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Physical Layer
2

Function: 
! Get bits across a physical medium 
Key challenge: 
! How to represent bits in analog 
! Ideally, want high-bit rate 
! But, must avoid desynchronization
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Key challenge
3

Digital computers 
! 0s and 1s 
Analog world 
! Amplitudes and frequencies
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We have two discrete signals, high and low, to encode 1 and 0
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Assumptions
4

We have two discrete signals, high and low, to encode 1 and 0
Transmission is synchronous, i.e. there is a clock that controls signal 
sampling

Amplitude and duration of signal must be significant
Time

Sample
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Non-Return to Zero (NRZ)
5

1 ! high signal, 0 ! low signal

Clock

NRZ

0 0 0 0 0 01111

Problem: long strings of 0 or 1 cause desynchronization 
! How to distinguish lots of 0s from no signal? 
! How to recover the clock during lots of 1s?
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6

Problem: how to recover the clock during sequences of 
0’s or 1’s?
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Desynchronization
6

Problem: how to recover the clock during sequences of 
0’s or 1’s?

NRZ

0 011111 1 1 1

Transitions 
signify clock 

ticks

0 011111 1 1

Receiver misses 
a 1 due to 

skew



Non-Return to Zero Inverted (NRZI)
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1 ! make transition, 0 ! remain the same
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Non-Return to Zero Inverted (NRZI)
7

1 ! make transition, 0 ! remain the same

Clock

NRZI

0 0 0 0 0 01111

Solves the problem for sequences of 1s, but not 0s



4-bit/5-bit (100 Mbps Ethernet)
8

0000    11110 
0001    01001 
0010    10100 
0011    10101 
0100    01010 
0101    01011 
0110    01110 
0111    01111

1000    10010 
1001    10011 
1010    10110 
1011    10111 
1100    11010 
1101    11011 
1110    11100 
1111    11101

4-bit 5-bit 4-bit 5-bit
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Observation: NRZI works as long as no sequences of 0 
Idea: encode all 4-bit sequences as 5-bit sequences with no 
more than one leading 0 and two trailing 0 

Tradeoff: efficiency drops to 80%
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4-bit/5-bit (100 Mbps Ethernet)
8

Observation: NRZI works as long as no sequences of 0 
Idea: encode all 4-bit sequences as 5-bit sequences with no 
more than one leading 0 and two trailing 0 

Tradeoff: efficiency drops to 80%

0000    11110 
0001    01001 
0010    10100 
0011    10101 
0100    01010 
0101    01011 
0110    01110 
0111    01111

1000    10010 
1001    10011 
1010    10110 
1011    10111 
1100    11010 
1101    11011 
1110    11100 
1111    11101

4-bit 5-bit 4-bit 5-bit

8-bit / 10-bit used in Gigabit Ethernet
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1 ! high-to-low, 0 ! low-to-high
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Manchester
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1 ! high-to-low, 0 ! low-to-high

Clock

NRZI

0 0 011

Good: Solves clock skew (every bit is a transition) 
Bad: Halves throughput (two clock cycles per bit)



General comment
10

Physical layer is the lowest, so… 
! We tend not to worry about where to place functionality 
! There aren’t other layers that could interfere 
! We tend to care about it only when things go wrong 

Physical layer characteristics are still fundamentally 
important to building reliable Internet systems 
! Insulated media vs wireless 
! Packet vs. circuit switched media



Data Link Layer
11

Function: 
! Send blocks of data (frames) 

between physical devices  
! Regulate access to the physical 

media 
Key challenge: 
! How to delineate frames? 
! How to detect errors? 
! How to perform media access 

control (MAC)? 
! How to recover from and avoid 

collisions?
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❑ Framing 
❑ Error Checking and Reliability

Outline12
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Framing
13

Physical layer determines how bits are encoded
Next step, how to encode blocks of data
! Packet switched networks
! Each packet includes routing information
! Data boundaries must be known so headers can be read
Types of framing
! Byte oriented protocols
! Bit oriented protocols
! Clock based protocols



Byte Oriented: Sentinel Approach
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Add START and END sentinels to the data

Data
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Byte Oriented: Sentinel Approach
14

Add START and END sentinels to the data
Problem: what if END appears in the data?
! Add a special DLE (Data Link Escape) character before END
! What if DLE appears in the data? Add DLE before it.
! Similar to escape sequences in C
■ printf(“You must \”escape\” quotes in strings”);
■ printf(“You must \\escape\\ forward slashes as well”);

Used by Point-to-Point protocol, e.g. modem, DSL, cellular

DataSTART ENDENDDLEDLEDLE



Byte Oriented: Byte Counting
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Data
132



Byte Oriented: Byte Counting
15

Sender: insert length of the data in bytes at the 
beginning of each frame
Receiver: extract the length and read that many bytes

Data
132

132



Bit Oriented: Bit Stuffing
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Data
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Add sentinels to the start and end of data 
! Both sentinels are the same 
! Example: 01111110 in High-level Data Link Protocol (HDLC)

Data01111110 01111110



Bit Oriented: Bit Stuffing
16

Add sentinels to the start and end of data 
! Both sentinels are the same 
! Example: 01111110 in High-level Data Link Protocol (HDLC)
Sender: insert a 0 after each 11111 in data 
! Known as “bit stuffing”
Receiver: after seeing 11111 in the data… 
! 111110 ! remove the 0 (it was stuffed) 
! 111111 ! look at one more bit 

■ 1111110 ! end of frame 
■ 1111111 ! error! Discard the frame

Disadvantage: 20% overhead at worst

Data01111110 01111110



Synchronous Optical Network
! Transmission over very fast optical links
! STS-n, e.g. STS-1: 51.84 Mbps, STS-768: 36.7 Gbps
STS-1 frames based on fixed sized frames
! 9*90 = 810 bytes

Clock-based Framing: SONET
17

90 Columns

9 
Ro

w
s

Payload

O
ve

rh
ea

d

Special start 
pattern



Synchronous Optical Network
! Transmission over very fast optical links
! STS-n, e.g. STS-1: 51.84 Mbps, STS-768: 36.7 Gbps
STS-1 frames based on fixed sized frames
! 9*90 = 810 bytes
Physical layer details
! Bits are encoded using NRZ
! Payload is XORed with a special 127-bit pattern to avoid 

long sequences of 0 and 1

Clock-based Framing: SONET
17



❑ Framing 
❑ Error Checking and Reliability

Outline18



Dealing with Noise
19

The physical world is inherently noisy 
! Interference from electrical cables 
! Cross-talk from radio transmissions, microwave ovens 
! Solar storms 
How to detect bit-errors in transmissions? 
How to recover from errors?



Naïve Error Detection
20

Idea: send two copies of each frame
! if (memcmp(frame1, frame2) != 0) { OH NOES, AN ERROR! }

Why is this a bad idea?



Naïve Error Detection
20

Idea: send two copies of each frame
! if (memcmp(frame1, frame2) != 0) { OH NOES, AN ERROR! }

Why is this a bad idea?
! Extremely high overhead
! Poor protection against errors
■ Twice the data means twice the chance for bit errors
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Idea: add extra bits to keep the number of 1s even 
! Example: 7-bit ASCII characters + 1 parity bit

0101001 1011110 01101001101001 0001110
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Detects 1-bit errors and some 2-bit errors

Idea: add extra bits to keep the number of 1s even 
! Example: 7-bit ASCII characters + 1 parity bit

0101001 1 0 1 1 11011110 01101001101001 0001110
110



Parity Bits
21

Detects 1-bit errors and some 2-bit errors
Not reliable against bursty errors

Idea: add extra bits to keep the number of 1s even 
! Example: 7-bit ASCII characters + 1 parity bit

0101001 1 0 1 1 11011110 01101001101001 0001110
110
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Two Dimensional Parity
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Can detect all 1-, 2-, and 3-bit errors, some 4-bit errors
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Two Dimensional Parity
22

Can detect all 1-, 2-, and 3-bit errors, some 4-bit errors
14% overhead
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Two Dimensional Parity Examples
23

0101001 
1101001 
1011110 
0001110 
0110100 
1011111

1 
0 
1 
1 
1 
0

1111011 0

1

1 0

1



Checksums
24

Idea: 
! Add up the bytes in the data 
! Include the sum in the frame 

Use ones-complement arithmetic 
Lower overhead than parity: 16 bits per frame 
But, not resilient to errors 
! Why? 
Used in UDP, TCP, and IP

DataSTART ENDChecksum
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Checksums
24

Idea: 
! Add up the bytes in the data 
! Include the sum in the frame 

Use ones-complement arithmetic 
Lower overhead than parity: 16 bits per frame 
But, not resilient to errors 
! Why? 
Used in UDP, TCP, and IP

DataSTART ENDChecksum

0101001 1101001= 10010010+ 01



Cyclic Redundancy Check (CRC)
25

Uses field theory to compute a semi-unique value for a 
given message 

Much better performance than previous approaches 
! Fixed size overhead per frame (usually 32-bits) 
! Quick to implement in hardware 
! Only 1 in 232 chance of missing an error with 32-bit CRC 

Details are in the book/on Wikipedia



What About Reliability?
26

How does a sender know that a frame was received? 
! What if it has errors? 
! What if it never arrives at all?
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What About Reliability?
26

How does a sender know that a frame was received? 
! What if it has errors? 
! What if it never arrives at all?

Sender Receiver

Ti
m

e

Frame

ACK

Acknowledgement
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Simplest form of reliability
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Problems?
! Utilization
! Can only have one frame in 

flight at any time
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Stop and Wait
27

Simplest form of reliability
Example: Bluetooth
Problems?
! Utilization
! Can only have one frame in 

flight at any time
10Gbps link and 10ms delay
! Need 100 Mbit to fill the pipe
! Assume packets are 1500B
1500B*8bit/(2*10ms) = 600Kbps

Utilization is 0.006%

Sender Receiver
Frame

ACK
Frame

Ti
m

eo
ut

Frame



Sliding Window
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Allow multiple outstanding, un-ACKed frames 
Number of un-ACKed frames is called the window
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Sliding Window
28

Allow multiple outstanding, un-ACKed frames 
Number of un-ACKed frames is called the window

Sender Receiver
Frames

ACKs

W
in

do
w

Made famous by TCP 
! We’ll look at this in more detail later
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Recall the End-to-End Argument
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! Error free transmission cannot be guaranteed
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! Error checking adds CPU and packet size overhead
! Error recovery requires buffering



Should We Error Check in the Data Link?
29

Recall the End-to-End Argument
Cons:
! Error free transmission cannot be guaranteed
! Not all applications want this functionality
! Error checking adds CPU and packet size overhead
! Error recovery requires buffering
Pros:
! Potentially better performance than app-level error checking



Should We Error Check in the Data Link?
29

Recall the End-to-End Argument
Cons:
! Error free transmission cannot be guaranteed
! Not all applications want this functionality
! Error checking adds CPU and packet size overhead
! Error recovery requires buffering
Pros:
! Potentially better performance than app-level error checking
Data link error checking in practice
! Most useful over lossy links
! Wifi, cellular, satellite


