
Lecture 3: Physical and Data Link

Revised 1/14/13

CS 3700
Networks and Distributed Systems

Physical Layer
2

Function:
! Get bits across a physical medium
Key challenge:
! How to represent bits in analog
! Ideally, want high-bit rate
! But, must avoid desynchronization

Application

Presentation

Session

Transport

Network

Data Link

Physical

Key challenge
3

Digital computers
! 0s and 1s
Analog world
! Amplitudes and frequencies

Assumptions
4

We have two discrete signals, high and low, to encode 1 and 0

Assumptions
4

We have two discrete signals, high and low, to encode 1 and 0
Transmission is synchronous, i.e. there is a clock that controls signal
sampling

Time

Assumptions
4

We have two discrete signals, high and low, to encode 1 and 0
Transmission is synchronous, i.e. there is a clock that controls signal
sampling

Time

Sample

Assumptions
4

We have two discrete signals, high and low, to encode 1 and 0
Transmission is synchronous, i.e. there is a clock that controls signal
sampling

Amplitude and duration of signal must be significant
Time

Sample

Non-Return to Zero (NRZ)
5

1 ! high signal, 0 ! low signal

Clock

NRZ

0 0 0 0 0 01111

Non-Return to Zero (NRZ)
5

1 ! high signal, 0 ! low signal

Clock

NRZ

0 0 0 0 0 01111

Problem: long strings of 0 or 1 cause desynchronization
! How to distinguish lots of 0s from no signal?
! How to recover the clock during lots of 1s?

Desynchronization
6

Problem: how to recover the clock during sequences of
0’s or 1’s?

NRZ

0 011111 1 1 1

Desynchronization
6

Problem: how to recover the clock during sequences of
0’s or 1’s?

NRZ

0 011111 1 1 1

Transitions
signify clock

ticks

Desynchronization
6

Problem: how to recover the clock during sequences of
0’s or 1’s?

NRZ

0 011111 1 1 1

Transitions
signify clock

ticks

Desynchronization
6

Problem: how to recover the clock during sequences of
0’s or 1’s?

NRZ

0 011111 1 1 1

Transitions
signify clock

ticks

0 011111 1 1

Desynchronization
6

Problem: how to recover the clock during sequences of
0’s or 1’s?

NRZ

0 011111 1 1 1

Transitions
signify clock

ticks

0 011111 1 1

Receiver misses
a 1 due to

skew

Non-Return to Zero Inverted (NRZI)
7

1 ! make transition, 0 ! remain the same

Clock

NRZI

0 0 0 0 0 01111

Non-Return to Zero Inverted (NRZI)
7

1 ! make transition, 0 ! remain the same

Clock

NRZI

0 0 0 0 0 01111

Solves the problem for sequences of 1s, but not 0s

4-bit/5-bit (100 Mbps Ethernet)
8

0000 11110
0001 01001
0010 10100
0011 10101
0100 01010
0101 01011
0110 01110
0111 01111

1000 10010
1001 10011
1010 10110
1011 10111
1100 11010
1101 11011
1110 11100
1111 11101

4-bit 5-bit 4-bit 5-bit

4-bit/5-bit (100 Mbps Ethernet)
8

Observation: NRZI works as long as no sequences of 0
Idea: encode all 4-bit sequences as 5-bit sequences with no
more than one leading 0 and two trailing 0

Tradeoff: efficiency drops to 80%

0000 11110
0001 01001
0010 10100
0011 10101
0100 01010
0101 01011
0110 01110
0111 01111

1000 10010
1001 10011
1010 10110
1011 10111
1100 11010
1101 11011
1110 11100
1111 11101

4-bit 5-bit 4-bit 5-bit

4-bit/5-bit (100 Mbps Ethernet)
8

Observation: NRZI works as long as no sequences of 0
Idea: encode all 4-bit sequences as 5-bit sequences with no
more than one leading 0 and two trailing 0

Tradeoff: efficiency drops to 80%

0000 11110
0001 01001
0010 10100
0011 10101
0100 01010
0101 01011
0110 01110
0111 01111

1000 10010
1001 10011
1010 10110
1011 10111
1100 11010
1101 11011
1110 11100
1111 11101

4-bit 5-bit 4-bit 5-bit

8-bit / 10-bit used in Gigabit Ethernet

Manchester
9

1 ! high-to-low, 0 ! low-to-high

Clock

NRZI

0 0 011

Manchester
9

1 ! high-to-low, 0 ! low-to-high

Clock

NRZI

0 0 011

Good: Solves clock skew (every bit is a transition)
Bad: Halves throughput (two clock cycles per bit)

General comment
10

Physical layer is the lowest, so…
! We tend not to worry about where to place functionality
! There aren’t other layers that could interfere
! We tend to care about it only when things go wrong

Physical layer characteristics are still fundamentally
important to building reliable Internet systems
! Insulated media vs wireless
! Packet vs. circuit switched media

Data Link Layer
11

Function:
! Send blocks of data (frames)

between physical devices
! Regulate access to the physical

media
Key challenge:
! How to delineate frames?
! How to detect errors?
! How to perform media access

control (MAC)?
! How to recover from and avoid

collisions?

Application

Presentation

Session

Transport

Network

Data Link

Physical

❑ Framing
❑ Error Checking and Reliability

Outline12

Framing
13

Physical layer determines how bits are encoded
Next step, how to encode blocks of data

Framing
13

Physical layer determines how bits are encoded
Next step, how to encode blocks of data
! Packet switched networks
! Each packet includes routing information
! Data boundaries must be known so headers can be read

Framing
13

Physical layer determines how bits are encoded
Next step, how to encode blocks of data
! Packet switched networks
! Each packet includes routing information
! Data boundaries must be known so headers can be read
Types of framing
! Byte oriented protocols
! Bit oriented protocols
! Clock based protocols

Byte Oriented: Sentinel Approach
14

Add START and END sentinels to the data

Data

Byte Oriented: Sentinel Approach
14

Add START and END sentinels to the data

DataSTART END

Byte Oriented: Sentinel Approach
14

Add START and END sentinels to the data
Problem: what if END appears in the data?

DataSTART ENDEND

Byte Oriented: Sentinel Approach
14

Add START and END sentinels to the data
Problem: what if END appears in the data?
! Add a special DLE (Data Link Escape) character before END

DataSTART ENDENDDLE

Byte Oriented: Sentinel Approach
14

Add START and END sentinels to the data
Problem: what if END appears in the data?
! Add a special DLE (Data Link Escape) character before END
! What if DLE appears in the data? Add DLE before it.

DataSTART ENDENDDLEDLEDLE

Byte Oriented: Sentinel Approach
14

Add START and END sentinels to the data
Problem: what if END appears in the data?
! Add a special DLE (Data Link Escape) character before END
! What if DLE appears in the data? Add DLE before it.
! Similar to escape sequences in C
■ printf(“You must \”escape\” quotes in strings”);
■ printf(“You must \\escape\\ forward slashes as well”);

Used by Point-to-Point protocol, e.g. modem, DSL, cellular

DataSTART ENDENDDLEDLEDLE

Byte Oriented: Byte Counting
15

Data
132

Byte Oriented: Byte Counting
15

Sender: insert length of the data in bytes at the
beginning of each frame
Receiver: extract the length and read that many bytes

Data
132

132

Bit Oriented: Bit Stuffing
16

Data

Bit Oriented: Bit Stuffing
16

Add sentinels to the start and end of data
! Both sentinels are the same
! Example: 01111110 in High-level Data Link Protocol (HDLC)

Data01111110 01111110

Bit Oriented: Bit Stuffing
16

Add sentinels to the start and end of data
! Both sentinels are the same
! Example: 01111110 in High-level Data Link Protocol (HDLC)
Sender: insert a 0 after each 11111 in data
! Known as “bit stuffing”
Receiver: after seeing 11111 in the data…
! 111110 ! remove the 0 (it was stuffed)
! 111111 ! look at one more bit

■ 1111110 ! end of frame
■ 1111111 ! error! Discard the frame

Disadvantage: 20% overhead at worst

Data01111110 01111110

Synchronous Optical Network
! Transmission over very fast optical links
! STS-n, e.g. STS-1: 51.84 Mbps, STS-768: 36.7 Gbps
STS-1 frames based on fixed sized frames
! 9*90 = 810 bytes

Clock-based Framing: SONET
17

90 Columns

9
Ro

w
s

Payload

O
ve

rh
ea

d

Special start
pattern

Synchronous Optical Network
! Transmission over very fast optical links
! STS-n, e.g. STS-1: 51.84 Mbps, STS-768: 36.7 Gbps
STS-1 frames based on fixed sized frames
! 9*90 = 810 bytes
Physical layer details
! Bits are encoded using NRZ
! Payload is XORed with a special 127-bit pattern to avoid

long sequences of 0 and 1

Clock-based Framing: SONET
17

❑ Framing
❑ Error Checking and Reliability

Outline18

Dealing with Noise
19

The physical world is inherently noisy
! Interference from electrical cables
! Cross-talk from radio transmissions, microwave ovens
! Solar storms
How to detect bit-errors in transmissions?
How to recover from errors?

Naïve Error Detection
20

Idea: send two copies of each frame
! if (memcmp(frame1, frame2) != 0) { OH NOES, AN ERROR! }

Why is this a bad idea?

Naïve Error Detection
20

Idea: send two copies of each frame
! if (memcmp(frame1, frame2) != 0) { OH NOES, AN ERROR! }

Why is this a bad idea?
! Extremely high overhead
! Poor protection against errors
■ Twice the data means twice the chance for bit errors

Parity Bits
21

Idea: add extra bits to keep the number of 1s even
! Example: 7-bit ASCII characters + 1 parity bit

0101001 1011110 01101001101001 0001110

Parity Bits
21

Idea: add extra bits to keep the number of 1s even
! Example: 7-bit ASCII characters + 1 parity bit

0101001 1 1011110 01101001101001 0001110

Parity Bits
21

Idea: add extra bits to keep the number of 1s even
! Example: 7-bit ASCII characters + 1 parity bit

0101001 1 0 1 1 11011110 01101001101001 0001110

Parity Bits
21

Detects 1-bit errors and some 2-bit errors

Idea: add extra bits to keep the number of 1s even
! Example: 7-bit ASCII characters + 1 parity bit

0101001 1 0 1 1 11011110 01101001101001 0001110
1

Parity Bits
21

Detects 1-bit errors and some 2-bit errors

Idea: add extra bits to keep the number of 1s even
! Example: 7-bit ASCII characters + 1 parity bit

0101001 1 0 1 1 11011110 01101001101001 0001110
1

Parity Bits
21

Detects 1-bit errors and some 2-bit errors

Idea: add extra bits to keep the number of 1s even
! Example: 7-bit ASCII characters + 1 parity bit

0101001 1 0 1 1 11011110 01101001101001 0001110
110

Parity Bits
21

Detects 1-bit errors and some 2-bit errors

Idea: add extra bits to keep the number of 1s even
! Example: 7-bit ASCII characters + 1 parity bit

0101001 1 0 1 1 11011110 01101001101001 0001110
110

Parity Bits
21

Detects 1-bit errors and some 2-bit errors
Not reliable against bursty errors

Idea: add extra bits to keep the number of 1s even
! Example: 7-bit ASCII characters + 1 parity bit

0101001 1 0 1 1 11011110 01101001101001 0001110
110

Two Dimensional Parity
22

0101001
1101001
1011110
0001110
0110100
1011111

Two Dimensional Parity
22

0101001
1101001
1011110
0001110
0110100
1011111

1
0
1
1
1
0

Parity bit for
each row

Two Dimensional Parity
22

0101001
1101001
1011110
0001110
0110100
1011111

1
0
1
1
1
0

1111011

Parity bit for
each row

Parity bit for
each column

Two Dimensional Parity
22

0101001
1101001
1011110
0001110
0110100
1011111

1
0
1
1
1
0

1111011 0

Parity bit for
each row

Parity bit for
each column Parity bit for

the parity byte

Two Dimensional Parity
22

Can detect all 1-, 2-, and 3-bit errors, some 4-bit errors

0101001
1101001
1011110
0001110
0110100
1011111

1
0
1
1
1
0

1111011 0

Parity bit for
each row

Parity bit for
each column Parity bit for

the parity byte

Two Dimensional Parity
22

Can detect all 1-, 2-, and 3-bit errors, some 4-bit errors
14% overhead

0101001
1101001
1011110
0001110
0110100
1011111

1
0
1
1
1
0

1111011 0

Parity bit for
each row

Parity bit for
each column Parity bit for

the parity byte

Two Dimensional Parity Examples
23

0101001
1101001
1011110
0001110
0110100
1011111

1
0
1
1
1
0

1111011 0

1

Two Dimensional Parity Examples
23

0101001
1101001
1011110
0001110
0110100
1011111

1
0
1
1
1
0

1111011 0

Odd number
of 1s

Odd Number of
1s

1

Two Dimensional Parity Examples
23

0101001
1101001
1011110
0001110
0110100
1011111

1
0
1
1
1
0

1111011 0

Odd Number of
1s

Odd number
of 1s

1 1

Two Dimensional Parity Examples
23

0101001
1101001
1011110
0001110
0110100
1011111

1
0
1
1
1
0

1111011 0

Odd number
of 1s

Odd number
of 1s

1

1

1

Two Dimensional Parity Examples
23

0101001
1101001
1011110
0001110
0110100
1011111

1
0
1
1
1
0

1111011 0

1

1 0

1

Checksums
24

Idea:
! Add up the bytes in the data
! Include the sum in the frame

Use ones-complement arithmetic
Lower overhead than parity: 16 bits per frame
But, not resilient to errors
! Why?
Used in UDP, TCP, and IP

DataSTART ENDChecksum

Checksums
24

Idea:
! Add up the bytes in the data
! Include the sum in the frame

Use ones-complement arithmetic
Lower overhead than parity: 16 bits per frame
But, not resilient to errors
! Why?
Used in UDP, TCP, and IP

DataSTART ENDChecksum

0101001 1101001= 10010010+

Checksums
24

Idea:
! Add up the bytes in the data
! Include the sum in the frame

Use ones-complement arithmetic
Lower overhead than parity: 16 bits per frame
But, not resilient to errors
! Why?
Used in UDP, TCP, and IP

DataSTART ENDChecksum

0101001 1101001= 10010010+ 01

Cyclic Redundancy Check (CRC)
25

Uses field theory to compute a semi-unique value for a
given message

Much better performance than previous approaches
! Fixed size overhead per frame (usually 32-bits)
! Quick to implement in hardware
! Only 1 in 232 chance of missing an error with 32-bit CRC

Details are in the book/on Wikipedia

What About Reliability?
26

How does a sender know that a frame was received?
! What if it has errors?
! What if it never arrives at all?

Sender Receiver

Ti
m

e

What About Reliability?
26

How does a sender know that a frame was received?
! What if it has errors?
! What if it never arrives at all?

Sender Receiver

Ti
m

e

Frame

What About Reliability?
26

How does a sender know that a frame was received?
! What if it has errors?
! What if it never arrives at all?

Sender Receiver

Ti
m

e

Frame

ACK

What About Reliability?
26

How does a sender know that a frame was received?
! What if it has errors?
! What if it never arrives at all?

Sender Receiver

Ti
m

e

Frame

ACK

Acknowledgement

Stop and Wait
27

Simplest form of reliability
Example: Bluetooth Sender Receiver

Stop and Wait
27

Simplest form of reliability
Example: Bluetooth Sender Receiver

Frame

Ti
m

eo
ut

Stop and Wait
27

Simplest form of reliability
Example: Bluetooth Sender Receiver

Frame

ACK

Ti
m

eo
ut

Stop and Wait
27

Simplest form of reliability
Example: Bluetooth Sender Receiver

Frame

ACK

Stop and Wait
27

Simplest form of reliability
Example: Bluetooth Sender Receiver

Frame

ACK
Frame

Ti
m

eo
ut

Stop and Wait
27

Simplest form of reliability
Example: Bluetooth Sender Receiver

Frame

ACK
Frame

Ti
m

eo
ut

Frame

Stop and Wait
27

Simplest form of reliability
Example: Bluetooth
Problems?

Sender Receiver
Frame

ACK
Frame

Ti
m

eo
ut

Frame

Stop and Wait
27

Simplest form of reliability
Example: Bluetooth
Problems?
! Utilization
! Can only have one frame in

flight at any time

Sender Receiver
Frame

ACK
Frame

Ti
m

eo
ut

Frame

Stop and Wait
27

Simplest form of reliability
Example: Bluetooth
Problems?
! Utilization
! Can only have one frame in

flight at any time
10Gbps link and 10ms delay
! Need 100 Mbit to fill the pipe
! Assume packets are 1500B
1500B*8bit/(2*10ms) = 600Kbps

Utilization is 0.006%

Sender Receiver
Frame

ACK
Frame

Ti
m

eo
ut

Frame

Sliding Window
28

Allow multiple outstanding, un-ACKed frames
Number of un-ACKed frames is called the window

Sender Receiver
Frames

ACKs

W
in

do
w

Sliding Window
28

Allow multiple outstanding, un-ACKed frames
Number of un-ACKed frames is called the window

Sender Receiver
Frames

ACKs

W
in

do
w

Made famous by TCP
! We’ll look at this in more detail later

Should We Error Check in the Data Link?
29

Recall the End-to-End Argument
Cons:
! Error free transmission cannot be guaranteed
! Not all applications want this functionality
! Error checking adds CPU and packet size overhead
! Error recovery requires buffering

Should We Error Check in the Data Link?
29

Recall the End-to-End Argument
Cons:
! Error free transmission cannot be guaranteed
! Not all applications want this functionality
! Error checking adds CPU and packet size overhead
! Error recovery requires buffering
Pros:
! Potentially better performance than app-level error checking

Should We Error Check in the Data Link?
29

Recall the End-to-End Argument
Cons:
! Error free transmission cannot be guaranteed
! Not all applications want this functionality
! Error checking adds CPU and packet size overhead
! Error recovery requires buffering
Pros:
! Potentially better performance than app-level error checking
Data link error checking in practice
! Most useful over lossy links
! Wifi, cellular, satellite

