CS 3700

Networks and Distributed Systems

Lecture 3: Physical and Data Link

IRevised 1/14/13

Physical Layer

2 B
o Function:

0 Get bits across a physical medium

Application

2 Key challenge:
Presentation O How to represent bits in analog
Session O |deally, want high-bit rate

O But, must avoid desynchronization
Transport

Data Link

Physical

Key challenge

o Digital computers
00s and 1s

2 Analog world

O Amplitudes and frequencies

Assumptions
N

2 We have two discrete signals, high and low, to encode 1 and O

Assumptions
N

2 We have two discrete signals, high and low, to encode 1 and O

7 Transmission is synchronous, i.e. there is a clock that controls signal
sampling

Time =——p

Assumptions
4

2 We have two discrete signals, high and low, to encode 1 and O

7 Transmission is synchronous, i.e. there is a clock that controls signal
sampling

1

Time =——p

Assumptions
4

2 We have two discrete signals, high and low, to encode 1 and O

7 Transmission is synchronous, i.e. there is a clock that controls signal
sampling

1

Time =—p
7 Amplitude and duration of signal must be significant

i P W W

Non-Return to Zero (NRZ)

T
51 = high signal, 0 =2 low signal

0 0] 0 1 0 1] 0 0

Non-Return to Zero (NRZ)

T
51 = high signal, 0 =2 low signal

0 0] 0 1 0 1 1 0 0

NRZ

ClockIIIIIIIIIIIIIIIIIIII

2 Problem: long strings of O or 1 cause desynchronization
O How to distinguish lots of Os from no signal?
O How to recover the clock during lots of 1s¢

Desynchronization

9 Problem: how to recover the clock during sequences of
O’s or 1’s?

NRZ

Desynchronization

9 Problem: how to recover the clock during sequences of
O’s or 1’s?

NRZ

Transitions
signify clock
ticks

Desynchronization

9 Problem: how to recover the clock during sequences of
O’s or 1’s?

NRZ

Transitions
signify clock
ticks

Desynchronization

9 Problem: how to recover the clock during sequences of
O’s or 1’s?

NRZ

Transitions
signify clock
ticks

Desynchronization

9 Problem: how to recover the clock during sequences of
O’s or 1’s?

NRZ

Receiver misses

Transitions
signify clock
ticks

a 1 due to
skew

Non-Return to Zero Inverted (NRZI)

7 45
5 1 = make transition, 0 = remain the same

0 0] 0 1 0 1] 0 0

Non-Return to Zero Inverted (NRZI)

7 45
5 1 = make transition, 0 = remain the same

0 0] 0 1 0 1 1 0 0

NRZI |

ClockIIIIIIIIIIIIIIIIIIII

2 Solves the problem for sequences of 1s, but not Os

4-bit/5-bit (100 Mbps Ethernet)
2

4-bit 5-bit 4-bit 5-bit

0000 | 11110 1000 | 10010
0001 | 01001 1001 | 10011
0010 | 10100 1010 J 10110
0011 | 10101 1011 | 10111
0100 |01010 1100 | 11010
0101 01011 1101 11011
0110 |O1110 1110 } 11100
OT11 JO1111 1111 | 11101

4-bit /5-bit (100 Mbps Ethernet)
2

2 Observation: NRZ| works as long as no sequences of O

2 |ldea: encode all 4-bit sequences as 5-bit sequences with no
more than one leading 0 and two trailing O

4-bit | 5-bit 4-bit | 5-bit
0000 [11110 1000 | 10010
0001 |01001 1001 | 10011
0010 | 10100 1010 | 10110
0011 |10101 1011 [10111
0100 |01010 1100 | 11010
0101 |o01011 1101 [11011
0110 |o1110 1110 | 11100
7 Tradeoff: effitleply trops to 80%| 110!

4-bit/5-bit (100 Mbps Ethernet)

0

with no

8-bit / 10-bit used in Gigabit Ethernet

more than one leading O and two trailing O

4-bit | 5-bit 4-bit | 5-bit
0000 [11110 1000 [10010
0001 [01001 1001 | 10011
0010 | 10100 1010 | 10110
0011 | 10101 1011 | 10111
0100 [01010 1100 | 11010
0101 [01011 1101 | 11011
0110 [01110 1110 | 11100
0 Tradeoff: effitienty trops to 80| 110!

Manchester

-9 J
7 1 = high-to-low, 0 =2 low-to-high

Manchester

-9 J
7 1 = high-to-low, 0 =2 low-to-high

0 0 1 1 0

NRZI |

ClockIlllllllllllllllllll

2 Good: Solves clock skew (every bit is a transition)

2 Bad: Halves throughput (two clock cycles per bit)

General comment

2 Physical layer is the lowest, so...
O We tend not to worry about where to place functionality
O There aren’t other layers that could interfere
O We tend to care about it only when things go wrong

2 Physical layer characteristics are still fundamentally
important to building reliable Internet systems
O Insulated media vs wireless
O Packet vs. circuit switched media

Data Link Layer
I

7 Function:

.. 0 Send blocks of data (frames)
Application between physical devices
ST e O Regtflo're access to the physical

media
Session 0 Key challenge:

O How to delineate frames?
O How to detect errorse

Transport

_ 0 How to perform media access

Data Link control (MAC)?
Ses O How to recover from and avoid
Physical collisions?

o Joume

4 Framing
2 Error Checking and Reliability

Framing

SEEC I —
2 Physical layer determines how bits are encoded

2 Next step, how to encode blocks of data

Framing

SEEC I —
2 Physical layer determines how bits are encoded

2 Next step, how to encode blocks of data
O Packet switched networks
O Each packet includes routing information
O Data boundaries must be known so headers can be read

Framing

SEEC I —
2 Physical layer determines how bits are encoded

2 Next step, how to encode blocks of data
O Packet switched networks
O Each packet includes routing information
O Data boundaries must be known so headers can be read

o Types of framing
O Byte oriented protocols
O Bit oriented protocols
O Clock based protocols

Byte Oriented: Sentinel Approach
T

o Add START and END sentinels to the data

Byte Oriented: Sentinel Approach
T

START Data

o Add START and END sentinels to the data

Byte Oriented: Sentinel Approach
T

START Data END END

2 Add START and END sentinels to the data
2 Problem: what if END appears in the data?

Byte Oriented: Sentinel Approach
T

START Data DLE END END

o Add START and END sentinels to the data

2 Problem: what if END appears in the data?
O Add a special DLE (Data Link Escape) character before END

Byte Oriented: Sentinel Approach
T

START DLE DLE Data DLE END END

o Add START and END sentinels to the data

2 Problem: what if END appears in the data?
O Add a special DLE (Data Link Escape) character before END
O What if DLE appears in the data? Add DLE before it.

Byte Oriented: Sentinel Approach
T

START DLE DLE Data DLE END END

o Add START and END sentinels to the data

2 Problem: what if END appears in the data?
O Add a special DLE (Data Link Escape) character before END

O What if DLE appears in the data? Add DLE before it.
O Similar to escape sequences in C

= printf(“You must \"escape\” quotes in strings”);

= printf(“You must \\escape\ \ forward slashes as well”);

2 Used by Point-to-Point protocol, e.g. modem, DSL, cellular

Byte Oriented: Byte Counting

I I ———
132

Byte Oriented: Byte Counting
B
132
132 Data

2 Sender: insert length of the data in bytes at the
beginning of each frame

2 Receiver: extract the length and read that many bytes

Bit Oriented: Bit Stuffing
B

Bit Oriented: Bit Stuffing
B

O1111110 Data O1111110

5 Add sentinels to the start and end of data
O Both sentinels are the same
O Example: 01111110 in High-level Data Link Protocol (HDLC)

Bit Oriented: Bit Stuffing
B

O1111110 Data O1111110

7 Add sentinels to the start and end of data
O Both sentinels are the same
O Example: 01111110 in High-level Data Link Protocol (HDLC)

7 Sender: insert a O after each 11111 in data
O Known as “bit stuffing”

7 Receiver: after seeing 11111 in the data...

O 111110 = remove the O (it was stuffed)

0111111 = look at one more bit
= 1111110 = end of frame
= 1111111 = error! Discard the frame

© Disadvantage: 20% overhead at worst

Clock-based Framing: SONET

a7y
2 Synchronous Optical Network
O Transmission over very fast optical links

0 STS-n, e.g. STS-1: 51.84 Mbps, STS-768: 36.7 Gbps

2 STS-1 frames based on fixed sized frames

0 9*90 = 810 bytes
90 Columns

Special start
pattern

Payload

Overhead

Clock-based Framing: SONET

a7y
2 Synchronous Optical Network
O Transmission over very fast optical links

0 STS-n, e.g. STS-1: 51.84 Mbps, STS-768: 36.7 Gbps

5 STS-1 frames based on fixed sized frames
0 9*90 = 810 bytes
2 Physical layer details

O Bits are encoded using NRZ

O Payload is XORed with a special 127-bit pattern to avoid
long sequences of O and 1

- foue

4 Framing
2 Error Checking and Reliability

Dealing with Noise

2 The physical world is inherently noisy
O Interference from electrical cables
O Cross-talk from radio transmissions, microwave ovens

O Solar storms
9 How to detect bit-errors in transmissions?

7 How to recover from errors?

Naive Error Detection

7 ldea: send two copies of each frame
0 if (mememp(framel, frame2) |= 0) { OH NOES, AN ERROR! }

2 Why is this a bad idea?

Naive Error Detection

7 ldea: send two copies of each frame
0 if (mememp(framel, frame2) |= 0) { OH NOES, AN ERROR! }

2 Why is this a bad idea?

O Extremely high overhead
O Poor protection against errors

= Twice the data means twice the chance for bit errors

Parity Bits
S

o ldea: add extra bits to keep the number of 1s even
O Example: 7-bit ASCIl characters + 1 parity bit

0101001 1101001 1011110 0001110 0110100

Parity Bits
S

o ldea: add extra bits to keep the number of 1s even
O Example: 7-bit ASCIl characters + 1 parity bit

0101001 1 1101001 1011110 0001110 0110100

Parity Bits
S

o ldea: add extra bits to keep the number of 1s even
O Example: 7-bit ASCIl characters + 1 parity bit

0101001 1 1101001 O 1011110 1 OOO1T110 1 0110100 1

Parity Bits
S

o ldea: add extra bits to keep the number of 1s even
O Example: 7-bit ASCIl characters + 1 parity bit

0101001 1 1101001 O 1011110 1 OOO1T110 1 0110100 1

0 Detects 1-bit errors and some 2-bit errors

Parity Bits
21

o ldea: add extra bits to keep the number of 1s even
O Example: 7-bit ASCIl characters + 1 parity bit

0101001 1 1101001 O 1011110 1 OOO1T110 1 0110100 1

0 Detects 1-bit errors and some 2-bit errors

Parity Bits
21

o ldea: add extra bits to keep the number of 1s even
O Example: 7-bit ASCIl characters + 1 parity bit

0101001 1 1101001 O 1011110 1 OOO1T110 1 0110100 1

0 Detects 1-bit errors and some 2-bit errors

Parity Bits
S

o ldea: add extra bits to keep the number of 1s even
O Example: 7-bit ASCIl characters + 1 parity bit

0101001 1 1101001 O 1011110 1 OOO1T110 1 0110100 1

0 Detects 1-bit errors and some 2-bit errors

Parity Bits
S

o ldea: add extra bits to keep the number of 1s even
O Example: 7-bit ASCIl characters + 1 parity bit

0101001 1 1101001 O 1011110 1 OOO1T110 1 0110100 1

0 Detects 1-bit errors and some 2-bit errors

2 Not reliable against bursty errors

Two Dimensional Parity
7

0101001
1101001
1011110
0001110
0110100
1011111

Two Dimensional Parity
7

0101001 1 Parity bit for
1101001 O each row

1011110 1
0001110 1
O110100 1
1011111 O

Two Dimensional Parity
7

0101001 1 Parity bit for
1101001 O each row

1011110 1
0001110 1
O110100 1

Parity bit for [EASENREENY
each column 1111011

Two Dimensional Parity

0101001 1 Parity bit for
1101001 O each row
1011110 1
0001110 1
0110100 1

1011111

Parity bit for
each column 1111011 Parity bit for
the parity byte

Two Dimensional Parity

0101001 1 Parity bit for
1101001 O each row
1011110 1
0001110 1
0110100 1

1011111

Parity bit for
each column 1111011 Parity bit for
the parity byte

2 Can detect all 1-, 2-, and 3-bit errors, some 4-bit errors

Two Dimensional Parity

0101001 1 Parity bit for
1101001 O each row
1011110 1
0001110 1
0110100 1

1011111

Parity bit for
each column 1111011 Parity bit for
the parity byte

2 Can detect all 1-, 2-, and 3-bit errors, some 4-bit errors
2 14% overhead

Two Dimensional Parity Examples

0101001 1
1101001 O
1011110 1
OO 110 1
0110100 1
1011111 0

1111011 0

Two Dimensional Parity Examples
7

0101001 1
1101001 O

1011110 1

0110100 1 of 1s
1011111 0O

1111011 0

Odd Number of

1s

Two Dimensional Parity Examples
7

0101001 1
1101001 O
1011110 1
OOl 11 1
0110100 1
1011111 0O

1111011 O

Odd Number of Odd number

1s of 1s

Two Dimensional Parity Examples
7

0101001 1

11001 0 Odd number
OOfN 111 1
0110100 1

1011111 O

1111011 O

Odd number

of 1s

Two Dimensional Parity Examples

0101001 1

118 o0l 0
1011110 1

OO 111 1
0110100 1
1011111 O

1111011 0

Checksums

7 |dea:

0O Add up the bytes in the data
O Include the sum in the frame

START Data Checksum END

2 Use ones-complement arithmetic

7 Lower overhead than parity: 16 bits per frame

2 But, not resilient to errors
O Why?¢

5 Used in UDP, TCP, and IP

Checksums

7 |dea:

0O Add up the bytes in the data
O Include the sum in the frame

START Data Checksum END

2 Use ones-complement arithmetic
7 Lower overhead than parity: 16 bits per frame
2 But, not resilient to errors

0 Why? 0101001 + 1101001=10010010
5 Used in UDP, TCP, and IP

Checksums

7 |dea:

0O Add up the bytes in the data
O Include the sum in the frame

START Data Checksum END

2 Use ones-complement arithmetic

7 Lower overhead than parity: 16 bits per frame

2 But, not resilient to errors

O Why? Blio1001 +[J101001= 10010010
5 Used in UDP, TCP, and IP

Cyclic Redundancy Check (CRC)

9 Uses field theory to compute a semi-unique value for a
given message

2 Much better performance than previous approaches
O Fixed size overhead per frame (usually 32-bits)
O Quick to implement in hardware
O Only 1 in 232 chance of missing an error with 32-bit CRC

= Details are in the book/on Wikipedia

What About Reliability?
T

9 How does a sender know that a frame was received?

O What if it has errors?
O What if it never arrives at all?

Sender Receiver

Time

What About Reliability?
T

9 How does a sender know that a frame was received?

O What if it has errors?
O What if it never arrives at all?

Sender Receiver

F"Ome

Time

What About Reliability?
T

9 How does a sender know that a frame was received?

O What if it has errors?
O What if it never arrives at all?

Sender Receiver

F"Ome

Time

What About Reliability?
T

9 How does a sender know that a frame was received?

O What if it has errors?
O What if it never arrives at all?

Sender Receiver

F"Ome

Time

ACK

Acknowledgement

Stop and Wait

227y
o Simplest form of reliability
2 Example: Bluetooth Sender Receiver

Stop and Wait

227y
o Simplest form of reliability
2 Example: Bluetooth Sender Receiver

Timeout

Stop and Wait

227y
o Simplest form of reliability
2 Example: Bluetooth Sender Receiver

Timeout

ACK

Stop and Wait

227y
o Simplest form of reliability
2 Example: Bluetooth Sender Receiver

ACK

Stop and Wait

227y
o Simplest form of reliability
2 Example: Bluetooth Sender Receiver

Timeout

Stop and Wait

227y
o Simplest form of reliability
2 Example: Bluetooth Sender Receiver

Timeout

Stop and Wait

227y
o Simplest form of reliability

2 Example: Bluetooth Sender Receiver

2 Problems?

Timeout

Stop and Wait

227y
o Simplest form of reliability
2 Example: Bluetooth Sender Receiver

0 Problems?
O Utilization

0 Can only have one frame in
flight at any time

Timeout

Stop and Wait
I

o Simplest form of reliability
2 Example: Bluetooth Sender Receiver

0 Problems?
O Utilization

0 Can only have one frame in
flight at any time

2 10Gbps link and 10ms delay
O Need 100 Mbit to fill the pipe
O Assume packets are 15008

1500B*8bit/(2*10ms) = 600Kbps
Utilization is 0.006%

Timeout

Sliding Window

T | ——
2 Allow multiple outstanding, un-ACKed frames

9 Number of un-ACKed frames is called the window

Sender Receiver

==

ACKs

Window

Sliding Window

T | ——
2 Allow multiple outstanding, un-ACKed frames

9 Number of un-ACKed frames is called the window

Sender Receiver

==

ACKs

Window

2 Made famous by TCP

O We'll look at this in more detail later

Should We Error Check in the Data Link?

I
2 Recall the End-to-End Argument

2 Cons:
O Error free transmission cannot be guaranteed
O Not all applications want this functionality
O Error checking adds CPU and packet size overhead
O Error recovery requires buffering

Should We Error Check in the Data Link?

I
2 Recall the End-to-End Argument

2 Cons:
O Error free transmission cannot be guaranteed
O Not all applications want this functionality
O Error checking adds CPU and packet size overhead
O Error recovery requires buffering

% Pros:
O Potentially better performance than app-level error checking

Should We Error Check in the Data Link?

T =
2 Recall the End-to-End Argument

2 Cons:
O Error free transmission cannot be guaranteed
O Not all applications want this functionality
O Error checking adds CPU and packet size overhead
O Error recovery requires buffering

9 Pros:
O Potentially better performance than app-level error checking

2 Data link error checking in practice
O Most useful over lossy links
O Wifi, cellular, satellite

