes
	Port 1	Port 2	Н	ub 00:00:00	:00:00:B	В	

Bridge 1 Bridge 2

Src=AA, Dest=FF>

Bridge 1

Bridge 2

Src=AA, Dest=FF> Bridge 1 Bridge 2

Src=AA, Dest=FF> Bridge 1 Bridge 2

Src=AA, Dest=FF>

Bridge 1 Bridge 2

AA 1 AA 1

Src=AA, Dest=FF>

Bridge 1

AA 1

Bridge 2

AA 1

Src=AA, Dest=FF> Bridge 1 Bridge 2
AA 1 AA 1

Src=AA, Dest=FF>

Src=CC, Dest=AA>

Bridge 1 Bridge 2 AA AA CC CC

2

Src=AA, Dest=FF>

Src=CC, Dest=AA>

Brido	ge 1	Bridg	ge 2
AA	1	AA	1
CC	2	CC	1

Src=AA, Dest=FF>

Src=CC, Dest=AA>

Bridge 1		Bridge	Bridge 2		
AA	1	AA	1		
CC	2	CC	1		

- Src=AA, Dest=FF>
- Src=CC, Dest=AA>
- Src=EE, Dest=CC>

Bridge 1		Bridg	Bridge 2		
AA	1	AA	1		
CC	2	CC	1		

Src=AA, Dest=FF>

Src=CC, Dest=AA>

Src=EE, Dest=CC>

Src=AA, Dest=FF>

Src=CC, Dest=AA>

Src=EE, Dest=CC>

Src=AA, Dest=FF>

Src=CC, Dest=AA>

Src=EE, Dest=CC>

12

- Src=AA, Dest=DD>
- This continues to infinity
 - How do we stop this?

- Src=AA, Dest=DD>
- This continues to infinity
 - How do we stop this?
- Remove loops from the topology
 - Without physically unplug AA cables
- 802.1 uses an algorithm to build and maintain a spanning tree for routing

Spanning Tree Definition

- A subset of edges in a graph that:
 - Span all nodes
 - Do not create any cycles
- This structure is a tree

- A subset of edges in a graph that:
 - Span all nodes
 - Do not create any cycles

Spanning Tree Poem

Algorhyme

a graph more lovely than a tree.

A tree whose crucial property is loop-free connectivity.

A tree that must be sure to span so packet can reach every LAN.

First, the root must be selected.

By ID, it is elected.

Least-cost paths from root are traced.

In the tree, these paths are placed.

A mesh is made by folks like me, then bridges find a spanning tree.

Radia Perlman

802.1 Spanning Tree Approach

15

- 1. Elect a bridge to be the root of the tree
- 2. Every bridge finds shortest path to the root
- 3. Union of these paths becomes the spanning tree

- 1. Elect a bridge to be the root of the tree
- 2. Every bridge finds shortest path to the root
- 3. Union of these paths becomes the spanning tree
- Bridges exchange Configuration Bridge Protocol Data Units (BPDUs) to build the tree
 - Used to elect the root bridge
 - Calculate shortest paths
 - Locate the next hop closest to the root, and its port
 - Select ports to be included in the spanning trees

- Bridge ID (BID) = <Random Number>
- Root Bridge: bridge with the lowest BID in the tree
- Path Cost: cost (in hops) from a transmitting bridge to the root
- Each port on a bridge has a unique Port ID
- Root Port: port that forwards to the root on each bridge
- Designated Bridge: the bridge on a LAN that provides the minimal cost path to the root
 - The designated bridge on each LAN is unique

Determining the Root

- Initially, all hosts assume they are the root
- Bridges broadcast BPDUs:

- Based on received BPDUs, each switch chooses:
 - A new root (smallest known Root ID)
 - A new root port (what interface goes towards the root)
 - A new designated bridge (who is the next hop to root)

BPDU1

else: use BPDU2

Comparing BPDUs

BPDU1

else if R1 == R2 and Cost1 == Cost 2 and B1 < B2:

BPDU2

use

Comparing BPDUs


```
if R1 < R2: use BPDU1
else if R1 == R2 and Cost1 < Cost2: use BPDU1
else if R1 == R2 and Cost1 == Cost 2 and B1 < B2: use
BPDU1
```

else: use BPDU2

BPDU1

else: use BPDU2

Comparing BPDUs

BPDU1

else if R1 == R2 and Cost1 == Cost 2 and B1 < B2:

BPDU2

use

Comparing BPDUs

BPDU1

BPDU2

```
else if R1 == R2 and Cost1 < Cost2: use BPDU1

else if R1 == R2 and Cost1 == Cost 2 and B1 < B2:

BPDU1
```

else: use BPDU2

Comparing BPDUs

BPDU1

BPDU2

else if R1 == R2 and Cost1 < Cost2: use BPDU1
else if R1 == R2 and Cost1 == Cost 2 and B1 < B2: use
BPDU1
else: use BPDU2

20

- Bridges make it possible to increase LAN capacity
 - Reduces the amount of broadcast packets
 - No loops

Bridges vs. Switches

- Bridges make it possible to increase LAN capacity
 - Reduces the amount of broadcast packets
 - No loops
- Switch is a special case of a bridge
 - Each port is connected to a single host
 - Either a client machine
 - Or another switch
 - Links are full duplex
 - Simplified hardware: no need for CSMA/CD!
 - Can have different speeds on each port

- Capabilities of switches:
 - Network-wide routing based on MAC addresses
 - Learn routes to new hosts automatically
 - Resolve loops

- Capabilities of switches:
 - Network-wide routing based on MAC addresses
 - Learn routes to new hosts automatically
 - Resolve loops
- Could the whole Internet be one switching domain?

- Capabilities of switches:
 - Network-wide routing based on MAC addresses
 - Learn routes to new hosts automatically
 - Resolve loops
- Could the whole Internet be one switching domain?

NO

22

- Inefficient
 - Flooding packets to locate unknown hosts

- Inefficient
 - Flooding packets to locate unknown hosts
- Poor Performance
 - Spanning tree does not balance load
 - Hot spots

- Inefficient
 - Flooding packets to locate unknown hosts
- Poor Performance
 - Spanning tree does not balance load
 - Hot spots
- Extremely Poor Scalability
 - Every switch needs every MAC address on the Internet in its routing table!

- Inefficient
 - Flooding packets to locate unknown hosts
- Poor Performance
 - Spanning tree does not balance load
 - Hot spots
- Extremely Poor Scalability
 - Every switch needs every MAC address on the Internet in its routing table!
- IP addresses these problems (next week...)